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Abstract
Resettlement agencies have started to adopt data-driven algorithmic matching to match refugees
to locations using employment rate as a measure of utility. Given a pool of refugees, data-driven
algorithmic matching utilizes a classifier to predict the probability that each refugee would find
employment at any given location. Then, it uses the predicted probabilities to estimate the expected
utility of all possible placement decisions. Finally, it finds the placement decisions that maximize
the predicted utility by solving a maximum weight bipartite matching problem. In this work, we
argue that, using existing solutions, there may be pools of refugees for which data-driven algorithmic
matching is (counterfactually) harmful—it would have achieved lower utility than a given default
policy used in the past, had it been used. Then, we develop a post-processing algorithm that, given
placement decisions made by a default policy on a pool of refugees and the employment outcomes
of the refugees in the pool, solves an inverse matching problem to minimally modify the predictions
made by a given classifier. Under these modified predictions, the optimal matching policy that
maximizes predicted utility on the pool is guaranteed to be not harmful. Further, we introduce a
Transformer model that, given placement decisions made by a default policy on multiple pools
of refugees and the employment outcomes of the refugees in these pools, learns to modify the
predictions made by a given classifier so that the optimal matching policy that maximizes predicted
utility under the modified predictions on an unseen pool of refugees is less likely to be harmful than
under the original predictions. Experiments on simulated resettlement processes using synthetic
refugee data created from a variety of publicly available data from international organizations,
including the United Nations Refugee Agency (UNHCR), suggest that our methodology may be
effective in making algorithmic placement decisions that are less likely to be harmful than existing
solutions.
Keywords: Refuge Resettlement, Counterfactual Harm, Inverse Matching Problem

1. Introduction

In recent years, there is an increasing excitement in the potential of data-driven algorithmic matching
to improve matching decisions in a wide variety of high-stakes application domains. Examples of
such matching decisions include: matching refugees to locations (Bansak et al., 2018; Ahani et al.,
2021, 2023; Freund et al., 2023); matching patients to appointments in health clinics (Salah and
Srinivas, 2022); or matching blood/organ donations to recipients (McElfresh et al., 2023; Aziz et al.,
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2021). In all these cases, a central authority needs to distribute a limited set of resources—locations,
appointments, or donations—among a group of individuals—refugees, patients, or recipients.

In this work, we focus on data-driven algorithmic matching in refugee resettlement processes,
a specific application domain where matching decisions impact a particularly vulnerable group of
individuals, data-driven algorithmic matching has been already deployed by a large resettlement
agency in the United States1, and may be soon deployed by others in the United States and elsewhere2.
Given a pool of refugees, data-driven algorithmic matching aims to optimize the overall utility of
placement decisions for these refugees. Because employment has been argued to play an important
factor in the success of integration, e.g., by enabling self-sufficiency and ties to local residents (Ager
and Strang, 2008), this utility is typically measured as the number of refugees that find employment
soon after relocation. If we knew beforehand in which locations refugees would find employment,
then we could find the optimal decision policy by solving a maximum weight bipartite matching
problem (Tanimoto et al., 1978; Lau et al., 2011). In this matching problem, nodes would represent
refugees as well as locations and edge weights would represent employment outcomes, i.e., whether
each refugee would (1) or would not (0) find employment at each location, and the goal would be
to find a matching that maximizes the sum of edge weights in the matching. Unfortunately, at the
time placement decisions are made, we cannot know for sure in which locations refugees would
find employment—there is uncertainty on the value of the employment outcomes. To overcome this
challenge, previous work on data-driven algorithmic matching leverages machine learning classifiers
to predict the probability that a refugee would find employment at each location and then uses these
predicted probabilities as edge weights in the above matching problem (Bansak et al., 2018; Ahani
et al., 2021, 2023; Freund et al., 2023). As a result, given a pool of refugees, the resulting algorithmic
decision policy is guaranteed to maximize predicted utility—the expected utility over the predicted
employment probabilities.

However, previous work on data-driven algorithmic matching does not only utilize predicted
utility to make algorithmic placement decisions but also to evaluate the quality of these decisions in
comparison with decisions made by a default policy used in the past. In doing so, they implicitly
assume that, for each location, the predicted employment probabilities are well-calibrated estimates of
the true employment probabilities (Gneiting et al., 2007). Unfortunately, such an assumption is likely
to be violated because every placement decision policy induces a different distribution of refugees
across locations—it induces a different distribution shift (Quinonero-Candela et al., 2009). As a
consequence, using existing solutions, any claim of superiority of algorithmic placement decisions
over decisions made by default policy used in the past based on predicted utility is questionable. In
fact, one cannot even tell to what extent algorithmic matching implements the principle of “first, do
no harm”, a principle that has been recently argued to be applicable to machine learning systems for
decision support (Richens et al., 2022; Beckers et al., 2022; Li et al., 2023; Beckers et al., 2023).3

In this context, the most widely accepted definition of harm is arguably the counterfactual com-
parative account of harm (in short, counterfactual harm) (Feinberg, 1986; Hanser, 2008; Klocksiem,
2012). Under this definition, an action is harmful to an individual if they would have been in a worse
state had the action been taken. Building upon this definition, in our work, we say that data-driven
algorithmic matching is harmful to a pool of refugees if it would have worsened their employment

1. https://www.refugees.ai/
2. https://rematch-eu.org/about-matching/
3. The European Unions’ AI act mentions the term “harm” more than 35 times and points out that, its crucial role in the

design of algorithmic systems must be defined carefully.
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outcomes in comparison with a default decision policy used in the past, had it been used. Then, our
goal is to minimize how frequently data-driven algorithmic matching causes harm.
Our Contributions. We start by formally characterizing resettlement processes in terms of a
structural causal model (SCM) (Pearl, 2009), as illustrated in Figure 1. Using this characterization,
we first show that, if the decisions made by an algorithmic decision policy satisfy a counterfactual
condition with respect to the placement decisions made by a given default policy on a pool of
refugees, then the algorithmic decision policy is not harmful to this pool—it would have achieved
equal or higher utility than the default policy, had it been used. Building on this counterfactual
condition, we make the following contributions:

(1) We develop an algorithm that, given placement decisions made by a default policy on a pool of
refugees and the (corresponding) realized employment outcomes, solves an inverse bipartite
matching problem to minimally modify the refugees’ predicted employment probabilities
provided by a given classifier. Under these modified probabilities, the placement decisions
made by an algorithmic matching policy that maximizes the predicted utility provably satisfy
the above counterfactual condition on the pool.

(2) Given placement decisions made by a default policy on multiple pools of refugees and the
(corresponding) realized employment outcomes, we use the predicted employment probabilities
provided by a classifier and the minimally modified predicted employment probabilities provided
by the previously introduced algorithm to train a Transformer model. This model is able
to minimally modify the predicted employment probabilities of an unseen pool so that it
approximately satisfies the above counterfactual condition with respect to this pool.

Finally, we validate our methodological contributions on simulated resettlement processes using
synthetic refugee data created using publicly available aggregated data from a variety of international
organizations, including the United Nations Refugee Agency (UNHCR). The results show that our
methodology may be effective in making algorithmic placement decisions that are less likely to be
harmful than existing solutions. 4

Further related work. Our work builds upon further related work on causal inference, bipartite
matching, and critiques of prediction optimization.

Standard causal inference techniques have been widely applied to address distribution shift and
causal inference in various domains. Methods such as instrumental variables (Angrist et al., 1996),
inverse propensity scoring (IPS) (Robins et al., 1994), and doubly robust (DR) estimation (Dudík
et al., 2011) are representative examples. However, a direct application of existing techniques to
data-driven algorithmic matching presents challenges. For example, identifying valid instrumental
variables is difficult in refugee resettlement because the available data may lack sufficient additional
information to satisfy the necessary conditions for these instruments. Similarly, IPS and DR methods
require estimating the distribution shift induced by the default policy across all potential matches
within each pool—a task that becomes computationally infeasible due to the vast number of possible
assignments.

Bipartite matching problems, or more generally assignment problems, have multifaceted applica-
tions in various domains and thus a rich, extensive literature (Gale and Shapley, 1962; Crawford and
Knoer, 1981; Lovász and Plummer, 2009; Gibbons, 1985; Stelmakh et al., 2021; McElfresh et al.,
2023; Aziz et al., 2021). Less common and not well known are inverse assignment problems (De-

4. The code and data used in our experiments are available at https://github.com/Networks-Learning/counterfactually-
harmless-matching.
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mange and Monnot, 2014; Heuberger, 2004; Lee and Terekhov, 2020). Whereas assignment problems
aim to find an optimal assignment that maximizes a desired parameterized objective function, inverse
assignment problems aim to find the minimal change to those parameters such that a desired assign-
ment becomes an optimal assignment (Liu and Zhang, 2003; Bérczi et al., 2023). Inverse assignment
problems have been recently proven useful in the context of counterfactual explanations (Korikov
et al., 2021; Korikov and Beck, 2021). In particular, finding the nearest counterfactual explanation
for algorithmic assignments has been reduced to an inverse problem. Within the literature on inverse
assignment problems, the work most closely related to ours is by Yang and Zhang (2007), which
introduces an algorithmic framework to solve partial inverse assignment problems where the desired
assignment is only partially given. More specifically, in our first methodological contribution, we
adapt their framework to minimally modify the refugees’ predicted employment probabilities by a
given classifier (in their framework, the parameters) so that, under these modified probabilities, the
optimal placement decisions (the optimal assignment) match a subset of those made by a default
policy (the desired partial assignment).

