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Video Sampled Frame Category Aggregation
and Consistent Representation

for Cross-Modal Retrieval
Ming Jin, Huaxiang Zhang , Lei Zhu , Senior Member, IEEE, Jiande Sun , and Li Liu

Abstract— Many current video and text cross-modal retrieval
research works focus on narrowing the semantic gap between
video and text, but ignore the semantic difference between
different sampled frames in the same video and the correlation
of feature distribution of objects contained in different sampled
frames in the same video, as a result, the features of the
sampled frames in the final learned video cannot well represent
the semantic features of the whole video. To overcome the
shortcomings of existing studies, we first use a pre-trained video
frame classification-aggregation network to make the object
categories contained in different sampled frames in the same
video be more close to the important object categories contained
in the whole video, so as to promote the feature distribution
of different sampled frames in the same video to be consistent,
and increase the relevance of object features in different frames.
Then we propose a video internal frame aggregation loss module
to solve the problem of inconsistent feature distribution between
different frame features encoded by video encoder in the same
video and the aggregation feature of the sampled frame, thus
enhancing the ability of video sampled frame aggregation fea-
ture representation. Experiments conducted on three common
datasets MSVD, MSR-VTT and DiDeMo demonstrate the validity
of the proposed approach.

Index Terms— Video and text cross-modal retrieval, pre-
trained video frame classification-aggregation network, video
internal frame aggregation loss module.

I. INTRODUCTION

W ITH the development of Internet technology, people’s
access to information has undergone earth-shaking

changes, especially the access to video information on the
Internet. This promotes the transformation of retrieval technol-
ogy from the original single modal information retrieval (text
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Fig. 1. The video and text cross-modal retrieval view charts.

retrieval text, image retrieval image) to multi-modal retrieval
(video and text cross-modal retrieval, image and text cross-
modal retrieval). With the increase of people’s demand, video
and text cross-modal retrieval technology also ushers in a
boom of research in recent years. A straight view of video and
text cross-modal retrieval is shown in Fig. 1. There are two
main reasons for the research upsurge of video and text cross-
modal retrieval: one is the demand of video and text retrieval
technology, and other is that, image and text cross-modal
retrieval technology [1], [2] has been mature, some researchers
do further research by transferring technology to video and
text cross-modal retrieval tasks. The research of video and text
cross-modal retrieval can be divided into two major directions,
one is based on the non-pre-trained model [3], [4], [5], [6], [7]
and the other is based on the pre-trained transfer model [8], [9],
[10]. In the early stages of video and text cross-modal retrieval,
researchers used a non-pre-trained model [11]. The video and
text cross-modal retrieval network architecture of the non-pre-
trained model is basically similar to that of the image and
text cross-modal retrieval network. This network architecture
achieves good performance in image and text cross-modal
retrieval, but it does not perform well in video and text
cross-modal retrieval. Each video consists of multiple static
frames with sequential sequence, and each static frame can be
regarded as an image, so the amount of information in a video
is much larger than that in an image, the conventional network
model cannot adequately capture the information contained in
the video. However, the network architecture of image feature
processing is helpful to that of video feature processing.
In image and text cross-modal retrieval, the advantage of
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image processing network is that it can mine the spatial
information of image features. Therefore, using image feature
processing network to extract the static frame features of each
video can fully establish the spatial information of frame
features. The video and text cross-modal retrieval models have
taken the advantages of image processing network design in
image and text cross-modal retrieval models. By getting some
inspiration from the image feature processing network, some
researchers have applied image feature processing network to
video frame feature processing [9]. They first use a large num-
ber of images to train the image feature processing network,
and obtain the stable state network parameters, then, they
transfer the image feature processing network to the video
frame feature processing network. Considering that the frame
features of video and image features have certain differences,
therefore, the transported model should be fine-tuned during
the training process.

