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ABSTRACT

Handwritten Text Generation (HTG) seeks to synthesize realistic and personalized
handwriting by modeling stylistic and structural traits. While recent diffusion-
based approaches have advanced generation fidelity, they typically rely on aux-
iliary style or content encoders with handcrafted objectives, leading to complex
training pipelines and limited interaction across factors. In this work, we present
InkSpire, a diffusion transformer based model that unifies style, content, and noise
within a shared latent space. By eliminating explicit encoders, InkSpire stream-
lines optimization while enabling richer feature interaction and stronger in-context
generation. To further enhance flexibility, we introduce a multi-line masked infill-
ing strategy that allows training directly on raw text-line images, together with a
revised positional encoding that supports arbitrary-length multi-line synthesis and
fine-grained character editing. Moreover, InkSpire is trained on a bilingual Chi-
nese–English corpus, enabling a single model to handle both Chinese and English
handwriting generation with high fidelity and stylistic diversity, thereby overcom-
ing the need for language-specific systems. Extensive experiments on IAM and
ICDAR2013 demonstrate that InkSpire achieves superior structural accuracy and
stylistic diversity compared to prior state-of-the-art methods.

1 INTRODUCTION
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Figure 1: Structural comparison of handwritten text-line generation methods. Unlike previous ap-
proaches, our model integrates style and content modeling without additional encoders, yielding a
streamlined architecture.

Handwritten Text Generation (HTG) aims to synthesize realistic and personalized handwriting from
arbitrary digital input by modeling traits such as slant, cursiveness, and stroke dynamics. Leveraging
the scalability of modern models, HTG enables human-like handwriting generation with broad ap-

1



054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2026

plications in assistive technology, personalized rendering, font design, historical manuscript restora-
tion, and writer identification.

Diffusion models have recently emerged as the dominant paradigm for offline handwritten text syn-
thesis, surpassing GAN-based approaches in generation quality. Early attempts at style condition-
ing (e.g., WordStylist (Nikolaidou et al., 2023), GC-DDPM (Ding et al., 2023), CTIG-DM (Zhu
et al., 2023)) relied on fixed writer IDs, which constrained stylistic diversity. Subsequent methods
introduced dedicated style encoders trained with tailored objectives to capture broader stylistic vari-
ations. For instance, One-DM (Dai et al., 2024) employs a Laplacian contrastive loss to emphasize
fine-grained features, while DiffusionPen (Nikolaidou et al., 2024) integrates triplet and classifica-
tion losses to enhance style discrimination. With respect to content fidelity, TGC-Diff (Wang et al.,
2025) proposes a high-frequency mask loss to preserve structural details. While these approaches
improve model performance, they still handle style, content, and noise as separate factors, each
constrained by manually crafted losses, which increases the difficulty of optimization.

To efficiently integrate diffusion models into HTG systems, it is crucial to examine the role of aux-
iliary style and content encoders. As illustrated in Figure 1(a), One-DM fuses style and content
features to provide useful guidance for style learning but fails to capture fine-grained structures
and spatial information. In contrast, TGC-Diff in Figure 1(b) constructs content features within the
same latent space as noise, facilitating a seamless connection between content and noise represen-
tations and enhancing structural fidelity and spatial consistency. If content and noise can be jointly
represented in a shared latent space, is it possible to design a single unified diffusion model that
simultaneously processes style, content, and noise? Such a framework would not only obviate the
need for redundant encoders with complex handcrafted losses, but also improve performance by
enabling efficient interaction within a common latent representation.

Building on this insight, we introduce InkSpire, a diffusion transformer model for stylized handwrit-
ing generation, which is “inspired” by in-context latent “ink” tokens. As illustrated in Figure 1(c),
InkSpire leverages a shared latent space for style, content, and noise, replacing separate encoders
with a streamlined architecture that facilitates effective feature interaction. Moreover, recent ad-
vances in large text-to-image diffusion models have demonstrated strong in-context generation ca-
pabilities. To apply this unified modeling ability to our HTG task, we design a multi-line masked
infilling strategy for training and remove the text encoder to enable purely visual conditioning. In
addition, we revise the positional encoding mechanism to support multi-line generation of arbitrary
length and train the model on a mixed Chinese–English dataset, thereby enabling bilingual stylized
handwriting synthesis. By integrating these innovations, InkSpire achieves high-fidelity and stylis-
tically diverse handwriting generation and editing, while streamlining the overall training process.

In summary, the main contributions of this paper are as follows:

• We propose InkSpire, a novel handwriting generation framework that unifies the model-
ing of style, content, and noise without relying on explicit style or content encoders. By
leveraging in-context generation with diffusion transformer models, InkSpire simplifies the
training pipeline while preserving high fidelity and stylistic diversity.

• We introduce a multi-line masked infilling strategy that enables the model to be trained
directly on raw multi-line text images, without requiring complex data preprocessing. To-
gether with a revised positional encoding scheme, InkSpire supports the generation of
multi-line handwriting of arbitrary length as well as fine-grained, character-level editing.

• We enable bilingual handwriting generation within a single model by training InkSpire on
a mixed Chinese–English dataset. This design allows the synthesis of high-quality hand-
written text in both English and Chinese scripts, thereby overcoming the constraints of
language-specific handwriting systems.

• We conduct extensive experiments on the ICDAR2013 and IAM datasets, demonstrating
that InkSpire produces handwriting with superior structural accuracy and stylistic consis-
tency, outperforming other methods in both qualitative and quantitative evaluations.
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2 RELATED WORK

Handwritten data is commonly categorized into two modalities: online trajectory sequences and
offline static images. Online handwriting, which captures the dynamic pen trajectory during the
writing process, has been widely studied with various generative models, including RNN-based
approaches (Kotani et al., 2020; Zhao et al., 2020; Zhang et al., 2017), Transformer-based architec-
tures (Dai et al., 2023), and diffusion-based methods (Luhman & Luhman, 2020; Ren et al., 2023).
In contrast, offline handwriting represents static visual appearances, conveying natural characteris-
tics such as stroke thickness, curvature, and ink density.

2.1 OFFLINE HANDWRITING GENERATION

Early approaches to offline handwriting synthesis predominantly relied on Generative Adversarial
Networks (Alonso et al., 2019; Xie et al., 2021; Gan & Wang, 2021; Kong et al., 2022; Liu et al.,
2022), where adversarial training was used to generate visually plausible text. Later, transformer-
based models such as HWT (Bhunia et al., 2021) and VATr (Pippi et al., 2023a) introduced hybrid
CNN–transformer designs that enhanced style representation learning and improved generalization.

More recently, diffusion models have emerged as the dominant paradigm, synthesizing handwriting
through iterative denoising with fine-grained control over style and content. State-of-the-art meth-
ods (Wang et al., 2025; Pippi et al., 2025; Dai et al., 2024; Nikolaidou et al., 2023; Ding et al., 2023;
Zhu et al., 2023) demonstrate strong style adaptation from only a few references, enabling diverse
and personalized handwriting generation with minimal supervision.