Prediction optimization has been recently put into question in the context of decision support (van
Amsterdam et al., 2023; Wang et al., 2024; Liu et al., 2024). More specifically, it has been argued
that optimizing decision support systems to improve prediction accuracy does not always translate
to better decision-making. Our work aligns with this critique since we argue that, by maximizing
predictive utility, one cannot rule out the possibility that data-driven algorithmic matching causes
harm.

2. A Causal Model for Refugee Resettlement Processes

We consider a resettlement process where, for each realization of the process, a decision maker
receives a pool I of n refugees with features x = (xi)i∈I ∈ X n, matches each refugee i ∈ I to
a location l = (li)i∈I ∈ Ln out of k locations, and eventually receives a utility u(y) ≥ 0, where
y = (yi)i∈I ∈ {0, 1}n are outcome variables specifying whether a refugee i finds a job (yi = 1) or
does not find a job (yi = 0) soon after relocation. Here, we assume that each location l ∈ L has a
maximum capacity cl to host refugees and the utility u(y) =

∑
i u(yi) is separable. Without loss of

generality, we further assume that u(yi) = yi
5.

Next, we characterize the matching process using a structural causal model (SCM) (Pearl, 2009),
which we denote as M. The SCM M, which entails a distribution PM, is defined by the following
set of assignments6:

Xi = fX(Di), Yi = fY (Di, Vi,Li) ∀i ∈ I, L = π̃(X,W ) and U = 1TY , (1)

where Di ∼ P (D), Vi,l ∼ P (V |L = l) and W ∼ P (W ) are independent exogenous random
variables, often called exogenous noise variables, which characterize the refugee’s individual char-
acteristics7, the synergies between locations and refugees, and the decision maker’s individual cha-
racteristics, respectively. Further, we have that fX and fY are unknown causal functions, and π̃ is

5. We note that our approach is agnostic to the choice of utility function.
6. Random variables are denoted with capital letters and realizations of random variables with lower case letters.
7. To allow for features Xi that are causal and anticausal to the outcome variable Yi, the noise variable Di is a parent of

both Xi and Yi, as discussed elsewhere (Schölkopf et al., 2012). If we allow only for causal features and there are no
hidden confounders, we could just write Yi = fY (Xi, Vi,Li).
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Figure 1: Our structural causal model M. Circles represent endogenous random variables and boxes
represent exogenous random variables. The value of each endogenous variable is given by
a function of the values of its ancestors in the structural causal model, as defined by Eq. 1.
The value of each exogenous variable is sampled independently from a given distribution.

the decision maker’s default matching policy (in short, the default policy)8. Figure 1 shows a visual
representation of our SCM M.

Moreover, we assume the decision maker has access to a classifier g : L×X → [0, 1]|L| that, for
each location l ∈ L, maps a refugee’s feature vector x ∈ X to a predicted employment probability
gl(x). Here, the higher the predicted employment probability gl(x), the more the classifier g believes
the candidate will find a job at location l, and we denote the predicted probabilities for all refugees
in the pool I as g = (gl(xi))i∈I,l∈L. Further, let Π(G) be the class of algorithmic matching
policies that assign refugees to locations based on the predicted employment probabilities G and
satisfy the capacity constraints. Then, we can view the implementation of an algorithmic matching
policy π(G) ∈ Π(G) as an intervention do(L = π(G)) in the SCM M. The intervened SCM
Mdo(L=π(G)), which entails a distribution PM ; do(L=π(G)), is defined by:

Xi = fX(Di), Yi = fY (Di, Vi,Li), Gi,l = gl(Xi) ∀i ∈ I,∀l ∈ L, L = π(G) and U = 1TY .
(2)

In addition, given placement decisions l made by a default policy π̃ on a pool of refugees with
features x and the (corresponding) realized employment outcomes y, we define a counterfactual SCM
MX=x,Y =y,L=l where the noise variables are distributed according to the posterior distribution
P (D,V ,W |X = x,Y = y,L = l) and we denote the resulting distribution entailed by this
SCM using PM|X=x,Y =y,L=l. Finally, we characterize counterfactual statements comprising the
algorithmic policy π(G) using the intervened counterfactual SCM Mdo(L=π(g))

X=x,Y =y,L=l and denote its
entailed distribution using PM|X=x,Y =y,L=l ; do(L=π(g)).

In the next section, we will use the above characterization to reason about the conditions the
predicted employment probabilities G should satisfy so that the optimal matching policy that
maximizes predicted utility also maximizes the expected utility E[U |X].

8. For ease of presentation, we assume a constant pool size n and capacities cl. However, all theoretical results and
algorithms can be easily adapted to settings where the pool size and capacities change across matching processes.
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3. On the Optimality of Algorithmic Matching

Given a pool I of n refugees with features x, existing approaches to data-driven algorithmic matching
equate the problem of finding an optimal algorithmic matching policy that maximizes (conditional)
expected utility, i.e.,

π∗(g) ∈ Π∗(g) = argmax
π(g)∈Π(g)

EY ∼PM ; do(L=π(g)) [1TY |X = x], (3)

to the much easier problem of finding an algorithmic matching policy that maximizes (conditional)
predicted utility, i.e.,

π̂(g) ∈ Π̂(g) = argmax
π(g)∈Π(g)

∑
i∈I

gπi(g)(xi), (4)

where πi(g) ∈ L denotes the location assigned by policy π(g) to refugee i ∈ I. This latter problem
can be viewed as a maximum weight bipartite matching problem (Tanimoto et al., 1978; Lau et al.,
2011) and thus its solution, which may be non unique, can be recovered from the solution to the
following linear program:

maximize
∑

i∈I,l∈L
gl(xi) zil

subject to
∑
l∈L

zil ≤ 1 ∀i ∈ I,∑
i∈I

zil ≤ cl ∀l ∈ L,

zil ∈ [0, 1] ∀i ∈ I, l ∈ L.

(5)

In particular, it holds that π̂(g) = (argmaxl∈L ẑil)i∈I , where ẑ = (ẑil)i∈I,l∈L is an optimal integral
solution to the above linear program, as shown elsewhere (Bansak et al., 2018; Ahani et al., 2021).
However, existing approaches do not really investigate the sufficient conditions under which the
predicted employment probabilities g should satisfy for both policies π∗(g) and π̂(g) to offer the
same expected utility.

The following proposition shows that, if the predicted employment probabilities g are perfectly
calibrated, then policies in Π̂(g) and Π∗(g) must offer the same expected utility.9

Proposition 1 For any x ∼ PM(X), if gl(xi) = PM ; do(Li=l)(Yi = 1 |Xi = xi) for all l ∈ L
and i ∈ I, then, for any π̂(g) ∈ Π̂(g), it holds that π̂(g) ∈ Π∗(g).

Unfortunately, the above condition is unlikely to hold in practice. This is due to the fact that, if
the distribution of conditional probability values PM ; do(L=l)(Yi = 1 |Xi) induced by PM(Xi) is
nonatomic, even if we are able to sample data from PM ; do(L=l), finding the individual probabilities
PM ; do(Li=l)(Yi = 1 |Xi = xi) from this data is not possible without distributional assumptions,
even asymptotically (Barber, 2020; Gupta et al., 2020). Consequently, we cannot say whether the
use of existing approaches to data-driven algorithmic matching over a given default policy for a
particular pool of refugees will truly increase utility or cause potential harm. With this in mind, over
the next two sections, we introduce an alternative approach to data-driven algorithmic matching with
the goal of reducing harmful placement decisions with respect to the default policy.

9. All proofs can be found in Appendix A.
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4. Algorithmic Matching with Counterfactual Guarantees

Given the placement decisions l made by a default policy π̃ on a pool of refugees I with features x
and the (corresponding) realized employment outcomes y, we first identify a class of algorithmic
decision policies that are counterfactually harmless—they would have achieved at least the same
utility as the default policy, had they been used:

Proposition 2 Given x,y, l ∼ PM(X,Y ,L), let the class of algorithmic decision policies Πx,y,l

be defined as

Πx,y,l = {π(g) |π(g) ∈ Π(g) ∧ πi(g) = li ∀i ∈ I such that yi = 1}. (6)

Then, for any π(g) ∈ Πx,y,l, it holds that

1TY ≥ 1Ty for all Y ∼ PM|X=x,Y =y,L=l ; do(L=π(g))(Y ), (7)

where PM|X=x,Y =y,L=l ; do(L=π(g))(Y ) denotes the intervened counterfactual distribution of the
employment outcomes Y entailed by the counterfactual SCM Mdo(L=π(g))

X=x,Y =y,L=l.

Here, it is important to note that the expected utility achieved by any given algorithmic policy with
respect to all possible pools of refugees can be rewritten as an average over counterfactual utilities,
as formalized by the following proposition:

Proposition 3 For any resettlement process M satisfying Eq. 1 and algorithmic policy π ∈ Π(G),
the following equality holds:

EY ∼PM ; do(L=π(G))(Y )[1
TY ]

= EX′,Y ′,L′∼PM(X′,Y ′,L′)

[
EY ∼PM|X=X′,Y =Y ′,L=L′ ; do(L=π(G))(Y )[1

TY ]
]

(8)

Then, from Propositions 2 and 3, we can immediately conclude that, if an algorithmic policy π is
counterfactually harmless for any pool of refugees I, then, π will achieve equal or higher expected
utility than the default policy π̃, i.e., if π(g) ∈ Πx,y,l for any x,y, l ∼ PM(X,Y ,L), then, it holds
that

EY ∼PM ; do(L=π(G))(Y )[1
TY ] ≥ EY ∼PM(Y )[1

TY ]. (9)

In the next section, we will build upon the above theoretical results to develop a practical post-pro-
cessing framework to minimally modify the predicted employment probabilities g = g(x) provided
by a given classifier g so that the algorithmic matching policy π̂(ğ) that maximizes (conditional)
predicted utility under the minimally modified probabilities ğ is less likely to be counterfactually
harmful than the algorithmic matching policy π̂(g) that maximizes (conditional) predicted utility
under the original probabilities g.

