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Abstract

Quantification of Uncertainty in predictions is a
challenging problem. In the classification settings,
although deep learning based models generalize
well, class probabilities often lack reliability. Cali-
bration errors are used to quantify uncertainty, and
several methods exist to minimize calibration er-
ror. We argue that between the choice of having
a minimum calibration error on original distribu-
tion which increases across distortions or having a
(possibly slightly higher) calibration error which
is constant across distortions, we prefer the latter
We hypothesize that the reason for unreliability
of deep networks is - The way neural networks
are currently trained, the probabilities do not gen-
eralize across small distortions. We observe that
quantile based approaches can potentially solve
this problem. We propose an innovative approach
to decouple the construction of quantile representa-
tions from the loss function allowing us to compute
quantile based probabilities without disturbing the
original network. We achieve this by establishing
a novel duality property between quantiles and
probabilities, and an ability to obtain quantile prob-
abilities from any pre-trained classifier.
While post-hoc calibration techniques successfully
minimize calibration errors, they do not preserve
robustness to distortions. We show that, Quantile
probabilities (QuantProb), obtained from Quan-
tile representations, preserve the calibration errors
across distortions, since quantile probabilities gen-
eralize better than the naive Softmax probabilities.

1 INTRODUCTION

Deep learning models have become ubiquitous across di-
verse domains, and are increasingly being used for several

critical applications. However, in practice, when dealing
with ML systems, it is important that we capture the un-
certainty in the prediction along with the predictions them-
selves. As noted in Guo et al. [2017], deep networks tends
to be overconfident in their predictions. Well behaved proba-
bilities can also help in answering common questions which
arise in practice - (a) Can this model be used on the given
data input? and (b) If so, how much can one trust the proba-
bility prediction obtained? The former refers to the problem
of Out-of-Distribution (OOD) detection [Hendrycks and
Gimpel, 2017, Fort et al., 2021] and the latter refers to the
problem of Calibration [Guo et al., 2017, Lakshminarayanan
et al., 2017, Liu et al., 2020]. Understanding the applica-
bility of a given deep learning model is a topic of current
research [Ribeiro et al., 2016, Farrell et al., 2021, Nguyen
et al., 2015, Jiang et al., 2018].

As Kumar et al. [2022] argues, calibration of models can
also help in improving OOD accuracy. In this article we
consider the quantile regression based approach to provide
better estimates of the uncertainty.

Quantile regression techniques [Koenker, 2005, Kordas,
2006] provide much richer information about the model, al-
lowing for more comprehensive analysis and understanding
relationship between different variables. In Tagasovska and
Lopez-Paz [2019], the authors show how simultaneous quan-
tile regression (SQR) techniques can be used to estimate the
uncertainties of the deep learning model in the case of re-
gression problems. However, these techniques aren’t widely
adopted in modern deep learning based systems since the
loss function is restricted to be mean absolute error (MAE)
or the pinball loss which is difficult to optimize in the case
of classification problem. Moreover, MAE loss might not
compatible with domain specific losses [Chung et al., 2021].

Problem Statement: Consider the problem setting where
a pre-trained classifier fθ(x) (including the dataset on which
it is trained) is given and we wish to assign meaningful
probabilities to the prediction. The naive approach is to
use softmax outputs as probabilities. However, softmax
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Figure 1: Illustrating the construction of Quantile Representations. (a) Simple toy example. (b) Illustrates different classifiers
obtained for different τ . (c) Quantile Probabilities Heatmap. (d) Baseline Probabilities Heatmap. Note that quantile
probabilities capture the inherent structure of the dataset, while baseline probabilities only rely on distance from the
boundary.

probabilities do not generalize well across small distortions.
So we ask the question - Can we assign the probabilities
such that calibration error remains constant (possibly not
zero) across distortions? To our knowledge, there exists
no method which can achieve this. This is one of the open
questions posed in Kumar et al. [2019].

(Motivation) Minimizing Calibration Error vs Making
Calibration Errors robust to distortions: It has been
shown in the past that model suffer greatly due to poor cal-
ibration [Hoorde et al., 2015, van der Ploeg et al., 2016].
Some even labeled calibration error as the ‘Achilles heel’
of predictive analytics [Shah et al., 2018]. Reporting on
calibration performance is recommended by the TRIPOD
(Transparent Reporting of a multi variable prediction model
for Individual Prognosis Or Diagnosis) guidelines for pre-
diction modeling studies [Collins et al., 2015].

What does the term “well-calibrated” mean? – Ideally, one
would like to have minimum calibration error across distor-
tions. However, between the choice of having a minimum
calibration error which increases across distortions or hav-
ing a (slightly higher) calibration error which is constant
across distortions, we prefer the latter. This is because, hav-
ing constant calibration error can give us guarantees which
changing error cannot. However, one should note that there
is possibly a tradeoff, in the sense that if the calibration is
very high but constant across distortions, then it would not
be preferable.

Overview And Contributions: Using quantile loss func-
tion (equation 2, [Tagasovska and Lopez-Paz, 2019]) to
retrain the network would hinder the purpose of assigning
meaningful probabilities, since the retrained network would
have different properties compared to the original. Our first
contribution is to decouple the construction of quantile rep-
resentations from the loss function. To achieve this, we
establish a novel Duality Property between quantiles and
probabilities. We then leverage the duality to construct the
quantile representations for any pre-trained classifier fθ and

consequently obtain quantile probabilities (QUANTPROB).
In section 4, we show that the obtained QUANTPROB are
robust to distortions, while the baseline softmax probabil-
ities are not. Interestingly, we also show that the usual ap-
proaches to calibration such as Platt-Scaling actually make
the probabilities less invariant to distortions. In the appendix
we also illustrate other applications of QUANTPROB such
as OOD Detection and identifying the distribution shift.

Illustrating the Construction of QUANTPROB: Before
diving into the details, we illustrate our construction using a
simple toy example. Figure 1a shows a simple toy example
with 2 classes - 0, 1. To get the quantile representation - (step
1) we first construct a simple classifier, fθ(x) to differentiate
classes 0, 1, (step 2) To get a classifier at quantile τ , con-
struct y+i,τ = I[fθ(x) > τ ]1. Construct a classifier, {fτ,θ},
using the new labels y+i,τ . Figure 1b illustrates the classifiers
obtained at different quantiles, τ . (Step 3) To obtain the
quantile probabilities (QUANTPROB) we use the average
number of times fτ,θ predicts 1 - Avgτ (I[fτ,θ > 0.5]). Fig-
ures 1c shows the probability heatmap obtained. Comparing
it to the baseline in figure 1d, we see that QUANTPROB
capture the inherent structure of the data while the baseline
only considers distance from the boundary.