2.2 IN-CONTEXT GENERATION

Recent advances in diffusion-based generative modeling increasingly adopt in-context generation
for controllable and personalized image synthesis. Early works such as InstructPix2Pix (Brooks
et al., 2023) and its successors (Boesel & Rombach, 2024) fine-tuned diffusion models with syn-
thetic instruction–response pairs for diverse editing tasks, marking initial attempts to align genera-
tion with user intent. Subsequently, instruction-driven editors including Emu Edit (Sheynin et al.,
2024), OmniGen (Xiao et al., 2025), HiDream-I1 (Cai et al., 2025), and ICEdit (Zhang et al., 2025)
leveraged refined datasets and task-specific architectural enhancements to improve alignment and
fidelity. Huang et al. (2024) extend this paradigm by introducing task-specific LoRA branches
within diffusion transformers. Although unified models for both editing and generation have been
explored in printed document understanding (Tang et al., 2023; Chen et al., 2023), our approach is
the first to bring in-context modeling strength of unified editing-and-generation framework into the
handwriting domain.

3 METHODS

3.1 PRELIMINARY

3.1.1 DATA NOTION

The multi-line handwritten dataset is represented as a collection of transcribed image-text pairs
{(X,C)}, where X denotes a stylized text-line image and C denotes the corresponding textual con-
tent. Let C = (c1, c2, · · · , cn) denote a text sequence of length n, where each element corresponds
to either a character in logographic writing systems (e.g., Chinese) or a word in phonemic writing
systems (e.g., English).

3.1.2 TASK ANALYSIS

The objective of handwritten text-line generation is to synthesize text-line images that accurately
convey the given textual content C while faithfully imitating the writing style of a target author,
as specified by style reference samples Xs. Formally, the task can be expressed as modeling the
conditional distribution: p(X | C,Xs).
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Figure 2: This figure illustrates the transformation from absolute to relative positional representa-
tions in layout information. All positions are normalized by the original paragraph image width.

However, directly modeling this distribution is challenging due to the lack of explicit character
positions. Following prior work Wang et al. (2025); Yao et al. (2025), we introduce a content image
Xc, where each character in the text-line image X is replaced with a glyph rendered in a standard
font according to the stylized layout. This allows us to model the joint distribution of the text-line
image and its content image: p(X,Xc | C,Xs). In line with Ren et al. (2023), the joint distribution
can be factorized as:

p(X,Xc | C,Xs) = p(Xc | C,Xs) p(X | C,Xs,Xc)

= p(Xc | C,Xs) p(X | Xs,Xc).
(1)

Accordingly, the overall generation process decomposes into two components: (i) layout generation
model p(Xc | C,Xs), and (ii) image generation model p(X | Xs,Xc).

3.2 LAYOUT GENERATION

Given an input character sequence C = (c1, c2, · · · , cn), we define a corresponding layout sequence
B = (b1, b2, · · · , bn), where each bi denotes the bounding box of character ci. Specifically, bi is
parameterized by four normalized values that capture the character’s [width w, height h,
horizontal offset from the previous character ∆x, vertical offset
from the baseline of the preceding text-line ∆y], as illustrated in Figure 2.
We explore three strategies for modeling layout representations:

• Autoregressive Modeling

p(bi | [(b1, c1), (b2, c2), ..., (bi−1, ci−1)], ci,Xs). (2)

• Masked Layout Modeling

p(bi, i ∈ M | [(bj , cj), j /∈ M], [ck, k ∈ M],Xs). (3)

• Masked Modeling with Conditional Flow Matching

p(bit−1, i ∈ M | [(bj , cj), j /∈ M], [(bkt , c
k), k ∈ M],Xs), (4)

where M denotes the index set of masked positions and t denotes the timestep.

Specifically, the autoregressive model employs several transformer decoder layers, while both the
masked layout model and its CFM variant utilize several transformer encoder layers. During train-
ing, the autoregressive and masked layout models are optimized by minimizing the average L1
distance between the predicted and ground-truth bounding box parameters (width, height, horizon-
tal offset, and vertical offset) for the relevant characters. For the CFM model, the training loss is
defined as the average L1 distance between the predicted and ground-truth velocity of these four
layout parameters at each timestep. After training, we render the content image Xc based on the
predicted layout sequence B and a chosen standard font, thereby successfully modeling the condi-
tional distribution p(Xc | C,Xs).
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Figure 3: Overview of InkSpire. Our model achieves unified modeling by simply concatenating
X with Xc and training directly on multi-line images with mask noise prediction. No additional
encoders or extra designed loss are needed.

3.3 IMAGE GENERATION

3.3.1 MULTI-LINE MASKED INFILLING STRATEGY

Leveraging the layout generation model, the original image-text pairs {(X,C)} are transformed
into image-content pairs {(X,Xc)}. Previous approaches typically construct paired target and style
images {(Xtar,Xs)}, by cropping two distinct text-lines from a single author’s multi-line image
X. Images are then resized to a fixed height for training convenience. Under this setup, diffusion
models are trained to learn p(Xtar,t−1 | Xtar,t,Xs,Xc), where Xc or Xs are typically processed
by separate encoders, and thus do not share the same feature space as Xtar,t. Such preprocessing
is suboptimal as it (i) overly shrinks characters in highly slanted lines, (ii) introduces inconsistent
distortions across lines with different slants, and (iii) discards inter-line style cues, thereby limiting
generative capability and hindering resolution generalization.

To enable direct training on the original image pairs {(X,Xc)}, we first randomly crop fixed-size
patches of size P × P from the original handwritten page images, where P is a hyperparameter con-
trolling the patch size. On these patches, a random binary mask image M of the same size is applied.
This mask partitions the image into two complementary components: the masked region Xmis =
M⊗X and the observed context Xctx = (1−M)⊗X. With this construction, there is no longer a
need to explicitly crop paired samples {(Xtar,Xs)} from X. In fact, Xmis implicitly corresponds
to Xtar, while Xctx serves the role of Xs. Consequently, the training objective is reformulated to
p(Xmis,t−1 | Xmis,t,Xctx,Xc), thereby eliminating the need for additional preprocessing.

Under this probabilistic modeling framework, style, content, and noise can be jointly represented
within a unified latent space. As illustrated in Figure 3, we begin by constructing the image I
through the spatial concatenation of X and Xc. A random binary mask image Im is then applied
to generate the masked input Ii. After encoding with the VAE encoder and applying patchification,
we obtain the masked image tokens Fi together with the mask tokens Fm. Finally, the noisy image
tokens Fn are concatenated with Fi and Fm along the channel dimension. The overall procedure
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Figure 4: Comparison of different positional encoding strategies. We introduce Aligned Position
Encoding (APE) to better guide the spatial layout of generated handwritten text, and further propose
a variant, R-APE, tailored for long text lines.

can be formally expressed as follows:

I = X c⃝Xc, (5)
Ii = I⊗ (1− Im), (6)
Fi = Patchify(VAE(Ii)), (7)
Fm = Patchify(Im), (8)

Finput = Fn ⊙ Fi ⊙ Fm. (9)

Here, c⃝ denotes the concatenation operation along the spatial dimension, ⊗ represents the element-
wise (Hadamard) product, ⊙ denotes the concatenation operation along the channel dimension, Fi

encapsulates the information from both Xctx and Xc. Since the same VAE encoder is utilized, style,
content, and noise are jointly represented within a unified feature space.