5. A Practical Post-Processing Framework

Given retrospective data about multiple pools of refugees under the default policy π̃, our framework
first finds, for each of the above pools, the minimally modified predicted probabilities ğ under which
any π̂(ğ) ∈ Π̂(ğ) is provably counterfactually harmless with respect to π̃, in hindsight. Then, it uses
the original and modified predicted probabilities of all the above pools to train a transformer model h
that, given the original predicted probabilities g of an unseen pool I , predicts the minimally modified
predicted probabilities ğ.10 Figure 2 illustrates our overall post-processing framework.

10. Our framework allows for the modified predicted probabilities ğ to be larger than 1.
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Figure 2: Illustration of our post-processing framework. The matrices indicate the scores used in
algorithmic matching, while blue cells in score matrix denotes the matching result of
maximum weight matching. In this illustrative example, ϵ is set to 0.1.

Avoiding Counterfactual Harm, In Hindsight. Given x,y, l ∼ PM(X,Y ,L), we formulate the
problem of finding the minimally modified predicted employment probabilities ğ under which any
π̂(ğ) ∈ Π̂(ğ) is provably counterfactually harmless with respect to π̃ as follows:

minimize ||ğ − g||1 =
∑

i∈I,l∈L
|ğl(xi)− gl(xi)|,

subject to Π̂(ğ) ⊆ Πx,y,l.

(10)

To solve the above problem, we build on the algorithmic framework of Yang and Zhang (2007).
Let π′(g) ∈ Πx,y,l be a policy that maximizes the (conditional) predicted utility over the refugees
i ∈ I ′ = {i ∈ I | li = 0} and note that, for any given g, π′(g) can be recovered from the solution to
the following linear program, similarly as in Eqs. 4 and 5:

maximize
∑

i∈I′,l∈L
gl(xi) zil

subject to
∑
l∈L

zil ≤ 1 ∀i ∈ I ′,∑
i∈I′

zil ≤ c′l ∀l ∈ L,

zil ∈ {0, 1} ∀i ∈ I ′, l ∈ L,

(11)

where c′l = cl − |{i ∈ I | li = l ∧ yi = 1}|. In particular, we have that π′
i(g) = argmaxl∈L z′il if

i ∈ I ′, where z′ = (z′il)i∈I′,l∈L is an optimal integral solution to the above linear program, and
π′
i(g) = li otherwise.

8
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Then, using the above policy π′(g) and the optimal solution to the dual of the linear program
defined by Eq. 5, we find the minimally modified predicted employment probabilities ğ, as formalized
by the following Theorem:

Theorem 4 Given x,y, l ∼ PM(X,Y ,L), the minimally modified employment probabilities ğ
under which any algorithmic policy π̂(ğ) ∈ Π̂(ğ) is provably counterfactually harmless with respect
to the default policy π̃, as defined in Eq. 10, is given by:

ğl(xi) =

{
ûi + v̂l + ϵ if π′

i(g) = l
gl(xi) otherwise,

(12)

where ϵ > 0 is an infinitesimally small constant and û = (ûi)i∈I and v̂ = (v̂l)l∈L are the optimal
solution to the dual of the linear program defined by Eq. 5 under predicted probabilities g, i.e.,

minimize
∑
i∈I

ui +
∑
l∈L

clvl,

subject to ui + vl ≥ gl(xi) ∀i ∈ I, l ∈ L,
ui ≥ 0, vl ≥ 0 ∀i ∈ I, l ∈ L.

(13)

Learning to Avoid Counterfactual Harm. In the previous section, we have derived an expression
to compute the minimally modified employment probabilities ğ under which any π̂(ğ) ∈ Π̂(ğ) is
provably counterfactually harmless with respect to the default policy π̃. Unfortunately, the expression
requires retrospective data about the pool of interest, i.e., the placement decisions l made by a default
policy π̃ and the (corresponding) realized employment outcomes y. As a consequence, we cannot
directly use it to compute the minimally modified employment probabilities ğ of unseen pools.

However, we can use the above expression on retrospective data from multiple pools of refugees
{Ij} to train a deep learning model h : [0, 1]k×n → Rk×n

+ that, given the original predicted probabi-
lities g of an unseen pool I, approximately predicts the minimally modified predicted probabilities
h(g) ≈ ğ. Our model consists of four modules: (i) a prediction probability projection layer,
(ii) a capacity projection layer, (iii) N layers of Transformer encoders, and (iv) an embedding
projection layer. The projection layers comprise two linear projections with ReLU activation.
The layers of Transformer encoders exclude positional encoding so that they become agnostic to
the number or order of the refugees in each pool. Moreover, in our experiments, we train our
model using a quadratic loss, i.e., Ex,y,l∼PM(X,Y ,L)

[∑
i∈I,l∈L (hl,i(g)− ğl(xi))

2
]
, where hl,i(g)

denotes the approximately minimally modified predicted probability for l ∈ L and i ∈ I . For further
implementation details used in our experiments, refer to Appendix C.

6. Experiments

In this section, we use publicly available aggregated data from a variety of international organizations,
including the United Nations Refugee Agency (UNHCR), to generate synthetic refugee data. Then,
we use this synthetic data to simulate and compare the outcome of multiple resettlement processes
under a default policy and several algorithmic policies. Here, note that, by using synthetic refugee
data, rather than real refugee data, we can calculate the (true) expected utility achieved by any

9
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Noise Level (w) 0 0.125 0.25 0.375 0.5 0.625 0.75 0.875 1

π̂(p) 0 33.2 23.6 17.6 13.6 11.4 9.2 8.2 6
π̂(g) 75 64.6 55 48.2 41 33.4 24.8 23.4 15.6
π̂(h(g)) 69.2 58.9 45.4 38.0 33.9 30.6 22.9 23.4 16.0

Table 1: Percentage (%) of pools counterfactually harmed by the algorithmic policies π̂(p), π̂(g),
and π̂(h(g)) in the test set under various noise levels w and β = 0.6. Lower numbers
indicate better performance. The policy π̂(ğ) consistently achieves 0% harm, as expected
from Eq. 9, and thus it is not presented. Bold numbers indicate that π̂(h(g)) counterfactually
harms fewer pools than π̂(g), with results averaged over 5 runs. More quantitative results,
including standard deviations, are available in Appendix D.

algorithmic policy and, given retrospective data under a default policy, we can calculate the (true)
counterfactual utility achieved by any algorithmic policy.11

Experimental Settings. We create 5,000 synthetic pools of refugees to be resettled to k = 10
locations. Each pool I contains n = 100 synthetic refugees, and each refugee i ∈ I is represented by
4-dimensional feature vector xi and k = 10 labels {yi(l)}l∈L indicating whether the refugee would
find employment (or not) at each state l soon after relocation. Each location corresponds to one US
State and the features contain demographic information about a refugee’s age, country of origin, sex,
and educational attainment. The features and labels are sampled from distributions PM(X) and
PM ; do(Li=l)(Y |X = xi) informed by aggregate statistics from UNHCR, the World Bank, the U.S.
Census, the U.S. Bureau of Labor Statistics, and Migration Policy Institute. Refer to Appendix B
for more details on the synthetic data generation process. The classifier g overestimates the value
of the true employment probability for half of the locations, picked at random, and underestimates
its value for the remaining half. Whenever g overestimates the employment probability, it predicts
gl(x) = p · (1 + β) and, whenever g underestimates the employment probability, it predicts gl(x) =
p · (1− β), where p = PM ; do(Li=l)(Yi = 1 |Xi = xi) and β is a given parameter.

In our experiments, we randomly split the pools into a training set with 4,000 pools, which we
use to train the deep learning model h, a validation set with 500 pools, which we use for searching
the best model across multiple epochs as well as the best value of ϵ for each default policy π̃(x, w),
and a test set with 500 pools, which we use for evaluation12. Moreover, we implement and compare
the performance of the following policies:

(i) A default policy π̃(x, w) that first finds the placement decisions that maximize the (conditional)
expected utility under the true employment probabilities p and then picks a ratio w of these
placement decisions and shuffles them with each other.

(ii) An algorithmic policy π̂(p) that makes placement decisions that maximize the (conditional)
expected utility under the true employment probabilities p. This policy is unrealizable in
practice, as discussed in Section 3. Here, note that π̂(p) = π̃(x, 0).

11. We are not aware of any publicly available dataset with real refugee data. Unfortunately, we were unable to obtain
access to real refugee data used in previous studies (Bansak et al., 2018; Ahani et al., 2021, 2023; Freund et al., 2023).

12. Refer to Appendix C for additional implementation details regarding the deep learning model h.
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Figure 3: Per-pool expected counterfactual utility gain achieved by the proposed algorithmic policies
π̂(ğ) and π̂(h(g)) with respect to the policy π̂(g) in the test set for β = 0.6 under low
(w = 0.125), medium (w = 0.5) and high (w = 0.875) noise level. The cross markers
indicate the expected counterfactual utility gain across all pools in the test set. Pools
above the (dashed) identity line (i.e., y = x) show increase in counterfactual utility gain
compared to policy π̂(g).

(iii) An algorithmic policy π̂(g) that makes placement decisions that maximize the (conditional)
predicted utility under the predicted employment probabilities g.