Important takeaway: One can think of QUANTPROB as
obtaining level curves for the baseline probabilities. While
the naive approach is to consider level curves which are
parallel to the original boundary, QUANTPROB uses the data
to infer the shape of these level curves, so that it reflects the
shape of the underlying manifold.

2 SIMULTANEOUS BINARY QUANTILE
REGRESSION (SBQR)

In this section, we review some of the theoretical founda-
tions required for constructing quantile representations. For

1I[.] indicates the indicator function



more details please refer to [Koenker, 2005, Kordas, 2006,
Tagasovska and Lopez-Paz, 2019].

Let pdata(X,Y ), denote the distribution from which the
data is generated. X denotes the features and Y denotes
the targets (class labels). A classification algorithm predicts
the latent variable (a.k.a logits) Z which are used to make
predictions on Y .

Let x ∈ Rd denote the d dimensional features and
y ∈ {0, 1, · · · , k} denote the class labels (targets). We
assume that the training set consists of N i.i.d samples
D = {(xi, yi)}. Let zi = fℓ,θ(x; θ) denote the classifi-
cation model which predicts the logits zi. In binary case
(k = 1), applying the σ (Sigmoid) function we obtain the
probabilities, pi = fθ(xi) = σ(fℓ,θ(xi)). For multi-class
classification we use the softmax(fℓ,θ(xi)) to obtain the
probabilities. The final class predictions are obtained using
the argmaxk pi,k, where k denotes the class-index.

2.1 REVIEW - QUANTILE REGRESSION AND
BINARY QUANTILE REGRESSION

Observe that, for binary classification, Z denotes a one di-
mensional distribution. FZ(z) = P (Z ≤ z) denotes the
cumulative distribution of a random variable Z. The func-
tion F−1

Z (τ) = inf{z : FZ(z) ≥ τ} denotes the quantile
distribution of the variable Z, where 0 < τ < 1. The aim
of quantile regression is to predict the τ th quantile of the
latent variable Z from the data. That is, we aim to estimate
F−1
Z (τ | X = x). Minimizing pinball-loss or check-loss

[Koenker, 2005],

pinball loss =
n∑
i=1

ρ(fθ(xi), yi; τ)

where, ρ(ŷ, y; τ) =

{
τ(y − ŷ) if (y − ŷ) > 0

(1− τ)(ŷ − y) otherwise
(1)

allows us to learn fθ which estimates the τ th quantile of Y .
When τ = 0.5, we obtain the loss to be equivalent to mean
absolute error (MAE). For the multi-class case we follow
the one-vs-rest procedure to learn quantiles for each class.

Simultaneous Quantile Regression (SQR): Observe that
the loss in equation 1 is for a single τ . Tagasovska and
Lopez-Paz [2019] argues that - minimizing the expected
loss over all τ ∈ (0, 1) where the solution depends on τ ,

min
ψ

Eτ∼U [0,1][ρ(ψ(x, τ), y; τ)] (2)

is better than optimizing for each τ separately. Using the
loss in equation 2 instead of equation 1 biases the solution to
have monotonicity property. If Q(x, τ) denotes the solution
to equation 2, monotonicity requires

Q(x, τi) ≤ Q(x, τj) ⇔ τi ≤ τj (3)

Observe that for a given xi, the function Q(xi, τ) can be
interpreted as a (continuous) representation of xi as τ varies
over (0, 1). The function Q(x, τ) is referred to as quantile
representation. Q(x, τ) is sometimes written as Q(x, τ ; θ),
where θ indicates the parameters (such as weights in a neural
neural network). For brevity, we do not include the parame-
ters θ in this article unless explicitly required.

Remark on Notation: To differentiate between the la-
tent scores (logits) and probabilities - we use Q(x, τ),
fθ(x) to denote the probabilities and Qℓ(x, τ), fℓ,θ(x)
to denote the latent scores. Since we have the relation
Q(x, τ) = σ(Qℓ(x, τ)) and fℓ(x) = σ(fℓ,θ(x)) and σ(.)
is monotonic, these quantities are related by a monotonic
transformation.

Why Quantile Regression? Quantile regression tech-
niques are relatively less adopted in the machine learning
community, but offers a wide range of advantages over the
traditional single point regression. Quantiles give informa-
tion about the shape of the distribution, in particular if the
distribution is skewed. They are robust to outliers, can model
extreme events, capture uncertainty in predictions. Quantile
regression techniques have been used for pediatric medicine,
survival and duration time studies, discrimination and in-
come inequality. (See supplementary material for a more
thorough discussion.)

3 QUANTPROB: QUANTILE
REPRESENTATIONS FOR
PRE-TRAINED CLASSIFIER

As discussed earlier, minimizing equation 2 does not pre-
serve the properties of the pre-trained classifier. Thus, we
require a procedure to construct quantile representations
without resorting to minimizing equation 2. In this section
we present duality property of the quantile representations,
which allows us to do this.

3.1 DUALITY BETWEEN QUANTILES AND
PROBABILITIES

Observe that, for binary classification, equation 1 can be
written as

ρ(ŷ, y; τ) =

{
τ(1− ŷ) if y = 1

(1− τ)(ŷ) if y = 0
(4)

Thus the following property holds :

ρ(ŷ, y; τ) = ρ(1− τ, y; 1− ŷ) (5)

We refer to the above property as duality between quan-
tiles and probabilities. Let Q(x, τ) denotes a solution to
equation 2. Suppose Q(x, τ0) = pi, then pi denotes the



probability that x belongs to class 1. But from equation 5,
this can also be interpreted as - (1 − pi) is the quantile at
which the probability is (1− τ0). We exploit this interpreta-
tion to frame Algorithm 1.