In order to establish the temporal information between the
sampled frames in the video, a non-pre-trained 3D convolution
is also used to extract video features, which can not only solve
the spatial information contained in the video features, but
also solve the temporal information in the video features.
Tran et al. [12] used 3D convolution to extract video features
in early video feature extraction. The spatial and temporal
information of features can be mined by using 3D convo-
lution. Although the use of 3D convolution has improved
the quality of video feature extraction, the requirements on
hardware equipment have been improved, therefore, many
researchers still apply 2D convolution to extract video features.
Extracting video features using 2D convolution is to extract
the features of video sampled frames, so the video feature
processing is transformed into the frame feature processing
of video samples. Some researchers gradually train image
feature and text feature processing models on large-scale
image datasets, and then transfer the pre-trained models to
the video frame feature and text feature processing network
by initializing them with the parameters of the pre-trained
models. Contrastive Language-Image Pre-training (CLIP) [8]
is a representative and effective model for image and text fea-
ture processing. Therefore, in our video and text cross-modal
retrieval model, the image encoder and text encoder of CLIP
are applied to the backbone network of video and text cross-
modal retrieval. Although the pre-trained model is gradually
used in cross-modal research, the existing video and text
cross-modal retrieval model based on pre-trained model lacks
consideration of the relationship between video frames. As we
know, the final feature representation of a video is determined
by the features of multiple sampled frames in the video,
which highlights the importance of the relationship between
frames in the video. Although previous studies on spatial
and temporal information of video feature have been carried
out, the research on the relationship between video sampled
frames is still lacking. To make up for this lack, we propose
a video frame classification-aggregation network, which uses
the clustering idea to fully mine the key object features in
video modality. The feature categories extracted from each
frame in the video are aggregated to the key groups of the
whole video. The simulation diagram of the video frame

Fig. 2. The simulation diagram of the video frame classification-aggregation
network.

classification-aggregation network is shown in Fig. 2. In Fig. 2,
the training process of neural network is represented from left
to right. With the training of neural network, important object
features of different sampled frames in the same video become
more prominent, and unimportant object features in each frame
are gradually abandoned or weakened. Secondly, we propose a
video internal frame aggregation loss module to improve the
semantic consistency between the video aggregation feature
and the sampled frame feature in the video.

Our contributions are as follows:
(1) The application of video frame classification-aggregation

network makes important object features contained in dif-
ferent sampled frames in the video more prominent, while
unimportant object features are gradually weakened or aban-
doned. Thus, the problem of alignment difficulty between
video modality and text modality in training network is
solved.

(2) The design of video internal frame aggregation loss
module can reduce the difference of feature distribution
between the finally learned video aggregation features and the
features of different video sampled frames. Through continu-
ous learning of the network, the features of each frame can
better represent the features of the important objects contained
in the video.

(3) Pre-trained model is applied to cross-modal retrieval
and can well learn the semantic space of video modality and
text modality. It greatly reduces the training time of neural
network in semantic space learning and improves the retrieval
performance of the model. We verify the effectiveness of the
model on three datasets MSVD, MSR-VTT and DiDeMo.

II. RELATED WORK

A. Image and Text Cross-Modal Retrieval

The development of image and text cross-modal retrieval
technology has greatly promoted the development of video and
text cross-modal retrieval technology. The difference between
them lies in the video and image feature processing, but the
design of image feature processing network has a great guiding
effect on the design of video feature processing network,
therefore, it is necessary to have a comprehensive under-
standing of image and text cross-modal retrieval technology
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before studying video and text cross-modal retrieval technol-
ogy. In cross-modal retrieval, feature extraction develops from
coarse-grained features to fine-grained features. Fine-grained
features can better represent the potential semantic features of
things. Among them, He et al. [13] proposed a fine-grained
cross-modal retrieval benchmark and method. The benchmark
and method contain three constraints (classification constraint,
central constraint, ranking constraint), which can enhance the
learning of discriminating features and make the features more
compact. Yu et al. [14] extended single-modal retrieval to
multi-modal retrieval by reordering method, realizing a bidi-
rectional coarse-to-fine cross-modal retrieval structure, thus
improving cross-modal retrieval performance. In order to
pay attention to the interaction between image regions and
sentence words, and select the most significant information,
Wang et al. [15] utilized global and local cross-modal inter-
active alignment methods to fully align the global and local
features of both image and text, and used adaptive gating
methods to process irrelevant information. Both coarse-grained
feature and fine-grained feature extraction take a lot of time
to label images, moreover, simple label information cannot
adequately represent the semantics contained in the image.
Therefore, unsupervised cross-modal retrieval has been exten-
sively explored. Peng et al. [16] made a further study on
unsupervised cross-modal retrieval methods. The model uses
the scene graph adaptive method to transfer the knowledge
learned from the source domain to the target domain, so as to
improve the adaptive ability of the target domain. Processing
a large number of high-dimensional image features not only
takes up a lot of storage space, but also takes a lot of
time to do operations. To compensate for this deficiency,
Zhu et al. [1] designed an image retrieval model using deep
hashing. This model uses dual-level Semantic Transfer to learn
hash representation and mines latent semantic information in
tags. Applying hashing learning to image and text feature rep-
resentation greatly improves the retrieval efficiency. In super-
vised cross-modal retrieval, Qian et al. [17] constructed a
dual adversarial graph neural network to learn common rep-
resentations of modal invariance and discrimination. In this
model, a multi-hop neural network with a layer aggregation
mechanism is used to propagate information, so as to obtain
the correlation of labels and the classifier of learning mutual
dependence. Dong et al. [18] emphasized the importance of the
integrity of semantic representation in cross-modal retrieval,
therefore, and used graph convolution network in their model
to establish the relationship between the sample itself and
the neighborhood to learn sample representation. In order to
promote the alignment of abstract semantic features between
different modalities, Dong et al. [19] also proposed a hierarchi-
cal aggregation algorithm based on graph convolution network.
The algorithm generates specific modal features by integrating
object features and global features of other modalities. The
essence of considering the relationship between fine-grained
features of different modalities is to align the features of
fine-grained objects of different modalities. Lee et al. [20]
utilized the stacked cross attention mechanism to establish a
corresponding relationship between image regions and words
in sentences, so as to highlight the semantic alignment between