(iv) An algorithmic policy π̂(ğ) that makes placement decisions that maximize the (conditional)
predicted utility under the modified predicted employment probabilities ğ given by Eq. 12. This
policy is unrealizable in practice since it uses retrospective data about the pool of interest.

(v) An algorithmic policy π̂(h(g)) that makes placement decisions that maximize the (conditional)
predicted utility under the postprocessed predicted employment probabilities h(g), where h is
the deep learning model described in Section 5.

To compare the performance achieved by the above policies, we use the percentage of pools in
the test set that are counterfactually harmed by each algorithmic policy π̂(·) and the expected
counterfactual utility EY ∼PM|X=x,Y =y,L=l ; do(L=π̂(·))(Y )[1

TY ] achieved by each algorithmic policy
π̂(·) in comparison with the realized utility achieved by the default policy π̃(x, w) across pools of
refugees in the test set. In Appendix D, we also report the (realized) utility achieved by each policy
across pools of refugees in the test set.

Results. We first calculate the percentage of pools in the test set that are counterfactually harmed
by each algorithmic policy under different noise levels w. Table 1 presents the results for β = 0.6,
which offer several insights. We find that, by postprocessing the predicted employment probabilities
g, the algorithmic policy π̂(h(g)) counterfactually harms fewer (similar) pools than the algorithmic
policy π̂(g) for low (high) noise levels, i.e., w ≤ 0.75 (w > 0.75). This suggest that, as the level of
noise of the default policy π̃(x, w) increases, it is more difficult for our framework to learn to avoid
harm from past placement decisions made by the default policy and the (corresponding) realized
employment outcomes.

Next, we compare the per-pool expected counterfactual utility gain achieved by the algorithmic
policies π̂(ğ) and π̂(h(g)), which are designed using our framework, in comparison to the counterfac-
tual utility gain achieved by algorithmic policy π̂(g) under low (w = 0.125), medium (w = 0.5) and
high (w = 0.875) noise level. Figure 3 summarizes the results for β = 0.6, which further supports

11
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Figure 4: Expected counterfactual utility achieved by the algorithmic policies π̂(p), π̂(g) and
π̂(h(g)) in comparison with the expected realized utility achieved by the default policy
π̃(x, w) across all pools in the test set for different β values under low (w = 0.125),
medium (w = 0.5) and high (w = 0.875) noise level. For π̂(h(g)), the results are
averaged over 5 runs, where the error bands represent standard deviations.

the findings derived from Table 1. As expected from Proposition 2, we find that the unrealizable
algorithmic policy π̂(ğ) always achieves a positive expected counterfactual gain for every pool.
Further, for low and medium noise levels, we find that the algorithmic policy π̂(h(g)) typically
offers a greater per-pool expected counterfactual utility gain than the algorithmic policy π̂(g) and
it achieves a positive expected counterfactual utility averaged across pools. For high noise levels,
we find that both algorithmic policies π̂(h(g)) and π̂(g) offer a comparable expected counterfactual
utility gain per pool.

Finally, we compare the expected counterfactual utility achieved by the algorithmic policies π̂(ğ)
and π̂(h(g)) in comparison with the expected realized utility achieved by the default policy π̃(x, w)
for different β values under low (w = 0.125), medium (w = 0.5) and high (w = 0.875) noise level.
Figure 4 summarizes the results, which show that, for low and medium noise levels, the algorithmic
policy π̂(h(g)) offers greater expected counterfactual utility than π̂(g) across all β values and, for
high noise levels, both offer a comparable expected counterfactual utility.

7. Conclusions

In this work, we have initiated the study of (counterfactual) harm in data-driven algorithmic matching.
We have developed a postprocessing framework that, given retrospective data under a given default
policy, postprocesses the predictions made by the classifiers used in existing solutions to avoid causing
harm. Further, using synthetic refugee data created using a variety of publicly available data, we have
empirically shown that our framework may be effective in making algorithmic placement decisions
that are less likely to be harmful than existing solutions. Our work opens up many interesting
avenues for future work. For example, our work considers a setting in which data-driven algorithmic
matching replaces a human decision maker. However, it would be interesting to consider a setting in
which data-driven algorithmic matching supports, rather than replace, the human decision maker.
Moreover, it would be important to evaluate our methodological contributions on real retrospective
refugee data comprising of placement decisions and realized employment outcomes. Additionally,
our approach can be extended to account for preferences of refugees to specific locations, particularly
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when they have family ties in one or multiple locations. If these preferences are to be considered
in the matching process, our approach can be adapted by restricting the set of feasible matchings
to prioritize proximity, without increasing computational complexity. Further, we have focused
on reducing the overall amount of harm caused by data-driven algorithmic matching. However,
this may lead significant disparities across demographic groups, as shown recently (Freund et al.,
2023; Körtner and Bach, 2023; Zezulka and Genin, 2024), and thus it would be important to extend
our methodology to account for fairness considerations. Finally, investigating decision-focused
learning (Mandi et al., 2024) for counterfactual harm minimization is a promising direction for future
research.
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Appendix A. Proofs

A.1. Proof of Proposition 1

We prove this by contra-position. For a given X = x, if the algorithmic matching policy π̂(g) =
(argmaxl∈L ẑil)i∈I , where ẑ = (ẑil)i∈I,l∈L is an optimal integral solution to the linear program
defined by Eq. 5, does not correspond to an optimal policy π∗(g), then we must have that

EY ∼PM ; do(L=π∗(g)) [1TY |X = x] > EY ∼PM ; do(L=π̂(g)) [1TY |X = x]. (14)

Given any algorithmic policy π(g), let z = (zil)i∈I,l∈L with zil = 1[πi(g) = l], where note
that zil has to satisfy the constraints of the matching problem defined in Eq. 5 for π(g) to be a valid
algorithmic matching policy. That is, each refugee is assigned to at most one location and each
location l is assigned at most cl refugees. Further, we have that:

EY ∼PM ; do(L=π(g)) [1TY |X = x] =
∑
i∈I

PM ; do(Li=(πi(g)))(Yi = 1 |Xi = xi)

=
∑

i∈I,l∈L
PM ; do(Li=l)(Yi = 1 |Xi = xi)1[πi(g(x)) = l]

=
∑

i∈I,l∈L
gl(xi)zil

Hence, we can rewrite Eq. 14 as ∑
i∈I,l∈L

gl(xi)z
∗
il >

∑
i∈I,l∈L

gl(xi)ẑil

where z∗il = 1[π∗
i (g) = l]. However, this leads to a contradiction since the solution ẑ cannot be the

optimal solution to the linear program defined by Eq. 5 if z∗ is a feasible solution and has greater
objective function value. As a consequence, it must hold that

EY ∼PM ; do(L=π∗(g)) [1TY |X = x] ≤ EY ∼PM ; do(L=π̂(g)) [1TY |X = x]

and thus π̂(g) ∈ Π∗(g).

A.2. Proof of Proposition 2

We begin by writing the counterfactual probability of Yi = 1, for i ∈ I, in terms of the probability
density of Di, Vi,li and Vi,πi(g) as an expectation:

PM|X=x,Y =y,L=l ; do(L=π(g))(Yi = 1) = EYi∼PM|X=x,Y =y,L=l ; do(L=π(g)) [Yi]

=

∫
d,v,v′

P (Di = d, Vi,li = v, Vi,πi(g) = v′ |X = x,Y = y,L = l) · fY (d, v′) dd dv dv′. (15)

Since Vi,πi(g) is independent of Di, Xi and Yi conditioned on Vi,li , we can rewrite the probability
density function in Eq. 15 as

P (Di = d, Vi,li = v |Xi = xi, Yi = yi, Li = li) · P (Vi,πi(g) = v′ |Vi,li = v)

= P (Di = d, Vi,li = v | fX(Di) = xi, fY (Di, Vi,li) = yi) · P (Vi,πi(g) = v′ |Vi,li = v), (16)
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Further, it is straight forward to see that

P (Vi,πi(g) = v′|Vi,li = v) =


1 if πi(g) = li ∧ v′ = v

0 if πi(g) = li ∧ v′ ̸= v

P (Vi,πi(g) = v′) = P (V = v′ |Li = πi(g)) if πi(g) ̸= li,
(17)

where the last case follows from the definition of SCM M since Vi,li and Vi,πi(g) are independent
when πi(g) ̸= li. Thus, when πi(g) = li, it follows from Eqs. 16 and 17 that the right hand side of
Eq. 15 is equivalent to∫

d,v
P (Di = d, Vi,li = v | fX(Di) = xi, fY (Di, Vi,li) = yi) · fY (d, v) dd dv

= yi ·
∫
d,v

P (Di = d, Vi,li = v | fX(Di) = xi, fY (Di, Vi,li) = yi) dd dv = yi, (18)

where the equality stems from the fact that density function P (Di = d, Vi,li = v | fX(Di) =
xi, fY (Di, Vi,li) = yi) can only be positive when fY (d, v) = yi. Since yi ∈ {0, 1}, it follows from
Eq. 18 that for Y ∼ PM|X=x,Y =y,L=l ; do(L=π(g)) must hold that

Yi = yi for all i ∈ I such that πi(g) = li. (19)

Now, let π(g) be a policy in Πx,y,l . By definition of Πx,y,l, we have that, for any i ∈ I, yi = 1
implies πi(g) = li. Hence, we can conclude that

1Ty =
∑
i∈I

yi =
∑
i∈I

yi · 1[πi(g) = li]
(i)
=

∑
i∈I

Yi · 1[πi(g) = li] ≤ 1TY .

where (i) follows from Eq. 19.