More formally, we construct the empirical versions of quan-
tile representations Q(x, τ), which given the quantile re-
turns the probability, as

Q(x, τ) = argmin
ŷ(x)

1

N

N∑
i=1

ρ(ŷ(xi),yi, τ) (6)

and probability representations P(x, p), which given a
probability return the quantile, as

P(x, p) = argmin
ŷ(x)

1

N

N∑
i=1

ρ(p,yi, ŷ(xi)) (7)

Remark: For notational simplicity, and to make the relation
explicit we use ŷ(xi) instead of ŷ.

We can then derive the relation between the quantile and
probability representations as follows - Say we have that
Q(x, τ∗) = pk, for some x

Q(x, 1− pk) = argmin
ŷ(x)

1

N

N∑
i=1

ρ(ŷ(xi),yi, 1− pk)

= argmin
ŷ(x)

1

N

N∑
i=1

ρ(pk,yi, 1− ŷ(xi))

= 1− argmin
ŷ(x)

1

N

N∑
i=1

ρ(pk,yi, ŷ(xi))

= 1− P(x, pk)

(8)

The interesting thing to note about the above equation is
that, the LHS - Q(xi, 1 − pk) denotes the probability at
quantile 1− pk, while the RHS - 1−P(xi, pk) denotes the
quantile at probability pk. It is easy to see that the mono-
tonicity property of quantiles in equation 3, extends to the
monotonicity property of probability representations,

p1 ≤ p2 ⇔ P(xi, p1) ≤ P(xi, p2) (9)

Strong Duality: To illustrate the power of this observa-
tion, if we have a strong one-one relationship between the
quantiles and probabilities, that is, for each x, the function
Q(x, .) is bijective and also satisfies,

Q(x, τ) = argmin
ŷ(x)

1

N

N∑
i=1

ρ(ŷ(xi),yi, τ)

Q−1(x, p) = argmin
ŷ(x)

1

N

N∑
i=1

ρ(p,yi, ŷ(xi))

(10)

Then, in this special case we have Q(xk, τ
∗) = pk ⇔

Q(xk, 1− pk) = 1−Q−1(xk, pk) = 1− τ∗. We refer to
this as Strong Duality.

Algorithm 1 Generating Quantile Representations.

• Let D = {(xi, yi)} denote the training dataset. As-
sume that a pre-trained binary classifier fθ(x) is given.
The aim is to generate the quantile representations
with respect to fθ(x). We refer to this fθ(x) as base-
classifier.

• Define y+i,τ = I[fθ(xi) > (1− τ)]. We refer to this as
modified labels at quantile τ .

• To obtain Q(x, τ), train the classifier using the dataset
D+
τ = {((xi, τ), y+i,τ )}, for all values of τ simulta-

neously. That is, for the input (xi, τ) the classifier is
trained to predict y+i,τ .

The main implication being – If we have information about
the median solution, Q(x, 0.5), and sufficient data, then we
can obtain Q(x, τ) by constructing a classifier with labels,
y(x) = 1 ⇔Q(x, 0.5) ≥ 1− τ .

Why does algorithm 1 return quantile representations?
Assume for an arbitrary xi, we have Q(xi, 0.5) = pi. Then,
thanks to duality we have, P(xi, 0.5) = 1−pi. Then, mono-
tonicity in equation 9 implies – if we have if the probability
is less than 0.5, then the corresponding quantile τ ≤ 1− pi
and if probability is greater than 0.5, we have that the corre-
sponding quantile τ ≥ 1− pi.

In other words, at a given quantile τ , xi will belong to class
1 if τ > (1 − pi) ⇔ pi > (1 − τ) ⇔ fθ(xi) > (1 − τ).
Defining, y+i,τ = I[fθ(xi) > (1 − τ)], we have that the
classifier at quantile τ fits the data D+

τ = {((xi, τ), y+i,τ )}
and thus can be used to identify Q(x, τ). This gives us
the algorithm 1 to get the quantile representations for an
arbitrary classifier fθ(x).

Specifically, we have the following theorem

Theorem 3.1 Let ψ∗ denote a minimizer of the following
cost,

argmin
ψ

Eτ∈U [0,1]

[
1

N

N∑
i=1

ρ(I[ψ(xi, τ) ≥ 0.5], yi; τ)

]
(11)

over the dataset D. Then, the solution Q(x, τ) obtained by
algorithm 1 with the base classifier as ψ∗(x, 0.5), minimizes
the cost in equation 11 as well, assuming strong duality for
Q(x, τ).

Remark: We assume that the hypothesis class of fθ, Q(x, τ)
are large to enough to fit any finite datasets. For instance we
can consider these to be large over-parameterized neural net-
works. Note that, in comparison with equation 2, equation 11
has an additional indicator function on top of the sigmoid
function. So, algorithm 1 gives a solution only upto this ap-
proximation. The proof for the above theorem is discussed
in the supplementary material.



Duality - Importance and Intuition: Algorithm 1 and
theorem 3.1 hinges on the duality property. Recall that pin-
ball loss equation 4 penalizes the positive errors and negative
errors differently. In the case of binary classification, since
fθ(x) ∈ (0, 1), positive errors occur for class 1 and negative
errors occur for class 0. Hence, the quantile value implic-
itly controls the probability of class 1, giving the duality
property.

Thus, using quantile value as an input allows us to control
the probabilities and hence confidence of our predictions.
This is exploited to construct quantile representations with-
out resorting to optimizing equation 2. This ensures that the
properties of the pre-trained model are preserved while still
being able to compute quantile representations.

Remark: The other alternate to computing quantile repre-
sentations are the Bayesian approaches [Jospin et al., 2022].
It is known that computing the full predictive distribution -
p(y|D, x) =

∫
p(y|w, x)p(w|D)dw is computationally dif-

ficult. Quantile representations approximate the inverse of
the c.d.f of the predictive distribution for the binary classifi-
cation.

To summarize, thanks to the duality in equation 5, one can
compute the quantile representations for any arbitrary pre-
trained classifier without modifying its behaviour. This al-
lows for detailed analysis of the classifier and the features
learned. In the following section we first discuss the imple-
mentation of algorithm 1 in practice and empirically validate
the probabilities for calibration and OOD Detection.