important objects in images and things described in texts,
thus narrowing the semantic differences between different
modalities. Excessive alignment fine-grained features of image
areas and text may misunderstand the underlying semantics
of the image. Therefore, the relationship between image
fine-grained features becomes more and more important to
the representation of image semantic features. Among them,
Wu et al. [2] used the regional reinforcement network
to explore the relationship between the image fine-grained
regional features, and then aligned the text fine-grained fea-
tures. Hu et al. [21] used a dual attention network to establish
a corresponding relationship between image regions and text
words, and explore the inherent abstract semantic relationship
between image regional features and text features. When
fine-grained features are aligned, it means that different modal
features can be fully aligned. Peng et al. [22] proposed
multi-level adaptive visual-textual alignment method, which
can not only make adaptive alignment and connection between
image and text from global and local perspectives, but also can
align image regions and and their corresponding text words.

The design of image and text cross-modal retrieval model
is a process from coarse-grained features extraction network
to fine-grained features extraction network design. Both the
mutual retrieval between coarse-grained features of different
modalities and the mutual retrieval between fine-grained fea-
tures of different modalities are the alignment of target features
of different modalities.

B. Video and Text Cross-Modal Retrieval

Video and text cross-modal retrieval technology has devel-
oped from non-pre-trained model to pre-trained model. Video
and text cross-modal retrieval technology based on pre-trained
model has achieved a leap in retrieval accuracy, which provides
new ideas for the recent research on video and text cross-
modal retrieval. Previous video and text cross-modal retrieval
models need to be trained on large video datasets, which
is limited by the size of video datasets. Video datasets are
more difficult to process than image datasets because video
contains more information. It takes a lot of time to generate
video corresponding text description in video dataset. The
quality of text description generated directly from video is
not very good. In order to alleviate the limitation of lack of
training data, researchers carried out training on image dataset,
and transferred the trained network model. The transferred
models are trained and fine-tuned on smaller video datasets.
As we know, video and text belong to different modalities,
and retrieval between different modalities should overcome
semantic differences between them. Miech et al. [3] proposed
an embedded hybrid expert model, which can learn from
heterogeneous data sources to deal with the missing video
modalities during pre-training. The model uses image map-
ping data to enhance video subtitle dataset during training.
Yu et al. [4] used a joint sequence fusion model to combine
the feature representations of two paired sequence data into
a 3D tensor. A hierarchical decoder is used to establish the
potential semantic relationship between different levels of two
modalities, and the similarity measurement is carried out.
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The hierarchical measurement mechanism can effectively pro-
mote the similarity matching between different modalities
and remove the irrelevant feature representation from top to
bottom. The top-down similarity measurement method focuses
on different targets at different measurement layers, and each
layer filters out some irrelevant data in the two modalities,
thus achieving accurate measurement. Zhang et al. [5] applied
the idea of hierarchical modeling to the design of cross-modal
retrieval model. In this model, global feature alignment and
local feature alignment of video feature and text feature are
placed at different levels. By establishing global and local
alignment loss at different levels, the consistent expression
of the two modal features is promoted. The early design of
video and text cross-modal retrieval models mainly focus on
aligning video and text features, and then design different
loss functions to reduce the semantic differences between the
two modalities. The semantic gap between different modal
features not only exists in video (image) and text cross-
modal retrieval, but also in video time location. Hu et al. [23]
proposed an end-to-end cross-modal hash coding network.
The network projects text coding and video coding into a
common Hamming space, and calculates their similarity by
hamming distance, so as to realize video location function.
Projecting the hash codes of two different modalities into a
common Hamming space further reduces the semantic dif-
ferences between the two modalities. There is semantic gap
between different modalities and inconsistent semantic distri-
bution between different video frames. To solve this problem,
Qi et al. [24] proposed a binary representation learning frame-
work, and applied a spatial-temporal context and semantic