A.3. Proof of Proposition 3

Using linearity of expectation, we can rewrite the right hand side of Eq. 8 as

EX′,Y ′,L′∼PM
[
EY ∼PM|X=X′,Y =Y ′,L=L′ ; do(L=π(G)) [1

TY ]
]

=

∫ ∑
y′

∑
l′

PM(X ′ = x′,Y ′ = y′,L′ = l′)
[
EY ∼PM|X=X′,Y =Y ′,L=L′ ; do(L=π(G)) [1

TY ]
]
dx′

(20)

Using Eq. 15 and the fact that X ′ d
= X and Y ′ d

= Y , we have that

PM(X ′ = x′,Y ′ = y′,L′ = l′)
[
EY ∼PM|X=X′,Y =Y ′,L=L′ ; do(L=π(G)) [1

TY ]
]

=

∫
PM(L′ = l′ |X ′ = x′)× P (D = d′,V:,L′ = v′,V:,π(G) = v,X ′ = x′,Y ′ = y′ |L′ = l′)

×

[∑
i∈I

fY (d
′
i, vi)

]
dd′ dv′ dv

(21)
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where V:,L′ = (Vi,L′
i
)i∈I and V:,π(G) = (Vi,πi(G))i∈I are vectors of exogeneous noise variables Vi,l

with i ∈ I, l ∈ L.
Note that, when combining Eq. 21 with Eq. 20, we can omit random variables X ′ and Y ′ from the

joint distribution P (D,V:,L′ ,V:,π(G),X
′,Y ′ |L′) and substitute it from the conditional distribution

PM(L′ = l′ |X ′ = x′) since the outcome of both variables can be deduced deterministically from
exogenous variables D and V:,L′ . We obtain following expression

EX′,Y ′,L′∼PM
[
EY ∼PM|X=X′,Y =Y ′,L=L′ ; do(L=π(G)) [1

TY ]
]

=
∑
l′

∫
PM(L′ = l′ |D′ = d′) · P (D = d′,V:,L′ = v′,V:,π(G) = v |L′ = l′)

×

[∑
i∈I

fY (d
′
i, vi)

]
dd′ dv′ dv (22)

Using that D,V:,π(G) are independent from L′ and rearranging summations and integrals in the
above equation, we have that∫

d′,v
P (D = d′,V:,π(G) = v)

[∑
i∈I

fY (d
′
i, vi)

]
×
∑
l′

PM(L′ = l′ |D′ = d′)

×
∫
v′
P (V:,L′ = v′ |L′ = l′,V:,π(G) = v) dv′ dd′dv

(i)
=

∫
d′,v

P (D = d′) · P (V:,π(G) = v) ·
∑
i∈I

fY (d
′
i, vi) dd

′dv

(ii)
= EY ∼PM ; do(L=π(G)) [1TY ]

where (i) follows from
∑

l′ P
M(L′ = l′ |D′ = d′) = 1 and the fact that

∫
v′ P (V:,L′ = v′ |L′ =

l′,V:,π(G) = v) dv′ = 1 and (ii) follows from the definition of intervened SCM Mdo(L=π(G)).

A.4. Proof of Theorem 4

We first find the minimally modified predicted probabilities g′ under which the counterfactually
harmless policy π′(g) ∈ Πx,y,l that maximizes the (conditional) predicted utility over the refugees
in I ′ = {i ∈ I | li = 0} with respect to g also maximizes the (conditional) predicted utility over
refugees in I with respect to g′, i.e.,

minimize ||g′ − g||1
subject to π′(g) ∈ Π̂(g′),

(23)

where note that, under the minimally modified predicted probabilities g′, there might exist other
π̂(g′) ∈ Π̂(g′) such that π̂(g′) /∈ Πx,y,l. In what follows, we assume that the pool size n =

∑
l∈L cl

without loss of generality.13

13. If n <
∑

l∈L cl, we can introduce a (dummy) refugee set I′ of size
∑

l∈L cl − n with predicted probabilities
gl(xi) = 0 for every i ∈ I′ and l ∈ L. If

∑
l∈L cl < n, we can introduce a (dummy) location l′ with capacity

cl′ = n−
∑

l∈L cl with predicted probabilities gl′(xi) = 0 for every i ∈ I. In both cases, the optimal solution g′

does not change.
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To solve the above problem, we apply the algorithmic framework by Yang and Zhang (2007).
First, we claim that, for all i ∈ I and l ∈ L, the minimally modified predicted probability g′l(xi)
must satisfy that

g′l(xi) ≥ gl(xi) if ∃π̂(g′) ∈ Π̂(g′) such that π̂i(g′) = l

g′l(xi) ≤ gl(xi) if ∄π̂(g′) ∈ Π̂(g′) such that π̂i(g′) = l,
(24)

We establish this claim by contradiction. Assume there exists π̂(g′) ∈ Π̂(g′) with at least one
i ∈ I such that π̂i(g′) = l and g′l(xi) < gl(xi) . This contradicts the optimality of g′ as a solution for
Eq. 23, since maintaining the original predicted probability gl(xi) yields a better solution. Assume
there exists at least one i ∈ I such that ∄π̂(g′) ∈ Π̂(g′) with π̂i(g

′) = l and g′l(xi) > gl(xi). This
also contradicts the optimality of g′ as maintaining the original predicted probability gl(xi) for i ∈ I
also yields a better solution.

Using the above claim, we can derive a lower bound on the objective value achieved by the
minimally modified predicted probabilities g′, as formalized by the following Lemma:

Lemma 5 The minimally modified predicted probabilities g′ under which π′(g) ∈ Π̂(g′) satisfy
that

||g′ − g||1 ≥
∑
i∈I

[
gπ̂i(g)(xi)− gπ̂i(g′)(xi)

]
for any π̂(g) ∈ Π̂(g) and π̂(g′) ∈ Π̂(g′).

Further, we can use the dual of the linear program used to find an algorithmic matching policy
π̂(g) ∈ Π̂(g), defined in Eq. 13, to show that the above lower bound is essentially tight, as formalized
by the following Proposition:

Proposition 6 The minimally modified predicted probabilities g′ under which π′(g) ∈ Π̂(g′) satisfy
that:

||g′ − g||1 =
∑
i∈I

[
gπ̂i(g)(xi)− gπ̂i(g′)(xi)

]
for any π̂(g) ∈ Π̂(g) and π̂(g′) ∈ Π̂(g′).

Importantly, the proof of the above proposition directly gives us an explicit solution to the problem
of finding the minimally modified predicted probabilities g′ under which π′(g) ∈ Π̂(g′):

g′l(xi) =

{
ûi + v̂l if π′

i(g) = l
gl(xi) otherwise,

where û = (ûi)i∈I and v̂ = (v̂l)l∈L is the optimal solution to the dual of the linear program used to
find an algorithmic matching policy π̂(g) ∈ Π̂(g).

Further, we can show that g′ as defined above is also a solution to the problem of finding the
minimally modified predicted probabilities such that there exists π̂(g′) ∈ Π̂(g′) with π̂(g′) ∈ Πx,y,l.
This claim is proven by contradiction. Assume there exists π′′(g) ∈ Πx,y,l such that, for the
minimally modified predicted probabilities g′′ such that π′′(g) ∈ Π̂(g′′), it holds that ||g′′ − g||1 <
||g′−g||1. Since both π′′(g) and π′(g) are counterfactually harmless, we have that π′′

i (g) = π′
i(g) for

all i ∈ I \ I ′. Hence, using Proposition 6, it must follow that
∑

i∈I′ gπ′
i(g)

(xi) <
∑

i∈I′ gπ′′
i (g)

(xi).
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This directly contradicts the optimality of π′(g) as the policy that maximizes the (conditional)
predicted utility over refugees in I ′ described in Eq. 11.

Then, we can immediately conclude that the minimally modified employment probabilities ğ
under which any π̂(ğ) ∈ Π̂(ğ) is provably counterfactually harmless as defined in Eq. 10 is given by:

ğl(xi) =

{
g′l(xi) + ϵ if π′

i(g) = l
g′l(xi) otherwise,

where ϵ > 0 is an infinitesimally small constant that rules out the possibility that, under the minimally
modified predicted probabilities ğ, there exists π̂(ğ) ∈ Π̂(ğ) such that π̂(ğ) /∈ Πx,y,l. This concludes
the proof.

A.5. Proof of Lemma 5

For any π̂(g) ∈ Π̂(g) and π̂(g′) ∈ Π̂(g′), we have that:∑
i∈I,l∈L

|g′l(xi)− gl(xi)|

≥
∑
i∈I

[
|g′π̂i(g′)(xi)− gπ̂i(g′)(xi)|+ 1(π̂i(g) ̸= π̂i(g

′))|g′π̂i(g)
(xi)− gπ̂i(g)(xi)|

]
(i)
=

∑
i∈I

[
(g′π̂i(g′)(xi)− gπ̂i(g′)(xi)) + 1(π̂i(g) ̸= π̂i(g

′))(gπ̂i(g)(xi)− g′π̂i(g)
(xi))

]
=

∑
i∈I

[
g′π̂i(g′)(xi)− g′π̂i(g)

(xi) + gπ̂i(g)(xi)− gπ̂i(g′)(xi)

+1(π̂i(g) = π̂i(g
′))(g′π̂i(g)

(xi)− gπ̂i(g)(xi))
]

(ii)

≥
∑
i∈I

[
gπ̂i(g)(xi)− gπ̂i(g′)(xi)

]
,

where (i) follows from both inequalities in Eq. 24 and (ii) follows from the definition of π̂i(g′) and
the first inequality in Eq. 24.