3.2 GENERATING QUANTILE
REPRESENTATIONS IN PRACTICE

Let fθ(x) denote a pre-trained classifier. Given a dataset
D = {(xi, yi)}i, we construct a quantile dataset -
{((xi, τ), y+i,τ )}i,τ as described in algorithm 1 with the fol-
lowing modifications.

Getting y+i,τ in practice: Instead of computing y+i,τ =

I[fθ(x) > (1 − τ)], we obtain the labels using the τ th

quantile of logits

I[fℓ,θ(x) > (1− τ)th quantile of {fℓ,θ(xi)}i] (12)

As multi-class classification problem gives class imbal-
ance under one-vs-rest paradigm, we compute weighted-
quantiles, where weights are assigned such that the number
of samples with fℓ,θ(xi) > 0, and number of samples with
fℓ,θ(xi) ≤ 0 is balanced. While this assumption might lead
to some bias, it allows us to circumvent the precision issues
of the sigmoid function. Moreover, as we shall shortly illus-
trate, these probabilities are more robust compared to the
naive probabilities.

Consider only finite number of quantiles: We only con-
sider a fixed finite number of quantiles. The nτ quantiles

are given by {1/nτ+1, 2/nτ+1, · · · , nτ/nτ+1}.

For the sake of valid experimentation and comparison, we
model Q(x, τ) using the same network as fθ(x), except for
the first layer. We concatenate the value of τ to the input,
resulting in slightly more number of parameters in the first
layer. For efficient optimization we start the training with
the weights of the pre-trained classifier fθ(x), except for the
first layer. (Remark: However, we note that using a larger
network could potentially improve the results)

Loss function to train Qℓ(x, τ): Recall that Qℓ(x, τ) in-
dicates the latent logits. We use BinaryCrossEntropy
loss to train Qℓ(x, τ) where the targets are given by the
modified labels {y+i,τ}.

Inference using Qℓ(x, τ) : After training, we compute
the probabilities as follows

pi =

∫ 1

τ=0

I[Qℓ(xi, τ) ≥ 0]dτ

≈ 1

nτ

∑
i

I[Qℓ(xi, τ) ≥ 0]
(13)

We refer to these as quantile probabilities (QUANTPROB).
Remark: For multi-class classification, we follow a one-
vs-rest approach. Hence the loss in this case would be sum
of losses over all individual classes. The probability, in
multi-class case, is taken to be argmaxk pi,k. Note that the
probabilities pi,k do not necessarily add up to 1 over all
classes.

4 USING QUANTPROB FOR
CALIBRATION

Recall that the key question in this article which we would
like to address is - Is there an approach to assign probabili-
ties which can generalize better?. To evaluate the generaliz-
ability, we consider the calibration error as an evaluation.
If the probabilities generalize well, then one expect that the
calibration error to be constant across distortions.

Overview of Calibration: For several applications the
confidence of the predictions is important. This is measured
by considering how well the output probabilities from the
model reflect it’s predictive uncertainty. This is referred to
as Calibration.

Several methods [Platt, 2000, Zadrozny and Elkan, 2002,
Lakshminarayanan et al., 2017, Angelopoulos et al., 2021,
Liu et al., 2020] are used to improve the calibration of the
deep learning models. Most of these methods consider a part
of the data (apart from train data) to adjust the probability
predictions. However, in [Ovadia et al., 2019, Minderer
et al., 2021] it has been shown that most of the calibration
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Figure 2: Calibration errors when training on features from Resnet34/Densenet embedding on CIFAR10C. Quantile
representations can be effective for calibration because they estimate probabilities using Equation equation 13, which has
been shown to be robust to corruptions. As demonstrated using the CIFAR10C dataset [Hendrycks and Dietterich, 2019],
the Expected Calibration Error (ECE) of the probabilities obtained from quantile representations (QUANT) does not increase
with the severity of the corruptions. In contrast, when using the standard Maximum Softmax Probability (MSP) method, the
calibration error increases as the severity of the corruptions increases.

approaches fail under distortions. In this section we show
that QUANTPROB are robust to distortions.

Let pi,k denote the predicted probability that the sample
xi belongs to class k. A perfectly calibrated model (bi-
nary class) will satisfy [Guo et al., 2017] P (yi = 1|pi,1 =
p∗) = p∗. For multi-class case this is adapted to P (yi =
argmaxk(pi,k)|maxk(pi,k) = p∗) = p∗. The degree of
mis-calibration is usually measured using Expected Calibra-
tion Error (ECE)

E[|p∗ − E[P (y = argmax
k

(pi,k)|max
k

(pi,k) = p∗)]|]

(14)
This is computed by binning the probabilities into
m bins - B1, B2, · · · , Bm and computing ˆECE =∑m
i=1(

|Bi|/n)|acc(Bi) − conf(Bi)|. where acc(Bi) =
(1/|Bi|)

∑
j∈Bi

I[yj = argmaxk(pj,k)] denotes the ac-
curacy of the predictions lying in Bi, and conf(Bi) =∑
j∈Bi

maxk(pj,k) indicates the average confidence of the
predictions lying in Bi. In practice, Kumar et al. [2019] pro-
poses a better approach to estimate the top-label uncertainty
which we use in this article.

No Free Lunch for Calibration: Is it possible to have
an approach to assign probabilities which have constant
calibration error across all probability distributions? The
answer is unfortunately no.

This follows from a simple argument - Let P(X,Y ) denote
an underlying distribution of the samples where Y ∈ {0, 1},

and let fθ denote the model which is perfectly calibra-
tion for P(X,Y ). Consider a new probability distribution
P+(X,Y ) = P(X, 1 − Y ). Then the calibration error of
fθ on P+(X,Y ) is 0.5.

So, in general it is not possible to have constant calibration
error across the entire space. The best one could hope for
is to have constant calibration error whenever P+(X,Y ) ≈
P(X,Y ), i.e invariant to small distortions. We show that
QUANTPROB proposed in this article achieves this.

Sanity Check - When the pre-tained model fθ is perfect:
We firstly verify that, in the ideal scenario where the model
is perfect, then the quantile probabilities match the perfectly
calibrated probabilities. This is formalized in the theorem
below.

