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Abstract

Vast and diverse knowledge about the rela-
tions in the world help humans comprehend
and argue about their environment. Equipping
machines with this knowledge is challenging
yet essential for general reasoning capabilities.
Here, we propose to apply unsupervised rela-
tion extraction (URE), aiming to induce gen-
eral relations between concepts from natural
language. Previous work in URE has predom-
inantly focused on relations between named
entities in the encyclopedic domain. The more
general, and more challenging, domain of com-
mon sense relation learning has not yet been
addressed, partially due to a lack of datasets.
We present a framework for common sense re-
lation extraction from free-text, associated with
two benchmark datasets. We present initial ex-
periments using three state-of-the-art models
developed for encyclopedic relation induction.
Our results verify the utility of our benchmarks
for common sense relation extraction, and sug-
gest ample scope for future work on this impor-
tant, yet challenging, task.'

1 Introduction

Humans possess a vast repository of basic facts
and relations, which they use to perceive, navi-
gate, reason about their environment — a resource
called common sense knowledge. For instance,
humans know that ‘eating is the FUNCTION of
forks’, or ‘being scared is the EMOTIONAL EVAL-
UATION of seeing a ghost’.> Equipping machines
with similar resources has attracted substantial at-
tention in recent years (Davis and Marcus, 2015),
for instance by incorporating existing resources
(like ConceptNet; Liu and Singh (2004)) into
models to solve downstream tasks like question
answering (Lin et al., 2019); or by leveraging large

'Code and data will be made publicly available upon ac-
ceptance under a CC BY SA 4.0 license.

>We denote concepts in italics, and RELATIONS in small
caps throughout the paper.

“I find the
sound of bagpipes

annoying”

“Bagpipe players
often wear Kilts”

“The bagpipe is a
usical instrument’,

Figure 1: Illustration of WAREL, which consists of asso-
ciations between cue words (bagpipe) and associations
(kilt, red, ...) together with association explanations
(speech bubbles) and discrete relation type labels (arrow
labels).

pre-trained language models as common sense re-
sources (Davison et al., 2019; Petroni et al., 2019;
Shwartz et al., 2020). Prior work predominantly
focussed on the fact that concepts are related, but
less so on the specific relations between concepts.
However, scalable knowledge of common sense
relations is likely to benefit common sense reason-
ing applications. This paper introduces the task of
common sense relation extraction.

Given the broad nature of common sense knowl-
edge, manual collection of exhaustive concept re-
lation data bases is infeasible. Instead, we fol-
low recent work in the encyclopedic domain (Yao
et al., 2011; Marcheggiani and Titov, 2016; Tran
et al., 2020), and infer common sense relations
between pairs of concept from concept mentions
in text. Intuitively, given a corpus of sentences
which mention pairs of concepts, we want to learn
a small number of underlying common sense rela-
tions which explain the associations between the
two concepts. Examples of common relations in-
clude USED-FOR, MADE-OF, or LOCATION, and
relation inventories used in this work are discussed
further in § 3. In the encyclopedic domain, rele-



vant corpora have been constructed using templates
and heuristic supervision (Yao et al., 2011), how-
ever, the quality of the resulting data sets has been
shown to be low (Gao et al., 2021). This problem is
exacerbated in the common sense scenario where
relations are broader, and while encyclopedic re-
lations typically concern named entities, common
sense relations span concepts, actions, properties
and more. The core contribution of this paper are
two sizeable, English data sets with complementary
strengths to train and test common sense relation
extraction models.

First, CNREL (Table 1, top) is based on
ConceptNet (Speer et al., 2017), where we as-
sociate relation-labelled concept pairs with natural
language sentences from the OMCS data set (Singh
et al., 2002) using heuristic supervision. This data
set is large, yet potentially noisy as sentences are
not guaranteed to express the intended relation. In
addition OMCS sentences are often templated.

Second, we collected a novel data set, WAREL
(Table 1, bottom), which encodes relational human
common sense knowledge through word associa-
tions (Deyne et al., 2019; Liu et al., 2021a). In a
large crowd-sourcing study, we (a) collected hu-
man concept associations presenting participants
with a cue word (dog) and collecting the words that
spontaneously came to their mind (bark, pet, ...)
(Fig. 1, circles); (b) asked the same participants to
explain their associations in a short sentence (Fig. 1,
speech bubbles); and (c) labelled a subset of expla-
nations with a relation type from a pre-defined set
(Fig 1, arrow labels). The resulting data set is of
high quality and diversity, albeit smaller in size
tnan CNREL.