A.6. Proof of Proposition 6

Let ẑ(g) denote an optimal solution to the linear program defined by Eq. 5 under the predicted
probabilities g, and û(g) and v̂(g) denote the optimal solution to the dual of the same linear program
also under g.

From the complementary slackness conditions, for every i ∈ I and l ∈ L, it holds that:

ûi(g) + v̂l(g) = gl(xi) if π̂i(g) = l

ûi(g) + v̂l(g) ≥ gl(xi) otherwise.

Let ĝ = {ĝl(xi)}i∈I,l∈L where, for each i ∈ I and l ∈ L, we set the value of ĝl(xi) as follows:

ĝl(xi) =

{
ûi(g) + v̂l(g) if π′

i(g) = l
gl(xi) otherwise.

(25)
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Now, note that, for all i ∈ I and l ∈ L, it holds that ûi(g) + v̂l(g) ≥ ĝl(xi) and thus û(g) and v̂(g)
is a feasible dual solution to the linear program defined by Eq. 5 under ĝ. Moreover, for any i ∈ I
and l ∈ L such that ẑil(g) = 1, it holds that ûi(g) + v̂l(g) = ĝl(xi) independently of the value of
ẑil(ĝ). As a direct consequence, we have that ẑ(g) is still an optimal solution to the linear program
defined by Eq. 5 under ĝ. Moreover, from complementary slackness, û(g) and v̂(g) are also an
optimal solution to the dual of the linear program under ĝ. Thus, by strong duality, we have that:∑

i∈I,l∈L
ĝl(xi) ẑil(g) =

∑
i∈I

ûi(g) +
∑
l∈L

cl · v̂l(g) =
∑

i∈I,l∈L
gl(xi) ẑil(g) (26)

Next, let z′ = (z′il)i∈I,l∈|Lcal be defined as z′il = 1[π′
i(g) = l]. Then, using Eqs. 25 and 26 and the

fact that n =
∑

l∈L cl, we have that:∑
i∈I,l∈L

ĝl(xi) z
′
il =

∑
i∈I,l∈L

[
1[π′

i(g) = l] (ûi(g) + v̂l(g)) z
′
il(g) + 1[π′

i(g) ̸= l] · gl(xi)z′il(g)
]

=
∑

i∈I,l∈L
1[π′

i(g) = l] (ûi(g) + v̂l(g)) z
′
il(g)

=
∑
i∈I

ûi(g)

[∑
l∈L

1[π′
i(g) = l] · z′il

]
+
∑
l∈L

v̂l(g)

[∑
i∈I

1[π′
i(g) = l] · z′il

]
=

∑
i∈I

ûi(g) +
∑
l∈L

cl · v̂l(g)

=
∑

i∈I,l∈L
ĝl(xi) ẑil(g)

=
∑

i∈I,l∈L
gl(xi) ẑil(g).

As a direct consequence, we have that z′ is an optimal solution to the linear program defined by
Eq. 5 under g and thus also under ĝ. Moreover, using the definition of π̂(g), we also have that:∑

i∈I
ĝπ′

i(g)
(xi) =

∑
i∈I,l∈L

ĝl(xi) z
′
il =

∑
i∈I,l∈L

gl(xi) ẑil(g) =
∑
i∈I

gπ̂i(g)(xi) (27)

Further, using the definition of ĝ, the complementary slackness conditions and Eq. 27, we have that:∑
i∈I,l∈L

|ĝl(xi)− gl(xi)| =
∑
i∈I

[
ĝπ′

i(g)
(xi)− gπ′

i(g)
(xi)

]
=

∑
i∈I

[
gπ̂i(g)(xi)− gπ′

i(g)
(xi)

]
Since π′(g) ∈ Π̂(ĝ), this directly implies that, for any π̂(g) ∈ Π̂(g) and π̂(ĝ) ∈ Π̂(ĝ), it holds that∑

i∈I,l∈L
|ĝl(xi)− gl(xi)| =

∑
i∈I

[
gπ̂i(g)(xi)− gπ̂i(ĝ)(xi)

]
Thus, from Lemma 5, it follows that the predicted probabilities ĝ must be the minimally modified
predicted probabilities g′ under which π′(g) ∈ Π̂(g′). This concludes the proof.
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Appendix B. Additional Details about the Synthetic Data Generation

In this section, we give additional details regarding the procedure we follow to generate synthetic
refugee from aggregate statistics on demographic features of refugees and countries from various
international organizations.

B.1. Aggregate Statistical Data

We aggregate statistics about refugees who migrated to the United States in 2022 from the UNHCR
database (UNHCR, 2022), including country of origin, sex, age groups, and number of refugees
allocated across ten states, namely California, Florida, Illinois, Maryland, Massachusetts, New Jersey,
New York, Pennsylvania, Texas and Virginia. We aggregate statistics about the population of the
above ten US states from the U.S. Census (Census Bureau, 2024), including age, sex, and education.
We aggregate statistics about employment in the above ten US states for different age groups and sex
from the U.S. Department of Labor (Bureau of Labor Statistics, 2024). We aggregate statistics about
the foreign-born population in the above ten US states from the Migration Policy Institute (Migration
Policy Institute, 2024), including sex, country of origin and employment. Additionally, we aggregate
statistics about the population of different countries from the World Bank (World Bank, 2024),
including age, sex, and education. We standardize statistics on age groups, country of origin, and
education levels across data sources. The age groups are 20-24, 25-34, 35-44, 45-64, and 65-100. The
levels of education are Primary or less, Secondary, and Tertiary. The country of origin is classified
into the following regions: Africa, Asia, Europe, Latin America, Northern America, and Oceania.
Table 2 summarizes all the quantities used in our data generation process, which are derived from the
above aggregate statistics.

Symbol Meaning

τ(c, s) The proportion of refugees with country of origin c and sex s
τ(a | c) The proportion of the population in age group a in country of origin c
τ(e | c) The proportion of the population with level of education e in country of origin c
n(a, e, s | l) The number of people in state l in age group a, with level of educational e, and sex s
τ(a | l, w = 1) The proportion of the employed population in state l in age group a
τ(s | l, w = 1) The proportion of the employed population in state l of sex s
τ(w = 1 | l, f = 1) The proportion of the foreign-born population in state l employed.
τ(c | l, f = 1) The proportion of the foreign-born population in state l from country of origin c
τ(c | l, w = 1, f = 1) The proportion of the employed, foreign-born population in state l from country of origin c
τ(e | l, f = 1) The proportion of the foreign-born population in state l with level of education e
τ(e | l, w = 1, f = 1) The proportion of the employed, foreign-born population in state l with level of education e
τ(s | l, f = 1) The proportion of the foreign-born population in state l of sex s

Table 2: Quantities used in our data generation process, which are derived from publicly available
aggregate statistics. The symbol w = 1 indicates that the given statistics pertain to the
employed population, and f = 1 indicates that the statistics pertain to the foreign-born
population. If both w = 1 and f = 1 are present, the statistics refer to the employed
foreign-born population.
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B.2. Data Generation Process

The attributes of each refugee i — age group ai ∈ A, country of origin ci ∈ C, level of education
ei ∈ E and sex si ∈ S—are drawn according to different categorical distributions. First, we draw
the country of origin ci and the sex si based on the joint categorical distribution parameterized
by proportions τ(c, s). The age group A = ai and level of education E = ei are then drawn per
individual depending on their country of origin ci:

ci, si ∼ Cat(τ(c, s)), ai ∼ Cat(τ(a | ci)), ei ∼ Cat(τ(e | ci)) (28)

Employment probability pi,l of refugee i in location l follows a beta distribution Bi with a mean of
µl(ai, ci, ei, si)—the average employment probability of refugees with features ai, ci, ei, si in state
l—and a fixed variance σ2. The variance σ2 is set to 0.001 and the mean µl(a, c, e, s) is chosen to
match the marginal statistics µl(a), µl(c), µl(e) and µl(s) of the general population in the US by
solving the following optimization problem:

min
{µl(a,c,e,s)}

1

|C × E × S|
∑

c′,e′,s′
(µl(a, c

′, e′, s′)− µl(a))
2

+
1

|A × E × S|
∑

a′,e′,s′
(µl(a

′, c, e′, s′)− µl(c))
2

+
1

|A × C × S|
∑

a′,c′,s′
(µl(a

′, c′, e, s′)− µl(e))
2

+
1

|A × C × E|
∑

a′,c′,e′
(µl(a

′, c′, e′, s)− µl(s))
2

subject to µl(a)(1− ρa) ≤
∑

c′,e′,s′
µl(a, c

′, e′, s′) · τ(c′, e′, s′ | l, f = 1) ≤ µl(a)(1 + ρa)

µl(c)(1− ρc) ≤
∑

a′,e′,s′
µl(a

′, c, e′, s′) · τ(a′, e′, s′ | l, f = 1) ≤ µl(c)(1 + ρc)

µl(e)(1− ρe) ≤
∑

a′,c′,s′
µl(a

′, c′, e, s′) · τ(a′, c′, s′ | l, f = 1) ≤ µl(e)(1 + ρe)

µl(s)(1− ρs) ≤
∑

a′,c′,e′
µl(a

′, c′, e′, s) · τ(a′, c′, e′ | l, f = 1) ≤ µl(s)(1 + ρs)

µL
l (a, c, e, s)(1− ρb) ≤ µl(a, c, e, s) ≤ µU

l (a, c, e, s)(1 + ρb).