Theorem 4.1 Let fθ(.) denote the pre-trained model, and
let fℓ,θ(.) denote the corresponding logits. Assume that the
data is generated using the model y = I[fℓ,θ(x) + ϵ > 0],
where ϵ denotes the error distribution with mean 0 . Let
Q(x, τ) denote the quantile representations obtained on
this data using fθ as the base classifier. Then,∫ 1

τ=0

I[Q(x, τ) ≥ 0.5]dτ = P (fθ(x) + ϵ ≥ 0) (15)

The proof for theorem 4.1 is given in the supplementary
material. The main idea is the notion that Q(x, τ) captures
P (fθ(x) + ϵ > 1− τ).



(a) ECE (CIFAR100) (b) Accuracy (CIFAR100)

Figure 3: Calibration errors when training on features from Resnet34/Densenet embedding on CIFAR100C

When fθ is not perfect: Even in the case when the pre-
trained model fθ is not perfect, QUANTPROB generalizes
better than the naive baseline fθ(x). Figures 1c,1d provide
evidence for this. Observe that the probabilities in figure 1c
trace the manifold of the data distribution while the probabil-
ities in figure 1d does not take into consideration the data dis-
tribution far away from the boundary. Thus, QUANTPROB
on distorted distributions is much more reliable than the
naive probabilities. We now empirically verify that QUANT-
PROB generalize to a wider domain than the MSP in real
world datasets.

Experimental Setup We verify that QUANTPROB gen-
eralize better than the naive probabilities by using a
pre-trained ResNet34 on CIFAR10 dataset. To evaluate
the QUANTPROB robustness to distortions, we use the
CIFAR10C dataset introduced in Hendrycks and Diet-
terich [2019], which contains 15 types of common cor-
ruptions at five severity levels - 1, 2, 3, 4, 5. The quantile-
representations are obtained from the ResNet34 pre-trained
on the CIFAR10 training data. We compare the performance
with Maximum Softmax Probability (MSP) as a baseline
and evaluate both accuracy and calibration error. To esti-
mate calibration error, we construct the bins {Bi} using
5 equally spaced quantiles within the predicted probabil-
ities. The probabilities of each class are predicted using
equation 13.

Training on the features from the pretrained models:
Figure 2 presents how accuracy and calibration error varies
with distortion. The main thing to observe is that - The
calibration error of QUANTPROB remains constant across
distortions while the usual MSP increases in the calibration
error. Also note that while the standard deviation increases
for both QUANTPROB and MSP, it increases quite drasti-

cally for MSP comparatively. Figure 2b verifies that this
constant calibration error is not at the expense of reduction
in accuracy.

Training the entire networks: Figure 4 shows the results
when one trains the entire network instead of the last layer.
We observe a similar trend - Calibration error QUANTPROB
remains constant across distortions on average while MSP
increases drastically.

This observation is interesting since - One might expect
better results when training on the entire model instead of
only on the features from last layer. Interestingly, we find
that training the deep network does not improve the results.
In fact we find that, while on average the calibration errors
are similar, the standard deviation actually increases when
compared to training only the last layer.

Cannot Correct the Calibration Error Using Platt Scal-
ing Figure 2 shows that calibration error from quantile
representations is approximately constant across distortions,
but not zero. So – Does making the calibration zero on
validation data make the calibration error zero across dis-
tortions? It turns out that usual methods fail when trying to
correct the calibration error of quantile representations.

To verify this we perform the same experiment as earlier.
Further we use Platt Scaling on validation data and accord-
ingly transform the probability estimates for the corrupted
datasets. These results are shown in figure 5. Observe that
at severity 0, the calibration error is 0 for the corrected prob-
abilities as expected. However, as distortion increases, the
calibration error increases as well – a trend observed with
using MSP probabilities.



(a) ECE (b) Accuracy

Figure 4: Calibration errors when training the entire network of Resnet34/DenseNet embedding on CIFAR10.

Figure 5: Correcting calibration error on the validation set
may not improve performance on corrupted datasets.

5 RELATED WORK

[Koenker, 2005, Parzen, 2004, Portnoy and Koenker, 1989,
Chaudhuri, 1992] provides a comprehensive overview of
approaches related to quantile regression and identifying
the parameters. [Chaudhuri, 1996] extends the quantiles to
multi-variate case. [Tagasovska and Lopez-Paz, 2019, Tamb-
wekar et al., 2022] use quantile regression based approaches
for estimating confidence of neural networks based predic-
tions. [Angelopoulos et al., 2021, Feldman et al., 2021b]
uses conformal methods to calibrate probabilities, and is
closely related to computing quantiles. [Chung et al., 2021]
proposes a similar algorithm to overcome the restriction to
pinball loss for regression problems. [Feldman et al., 2021a]
generates predictive regions using quantile regression tech-
niques.

6 CONCLUSION AND FUTURE WORK

Summary: Firstly, we argue that, from a systems perspec-
tive, it is more important to have constant calibration across
distortions rather than minimal calibration error. The first is
much more easier to correct by simply tuning the threshold,
while the latter results in an unstable system. Having con-
stant calibration error across distortions is also one of the
open questions raised in Kumar et al. [2019].

The key issue which inhibits the current networks to have
constant calibration across distortions is that - While net-
works are trained to generalize predictions, they are not
trained to generalize probabilities. To correct this we resort
to quantile regression techniques.

We aim to answer the question - Given a pre-trained clas-
sifier fθ with good performance, how can one assign the
probabilities without changing the predictions? We first es-
tablish a duality between quantiles and probabilities, and
then use the duality to assign probabilities, QUANTPROB
which generalize better. We then show that QUANTPROB
results in a calibration error which is constant across dis-
tortions while the usual MSP increases the calibration error
drastically.

Open Questions: The ideal scenario is, of course, having
minimal calibration error across all distributions. However,
we have a no-free-lunch result and hence one cannot have
constant calibration across all distributions. We observed
that any attempts at correcting the calibration error, either by
using a larger networks or by using traditional approaches
like Platt-scaling, resulted in increasing either the standard
deviation across distortions or increasing the calibration
error itself across distortions.



Thus, while in this article we achieve constant calibration
error across distortions, “How to obtain minimal calibration
error across distortions?” remains an open question. We
wish to pursue this as future work.