relations of different frames to solve the semantic inconsis-
tency in cross-modal video retrieval. Therefore, semantic gap
is the key issue of cross-modal retrieval research. With
the continuous optimization of transformer network, trans-
former network is gradually applied in video feature
processing and text feature processing. Among them,
Ging et al. [25] performed a cooperative hierarchical trans-
former network, in which the video feature processing branch
and the text feature processing branch are symmetrical. The
model uses hierarchical information between different modal
features to model interactions between different granular-
ity levels and different modalities. The temporal informa-
tion between video frames has also been further explored.
Dong et al. [26] designed a symmetric network model by
using the method of hybrid semantic space learning. With the
increase of network depth, the model extracts coarse-grained
features and fine-grained features of video and text, and fuses
them in a hybrid semantic space. Compared with other models,
this model uses multi-layer GRU network to extract temporal
information of video modality and text modality.

C. Pre-Trained Modal

Neural networks need to be trained through a large
amount of data to learn effective feature representation. How-
ever, existing video datasets are relatively small, and some
researchers pre-train video encoders on a large number of
image datasets, and then train and fine-tune video encoders

on video datasets. In the video and text cross-modal retrieval,
pre-trained models are mainly divided into two types: one
is a single pre-trained video feature extraction network, and
the other is a multi-modal joint pre-trained feature extraction
network. In the single pre-trained video feature extraction
network, the pre-trained network extracts and stores video fea-
tures. Researchers then design cross-modal network structures
to process the stored video features. Among them, Liu et al. [6]
executed a collaborative expert model to aggregate different
modal features of video to represent the whole video feature.
Gabeur et al. [27] proposed a pre-trained video feature extrac-
tor (expert) to extract different modal features contained in
the video. Different from the collaborative expert model, this
model uses the idea of hierarchical measurement of different
video modal features to fully mine the information contained
in different video modalities. In the above two methods, the
video feature extraction network does not participate in the
training process of the neural network. However, in the multi-
modal joint pre-trained feature extraction network, the visual
feature extraction network and text feature extraction network
are used for joint training. Then, the visual and text feature
jointly pre-trained extraction network is applied to the design
of video and text cross-modal retrieval network structure. Such
as, Radford et al. [8] proposed the Contrastive Language-
image pre-training (CLIP) model, which uses natural language
and matched image contrast learning to generate a pre-trained
model on large-scale datasets. The pre-trained CLIP can be
used to predict whether an image and a text are a pair.
Portillo-quintero et al. [9] also applied CLIP to video retrieval
to learn the public space of image and text, and then transfer-
ring it to the video dataset to learn the public space of video
and text. This model is a preliminary exploration of trans-
ferring the pre-trained model of image and text cross-modal
retrieval to video and text cross-modal retrieval model. We also
use this idea in the model design and continue to make
some progress. As we know, the selection of video frame
plays a decisive role in video feature extraction. Among them,
Lei et al. [10] utilized the method of sparse sampling to
sample video frames, and the sampled frames are processed by
pre-trained BERT. This model compares the features of each
sampled frame in the video with the features of the text, rather
than averaging the features of the sampled video frame. The
model can fully explore the important target features of video
frames. The main difference between the single pre-trained
video feature extraction network and the multi-modal joint
pre-trained feature extraction network is that the multi-modal
joint pre-trained feature extraction network learns the semantic
space of visual and text in advance through pre-training, and
the network further narrows the semantic difference between
video modality and text modality through joint training with
the subsequent cross-modal retrieval network. For the single
pre-trained video feature extraction network, the network does
not participate in the subsequent cross-modal retrieval network
training, and there is still a large semantic gap between
the pre-stored video features and the extracted text features.
Pre-trained models have become a trend for video feature
processing, which can not only improve the retrieval accuracy
but also reduce the training time on video datasets.
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Fig. 3. The overall architecture diagrams for video and text cross-modal retrieval.