(29)

Here, τ(a, c, e | l, f = 1) denotes the proportion of the foreign-born population in age group a, from
country of origin c, and with level of education e in location l. The proportions τ(a, c, s | l, f = 1),
τ(a, e, s | l, f = 1), and τ(c, e, s | l, f = 1) are defined analogously. Under some assumptions, we
can derive the above proportions from the aggregate statistics we gathered:

• τ(c, e, s | l, f = 1) = τ(c | l, f = 1) · τ(e, s | l)

• τ(a, e, s | l, f = 1) = τ(a, e, s | l)

• τ(a, c, s | l, f = 1) = τ(c | l, f = 1) · τ(a, s | l)
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• τ(a, c, e | l, f = 1) = τ(c | l, f = 1) · τ(a, e | l)

The first assumption is that the joint distribution of the employed population in age group a, with
level of education e, and sex s would be similar to that of the overall population with the same
features across the states. The second assumption is that the country of origin c is independent of a,
e and s for the employed population across the states.

In Eq. 29, the hyperparameters ρa, ρc, ρe, ρs control the “looseness” of the conditions that
make µl(a, c, e, s) follow the marginal statistics µl(a), µl(c), µl(e), µl(s), respectively, based on
the proportion of each refugee group. We set ρa = 0.5, ρc = 0.0, ρe = 0.1, and ρs = 0.0. The
possible range of the solution is decided by another hyperparameter ρb as well as µL

l (a, c, e, s) =
max(µl(a), µl(c), µl(e), µl(s)) and µU

l (a, c, e, s) = min(µl(a), µl(c), µl(e), µl(s)). This prevents
the solver finding an extreme solution for µl(a, c, e, s) that is far from marginal statistics. In our
generation process ρb is set to 0.6.

Marginal statistics µl(a), µl(c), µl(e) and µl(s) are computed based on the available aggregate
statistics as follows. Marginal statistics µl(a) (i.e., the proportion of the foreign-born population in
state l in age group a employed) is computed as follows:

µl(a) = τ(w = 1|a, l, f = 1) =
τ(a | l, w = 1, f = 1) · τ(w = 1 | l, f = 1)

τ(a | l, f = 1)

=
τ(a | l, w = 1) · τ(w = 1 | l, f = 1)

τ(a | l)
,

where τ(a | l) =
∑

e′∈E,s′∈S n(a,e′,s′ | l)∑
a′∈A,e′∈E,s′∈S n(a′,e′,s′ | l) . Here, we assume that the age distribution of the em-

ployed, foreign-born population would be similar to that of total employed population across the
states (i.e., τ(a | l, w = 1, f = 1) ≈ τ(a | l, w = 1)), and the age distribution of the foreign-born pop-
ulation would be similar to that of the total population across the states (i.e., τ(a | l, f = 1) ≈ τ(a | l)).
Marginal statistics µl(c) (i.e., the proportion of the foreign-born population in state l from country of
origin c employed ) is computed as follows:

µl(c) = τ(w = 1|c, l, f = 1) =
τ(c | l, w = 1, f = 1) · τ(w = 1 | l, f = 1)

τ(c | l, f = 1)
.

Marginal statistics µl(e) (i.e., the proportion of the foreign-born population in state l with level of
education e employed) is computed as follows:

µl(e) = τ(w = 1|e, l, f = 1) =
τ(e | l, w = 1, f = 1) · τ(w = 1 | l, f = 1)

τ(e | l, f = 1)
.

Marginal statistics µl(s) (i.e., the proportion of the foreign-born population in state l of sex s
employed) is computed as follows:

µl(g) = τ(w = 1|s, l, f = 1) =
τ(s | l, w = 1, f = 1) · τ(w = 1 | l, f = 1)

τ(s | l, f = 1)

=
τ(s | l, w = 1) · τ(w = 1 | l, f = 1)

τ(s | l, f = 1)
,

where we assume that the sex distribution of the employed, foreign-born population would be similar
to that of total employed population across the states (i.e., τ(s | l, w = 1, f = 1) = τ(s | l, w = 1)).
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Figure 5: Empirical distribution of employment probability of refugees for all states, computed using
500,000 synthesized refugees. The distributions are plotted using exponential binning.

(a) California vs Virginia (b) Florida vs Massachusetts

Figure 6: Per-refugee employment probability for two pairs of locations and 500, 000 synthesized
refugees. The (dashed) identity line (i.e., y = x) indicates equal probabilities between two
states.

B.3. Distribution of Generated Data

Using the generation process described in Appendix B.2, we create 5,000 synthetic pools of refugees
to be resettled to k = 10 locations. Each pool contains n = 100 synthetic refugees and the employ-
ment probability of each refugee is sampled from the beta distribution derived from their demographic
features. Figure 5 shows the empirical distribution of employment probability for all states, computed
using the resulting 500,000 synthesized refugees. While these empirical distributions are similar, the
employment probability per refugee varies across locations, as shown in Figure 6 for two pairs of
states.
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Appendix C. Additional Implementation Details

In this section, we offer additional implementation details about deep learning model h used in our
postprocessing framework.

Training Data. The minimally modified employment probabilities ğ are computed from the given
placement decisions made by the default policy π̃(x, w) and the predicted employment probabilities
g by solving Eq. 13 using the linear program solver in Scipy package.
Architecture of the Postprocessing Deep Learning Model h. Our deep learning model h consists
of a prediction probability projection layer, a capacity projection layer, N layers of Transformer
encoders, and an embedding projection layer. Note that all projection layers consist of two linear
projections with ReLU activation. A prediction probability projection layer projects g, the expected
employment probability of each refugee in k = 10 locations, to hidden dimension d = 128. Similarly,
a capacity projection layer projects the capacity of all locations to the same hidden dimension. This
projected capacity information is then added to the projected employment probabilities for each
refugee. The added data pass through N = 2 layers of Transformer encoder (Vaswani et al., 2017),
where each Transformer encoder layer has 1 head and 128 hidden dimensions. Note that, the layers
of Transformer encoder exclude positional encoding so that they become agnostic to the number
or order of the refugees in each pool. The processed data is projected onto a k = 10 dimensional
space to predict the difference ğ − g. The final output of the model h(g) is obtained by adding this
predicted difference to the original model input g.

Training. In all our experiments, we employ quadratic loss and the AdamW optimizer for the
optimization process. Our training batches consist of 16 pools of refugees, and the training duration
is set for 50 epochs. We start with an initial learning rate of 0.001 and apply an exponential learning
rate scheduler with a decay factor of γ = 0.9 to adjust the learning rate over time. It takes 7 seconds
of training time per epoch in our setting.

Hardware Setup. We use a GPU server equipped with Intel Xeon Platinum 8268 CPU @ 2.90GHz,
376 GB memory and NVIDIA A100 GPUs. A single GPU is used in each experiment.
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Noise Level (w) π̃(x, w) π̂(p) π̂(g) π̂(ğ) π̂(h(g))

0.000 0.7200 0.7200 0.6976 0.8161 0.7077±0.0009
0.125 0.7129 0.7200 0.6976 0.8180 0.7074±0.0003
0.250 0.7032 0.7200 0.6976 0.8188 0.7072±0.0012
0.375 0.6956 0.7200 0.6976 0.8195 0.7071±0.0015
0.500 0.6892 0.7200 0.6976 0.8242 0.7038±0.0012
0.625 0.6794 0.7200 0.6976 0.8262 0.7007±0.0012
0.750 0.6715 0.7200 0.6976 0.8288 0.7002±0.0006
0.875 0.6659 0.7200 0.6976 0.8293 0.6981±0.0005
1.000 0.6532 0.7200 0.6976 0.8319 0.6975±0.0005

Table 3: Comparison of the per-pool average realized utility of algorithmic policies π̃(x, w), π̂(p),
π̂(g), π̂(ğ), and π̂(h(g)) against the default policy π̃(x, w) across 500 test set pools under
various noise levels w (higher numbers indicate better performance). The numbers of
π̂(h(g)) are averaged results over 5 runs with their standard deviation. Bold numbers
indicate increase in average realized utility by π̂(h(g)) compared to π̂(g), while underlined
numbers indicates the higher average realized utility of π̂(h(g)) compared to π̃(x, w).

Appendix D. Additional Experimental Results

In this section, we provide additional experimental results that are omitted from the main paper due
to space limitations.

D.1. Experimental Results on Realized Utility

In Section 6, we could verify that the algorithmic policy π̂(ğ) reduces the risk of harm compared to
algorithmic policy π̂(g). Table 3 summarizes the per-pool average realized utility of the algorithmic
policies given labels {yi(l)}l∈L,i∈I indicating whether a refugee would find employment at each
state l soon after relocation. As expected from Eq. 9, we observe that the unrealizable algorithmic
policy π̂(ğ) achieves higher average realized utility compared to default policy π̃(x, w) across all
noise levels. Additionally, the postprocessing algorithmic policy π̂(h(g)) successfully achieves
higher average realized utility compared to the algorithmic policy π̂(g) that maximizes the predicted
utility under the predicted employment probabilities g.
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Number of Refugees (n)
Post-processing (Eq. 12) Training Deep Learning Model h

Time (s) Memory (MB) Time (s) Memory (MB)

10 0.006±0.000 0.229 0.063±0.001 0.006
100 0.034±0.001 0.285 0.065±0.003 0.023
1000 1.443±0.134 0.881 0.080±0.003 0.272

Table 4: Per-pool time and memory cost for solving the post-processing problem in Eq. 12 and
training the deep learning model h with varying numbers of refugees in a pool (n) while
the number of locations is fixed to 10. The running times are averaged over 5 runs, with
standard deviations reported.