Related Applications and Analysis: Apart from the ap-
plication to calibration of probabilities, QUANTPROB can
also be used for OOD detection. In fact we find that QUANT-
PROB behaves similarly to the recent state-of-the-art MLS
approach [Vaze et al., 2022]. Details about the experiments
can be found in appendix C. Apart from that, we also show
that quantile representations capture the distribution of the
dataset by considering cross-correlations. This can be found
in appendix E. We also empirically confirm that the quantile
representations preserve monotonicity in appendix G.
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A PROOF FOR THEOREM 3.1

Let D = {(xi, yi)} denote the train dataset of size N . Recall, equation 11 (main article) is

min
ψ

Eτ∼U [0,1]

[
1

N

∑
i

ρ(I[ψ(xi, τ) ≥ 0.5], yi; τ)

]
(16)

Let Q(x, τ) denotes the solution obtained using the algorithm 1 (main article). Let Φ(x, τ) denote the solution obtained by
solving equation 16.

Aim to show that I[Q(xi, τ) ≥ 0.5] = I[Φ(xi, τ) ≥ 0.5] for all the points in D = {(xi, yi)}, for all τ .

From construction in the algorithm 1,we have Q(xi, τ) = I[Φ(xi, 0.5) ≥ 1− τ ], since Φ(xi, 0.5) is considered as the base
classifier.

Now, under the assumption of strong duality, if Φ(xi, 0.5) = 1 − τ , then for all quantiles τ∗ ≥ τ , Φ(xi, τ∗) ≥ 0.5 (see
section 3 above). Hence, Q(xi, τ) = I[Φ(xi, τ) ≥ 0.5]. This implies that, I[Q(xi, τ)] ≥ 0.5] = I[Φ(xi, τ) ≥ 0.5].

B PROOF FOR THEOREM 4.1

From the construction of Q(x, τ)

I[Q(x, τ) ≥ 0.5] ⇔ I[fθ(x) ≥ (1− τ)] ⇔ P (fℓ,θ(x) + ϵ ≥ 0) ≥ 1− τ (17)

The second equality follows from the assumption that fθ(xi) denotes the proportion of times we observe yi = 1 given
x = xi. This holds true for any well-trained classifier. Assuming that τ∗ = P (fℓ,θ(xi) + ϵ ≥ 0), So, we have∫ 1

τ=0

I[Q(xi, τ) ≥ 0.5]dτ =

∫ 1

τ=0

I[τ∗ ≥ (1− τ)]dτ

=

∫ 1

τ=0

I[τ ≥ (1− τ∗)]dτ =

∫ 1

τ=(1−τ∗)

1dτ = τ∗
(18)

Thus the theorem follows.

C OOD DETECTION USING QUANTPROB

An assumption made across all machine learning models is that - Train and test datasets share the same distributions.
However, test data can contain samples which are out-of-distribution (OOD) whose labels have not been seen during the
training process [Nguyen et al., 2015]. Such samples should be ignored during inference. Hence OOD detection is a key
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Table 1: Comparison of Quantile-Representations with baseline for OOD Detection.The entries are represented as
MQP/MLS/MSP. Observe that except in a few cases, MQP and MLS perform comparably for OOD detection.

AUROC TNR-TPR95 Det.Acc
Model/ID OOD

ResNet34/CIFAR10 Imagenet(C) 92.68/92.27/90.96 63.88/57.31/43.95 86.26/85.70/84.80
Imagenet(R) 92.13/91.47/90.33 61.44/53.37/42.18 85.69/84.90/84.21
LSUN(C) 92.51/93.53/91.74 64.00/61.77/45.87 86.92/87.24/86.37
LSUN(R) 94.83/91.55/90.07 71.87/55.07/41.24 88.96/85.20/84.25
iSUN 94.17/91.76/90.29 70.36/55.74/41.90 87.96/85.27/84.28

Resnet34/SVHN Imagenet(C) 94.34/93.75/94.18 82.34/82.86/81.13 89.14/90.97/91.23
Imagenet(R) 93.53/92.89/93.52 80.67/81.44/79.86 88.29/90.17/90.58
LSUN(C) 88.93/92.59/92.99 68.54/79.82/77.96 83.59/89.68/90.10
LSUN(R) 90.69/90.53/91.50 72.86/76.82/74.95 84.72/88.56/89.09
iSUN 91.23/91.50/92.28 74.76/79.45/77.43 85.73/89.26/89.77

component of reliable ML systems. Several methods [Hendrycks and Gimpel, 2017, Lee et al., 2018, Bibas et al., 2021]
have been proposed for OOD detection.

Intuitively, OOD samples are far from the boundary and result in low softmax probabilities. Thus, one way to assign OOD
scores to samples is by considering the maximum softmax probabilities (MSP) as described in [Hendrycks and Dietterich,
2019]. Samples which are far from the boundary also have large logit scores. In Vaze et al. [2022] the authors suggest to use
maximum logit score (MLS) instead and show that this is indeed a state-of-the-art approach for identifying OOD samples.

To assign an OOD score for the quantile representations we use maximum quantile probabilities (MQP) over all the classes,
that is, if pi,k denotes the quantile probability obtained using equation 13 of sample i belonging to class k, then

MQP(xi) = max
k

{pi,k}

Relation between MQP and MLS: Another interpretation of QUANTPROB in equation 13 is that it measures the distance
(in terms of quantiles) from the boundary. If pi,k = 1, then Qℓ(xi, τ) ≥ 0 for all τ , which implies fℓ,θ(xi) is larger than
(1− τ) quantile of {fℓ,θ(xj)}j for all τ . Thus, the fℓ,θ(xi) has a high latent score which implies high MLS score. Similar
argument holds for low latent scores as well. (Remark: This is evident in the illustration in figure 1b.) Thus, MQP and MLS
perform similarly for OOD detection. We verify this below.

Experimental Setup: For this study, we use the CIFAR10[Krizhevsky et al., 2014] and SVHN[Netzer et al., 2011] datasets
as in-distribution (ID) datasets and the iSUN[Xu et al., 2015], LSUN[Yu et al., 2015], and TinyImagenet[Liang et al., 2018]
datasets as out-of-distribution (OOD) datasets. Two versions of LSUN and TinyImagenet are considered - resized to 32× 32
and cropped. We evaluate the quantile representations obtained using ResNet34[He et al., 2016] architecture. For evaluation
we use (i) AUROC: The area under the receiver operating characteristic curve of a threshold-based detector. A perfect
detector corresponds to an AUROC score of 100%. (ii) TNR at 95% TPR: The probability that an OOD sample is correctly
identified (classified as negative) when the true positive rate equals 95%. (iii) Detection accuracy: Measures the maximum
possible classification accuracy over all possible thresholds.