3.3.2 MASKED CONDITIONAL FLOW-MATCHING OBJECTIVE

We employ a flow-matching training objective to optimize the model. Specifically, given a clean
latent code x0, a Gaussian noise sample z1 ∼ N (0, I), and a time-dependent noise scale σt, we
generate the noisy latent input x0 via a convex combination:

xt = (1− σt)x0 + σtz1. (10)

The model learns to estimate the velocity vector pointing from x0 to z1 and the training loss is
formulated as:

Limg-CFM-m(θ) = Et,x0,z1
∥m⊙ (v̂θ(xt, t, c)− (z1 − x0))∥22 , (11)

where v̂θ denotes the model’s velocity prediction, m indicates the masked regions of the latent to-
kens, and c comprises Xctx and Xc. To ensure a concise optimization process, the training excludes
additional objectives such as perceptual loss or CTC loss.

3.3.3 ROTATED ALIGNED POSITION ENCODING

Directly fine-tuning pretrained diffusion transformer models fails to fully exploit their generative
capacity for HTG tasks. We therefore redesign positional encodings to better support multi-line
handwritten text with arbitrary line lengths. As shown in Figure 4, naı̈ve 2D RoPE arranges tokens
row by row in the concatenated image I, where standard-font and handwritten tokens are interleaved.
However, since the length of text-line images varies significantly, the model struggles to distinguish
whether a given token should serve as a style condition or a content condition.

To mitigate this issue, we propose Aligned Positional Encoding (APE). In APE, the token arrange-
ment of I remains unchanged, while the positional encodings assigned to Xc are directly shared with

6
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Multi-line Handwritten Text Synthesis

Style Text:    

Yes. I'm afraid we couldn't raise this loan to more
Target Text:

than three thousand three fifty at the most. Now you

could get quite a nice little semi-detached house in

Grimstead for three thousand, that's where I live, just

before the green belt, lovely and modern, you know.

Stylized Text-Line Image Glyph Content Image Binary Mask Image 

Ground Truth Predict 

Character/Word Level Handwritten Text Editing

Original Text:

Yes. I'm afraid we couldn't raise this loan to more
than three thousand three fifty at the most. Now you

could get quite a nice little semi-detached house in

Grimstead for three thousand, that's where I live, just

before the green belt, lovely and modern, you know.

Edited Text:

Yes. I'm afraid we couldn’t raise this debt to more
than three thousand three fifty at the mess. Now you

could get quite a new little semi-detached home in

Gravemont for three thousand, that's where I lie, just

before the green belt, lonely and recent, you know.

Stylized Text-Line Image Glyph Content Image Binary Mask Image 

Ground Truth Predict 

Figure 5: Inference applications of InkSpire, encompassing Multi-line Handwritten Text Synthesis
and Character/Word-level Handwritten Text Editing. All applications are guided by the mask image
M, the stylized image Xs and the content image Xc.

their counterparts in X. For cases where text-line images are wider than tall, we further introduce
Rotated APE (R-APE): X and Xc are rotated 90° clockwise before concatenation, so that target
tokens and their content-condition counterparts remain spatially close in the positional space.

3.4 APPLICATIONS OF INFERENCE

Owing to the powerful contextual generation ability of diffusion transformer models and the precise
spatial control provided by Xc, our framework enables versatile inference through simple adjust-
ments to the mask M or modifications to Xc. The overall procedure is illustrated in Figure 5.

• Multi-line Handwritten Text Synthesis: Given a single style reference image from a writer,
previous approaches are typically constrained to generating only one or a few text lines.
In contrast, our model is capable of synthesizing an arbitrary number of text lines simul-
taneously, by placing the style reference in the first line and masking the remaining parts,
conditioned on the multi-line content image Xc.

• Character/Word Level Handwritten Text Editing: By providing a mask that specifies the
regions to be edited, together with an edit-content image rendered in standard font, InkSpire
can accurately modify multiple words within a handwritten text image while preserving the
unmasked regions.

4 EXPERIMENTS

4.1 EXPERIMENTAL SETTINGS

4.1.1 DATASETS

To validate the effectiveness of InkSpire in synthesizing handwritten text-line images, experiments
are conducted on the IAM dataset (Marti & Bunke, 2002) for English and on CASIA-HWDB2.0-
2.2 (Liu et al., 2011) and ICDAR2013 datasets (Yin et al., 2013) for Chinese. IAM comprises
13,353 English text-line images, with 496 writers’ samples for training and the remaining 161 for
testing. For Chinese, CASIA-HWDB2.0-2.2 contains 52,230 text-line images from 1,019 writers for
training, while ICDAR2013 includes 3432 text-line images from 60 writers for testing. All datasets
provide layout annotations at the word level for English and the character level for Chinese.
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Style Ref
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TGC-Diff

InkSpire

GT

Text: 对目前的宏观经济衰退风险起到了主要的推动作用

Style Ref

One-DM

TGC-Diff

InkSpire

GT

Text: 姚明悄悄地改变了自己的打法，像是一台“推土机”。

Style Ref

One-DM

TGC-Diff

InkSpire

GT

Text: 家的豪华并非只是物品的奢侈，还可以是设计尺度上的

Figure 6: Qualitative comparison between VaTr, One-DM, DiffPen, TGC-Diff, and our proposed
InkSpire on image generation across the considered datasets. Our multilingual model demonstrates
strong style imitation capabilities under both Chinese and English conditions.

4.1.2 EVALUATION METRICS

The evaluation metrics encompass two key aspects: style and content. To assess style diversity and
consistency, we employ the Fréchet Inception Distance (FID) (Heusel et al., 2017), Kernel Inception
Distance (KID) (Bińkowski et al., 2018), and the task-specific Handwriting Distance (HWD) (Pippi
et al., 2023b). For content accuracy, we adopt the Correct Rate (CR) and Accuracy Rate (AR) (Yin
et al., 2013) for Chinese text, while for English, we use the Absolute Character Error Rate Difference
(∆CER) (Nikolaidou et al., 2024).

4.1.3 COMPARED METHODS

For English handwritten text line generation, we compare our method against representative models,
including HWT (Bhunia et al., 2021), VATr (Vanherle et al., 2024), One-DM (Dai et al., 2024), and
DiffPen (Nikolaidou et al., 2024). For Chinese handwritten text line generation, the comparison is
conducted with One-DM and TGC-Diff (Wang et al., 2025).