Number of Locations (m)
Post-processing (Eq. 12) Training Deep Learning Model h

Time (s) Memory (MB) Time (s) Memory (MB)

2 0.012±0.000 0.231 0.064±0.003 0.023
5 0.019±0.000 0.270 0.064±0.002 0.023
10 0.034±0.001 0.285 0.065±0.003 0.023

Table 5: Per-pool time and memory cost for solving the post-processing problem in Eq. 12 and
training the deep learning model h with varying numbers of locations (m) while the number
of refugees in a pool is fixed to 100. The running times are averaged over 5 runs, with
standard deviations reported.

D.2. Empirical Running Time and Peak-Memory Usage of Post-Processing Framework

Table 4 and Table 5 present empirical running time and memory consumption per pool of refugees
for finding the minimally modified predicted employment probabilities in Eq. 12 and training the
deep learning model h. These results are shown for varying numbers of refugees in a pool (n) and
locations (m), respectively. We observe that the number of refugees in a pool affects the time and
memory costs; however, these costs remain manageable, even with a large number of refugees, such
as n = 1000. The number of locations does not significantly influence either the time or memory
costs within our framework. Notably, our method is not resource intensive and requires minimal
computational resources. It maintains a minimal memory foot print, using less than one gigabyte
of memory across all experiments, and completes both solving the linear program and updating the
deep learning model in under two seconds per instance.
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Noise Level (w) π̂(p) π̂(g) π̂(ğ) π̂(h(g))

0.000 0.00 75.00 0.00 69.24±0.96
0.125 33.20 64.60 0.00 58.88±0.63
0.250 23.60 55.00 0.00 45.44±0.59
0.375 17.60 48.20 0.00 38.00±1.25
0.500 13.60 41.00 0.00 33.92±0.68
0.625 11.40 33.40 0.00 30.64±1.04
0.750 9.20 24.80 0.00 22.88±0.56
0.875 8.20 23.40 0.00 23.40±0.77
1.000 6.00 15.60 0.00 16.04±0.50

Table 6: Comparison of the percentage (%) of pools counterfactually harmed by algorithmic policies
π̂(p), π̂(g), π̂(ğ), and π̂(h(g)) against the default policy π̃(x, w) across 500 test set pools
under various noise levels w (lower numbers indicate better performance). The numbers
of π̂(h(g)) are averaged results over 5 runs with their standard deviation. Bold numbers
indicate reductions in counterfactually harmed pools by π̂(h(g)) compared to π̂(g).

Noise Level (w) π̃(x, w) π̂(p) π̂(g) π̂(ğ) π̂(h(g))

0.000 0.7200 0.7200 0.6991 0.8156 0.7078±0.0004
0.125 0.7129 0.7201 0.6989 0.8179 0.7072±0.0003
0.250 0.7032 0.7192 0.6976 0.8192 0.7074±0.0003
0.375 0.6956 0.7202 0.6984 0.8220 0.7064±0.0008
0.500 0.6892 0.7210 0.6974 0.8244 0.7044±0.0005
0.625 0.6794 0.7180 0.6967 0.8248 0.7005±0.0008
0.750 0.6715 0.7201 0.6982 0.8290 0.7001±0.0004
0.875 0.6659 0.7187 0.6964 0.8298 0.6969±0.0001
1.000 0.6532 0.7184 0.6967 0.8309 0.6965±0.0001

Table 7: Comparison of the expected counterfactual utility of algorithmic policies π̃(x, w), π̂(p),
π̂(g), π̂(ğ), and π̂(h(g)) against the default policy π̃(x, w) across 500 test set pools under
various noise levels w (higher numbers indicate better performance). The numbers of
π̂(h(g)) are averaged results over 5 runs with their standard deviation. Bold numbers
indicate increase in expected counterfactual utility by π̂(h(g)) compared to π̂(g), while un-
derlined numbers indicates the higher expected counterfactual utility of π̂(h(g)) compared
to π̃(x, w).

D.3. Full Experimental Results on Counterfactual Utility

Table 6 presents the full results for the percentage (%) of pools in the test that are counterfactually
harmed by each algorithmic policy under different noise levels w, and Table 7 presents the full results
for the per-pool expected counterfactual utilities of each algorithmic policy under different noise
levels w. The numbers of π̂(h(g)) are average results over 5 runs with their standard deviation.
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β Noise Level (w) 0.000 0.125 0.250 0.375 0.500 0.625 0.750 0.875 1.000

π̃(x, w) 0.7200 0.7129 0.7032 0.6956 0.6892 0.6794 0.6715 0.6659 0.6532
π̂(p) 0.7200 0.7201 0.7192 0.7202 0.7210 0.7180 0.7201 0.7187 0.7184

0.1 π̂(g) 0.7168 0.7166 0.7157 0.7169 0.7169 0.7155 0.7163 0.7145 0.7149
π̂(ğ) 0.7558 0.7686 0.7803 0.7913 0.8032 0.8106 0.8223 0.8306 0.8389

π̂(h(g)) 0.7197 0.7194 0.7192 0.7196 0.7199 0.7172 0.7170 0.7150 0.7153

0.2 π̂(g) 0.7146 0.7145 0.7137 0.7144 0.7147 0.7135 0.7135 0.7117 0.7126
π̂(ğ) 0.7797 0.7867 0.7946 0.8018 0.8101 0.8163 0.8242 0.8299 0.8371

π̂(h(g)) 0.7188 0.7190 0.7183 0.7191 0.7193 0.7163 0.7146 0.7118 0.7126

0.3 π̂(g) 0.7125 0.7122 0.7117 0.7125 0.7130 0.7116 0.7121 0.7098 0.7103
π̂(ğ) 0.7905 0.7953 0.8018 0.8084 0.8140 0.8192 0.8258 0.8300 0.8356

π̂(h(g)) 0.7170 0.7169 0.7163 0.7165 0.7169 0.7132 0.7123 0.7099 0.7103

0.4 π̂(g) 0.7106 0.7104 0.7086 0.7105 0.7098 0.7089 0.7090 0.7081 0.7084
π̂(ğ) 0.7984 0.8029 0.8070 0.8122 0.8180 0.8218 0.8276 0.8300 0.8350

π̂(h(g)) 0.7140 0.7144 0.7133 0.7129 0.7127 0.7092 0.7094 0.7082 0.7086

0.5 π̂(g) 0.7050 0.7046 0.7037 0.7048 0.7044 0.7032 0.7048 0.7029 0.7026
π̂(ğ) 0.8069 0.8098 0.8129 0.8165 0.8207 0.8230 0.8283 0.8302 0.8335

π̂(h(g)) 0.7108 0.7104 0.7096 0.7098 0.7090 0.7055 0.7050 0.7029 0.7028

0.6 π̂(g) 0.6991 0.6989 0.6976 0.6984 0.6974 0.6967 0.6982 0.6964 0.6967
π̂(ğ) 0.8156 0.8179 0.8192 0.8220 0.8244 0.8248 0.8290 0.8298 0.8309

π̂(h(g)) 0.7078 0.7072 0.7074 0.7064 0.7044 0.7005 0.7001 0.6969 0.6965

0.7 π̂(g) 0.6914 0.6908 0.6901 0.6908 0.6913 0.6896 0.6906 0.6887 0.6899
π̂(ğ) 0.8240 0.8253 0.8247 0.8269 0.8282 0.8270 0.8292 0.8288 0.8284

π̂(h(g)) 0.7050 0.7041 0.7037 0.7021 0.7004 0.6974 0.6960 0.6898 0.6892

0.8 π̂(g) 0.6862 0.6857 0.6850 0.6852 0.6860 0.6839 0.6853 0.6832 0.6839
π̂(ğ) 0.8297 0.8292 0.8284 0.8290 0.8295 0.8275 0.8289 0.8280 0.8266

π̂(h(g)) 0.7025 0.7020 0.7008 0.6990 0.6976 0.6951 0.6925 0.6859 0.6846

0.9 π̂(g) 0.6839 0.6835 0.6827 0.6827 0.6835 0.6814 0.6827 0.6808 0.6817
π̂(ğ) 0.8309 0.8302 0.8290 0.8295 0.8296 0.8270 0.8281 0.8275 0.8257

π̂(h(g)) 0.6996 0.6988 0.6972 0.6969 0.6954 0.6888 0.6852 0.6826 0.6816

Table 8: Expected counterfactual utility achieved by the algorithmic policies π̂(p), π̂(g) and π̂(h(g))
in comparison with the expected realized utility achieved by the default policy π̃(x, w)
across all pools in the test set for different β values under varying noise levels. For π̂(h(g)),
the results are averaged over 5 runs.

In both tables, we can observe that the algorithmic policy that uses our postprocessing algorithm,
π̂(h(g)), reduces (maintains) harm in high (low) noise levels compared to the algorithmic policy that
uses the predicted employment probability, π̂(g). In Table 6, the percentage of pools counterfactually
harmed by π̂(ğ) is 0% for all noise level, as expected from Eq. 9. In Table 7, π̂(ğ) consistently
exhibits higher expected counterfactual utility across all noise levels. Furthermore, π̂(h(g)) shows
higher expected counterfactual utility compared to the default policy π̃(x, w) for high noise levels
(i.e., w ≥ 0.25).
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D.4. Full Experimental Results of Hyperparameter Analysis

Table 8 shows the full results of expected counterfactual utility achieved by the algorithmic policies
π̂(p), π̂(g), π̂(ğ) and π̂(h(g)) in comparison with the expected realized utility achieved by the
default policy π̃(x, w) for different β values under varying noise levels. We can observe that the
postprocessing algorithmic policy offers greater expected counterfactual utility than π̂(g) in most of
the cases.
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