Fig. 4. The architecture diagram of the video frame classification-aggregation
network.

III. OUR METHOD

A. Video Feature Processing Network Branch

The branch of video feature processing network is mainly
composed of three parts, which are video frame classification-
aggregation network, video frame feature coding network and
video internal frame aggregation loss module. The overall
architecture of video and text cross-modal retrieval is shown
in Fig. 3. The model’s data loader reads the video feature
V = {

vi ∈ Rl×c×n×n
}b

i=1 in batches. Where, b is the number
of videos in each batch, l represents the number of sampled
frames in each video, c represents the number of channels in
each frame, and n represents the size of frame.

1) Video Frame Classification-Aggregation Network: The
architecture diagram of the video frame classification-
aggregation network is shown in Fig. 4. The video frame
classification-aggregation network uses the pre-trained
E f f i f icient Net network E (V) [28], and the batch video
feature V is input into the E f f i f icient Net network E (V)
to obtain the classification K ∈ Rb×l×h of each frame in the

video. Where h is the number of categories. We screened out
the category K f rame_max ∈ Rb×l×m with high probability of
occurrence in each frame (m is the number of categories with
high probability of occurrence in each frame). In addition,
category Kv ideo_max ∈ Rb×m with high probability of
occurrence of each video is screened. By calculating the
categories of each frame and the significant categories
contained in the whole video, we can figure out the lossclass.
The pseudocode for solving lossclass is shown in Algorithm 1.

Algorithm 1 Class Loss Calculation

input : Batch video features: V ∈ Rb×l×c×n×n

output: lossclass

1 Pre-trained classification network: K ∈ Rb×l×h ;
2 m class index of maximum probability per frame:

K f rame_max ∈ Rb×l×m ← top_m(K ∈ Rb×l×h );
3 m class index of maximum probability per video:

K f lat ten ∈ Rb×l·m ← Flatten
(
K ∈ Rb×l×m

)
Kv ideo_max ∈ Rb×m ← top_m(K f lat ten ∈ Rb×l·m);

4 Loss calculation:
5 for i in range(b) do
6 for j in range(l) do
7 a = set

(
K f rame_max [i, j, . . .] ∈ R1×m

)
;

8 d = set
(
Kv ideo_max [i, . . .] ∈ R1×m

)
;

9 lossclass+ =
[
1− inter sec tion(a,d)

m

]
;

10 lossclass = lossclass/ (b × l) .

2) Video Frame Feature Coding Network: The pre-trained
CLIP(ViT-B/32) [29] image feature encoder is transferred to
the video frame feature encoder. Each video frame is encoded
using a pre-trained CLIP image encoder. The pre-trained
frame encoder first uses ViT [8] to segment each frame
into non-overlapping blocks, and then linearly maps each
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block feature to a 1D tensor. Each frame can be divided
into k non-overlapping blocks P = {p1, p2, . . . , pk−1, pk}.
The tensors of k different blocks of each frame are input
into the Transformer model, and the feature representation
o ∈ R1×e of the frame is finally obtained. Where, e represents
the dimension embedded in each frame. The feature of each
video sampled l frame is represented as {o1, o2, . . . , ol−1, ol}.
The video feature represented by batch is F ∈ Rb×l×e.
We adopt the average pooling strategy to pool l frames
f = mean_pooling({o1, o2, . . . , ol−1, ol}) ∈ R1×e of each
video, and finally generate the video feature representation
M = {fi }bi=1 ∈ Rb×e.

3) Video Internal Frame Aggregation Loss Module: Batch
feature V Generates feature F ∈ Rb×l×e through video coding
backbone network. Average pooling of F produces M ∈ Rb×e.
Feature F and feature M are used to calculate the video
internal frame aggregation loss, and the pseudocode is shown
in Algorithm 2.