4.1.4 IMPLEMENTATION DETAILS

For layout generation, we employ 10 transformer layers across all three modeling approaches. Dur-
ing inference, the three layout modeling strategies differ in how layouts are produced: in the autore-
gressive model, the reference layout is encoded as prefix tokens and the target layout is generated
sequentially in a token-by-token manner; in the masked layout model, the input contains an observed
reference layout and a masked target layout, and all masked tokens are predicted in a single forward
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Method IAM Layout ICDAR2013 Layout
∆x↓ ∆y↓ ∆w↓ ∆h↓ ∆x↓ ∆y↓ ∆w↓ ∆h↓

Autoregressive Modeling 5.60 17.04 11.42 13.67 7.28 19.25 14.29 12.88
Masked Layout Modeling 5.18 14.51 6.52 8.04 6.42 16.71 13.67 10.56
Masked Modeling with CFM 4.74 14.39 4.74 4.94 5.13 14.85 12.43 8.74

Table 1: Layout prediction results on IAM and ICDAR2013 datasets. Values in the table correspond
to L1 losses multiplied by 103; lower values indicate better performance (↓).

FID↓ KID↓ HWD↓ ∆CER↓
HWT 44.72 43.49 2.97 0.33
VATr 34.00 29.68 2.38 0.03
One-DM 43.89 44.48 2.83 0.13
DiffPen 12.89 9.73 2.13 0.03
InkSpire 7.92 4.83 0.62 0.01

Table 2: English text line generation results on
IAM. The KID is multiplied by 103. Lower is
better (↓).

FID↓ KID↓ HWD↓ CR↑ AR↑
One-DM 34.36 28.37 0.80 73.19 72.33
TGC-Diff 23.43 13.85 0.63 89.99 89.13
InkSpire 10.98 11.45 0.41 92.92 91.56

Table 3: Chinese text line generation results
on ICDAR2013. The KID is multiplied by
103. Lower is better (↓), higher is better (↑).

pass; in the Conditional Flow Matching (CFM) model, the same masked positions as in the masked
layout model are used, but the masked tokens are generated through a continuous denoising process
solved with a 10-step ODE solver, enabling smooth and flexible layout prediction.

For image generation, our approach builds upon the pre-trained FLUX.1-Fill-dev model Labs
(2024), a latent rectified flow transformer tailored for image editing. To adapt to multilingual gener-
ation, training samples across languages are integrated within a unified training pipeline. The image
patch size is set to P = 1024, and the batch size is 4. The model is optimized using the Prodigy
optimizer with an initial learning rate of 1 and a weight decay of 0.01. Fine-tuning is performed
via Low-Rank Adaptation (LoRA) with a rank of 32 and a LoRA scaling factor of 32, trained for
20,000 iterations on four A100 GPUs (40 GB). In total, the LoRA modules introduce approximately
115.9M trainable parameters. A comprehensive description of all fine-tuned LoRA parameters can
be found in Appendix Table 8. The fine-tuned model achieves high-quality synthesis with about 20
ODE denoising steps. For more implementation details of layout generation and image generation,
please refer to Appendix A.3.

4.2 ADDITIONAL ANALYSIS OF STYLIZED LAYOUT GENERATION

We compare three layout modeling strategies—Autoregressive, Masked, and Masked with Condi-
tional Flow Matching (CFM)—using average losses of four layout-specific features. For all methods,
the tokens corresponding to the first line of each paragraph are provided as reference tokens, and
the models are tasked with predicting the layout parameters of all remaining tokens. Under this set-
ting, the masked layout model and CFM apply masking to all non-reference tokens. The evaluation
metric is computed by averaging the L1 deviations over the full set of tokens that require prediction.
As shown in Table 1, CFM consistently outperforms the others, demonstrating its effectiveness in
capturing complex spatial dependencies while preserving layout coherence.

4.3 STYLIZED HANDWRITTEN TEXT-LINE GENERATION

Although InkSpire is trained on multi-line images to capture in-context stylistic features, we follow
the one-shot evaluation protocol, where only a single reference text-line is provided. The goal is to
generate new lines with the same style but different content. During inference, we consistently select
references by using the second line to generate the first, and then the first line for the remaining ones,
which mitigates intra-writer style variations across paragraphs.

9
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FID↓ KID↓ HWD↓ ∆CER↓
baseline 15.12 19.27 0.97 0.11
+APE 9.31 7.21 0.58 0.05
+R-APE 7.92 4.83 0.62 0.01

Table 4: Ablation study of positional encod-
ing on the IAM Lines dataset. The KID is
multiplied by 103. Lower is better (↓).

FID↓ KID↓ HWD↓ CR↑ AR↑
baseline 17.57 18.61 0.53 89.72 88.91
+APE 11.75 12.35 0.42 91.87 90.63
+R-APE 10.98 11.45 0.41 92.92 91.56

Table 5: Ablation study of positional encod-
ing on the ICDAR2013 Lines dataset. The
KID is multiplied by 103. Lower is better (↓),
higher is better (↑).

FID↓ KID↓ HWD↓ ∆CER↓
F-TopMask 8.73 6.13 0.78 0.07
R-Mask 7.92 4.83 0.62 0.01

Table 6: Ablation study of masking strate-
gieson the IAM Lines dataset. The KID is
multiplied by 103. Lower is better (↓).

FID↓ KID↓ HWD↓ CR↑ AR↑
F-TopMask 11.57 13.41 0.48 92.48 91.34
R-Mask 10.98 11.45 0.41 92.92 91.56

Table 7: Ablation study of masking strategies
on the ICDAR2013 Lines dataset. The KID is
multiplied by 103. Lower is better (↓), higher
is better (↑).

Quantitative results, as presented in Table 2 and Table 3, demonstrate that InkSpire consistently out-
performs state-of-the-art methods on both English and Chinese datasets. As illustrated in Figure 6,
our model not only produces handwritten styles that are more visually aligned with the reference,
but also exhibits significantly improved character structure accuracy. These findings provide strong
evidence of the superiority of our approach and are well-aligned with the quantitative metrics.

4.4 ABLATION STUDY

4.4.1 ABLATION STUDY ON POSITION ENCODING

From Table 4 and Table 5, we observe that Aligned Positional Encoding (APE) markedly enhances
style diversity and content accuracy by helping the model better distinguish style from content to-
kens. While naı̈ve positional encoding can handle single-line generation, it often copies input images
in multi-line settings and is sensitive to resolution. Moreover, the rotated variant (R-APE) yields fur-
ther gains on both English and Chinese datasets, as it better localizes tokens in long text lines under
the one-shot setting.