Using our data sets, we present a series of initial
experiments. We test three models proposed in the
recent unsupervised relation extraction (URE) lit-
erature. Results show the utility of our data sets,
and that common sense relation extraction is a chal-
lenging task, constituting fruitful ground for future
research on common sense knowledge induction.
In sum, our contributions are

¢ The new task of common-sense relation ex-
traction from natural language

* Two large-scale data sets, with different size
and quality trade-offs, to train and evaluate
common sense relation extraction models

* Experiments with three URE models adapted
from the encyclopedic relation extraction do-

Sentence [ RELATION ]

a bottle is used to hold a liquid [USEDFOR]

engine is part of car [ PARTOF]

you are likely to find bread in a store [ATLOCATION]
bicycle racing is a sport [USEDFOR]

army is used for military purposes [HASCONTEXT]
wallet is about the same size as a pocket [LOCATION]

CNREL

codes are needed to decipher something. [FUNCTION]
our military has a large army branch. [PARTOF]
summer is always hot. [INHERENT-PROPERTY]

the leaves started to fall in autumn [TIME]

WAREL

Table 1: Example sentences encoding relation types,
from CNREL (top) and WAREL (bottom). The concepts
are highlighted in blue. The bottom three CNREL ex-
amples illustrate the noise in the data set.

main, showing that broad-stroke common
sense relations are learnt, and verifying the
challenge of the task.

2 Background

We describe the resources and paradigms underly-
ing our own data sets, and previous work on URE.

2.1 ConceptNet and OMCS

The Open Mind Common Sense (OMCS)? (Singh
et al., 2002) initiative was a decade-long effort to
crowd-source natural sentences expressing com-
mon sense knowledge. A large portion consists of
templated sentences, completed by crowd workers
(‘a fork is USED FOR ___’; see more examples in
Table 1), later augmented with free-form crowd-
sourced relation descriptions. ConceptNet
(Speer et al., 2017) is one of the largest common
sense KGs capturing general-domain knowledge,
consisting of links between pairs of associated con-
cept, labeled with one or more discrete relation
types from an ‘organically grown’ relation ontol-
ogy comprising 30 relation types (Liu and Singh,
2004).

ConceptNet was partially extracted from sen-
tences in OMCS, leading to a natural alignment of
concept pairs in ConceptNet with OMCS, and
projection of relation labels to OMCS sentences.

2.2 Word Associations
Word associations (Deese, 1966; Kiss et al., 1973)

are a prevalent paradigm in cognitive science to
probe the human mental lexicon (Nelson et al.,

Shttps://s3.amazonaws.com/conceptnet/
downloads/2018/omcs-sentences-free.txt
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2004; Fitzpatrick, 2006). They reflect spontaneous
human associations between concepts. In a typical
study, a participant is presented with a cue word
(trombone) and asked to spontaneously produce the
words that come to mine in response (music, ...).
Through large-scale crowd-sourcing studies cover-
ing over 12K cues and thousands of participants, a
large word associations graph (SWOW; Deyne et al.
(2019)) has been constructed, as a resource of hu-
man concept association strength. SWOW has re-
cently been shown to be an effective knowledge
resource for common sense reasoning models (Liu
et al., 2021a). The nature of the underlying rela-
tions, however, is an open research problem.

2.3 Unsupervised Relation Extraction

Unsupervised relations extraction (URE) has been
tackled predominantly in the context of factual re-
lational knowledge about named entities. Typical
models are presented with corpora of contexts men-
tioning pairs of entities and tasked with assigning
inputs into clusters resembling the relations con-
necting concept pairs. Existing approaches can be
grouped into generative and discriminative. Yao
et al. (2011) extend the standard LDA model to
URE by considering relations as topics and docu-
ments as co-occurred mentions along with the de-
pendency features. In discriminative line, Marcheg-
giani and Titov (2016) propose to learn relation
clusters using variational auto-encoder (VAE): the
encoder is a relation classifier aiming to predict
a relation for a given input, and the decoder re-
constructs one entity given the predicted relation
and the other entity. Follow-up work focused on
stabilizing training (Simon et al., 2019), leveraged
self-supervision via boostrapping (Hu et al., 2020),
or developed better feature sets (Tran et al., 2020).
The discriminative is advantageous as it allows
to incorporate diverse relational representations,
which is important in common sense domain. In
this paper, we apply three recent URE models to
common sense RE.

3 Common Sense Relation Extraction

3.1 Task Formulation

Our goal is to induce latent common sense relations
between pairs of concepts from natural language
text. As input, we assume a large corpus of sen-
tences s which mention two concepts (c1, c2) of in-
terest D = {(c1, c2,5)} (see examples in speech
bubbles in Fig 1 and Table 1). The task is to cluster

these sentences into groups reflective of a ground-
truth common sense relation (e.g., USED-FOR).