Algorithm 2 Video Internal Frame Aggregation Loss
Calculation

input : F ∈ Rb×l×e and M ∈ Rb×e

output: lossinternal

1 Loss calculation:
2 for i in range(b) do
3 for j in range(l) do
4 z = F [i, j, . . .] ∈ R1×e;
5 h =M [i, . . .] ∈ R1×e;
6 lossinternal+ = cross_entropy(z, h);

7 lossinternal = lossinternal/ (b× l) .

B. Text Feature Processing Network Branch

Each text feature can be represented as t = {wi }ui=1.
Where u represents the number of words in a text. The
model batch reads the corresponding text data T = {ti }bi=1 ∈
Rb×u of the video. A text encoder g (T) is pre-trained with
CLIP to generate text feature representation C = g (T) =
{ci }bi=1 ∈ Rb×e.

C. Similarity Measure

We calculate the cosine similarity between video and text.
The measurement formula is as follows:

sim
(
ci , f j

) = ci f j

‖ci‖‖f j‖ (1)

and the video retrieval text loss and text retrieval video loss
are obtained by measuring the similarity between video and
text:

lossv→t = −1

b

b∑
i=1

log
exp (sim (ci , fi ))∑b

j=1 exp
(
sim

(
c j , fi

)) (2)

losst→v = −1

b

b∑
i=1

log
exp (sim (ci , fi ))∑b

j=1 exp
(
sim

(
ci , f j

)) (3)

The retrieval loss is defined as:
lossretrieval = lossv→t + losst→v (4)

and the total loss of video and text cross-modal retrieval is as
follows:

loss = αlossretrieval + β (lossclass + lossinternal) (5)

where, α and β are hyper parameters.

IV. EXPERIMENTS

A. Datasets

MSVD dataset [30] contains a total of 1970 videos, each
lasting about 62 seconds, and each video has 40 related
English descriptions. The dataset is divided into 1200 videos
in the training set, 100 videos in the verification set and
670 videos in the test set.

MSR-VTT dataset [31] contains a total of 10,000 videos
and 200,000 concepts, each lasting approximately 20 seconds.
In our experiments, the division of dataset is the same as
HowTo100M [7]. The experiments use 7,000 videos for train-
ing and 1,000 videos for testing, and the division of test set
is the same as that of JSFusion [4].

DiDeMo dataset [32] contains a total of 10,000 videos and
40,000 sentences. According to [4], [9], we verify video to
sentence retrieval, and we associate multiple text descriptions
of the video into a paragraph request.

B. Evaluation Indicator

We use the most commonly used metrics for cross-modal
retrieval, namely Recall at Rank n (R@n), Median Rank
(MdR) and Mean Rank (MnR). R@n (the bigger the better)
represents the percentage of matches in the first n items of the
retrieval results. MdR(a smaller value is better) represents the
median number of correct search results ranked in the search
results. MnR (the smaller the better) represents the average of
the correct search result rankings in the search results.

C. Baseline Methods

MUL-cues [33] uses multiple modal cues to learn joint
embedded representations. A fusion strategy is proposed to
combine embedding learning with multiple modal features.

CE [6] uses the collaborative expert method to embed
multiple modal features contained in the video and finally
obtains the video feature representation. The method uses
pre-trained extractors (experts) to extract features of multiple
modalities from the raw video and then fuses the features of
multiple modalities.

Supact-set [34] proposes a noise contrast learning method
to improve the similarity of related video and text features.
The method uses a generation model to gather related video
samples together, and the title of each video sample needs to
be reconstructed by a weighted combination method.

TeachText [35] proposes a generalized distillation method
using information from multiple text encoders as a comple-
mentary cue to provide an enhanced supervisory signal for
the model.

Authorized licensed use limited to: HEFEI UNIVERSITY OF TECHNOLOGY. Downloaded on September 30,2024 at 13:10:25 UTC from IEEE Xplore.  Restrictions apply. 



JIN et al.: VIDEO SAMPLED FRAME CATEGORY AGGREGATION AND CONSISTENT REPRESENTATION 915

Frozen [36] is an end-to-end training model, which simulta-
neously uses large-scale image and video subtitle data to train
the network. The model is an extension of the recent ViT
model and can be trained directly on image and text datasets.
On video and text datasets, the static state of video is treated
as a static image for training.

CLIP [9] uses a contrastive language image pre-training
model to construct a visual and textual semantic space, and
then directly projects the video and text into the learned visual
and textual semantic space for learning, which alleviates the
difficulty of video annotation.