4.4.2 ABLATION STUDY ON MULTI-LINE MASKED INFILLING STRATEGY

In addition to the Random-Size Multi-Region Masking (R-Mask) strategy described in Section 3.3.1,
we introduce a Fixed Top-Region Unmasked Masking (F-TopMask) scheme as an ablation variant.
Since masking is performed on a 1024×1024 image patch, the fixed-mask design keeps only the
top 128×1024 region visible while masking all remaining lower areas. This setup resembles the in-
ference scenario where only the first text line is provided as a style reference and the model must
generate all subsequent lines. The quantitative results in Table 6 and Table 7 demonstrate that our
R-Mask strategy yields moderate improvements over the fixed-region alternative.

5 CONCLUSION

We introduced InkSpire, a diffusion transformer that unifies style, content, and noise for handwritten
text generation. By removing explicit encoders and adopting multi-line masked infilling with revised
positional encoding, it enables efficient training, arbitrary-length synthesis, and fine-grained editing.
Trained on English and Chinese corpora, InkSpire outperforms prior methods in fidelity and stylistic
diversity. Future work will extend to more languages and datasets to enhance generalization.

10
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A APPENDIX

A.1 INFORMATION ABOUT USE OF AI ASSISTANTS

The authors used AI-assisted tools solely for language polishing, including grammar, spelling, and
expression refinement. All conceptual contributions, technical innovations, experimental design,
and analyses presented in this work were independently performed by the authors without reliance
on AI for content generation or scientific reasoning.

A.2 USER STUDIES

A.2.1 USER PREFERENCE STUDY

We conduct a human evaluation to assess the perceptual quality of synthesized Chinese handwritten
text-line images, focusing on style fidelity and content correctness. Participants, all of whom hold
postgraduate-level education, compare the outputs of our method with two state-of-the-art baselines,
One-DM and TGC-Diff. In each trial, a writer is randomly sampled from the ICDAR2013 dataset,
and one of their handwritten text-line images is provided as a style reference, together with an
identical content prompt for all methods. Participants are shown the reference text-line alongside
multiple candidate images generated by the three models and are asked to select the sample with the
highest overall generation quality. Figure 7 illustrates an example of the questionnaire instructions
and its corresponding question items. The evaluation consists of 30 rounds, yielding 900 valid
responses from 30 volunteers. As shown in the Figure 8(a), our method receives the highest number
of user selections, indicating its superior perceptual quality in handwritten text generation.

Instructions

This survey contains 30 evaluation questions.

For each question, you will be given a target text and a style reference image.

Options A, B, and C show images generated by three different models (in randomized order).

Your task is to select the image with the highest generation quality.

“Generation quality” primarily includes two aspects:

1. Style: How similar the generated handwriting style is to the reference

(e.g., stroke thickness, curvature, connections, and other local stylistic details).

2. Content: The correctness and clarity of the generated characters.

Note: If the reference writing style is exaggerated, easily distorted, or blurry, please prioritize style 

consistency over content accuracy. Please ignore occasional hallucinated content that exceeds the given 

target text.

In short, choose the image that most closely resembles being written by the same person as in the 

style reference image.For best results, please complete the survey on a computer and click to zoom in

on each image before making a selection.

Figure 7: User Preference Study Instructions.
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(a) User preference (b) User plausibility

Figure 8: Overall caption describing both images.

A.2.2 USER PLAUSIBILITY STUDY

We conduct a user plausibility study to evaluate whether text-line images generated by InkSpire
are perceptually indistinguishable from real handwriting. Participants are first presented with 30
authentic handwritten text-line samples, which serve as style reference images. In each question,
they are then shown two candidate images: one genuine sample written by the same author and one
generated by our model. Their task is to determine which image appears more likely to be written by
the same writer as the reference. Figure 9 illustrates an example of the questionnaire instructions and
its corresponding question items. A total of 23 participants provide 690 valid responses. As shown
in Figure 8(b), the selection accuracy converges to approximately, indicating performance at chance
level. This suggests that the text-line images produced by InkSpire are nearly indistinguishable from
real handwriting.

Instructions

This survey contains 30 evaluation questions.

For each question, you will be given a target text and a style reference image.

In this study, only two candidate images are presented.

Please select the image that most closely resembles the style of the reference 

image (i.e., appears to be written by the same author). The order of the two 

options has been randomized.

Please ignore occasional hallucinated content that exceeds the specified text.

For best results, complete the survey on a computer and click to zoom in on 

each image before making your selection.

Figure 9: User Plausibility Study Instructions.
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(a) Autoregressive Modeling (b) Masked Layout Modeling
(c) Masked Modeling with 

Conditional Flow Matching

Figure 10: Layout Inference Architectures.

A.3 MORE IMPLEMENTATION DETAILS

A.3.1 LAYOUT GENERATION DETAILS

We provide a detailed description of the three layout generation strategies discussed in the main text:

• Autoregressive Modeling: This approach predicts the layout of each target token using an
autoregressive Transformer architecture. The model input consists of the embedding of the
current character (or, for English words, the sum of the individual character embeddings
to form a word-level embedding), positional embeddings, and the layout information of
preceding tokens. We employ 10 Transformer decoder layers and optimize the model using
an L1 regression loss.

• Masked Layout Modeling: In this strategy, the input consists of character embeddings,
positional embeddings, and a partially masked layout representation of tokens. We adopt
two masking strategies: (1) randomly masking a contiguous segment of arbitrary length,
and (2) masking each token independently with a 20% probability. Each masking strategy
is applied with equal probability (50%). The model is trained to predict the layout of the
masked tokens. We employ 10 Transformer encoder layers and optimize the model using
an L1 regression loss computed over the masked tokens.

• Masked Modeling with Conditional Flow Matching: This variant adopts the same masking
strategies as Masked Layout Modeling, but extends the masked modeling framework by
incorporating a time-dependent denoising condition inspired by flow-matching objectives.
In addition to character embeddings, positional embeddings, and conditional tokens, all
masked tokens are progressively denoised from noisy tokens over multiple timesteps. We
employ a 10-layer diffusion Transformer to model this process and optimize it using an L1
loss over the predicted layout values (v-prediction) for the masked tokens.

During inference, we take the tokens of the first sentence in a paragraph as reference tokens and
ask the models to predict the remaining tokens. The detailed model structures are illustrated in
Figure 10. All Transformer blocks have a hidden dimension of 512 and employ 8 attention heads.
The models are trained with a batch size of 160 using the AdamW optimizer with a base learning
rate of 1× 10−4.

16



864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2026

(a) Autoregressive Modeling

(b) Masked Layout Modeling

(c) Masked Modeling with Conditional Flow Matching

Figure 11: Visualization results of Chinese text-line generation. Black rectangles indicate the target
layout, while red rectangles denote the predicted bounding boxes.

(a) Autoregressive Modeling

(b) Masked Layout Modeling

(c) Masked Modeling with Conditional Flow Matching

Figure 12: Visualization results of English text-line generation. Black rectangles indicate the target
layout, while red rectangles denote the predicted bounding boxes.

A.3.2 HANDWRITTEN TEXT IMAGE GENERATION DETAILS

We list all LoRA fine-tuning parameters in Table 8. With a LoRA rank of 32 and a scaling factor of
32, the LoRA modules collectively introduce approximately 115.9M trainable parameters.