For unsupervised RE, we only require a large set
of contexts, which are predictive of the relations of
interest (rather than accidental co-mentions). For
evaluation, we additionally require a smaller cor-
pus, where sentences are labeled with the true rela-
tions. We present two such data sets below.

3.2 CNREL

We use distant supervision to derive a large-scale
corpus of common sense relations holding between
concept pairs from ConceptNet and OMCS.
Specifically, following previous work on RE from
Wikipedia (Lin and Pantel, 2001; Yao et al., 2011;
Marcheggiani and Titov, 2016), we align a sen-
tence s in OMCS with a relational triple (cy, 1,
¢9) in ConceptNet (version 5.5;* Speer et al.
(2017)) if both ¢; and ¢y are mentioned in s (ex-
act string match based on the lemma); and label
the sentence s with relation type r. Many aligned
sentences will not be predictive of the relation (see
Table 1). We enhance the quality of the data by
filtering out triples using a list of criteria adapted
prior work (Yao et al., 2012), with the intuition
that in relation-relevant contexts, the two concepts
should be mentioned close to one another and con-
nected with semantically meaningful dependency
path.

Relation inventory The training set of CNREL
covers all 30 ConceptNet relations, 6 (e.g, ISA,
ATLOCATION, USEDFOR). For comparability with
the WAREL data (§ 3.3), we include the 17 most
common relations in the test and dev set.” We
sampled up to 1K instances for each of the 17 most
common relations, and split the resulting set into
dev (20%) and test set (80%).

Summary Our final data set consists of 83K train,
3K dev and 11K test instances (details in Table 4

*ConceptNet and OMCS are open source, licensed un-
der CC BY SA 4.0.

>We retain triples whose ConceptNet confidence score
is > 1; filter out sentences of length > 30 words, sentences
where the two concepts are < 10 words apart or the depen-
dency path connecting the words is of length < 10. Finally,
the dependency path (from benepar model in spaCy 3.0.6)
must not contain the labels ‘parataxis’, ‘pcomp’, or ‘punct’.

®For detailed definitions and examples see https:
//github.com/commonsense/conceptnet5/
wiki/Relations

"The full set (and distribution) of 30 ConceptNet rela-
tions is in Fig. 6 (Appendix), and the 17 test relations and their
distribution in Appendix Fig. 7.
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Experiment 1

Cue: “bagpipe”
\
R1: “instrument” —» The bagpipe is a very nice instrument » Superordinate
R2: “wood” —» The bagpipe is made of wood » Made-of
R3: “kilt” # Men playing bagpipes often wear kilts » Thematic

e

Word Association | Association Explanation

Experiment 2

Relation Labeling

Figure 2: Overview over the data collection paradigm for WAREL.

in the Appendix). The heuristic alignment of CN-
REL allowed us to construct sizeable labelled dev
and test sets. However, the relation labels remain
noisy even after aggressive filtering. For instance,
the example of wallet and pocket in Table 1 en-
codes the SIZE between the two concepts, instead
of the intended LOCATION relation. Furthermore,
sentences tend to be of a templated nature, calling
into question the extensibility of models learnt on
CNREL to other domains (e.g., corpora of news or
web text). We address this question in our exper-
iments (§ 5.4), and we propose a second data set
which is of higher quality and diversity next.

3.3 WAREL

We propose a new framework to collect common
sense relations between pairs of concepts (words)
by crowd-sourcing explicit explanations of the re-
lations. We adopt the word association paradigm
(§ 2.2). Previous work (Liu et al., 2021a) has shown
that large-scale word association network (WAN)
contain common sense knowledge that can benefit
common sense reasoning models for NLP. How-
ever, WANSs typically provide responses associated
with a cue word, while the underlying reasons or
relations between cue-association pairs remain un-
known. This lack of explainability limits its appli-
cation to relation reasoning tasks. Our new data set
can help to understand why humans make certain
associations, and can serve as an explicit knowl-
edge resource for reasoning models.

We collect the WAREL dataset by crowdsourc-
ing via Amazon Mechanical Turk using a two-stage
framework (Fig. 2). We first introduce our relation
inventory, before describing the paradigm on a high
level. Our study was approved by the university
ethics board, and workers were paid above mini-
mum wage. Detailed information is provided in
Appendix A.