HowTo100M [7] uses video captions to generate text rep-
resentations directly, without manual annotation of the video
dataset. Finally, the video and the generated text data are
learned to embed representations.

Less-more [10] proposes an end-to-end training model for
sparse sampling of video clips. The method divides the whole
video into several short video clips, and each video clip is
encoded by a video encoder. The model uses sparse sampling
method to greatly reduce the size of the model’s training data.

CMHM [5] utilizes the hierarchical sequence embedding
model to embed sequence data of different modalities into
the hierarchical semantic space. The model is trained on
large-scale video and paragraph retrieval datasets and applied
to downstream tasks.

W2VV [37] uses a deep neural network architecture that
can predict visual feature representations from text. In this
model, text embedded features are converted into depth visual
features by multi-layer perceptron.

VSE++ [38] uses data enhancement and fine-tuning meth-
ods to innovate on the basis of common loss functions of
existing multi-modality and achieve better performance.

TCE [39] designs a tree-enhanced query encoder and a
time-sensitive video encoder. The two encoders can not only
extract the spatial information of video features, but also mine
the temporal information of video features.

HGR [40] builds a hierarchical graph inference model,
which can match video and text features from global features
and local features, and deduce the relationship between visual
features and text features from different levels.

DE [26] uses the method of hybrid space learning
and adopts symmetrical model design, thus extracting
coarse-grained features and fine-grained features of video and
text. The model uses LSTM network to extract temporal
information of video features.

FSE [5] embeds video and text features to different levels,
and embeds sequence data of different modalities into the
hierarchical semantic space, so as to mine the implicit and
explicit information corresponding to the two modalities.

VSE [33] learns the method of joint representation to
establish the semantic relationship between video and text
features, and uses the multi-modal cues in video to mine the
visual semantic information contained in video.

D. Comparative Experiments

Comparative experiments are performed on three commonly
used benchmark datasets MSVD, MSR-VTT and DiDeMo,

TABLE I

COMPARATIVE RESULTS ON MSVD DATASET

TABLE II

COMPARATIVE RESULTS ON MSR-VTT DATASET

TABLE III

COMPARATIVE RESULTS ON DIDEMO DATASET

and our proposed approach has achieved good results. The
experimental results on the MSVD dataset are shown in
TABLE I, from which it can be seen that our method is
superior to the comparative research methods. The MSR-VTT
dataset is the most commonly used dataset for video and
text cross-modal retrieval performance evaluation, and the
comparative experimental results on this dataset are shown in
TABLE II. TABLE III shows a comparative experiments on
the DiDeMo dataset. Some of the paper’s methods could not
be replicated, resulting in some data not available.

E. Implementation Details

The model implements the Pytorch, and the server is
configured with NVIDIA Titan RTX24GB. The program is
trained on four graphics cards in a distributed manner with
the learning rate and the batch size being respectively set to
3E-5 and 128. The decay rate of learning rate is 0.8. α is set
to 0.7 and β is set to 0.3. The number of each video sampled
frame is 12. The maximum number of words per sentence is
set to 32. The batch size of data during validation is set to 20.

V. ABLATION EXPERIMENTS

In order to verify the effectiveness of our proposed model,
we study the ablation of video frame classification-aggregation
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TABLE IV

RESULTS ON MSVD DATASET UNDER DIFFERENT CONDITIONS

TABLE V

THE RESULTS UNDER DIFFERENT VALUE OF m

network and video internal frame aggregation loss module.
Firstly, the video encoder and text encoder of pre-trained CLIP
are used as the basic models to verify the performance of
the video and text cross-modal retrieval model. This base
model is denoted as “Base”. Then we add the video frame
classification-aggregation network and denote it as “Base+C”.
Finally, the video internal frame aggregation loss module
is added which is denoted as “Base+C+I”. The results on
MSVD dataset are reported in TABLE IV.

It can be observed from TABLE IV that, each part influences
the video and text cross-modal retrieval. In order to verify the
influence of video frame classification-aggregation network on
the overall performance of the model, we conducted ablation
experiments on the number of categories m with high probabil-
ity of occurrence in each sampled frame. The results are shown
in TABLE V. It can be seen from TABLE V that when the
quantity of m is 10, the performance of this model reaches the
best. When m is small, it indicates that the classes of important
objects in each video sampled frame are reduced, which leads
to the reduction of important object features contained in the
whole video feature. When m is large, the performance will
also decline, which indicates that excessive object features in
the video will lead to information redundancy, but adversely
affect the retrieval performance. This redundant information is
equivalent to noise. Because the number of important objects
contained in the text describing the video is limited, if the
number of important objects contained in the video feature
extraction is much larger than that contained in the text, it may
cause the existence of information redundancy in the video
feature.