A.4 ADDITIONAL ANALYSIS OF STYLIZED LAYOUT GENERATION

We provide two visualization examples for Chinese and English layout generation in Figure 11 and
Figure 12, respectively. In each figure, black rectangles denote the target layout, while red rectangles
represent the predicted character bounding boxes produced by each method.

In Figure 11, the Chinese example illustrates that our masked modeling with CFM successfully
captures the upward-slanting trajectory of the text line—from the lower left toward the upper right.
In contrast, the slant is much less pronounced in the layouts generated by the Autoregressive Model
and the Masked Layout Modeling baseline.

In Figure 12, the English example shows that masked modeling with CFM provides noticeably better
control over word spacing and word size compared with the other two strategies, leading to a more
coherent and visually consistent layout.

Overall, the layouts generated by masked modeling with CFM demonstrate superior visual fidelity,
aligning well with the quantitative improvements reported in Table 1.
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Parameter Name #Params (M)

x embedder 0.1106
transformer blocks.0–18.norm1.linear 13.072
transformer blocks.0–18.attn.to q 3.7355
transformer blocks.0–18.attn.to k 3.7355
transformer blocks.0–18.attn.to v 3.7355
transformer blocks.0–18.attn.to out.0 3.7355
transformer blocks.0–18.ff.net.2 9.3389
single transformer blocks.0–37.norm.linear 14.942
single transformer blocks.0–37.proj mlp 18.678
single transformer blocks.0–37.proj out 22.413
single transformer blocks.0–37.attn.to q 7.4711
single transformer blocks.0–37.attn.to k 7.4711
single transformer blocks.0–37.attn.to v 7.4711

Total 115.91

Table 8: List of all LoRA parameter names.

Model Style Score (%)

English Models
HWT 39.62
VATr 45.19
One-DM 50.73
DiffPen 61.26
InkSpire 78.58

Chinese Models
One-DM 51.34
TGC-Diff 60.46
InkSpire 86.28

Table 9: Style Scores (%) of
different models for English and
Chinese text-line generation.

A.5 ADDITIONAL ANALYSIS OF STYLIZED HANDWRITTEN TEXT-LINE GENERATION

A.5.1 VISUALIZATION ANALYSIS OF POSITION ENCODING ABLATION STUDY

We provide visualization results for the ablation study on positional encoding. Figure 13 presents
examples of both Chinese and English text-line generation. The red bounding boxes highlight in-
stances where the model produces structurally incorrect handwriting.

From the visualizations, we observe that using the original positional encoding of the Flux-fill back-
bone leads to inaccurate spatial localization, causing the model to generate handwriting fragments
at incorrect positions within the image. In contrast, APE improves positional consistency, and the
proposed R-APE further enhances structural accuracy. The superiority of R-APE over APE is par-
ticularly evident in the correctness of character shapes and alignment, which is consistent with the
quantitative improvements reported in Table 4 and Table 5.

A.5.2 VISUALIZATION ANALYSIS OF MASKED INFILLING STRATEGY ABLATION STUDY

We provide visualization results of the ablation study on masked infilling strategy. Figure 14 presents
examples of both Chinese and English text-line generation. In both figures, the red bounding boxes
highlight cases where the model produces structurally incorrect handwriting.

Overall, the stylistic appearance produced by both the random masking (R-Mask) and the fixed
top-region masking (F-TopMask) strategies remains comparable and closely aligned with the target
style. However, subtle differences emerge at the fine-grained character-structure level: the R-Mask
strategy leads to fewer structural errors, likely because its randomly sampled masks expose the
model to a wider range of local character patterns during training. These qualitative observations
are consistent with the quantitative improvements reported in Table 6 and Table 7.

A.5.3 STYLE SCORE EVALUATION

We evaluate style fidelity using text-line style classifiers built upon ImageNet-pretrained Swin Trans-
formers (about 86.8M parameters), trained separately for English and Chinese. All text-line images
are normalized to 64×1024 resolution by proportional resizing to height 64 followed by width-wise
cropping or white padding.

The resulting classifiers reach 94% accuracy on the 60-way Chinese validation set and 91% on the
161-way English set. Their prediction accuracy on generated text lines is reported as the style score,
indicating how closely a model replicates the target handwriting style.

As shown in Table 9, InkSpire consistently attains the highest style scores across both English and
Chinese settings, outperforming all baselines and aligning with trends observed in the user study
and earlier style-consistency analyses.
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Figure 13: Visualization results of Chinese text-line generation for the positional encoding ablation.
Red rectangles highlight cases where incorrect character structures are produced.
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Figure 14: Visualization results of Chinese and English text-line generation for the masked infilling
strategy ablation. Red rectangles highlight cases where incorrect character structures are produced.

A.5.4 ANALYSIS OF INTER-LINE STYLE CONSISTENCY

We define inter-line style consistency as the stylistic coherence between multiple generated text lines
that share the same textual content but use different style reference lines from the same handwriting
passage. As discussed in Section 3.3.1, compressing reference lines with different slant angles to a
fixed height introduces mismatched character scales, which leads to noticeable style discrepancies
among the generated lines. Moreover, the reduced resolution further weakens the model’s ability to
capture fine-grained stylistic cues.

As shown in Figure 15, when different style-reference lines are used to condition the generation
of the same text, visible stylistic variations emerge. Highly slanted reference lines, once height-
normalized, become excessively small, making it difficult for the model to extract meaningful style
information and resulting in outputs resembling printed fonts. In contrast, when the original-size
reference is used to generate multiple lines simultaneously, the resulting handwriting demonstrates
substantially improved inter-line style coherence. A similar phenomenon is observed for English
text-line generation, as illustrated in Figure 16.

In summary, maintaining the native resolution in training and inference markedly strengthens the
model’s stylistic imitation capability and inter-line style consistency, while reducing the style insta-
bility caused by slope-induced compression artifacts.
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Template

Original Handwritten Passage Image
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Template

Style Reference Image (original resolution)
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Generated Handwriting Image

Figure 15: Visualization results of Chinese text-line generation for evaluating inter-line style con-
sistency. Red lines indicate the style-reference text line, and blue lines indicate the target text line.

Template

Original Handwritten Passage Image

Style Reference Image (rescaled to a height of 64 pixels)

Generated Handwriting Image

Style Reference Image (rescaled to a height of 64 pixels)

Generated Handwriting Image

Template

Style Reference Image (original resolution)

Generated Handwriting Image

Style Reference Image (original resolution)

Generated Handwriting Image

Figure 16: Visualization results of English text-line generation for evaluating inter-line style consis-
tency. Red lines indicate the style-reference text line, and blue lines indicate the target text line.
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Figure 17: Overview of the visual input processing under different encoder configurations.