Relation Inventory The relation inventory un-
derlying human word associations has been ad-
dressed on a theoretical or small-scale experimental
level (Wu and Barsalou, 2009; McRae et al., 2012),
and we construct a relation type inventory based
on these works. We do not adopt ConceptNet
relations, because (1) they resulted from the ag-
gregation of several sources, baring a theoretical
justification; (2) are dominated by overly broad
types (HASCONTEXT); (3) contain several very
similar types (CAUSES and HASSUBEVENT) that
are hard to distinguish reliably in a crowd sourcing
setup. Departing from the set of (Wu and Barsalou,
2009), we ran three pilot studies and converged on
an inventory of 16 relations. The full set, including
examples is presented in Fig. 8 and Table 7 in the
Appendix.

Experiment 1 In the first experiment, we collect
(a) word associations and (b) explanations from
the same annotator, ensuring that the explanation
indeed explains the intended, underlying associa-
tion. Given a cue word, a worker first generates
up to three spontaneous associations (Fig 2, left),
and immediately after provides natural language
explanations to describe why they linked the cue
and each association (Fig 2, center). The resulting
explanations will serve as our text corpus of sen-
tences expressing relations between concept pairs.
The cue words in our experiment (N=1100) were
sampled from a large-scale word association KG
(swow; §2.2), ensuring a balanced distribution
over the POS tags N, V, ADJ and ADV; as well
as abstract vs concrete concepts. A single batch
consisted of 5 randomly sampled cues, for which
the worker provided associations and explanations.
Each batch was labelled by 10 different workers.
Word associations and underlying reasoning are
subjective, hence standard quality assessment via
annotator agreement does not apply. Instead, we



ensure high data quality by filtering responses wrt.
a number of criteria including explanation length
and diversity (cf., Appendix C.1 for details). We re-
tained the annotations of 258 workers (out of 326).
The final data set comprises 15K cue-association
pairs along with 19K explanations.

Experiment 2 In a second experiment, we col-
lected explicit relation labels for a subset of the
annotations obtained in Experiment 1, as a devel-
opment and test set for common sense relation ex-
traction models (Fig 2, right). Given tuples of cue,
association and explanation (c;, c2, ) a worker
will choose the most appropriate relation type from
the relation inventory explained above.

We sampled 757 instances from the data from
Experiment 1 for labeling, excluding template-like
explanations (e.g., “A is a B”) to create a chal-
lenging test set and avoid the prevalence of tem-
plate sentences characteristic of OMCS. The data
includes cue POS-tags N, V and ADJ, as ADV
associations proved challenging to annotate. We
ensure high-quality labels through (a) detailed in-
structions; (b) a training phase; (c) careful selection
of 45 reliable crowd workers who achieved accu-
racy > 0.5 in training; and (d) continuing feedback
to annotators throughout annotation.

Each (c1, c2, s)-tuple was labeled by 5 workers.
The ground truth was derived through majority vot-
ing, if the class was chosen by at least 3/5 workers.
Otherwise, a label was chosen by one of the paper
authors. We discard 53 instances for which none of
the two workers agreed.® The final data set consists
of 699 labeled instances, split into 50/50 test/dev.

Summary Our final dataset consists of 19K train,
350 dev, and 349 test instances. Unlike CNREL,
this dataset conveys explicit relations between con-
cepts , rather than accidental co-occurrences, and
is of higher linguistic diversity. Furthermore, the
WAREL dev and test set labels were manually veri-
fied by humans. Examples are provided in Table 1
(bottom). OMCS is the result of a decade-long
collection effort, whereas WAREL was efficient to
obtain via crowd-sourcing, and hence can be effi-
ciently scaled up, or extended to other languages.

4 Relation Extraction Framework

In the remainder of the paper, we apply a series
of recent models from the URE literature to the

8See Table 5 in Appendix C.2 for examples with varying
levels of annotator agreement.

common sense domain, using our proposed data
sets. We frame the task as open-domain relation
discovery where no predefined relationships. Given
a sentence s mentioning a pair of concepts ¢; and
c2, a URE model learns (1) to map the sentence
to a latent relation representation (“‘encoder”); and
(2) arelation classifier to assign the representation
to a discrete relation cluster; (3) a “link predic-
tor” which reconstructs the relational triple as an
unsupervised training objective. We evaluate the
extent to which induce clusters reflect the underly-
ing classes in the data.

Encoder and Relation Classifier For a given
triple (c1, c2, $), the relation classifier predicts the
relational distribution of a relation latent represen-
tation encoded by an encoder:

z =w'gg(ct,co,8) +b
exp(zr +b)
> exp (z +b)’

p(rlz) =

where gy is an encoder that maps (cy,ca,s) to
a high-dimensional representation; and w' &
R4 Kis the parameters of relation classifier, d de-
notes the dimension of the latent representation,
K is the number of clusters (a pre-defined model
parameter), and z, the r element of z.