In the video internal frame aggregation loss module, we pre-
liminarily explore the temporal information of different sam-
pled frames in the video. We input feature F into LSTM
network to produce feature F′ with temporal information, and
by average pooling F′ to produce feature M. TABLE VI
shows the results after processing the temporal features of
the sampled frames. Unfortunately, it didn’t have the effect
as expected. The reason is that the LSTM network introduced
a large number of parameters when it is added to establish
temporal information between sampled frames. If the training

TABLE VI

EVALUATION ON THE TEMPORAL INFORMATION

Fig. 5. Results under different number of sampled frames from each video.

time is not enough, these parameters can not be optimized.
If the training time of cross-modal retrieval network increases,
the pre-trained model will be over-fitted, which will gradually
reduce the performance. In the future we will continue to
explore how to mine temporal information in video sampled
frames.

We also evaluate the influence of the number of sampled
frames on the retrieval accuracy, and report the results on
MSVD dataset in Fig. 5. It can be found that, with the
increase of the number of sampled frames, the increase rate
of the accuracy gradually decreases. As the number of video
sampled frames increases, the whole video important objects
form a collection, and the number of elements in the collection
is gradually fixed. Important object features in this object
collection should be more prominent, therefore, mining the
important classification features contained in each frame is of
great help to cross-modal retrieval. Since those unimportant
features may interfere with the retrieval, it is necessary for us
to use video frame classification-aggregation network.

It can be observed from Fig. 5 that when the number of
sampled frames is 10, the model can almost achieve the opti-
mal result. In the actual experiments, it can be set appropriately
according to the hardware device. The parameters of the model
increase with the increase of the number of sampled frames,
which may increase the requirements on computer hardware.
In our experiments, 12 frames are sampled.

There are two group losses during model training. The first
group is the video and text retrieval lossretrieval, and the second
group is the sum of video frame classification-aggregation
lossclass and video internal frame aggregation lossinternal, which
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Fig. 6. Results under different α and β values.

Fig. 7. Changes in lossretrieval and loss2 values during training.

is expressed as loss2 = lossclass + lossinternal. We adopt two
hyperparameters (α, β) to combine the two group losses, and
analyze the influence of these two hyperparameters on the
overall performance of the model on MSVD dataset. The sum
of α and β equals 1, and the results are shown in Fig. 6.
We can see from Fig. 6 that, the model achieves the optimal
results when α=0.7 and β=0.3. Among them, the change of
loss value during training is shown in Fig. 7.

Fig. 8. Recall rate (R@1) of text retrieval video changes with learning rate.

The learning rate is an important parameter in neural
network learning, which influences the convergence rate of the
network training. We have done a large number of experiments
on MSVD dataset, and find that the optimal learning rate is
3E-5. The experimental results are shown in Fig. 8.

VI. CONCLUSION

Sparse sampling of video frames is used to extract video fea-
tures, which enables the image encoder to encode video frame
features successfully. We apply video frame sparse sampling
technique to video feature extraction so as to further explore
the relationship between the sampled frames. By designing the
video frame classification-aggregation network, the features of
important objects contained in the video can be highlighted.
This enables the visual focus the whole video on important
objects, thus facilitating the alignment of video modal features
and text modal features on the important object features,
and improving the similarity between text features and video
features. The construction of video internal frame loss module
further reduces the difference between features of different
frames after the video frame is encoded. The proposed model
not only reduces the semantic difference between different
modalities to make the distribution of different modal features
tend to be consistent through network training, but also reduces
the difference between video modal frames to make the video
internal frame features should tend to be consistent. In the
future, we need to further study the influence of sampled
video frames on retrieval performance. Sparse sampling is also
adopted in video frame sampling, since there is a temporal
problem between different sampling frames. The number of
video sampling frames should also be different for different
retrieval tasks, since excessive number may lead to information
redundancy of video features. How to determine the sample
number and sampling rate for a specific retrieval task needs
further research in our future work.
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