Results: Table 1 shows the results comparing MQP, MLS and MSP. As argued before, MQP and MLS perform similarly in
comparison with MSP.

D RESULTS WHEN TRAINING ONLY THE LAST LAYER

The same observations as done in the main article also hold true when training is done only in the last layer by considering
the features.

OOD Detection : These experiments were performed using Densenet and Resnet34 architectures on CIFAR10 and
SVHN datasets. The OOD datasets are the same as in the main article. Table 2 shows the results obtained when quantile
representations are used only on the last layer.



Table 2: Comparison of Quantile-Representations with baseline for OOD Detection. Observe that Quantile-Representations
outperform the baseline in all the cases.

DenseNet (Baseline/Quantile-Rep)

LSUN(C) LSUN(R) iSUN Imagenet(C) Imagenet(R)

CIFAR10
AUROC 92.08/93.64 93.86/94.61 92.84/93.74 90.93/91.72 90.93/92.06

TNR@TPR95 58.19/64.56 63.07/66.89 59.64/64.68 53.94/56.34 54.44/58.22
Det. Acc 85.58/87.14 87.66/88.60 86.29/87.42 84.11/84.93 84.10/85.33

SVHN
AUROC 91.80/92.29 90.75/90.70 91.21/91.30 91.93/91.97 91.93/92.01

TNR@TPR95 54.61/58.77 47.67/48.55 48.24/50.15 52.38/53.68 52.43/53.64
Det. Acc 85.10/85.37 84.32/84.16 84.80/84.77 85.42/85.55 85.46/85.50

Resnet34 (Baseline/Quantile-Rep)

CIFAR10
AUROC 91.43/91.76 92.64/93.08 91.89/92.34 90.59/90.81 89.12/89.39

TNR@TPR95 54.96/56.76 63.24/65.75 58.56/60.94 52.86/54.89 47.41/49.93
Det. Acc 84.63/84.96 85.41/86.06 84.39/85.17 83.24/83.44 81.74/82.05

SVHN
AUROC 94.80/94.87 94.37/94.46 95.13/95.22 95.73/95.85 95.62/95.70

TNR@TPR95 76.19/76.15 72.10/72.87 75.88/76.25 79.16/79.53 78.34/78.82
Det. Acc 89.58/89.72 88.82/88.87 89.78/89.85 90.72/90.87 90.54/90.60

Calibration Experiments The same observations - Quantile probabilities have calibration error which does not change
with distortion and that these could not be corrected using simple Platt Scaling/Isotonic Regression, hold true when training
only the last layer as well. This is illustrated in figure 8.

E ANALYSIS OF CROSS-CORRELATION

To illustrate that the quantile representations capture the aspects of data-distrbution relevant to classification, we perform
the following experiment - Construct the cross-correlation between features using (i) Quantile Representations and (ii)
Feature values extracted using the traindata. If our hypothesis is accurate, then cross-correlations obtained using quantile-
representations and feature values would be similar.

In Figures 6 and 7, we present the results of using features from Resnet34 and Densenet on the CIFAR10 dataset. Figures 6a
and 6b show the results for Resnet34, and Figures 7a and 7a show the results for Densenet. To visualize the cross-correlations,
we use a heatmap with row and column indices obtained by averaging the linkage of train features. This index is common for
both quantile representations and extracted features. It is evident from the figure that the cross-correlation between features
is similar whether it is computed using extracted features or quantile representations.

F A CASE WHERE QUANTILE REPRESENTATIONS DO NOT CAPTURE THE ENTIRE
DISTRIBUTION

In figure 9 we illustrate an example where quantile representations do not capture the entire distribution. Here we use the
same data as in figure 1, but with different class labels. This is shown in figure 9a. When we perform the OOD detection
we get the region as in figure 9b. Observe that while it does detect points far away from the data as out-of-distribution, the
moon structure is not identified. In particular, the spaces between the moons is not considered OOD. This illustrates a case
when quantile representations might fail.

However, OOD detection using a single classifier also fail, as illustrated in figure 9c. Observe that the region identified by
quantile representations is much better than the one obtained using a single classifier.

A simple fix for OOD detection: If OOD detection were the aim, then it is possible to change the approach slightly by
considering random labels instead of the ground-truth labels. This allows us to identify arbitrary regions where the data is
located. This is illustrated in figure 9d. Observe that this method can be used to identify any region in the space by suitably
sampling and assigning pseudo-labels. In this case, we identify the training data perfectly.



(a) Quantile Representations (Resnet34) (b) Original Features (Resnet34) (c) Scatterplot

Figure 6: Do quantile representations capture the relevant information for classification? (a) Cross-correlations obtained
using Quantile representations for Resnet34 on CIFAR10 (b) Cross-correlations obtained using train features for Resnet34
on CIFAR10. (c) Scatterplot with best fit line (using Locally Weighted Scatterplot Smoothing[Cleveland, 1979]) of the
cross-correlation of features. Observe that as the correlation becomes important (i.e close to −1 or 1) quantile representations
are more consistent with raw features.

G SANITY CHECK - PRESERVING MONOTONICITY PROPERTY

Note that quantile representations obtained by optimizing the simulateneous loss equation 2, should follow the monotonicity
property - Q(x, τ0) ≤ Q(x, τ1) ↔ τ0 ≤ τ1. Since our approach is an alternate, the quantile representation learnt using
algorithm 1 should satisfy this property as well. We verify this as follows - Considering the ResNet34 architecture trained on
CIFAR10 dataset, we plot the logits obtained at different quantiles.

H TRAINING DETAILS AND COMPUTE

Code is provided at https://github.com/adityac20/quantprob.git for more details about the exact training.

Training quantile representations was done on a DGX server using 4 GPUs. Observe that technically the size of the dataset
increases by number of quantiles for training. However, starting from the pre-trained weights, using Adam optimizer with
learning rate 3e − 4, we found that the network converges fairly quickly after 10-15 epochs. On the DGX server with 4
GPUs, it takes around 4 hours to reach convergence.