FID↓ KID↓ HWD↓ ∆CER↓
Fixed-VAE 7.92 4.83 0.62 0.01
C-Enc 20.48 10.31 1.58 0.05
C+S-Enc 17.39 8.97 0.71 0.02

Table 10: Ablation of encoder configurations
on the IAM Lines dataset. C-Enc: only Con-
tent Encoder trained from scratch; C+S-Enc:
both Content and Style Encoders trained from
scratch. KID is scaled by 103.

FID↓ KID↓ HWD↓ CR↑ AR↑
Fixed-VAE 10.98 11.45 0.41 92.92 91.56
C-Enc 17.46 19.52 0.91 59.32 55.58
C+S-Enc 16.53 14.37 0.59 94.74 93.48

Table 11: Ablation of encoder configurations
on the ICDAR2013 Lines dataset. C-Enc:
only Content Encoder trained from scratch;
C+S-Enc: both Content and Style Encoders
trained from scratch. KID is scaled by 103.

A.5.5 IMPACT OF ENCODER DESIGN CHOICES

We conduct an ablation study to analyze the impact of different encoder configurations in our unified
encoder-less framework. As illustrated in Figure 17, we design three experimental settings:

• Pretrained-VAE Encoding (Default Setting). In the original setup, a pretrained VAE is
used to encode both the origin image patch and the content image.

• Learned Content Encoder Only (C-Enc). In this variant, we train a content encoder from
scratch to extract content features, while the origin image patch continues to be encoded
using the frozen pretrained VAE.

• Jointly Learned Content and Style Encoders (C+S-Enc). In the third configuration, both
the content encoder and the style encoder are jointly learned from scratch.

Following Dai et al. (2024), both the content and style encoders adopt a CNN+Transformer archi-
tecture. The CNN backbone is a ResNet-50 pretrained on ImageNet, followed by a Transformer
encoder with 3 layers, a hidden dimension of 2048, and 16 attention heads. To adapt the repre-
sentation to the DiT input format, we append a linear projection layer that maps 2048-dimensional
features to 64 dimensions. The proposed encoder contains approximately 124.4M parameters, while
the frozen VAE encoder has about 34.3M parameters. Quantitative results for the three configura-
tions are reported in Table 10 and Table 11.

Figure 18 presents visualization results for Chinese and English text-lines. We observe that when
training encoders from scratch (both C-Enc and C+S-Enc), the generated strokes tend to appear no-
ticeably lighter. This is likely caused by a distributional bias between the latent space learned from
scratch and the latent space of the pretrained VAE. Furthermore, for the C-Enc setting, the model
more easily captures complex cursive styles but struggles to maintain accurate character structures.
In contrast, the C+S-Enc setting produces outputs that resemble cleaner, more printed-like handwrit-
ing, but with reduced stylistic diversity. This suggests that jointly learning content and style encoders
may shift the model toward a different balance between content fidelity and stylistic variation. No-
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Figure 18: Handwritten Chinese and English text-line generation results under different encoder
configurations. Red rectangles indicate cases where incorrect character structures are produced.

tably, Table 10 shows that C+S-Enc achieves higher CR and AR scores than the frozen-VAE-based
setup. This is because although C+S-Enc often generates characters with multiple extra strokes,
these artifacts rarely mislead the downstream text-line recognition model, resulting in higher recog-
nition metrics despite localized structural errors.

Compared with Chinese, English exhibits fewer character-level errors and generally acceptable
styles, although the overall faint-stroke phenomenon still exists. This further indicates that Chi-
nese handwriting is more challenging to model than English. Similarly, the C+S-Enc configuration
yields more neatly shaped English words.

Overall, for both Chinese and English, the C-Enc and C+S-Enc settings underperform the frozen-
VAE baseline. This may be partly attributed to the inherent alignment between the pretrained VAE’s
latent space and the subsequent Diffusion Transformer, which provides a stronger and more stable
representation than training the encoders from scratch.
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(a) Single Line Generation (b) Multi-Line Generation

Figure 19: Visualization results of failure-case analysis. The red boxes highlight the erased marks
mistakenly generated by the model.

A.5.6 ANALYSIS OF FAILURE CASES

A common failure mode we observed is that the model sometimes fills in the spaces of a text line
with artifacts that resemble crossed-out or erased characters. This behavior stems from the training
data: some authors habitually strike out a mistaken character and then write the correction beside it.
When the generation is strictly conditioned by the content template, the correct action would be to
preserve an empty region (i.e., a gap) for the removed character; instead, the model often produces
residual “erasure” marks in that region. The problem is particularly pronounced at paragraph-level
generation and near image boundaries. Representative examples are shown in Figure 19.

A.5.7 ANALYSIS OF STYLE–CONTENT CONTROLLABILITY AND DISENTANGLEMENT

We conduct an explicit style–content disentanglement experiment to verify that InkSpire maintains
independent controllability over style and content, despite embedding style, content, and noise into
a unified latent space. Given a fixed content template, we generate handwriting samples condi-
tioned on multiple distinct style-reference lines sourced from different writers. This setup evaluates
whether the model can vary stylistic attributes (e.g., stroke width, slant angle, character curvature)
while keeping the textual content unchanged.

As shown in the visualization results (Figures 20):

• Pink boxes highlight the handwritten style of the letter g, and purple boxes highlight the
style of the character sequence “th”. We observe that within each sample (e.g., sample a or
b), all occurrences of g and th exhibit highly consistent writing patterns that closely match
their respective style-reference samples. Meanwhile, samples a and b show strong stylistic
divergence from each other, reflecting the differences in their reference styles.

• The red arrows indicate the slant direction of characters in samples c and d. Sample c
shows a uniformly left-leaning slant across almost all words, matching its reference style,
while sample d shows a consistently right-leaning slant at nearly uniform angles—again
mirroring its style reference.

These observations confirm that the unified latent representation does not collapse style and content.
Instead, InkSpire successfully preserves the content while expressing distinct stylistic attributes,
demonstrating robust and independent controllability over both factors.

A.6 MORE VISUALIZATION EXAMPLES FOR MULTI-LINE TEXT GENERATION AND EDITING

We provide additional visualization results of InkSpire for multi-line handwritten text generation
and character-level handwritten text editing. Figure 21 presents examples of English multi-line text
generation, while Figure 22 shows the corresponding results for Chinese. Moreover, Figure 23
illustrates character-level editing results on English handwritten passages, and Figure 24 displays
the editing results on Chinese passages.
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Figure 20: Visualization results of Style–Content Controllability and Disentanglement. Pink boxes
mark stylistic variations of “g”, purple boxes highlight “th”, and red arrows indicate the global slant
direction.
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Ground Truth Predict 

Style Text:

“ Good-oh! One for the grill-room, darling, and

Target Text:

tell George to bring in the 6carte du jour.”

Bawley was a man of his word. He kept

away from Service matters, was an excellent

host and a splendid raconteur. The evening

Style Text:

"But I want it!" she protested. "It's my ring."

Target Text:

"You just gave it back to me." "I

didn't! I was joking. You know I was

joking, Nigel." "You shouldn't joke

about serious things like engagements."