I WHY QUANTILE REGRESSION?

If the goal of a regression problem is to predict the likely range of estimates (prediction interval) and not just a single estimate
as the Ordinary Least Square Regression (OLS) does, the method is required to be more general and robust. This method
for producing such estimates, relatively unknown in the Machine Learning community, is known as quantile regression.
While OLS regression minimizes the squared-error loss function to predict a single point estimate, quantile regressions
minimize the quantile loss in predicting a certain quantile. The 50th percentile, otherwise known as the median, represents
the quantile loss as the sum of absolute errors (MAE). Other quantiles could give endpoints of a prediction interval; for
example, a middle-80-percent range is defined by the 10th and 90th percentiles. The quantile loss differs depending on
the evaluated quantile, such that more negative errors are penalized more for higher quantiles and more positive errors
are penalized more for lower quantiles. In other words, quantile loss varies with the error, depending on the quantile,
commonly interpreted as quantile for under- and over-estimated predictions. The higher the quantile, the more the quantile
loss function penalizes underestimates and the less it penalizes overestimates. Quantiles allow for an understanding of a
probability distribution of a data set in which only the specifications of the positions are known. Thus, wherever predictions
are subject to high uncertainty, quantile should be the preferred loss function. Quantiles give some information about the
shape of a distribution - in particular whether a distribution is skewed or not; are robust to outliers and can model extreme
events well. Conditional quantiles obtained via regression are used as a robust alternative to classical conditional means in

https://github.com/adityac20/quantprob.git


(a) Quantile Representations (Densenet) (b) Original Features (Densenet) (c) Scatterplot

Figure 7: Do quantile representations capture the relevant information for classification? (a) Cross-correlations obtained
using Quantile representations for Densenet on CIFAR10 (b) Cross-correlations obtained using train features for Densenet
on CIFAR10. (c) Scatterplot with best fit line (using Locally Weighted Scatterplot Smoothing[Cleveland, 1979]) of the
cross-correlations. Observe that as the correlation becomes important (i.e close to −1 or 1) quantile representations are more
consistent with raw features.

(a) ECE (Resnet34) (b) Accuracy (Resnet34) (c) ECE (Densenet) (d) Accuracy (Densenet)

Figure 8: Quantile representations can be effective for calibration because they estimate probabilities using Equation equa-
tion 13, which has been shown to be robust to corruptions. As demonstrated using the CIFAR10C dataset [Hendrycks and
Dietterich, 2019], the Expected Calibration Error (ECE) of the probabilities obtained from quantile representations (QUANT)
does not increase with the severity of the corruptions. In contrast, when using the standard Maximum Softmax Probability
(MSP) method, the calibration error increases as the severity of the corruptions increases.

econometrics and statistics, as they can capture the uncertainty in a prediction, and model tail behaviors, while making very
few distributional assumptions

The quantile regression has started relatively recently being applied in the energy-growth nexus literature. In the past, it
has been used extensively in pediatric medicine (offering an optimistic perspective for precision medicine), survival and
duration time studies [Huang et al., 2017], the determination of wages, discrimination effects, and income inequality. Also, it
has been used in the finance literature in studies that dealt with bank failure and the time occurrence of this failure [Schaeck,
2008]. Regarding the more recent application in the energy-growth nexus field, it is not well documented in the relevant
studies why asymmetries would be present in the way income and wealth is generated in different countries given the
consumption of energy in those countries and other stylized parameters. One reason, quite understandable, why to use this
method, is for testing whether poorer countries will be affected the same way by energy conservation measures as the rich
ones. Another reason as stated by Troster et al. [2018] in their study on renewable energy, oil prices, and economic growth
for the United States is that their study would allow them to determine whether extremely low or high changes in energy
consumption prices would lead economic growth. Therefore we can have very specific and accurate answers to what will
happen if there is 1% energy reduction in poor countries. This information would otherwise have to be included in dummy
variables and other forms of robust estimation that assign less weight to observations that are characterized as outliers.
Among the various other statistical twists offered by the method, the quantile regression may be favored because it does not



(a) Original Data (b) OOD Detection using quantile representations

(c) OOD Detection using Probabilities (d) Using Random Labels

Figure 9: Illustrating a case where quantile representations do not capture the distribution perfectly. (a) Original Dataset. (b)
The region detected as in-distribution by using quantile representations. (c) Region detected as in-distribution by using the
outputs from a single classifier. Observe that quantile representations still perform better than single classifier outputs. (d)
Using random labels instead of ground-truth. Observe that the two moons structure is faithfully preserved in this image. The
brightness of Red indicates the chance of being in-distribution.

assume a parametric distribution and it estimates the entire conditional distribution of the independent variable. Generally,
this method is regarded as more versatile and informative [Rodriguez and Yao, 2017].

A switch from the squared error to the tilted absolute value loss function allows gradient descent-based learning algorithms
to learn a specified quantile instead of the mean. It means that we can apply all neural network and deep learning algorithms
to quantile regression [Huang et al., 2017, Schaeck, 2008]. The application of quantiles in deep learning, although relatively
recent, are critical for model interpretability. In the past, [Tambwekar et al., 2022] extended the notion of conditional
quantiles to the binary classification setting—allowing uncertainty quantification in the predictions, increased resilience
to label noise thus furnishing new insights into the functions learnt by the models. This was accomplished by defining a
new loss called binary quantile regression loss, in the classification setting. The estimated quantiles to obtain individualized
confidence scores provide an accurate measure of a prediction being misclassified. These scores were then aggregated to
compute two additional metrics, namely, confidence score and retention rate, which can be used to withhold decisions and
increase model accuracy. Thus, in a non-parametric binary quantile classification framework, authors could demonstrate
that quantiles aid in explainability as they can be used to obtain several uni-variate summary statistics that can be directly
applied to existing explanation tools.

Therefore, it is not unconvincing to realize the relevance and precedence of quantiles in classification, in particular, to obtain
the conditional quantiles of the underlying latent function learnt by a binary classifier using customized loss inspired by



Figure 10: Checking that the quantile representations learnt using algorithm 1 satisfies the monotonicity property.

quantiles [Troster et al., 2018].
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