Style Text:

'HELLO, CECIL. HAD a busy day?' His mother came into

Target Text:

the hall as he opened the front door. He nodded irritably

and, turning his back to her, contrived to slide the brief-

case into hiding between the do-it-yourself cupboard

and the polished brass fourteen-pounder shell-case

Style Text:

“And then we'll go for a stroll along the

Target Text:

beach. A moon like this mustn't be wasted.”

He gestured towards the bay where the full

moon was just rising over the rocks, then

laid his hand on hers. Gay smiled at him

Style Text:

'Good-bye, Sandra,' he said

Target Text:

with a deadly finality. Watching

him go, unable to speak, she

felt that part of her was leaving

him. She couldn't hate him...

Figure 21: More examples of multi-line English paragraph generation.
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Ground Truth Predict 

Target Text:

金融衍生品的“创新”走到了华尔街自身无法控制的局面
问题,对目前的宏观经济衰退风险起到了主要的推动作身
仅仅是全球宏观经济周期的一个表征。按照一般的
理论,任何以市场为主体的经济运行都将经历周期性的

Style Text:

截止到昨日下午6时,白云机场几天下来依然有近千名旅

Target Text:

滞留广州。为做好航班延误情况下的航班保障工作,白场
客运部昨日正式启动航班不正常预案:客运部临时
立了航班不正常指挥小组,组建了由值机员、服务
任的航班不正常处理小组,专人负责航班延误信息的

Style Text:

本届澳网中国有李娜、彭帅、晏紫、袁梦四人参赛,其中三人首轮便

Target Text:

淘汰,李娜在第三轮被世界排名第146位的波兰选手多马乔斯卡击
李娜尽管拥有了亚洲一姐的实力,但在欧美高手林立的女单项目中,李
尚不具备夺取冠军的实力。彭帅一度被寄予厚望,就连华裔网球明
德培都对其很看好,并在去年主动提出担任彭帅的教练。然而,彭帅

Style Text:

沪苏浙高速公路江苏段日前正式建成通车,全线采用六车道标准

Target Text:

车速为120公里/小时,全线有桥梁47座,互通立交7处。沪苏浙高
路江苏段是国家高速公路网中上海至重庆高速公路网的重要组成部
据江苏省高速公路指挥部相关负责人介绍,沪苏浙高速公路江苏段
江苏省的最南端,起点位于吴江市芦墟镇北的苏沪两省市交界

Style Text:

联邦公开市场委员会(FOMC)表示:"虽然短期融资市
Target Text:

压力稍微得到减轻,但金融市场情况却继续恶化;对于一
业以及个人来说,贷款变得更为困难。而且,新的信息反映
市场更加低迷,而劳工市场也出现疲软迹象。"其发布的
还称:可预见的增长减缓的风险继续存在,美联储将

Style Text:

客观而言,此轮金融风暴源于欧美发达国家信用过于泛滥

Figure 22: More examples of multi-line Chinese paragraph generation.
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O Edited

Target Text:

“ Good-oh! One for the grill-room, darling, and

tell George to bring in the 6carte du jour.”

Bawley was a man of his word. He kept

away from Service matters, was an excellent

host and a splendid raconteur. The evening

Target Text:

"But I want it!" she protested. "It's my ring."

"You just gave it back to me." "I

didn't! I was joking. You know I was

joking, Nigel." "You shouldn't joke

about serious things like engagements."

Target Text:

'HELLO, CECIL. HAD a busy day?' His mother came into

the hall as he opened the front door. He nodded irritably

and, turning his back to her, contrived to slide the brief-

case into hiding between the do-it-yourself cupboard

and the polished brass fourteen-pounder shell-case

Target Text:

“ Good-oh! Two for the grill-room, darling, and

tell George to bring on the 6carte du jour.”

Bawley was a man of his word. He keep

away from Service reasons, was an excellent

host and a splendid raconteur. The morning

Target Text:

'HELLO, CECIL. HAD a busy day?' His mother came into

the hell as he opened the back door. He nodded irritably

and, turning his back to her, contrived to slide the brief-

case into biding between the do-it-yourself cupboard

and the polished boss fourteen-pounder shell-case

Target Text:

"But I want it!" she protested. "It's my ring."

"You just gIve it back to us." "I

didn't! I was joking. You knew I was

joking, Nolan." "You shouldn't joke

around serious things like engagements."

Figure 23: More examples of English paragraph editing.
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O Edited

Target Text:

客观而言,此轮金融风暴源于欧美发达国家信用过于泛滥
金融衍生品的“创新”走到了华尔街自身无法控制的局面
问题,对目前的宏观经济衰退风险起到了主要的推动作
身仅仅是全球宏观经济周期的一个表征。按照一般的
理论,任何以市场为主体的经济运行都将经历周期性的

Target Text:

本届澳网中国有李娜、彭帅、晏紫、袁梦四人参赛,其中三人首轮便
淘汰,李娜在第三轮被世界排名第146位的波兰选手多马乔斯卡击
李娜尽管拥有了亚洲一姐的实力,但在欧美高手林立的女单项目中,李
尚不具备夺取冠军的实力。彭帅一度被寄予厚望,就连华裔网球明
德培都对其很看好,并在去年主动提出担任彭帅的教练。然而,彭帅

Target Text:

联邦公开市场委员会(FOMC)表示:"虽然短期融资市
压力稍微得到减轻,但金融市场情况却继续恶化;对于一
业以及个人来说,贷款变得更为困难。而且,新的信息反映
市场更加低迷,而劳工市场也出现疲软迹象。"其发布的
还称:可预见的增长减缓的风险继续存在,美联储将

Target Text:

客观而言,此轮金融风暴源于欧美发达国家信用过于泛滥
金融衍生品的“创新”走槐了华尔街自身无法控制的局面
问题,对目前的宏观经济衰退风垄起到了主要的推动霭
身仅仅是全球宏观括媪周期啻一个表征。按照一般的
理论,任何以市场为主体的经济运庐都衷经历周期性的

Target Text:

本届澳台中国有李娜、彭帅、晏紫、袁梦四人参赛,其中三人首场便
淘汰,李娜在第三场被世界排名第146位的波兰选手多马乔斯卡击
李娜尽管拥有了亚洲一哥的实力,但在中美高手林立的女单项目中,李
尚不具备夺取亚军的实力。彭帅一度被寄予厚望,就连华裔台球明
德培都对其很看好,并在去年主动提出担任彭帅的教练。然而,彭帅

Target Text:

联邦公开市场委员会(FOMC)表示:“虽然长期融资市
压力稍微得到增轻,但金融市场情况却继续恶化;对于一
业以及个人来说,贷款变得更为困难。而且,旧的信息反映
市场更加低迷,而劳工市场也出现坚挺迹象。"其发布的
还称:可预见的增长增速的风险继续存在,美联储将

Figure 24: More examples of Chinese paragraph editing.
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