Link Predictor A good latent relation represen-
tation 2z should capture relevant contextual informa-
tion and be capable of predicting missing context.
Accordingly, the link predictor calculates the prob-
ability of predicting a missing concept given the
predicted latent representation and one known con-
cept (e.g., c2):

p(er | ea, ) ox exp(¥(er,r, c2)) €))

where ¢ is an energy function. The model for
p(ea | c1,7) is analogous. Following previous
work (Marcheggiani and Titov, 2016; Simon et al.,
2019), we use the combination of RESCAL and
selectional preferences as the energy function:

T T T
1/} (C]_, r, 02) == uclATUCQ + uclBT + UCQCT

RESCAL Selectional Preferences

where u,, is the concept embedding of ¢; learnt
via the model, A, B and C are model parameters,
optimized to reconstruct the missing concept.



4.1 Learning

The URE model jointly learns the relation clas-
sifier and link predictor by maximizing the joint
probability of relation classifier and link predictor,

ZP(T | z)logp (c1 | e2,m)logp(ca | cr,r).
reR

Unfortunately, p(c; | c—;, r) in Eq (1) requires iter-
ating over all potential concepts in the vocabulary,
a very large set in the common sense domain. In-
stead of a multi-class (softmax) classifier, which
would be infeasible, we train a binary (sigmoid)
classifier to distinguish a positive triple (¢;, 7, c_;)
from a set of sampled negative triples. Correspond-
ingly, the link predictor can be approximated as
follows:

Lip= E
(e1,e2,8)~x
regg(s)

— z”: C/IEg [loga (—¢ (cl, T, c’))]

[—2logo (Y (c1,7,¢2))

_ i C/IES logo (—¢ (¢, 7,¢2))]

where o is the sigmoid function, ¢'~& denotes sam-
ple negative concepts from the vocabulary and n
is the number of negative samples. Following (Si-
mon et al., 2019), we add two extra regularizers
to stabilize model predictions by encouraging to
predict a skewed relational distribution (Lg) per
instance and uniform distribution over all instances
per minibatch (Lp),

£S = _E(CI,CQ7S)NXp(T|S) lng(T"S)
Lp =E, g, s) (q(r)logq(r)),

where ¢(r) = Y2 | % is the mean predicted

relation within a minibatch of size B, leading to
the final loss,

L=Lip+als+ BLp, 2

with a and (8 being hyper-parameters to control the
strength of each regularizer.

Unsupervised Training In unsupervised train-
ing, the model is trained via Eqn (2). The labelled
data is only used for model selection.

Supervised Training As our relation inventory
is a set of closed relation types with limited num-
bers and is shared between dev and test, making
it feasible to train a relation classifier using dev
and compare the results with unsupervised training.
We also include a supervised variant of the model,
where we use a small amount of labelled data to
train the relation classifier, and discard the link-
predictor component. In this case, the loss is the
cross-entropy between the gold and the predicted
relation distribution:

ﬁCE = _E(cl,cg,s)wxyr log p(?“|$),
where v, is the true relation label.

5 Experiments

We instantiate the above framework with three en-
coders (explained below), and compare against a
random baseline. We set = 0.01, 5 = 0.02 and
n = 5. For models trained and evaluated on in-
domain data, we set the number of classes in the
classifier same as the number of ground truth labels
(K = 17 for CNREL and K = 16 for WAREL).
For models evaluated on out-of-domain evaluation,
we set the number of K as the combined of dev
and test sets (K = 33). All reported results are
averages over three runs using different random
seeds. Models are stable under runs, so we didn’t
report the variance.

5.1 Encoders

We conduct experiments with three types of en-
coders from the recent URE literature, which use
different features.’

Feature (Marcheggiani and Titov, 2016) leverages
8 linguistic features to represent information cov-
ered in each input sentence and the entity pair, in-
cluding the surface forms and POS tags of c¢; and
c2, and bag of words, POS sequence, and depen-
dency path between c; and ¢y, and the lemmas of
trigger words from the dependency path. No pa-
rameters are learnt for the encoder function g, as
all features are pre-defined.

EType+ (Tran et al., 2020) originally used entity
type as information (Person, location, ...) as fea-
tures, i.., g(c1, c2, s) = [c!, cb], where ¢} and ¢,
indicate the entity type embeddings. In our exper-
iment, we instead use the POS tag of entities, as

“We use the implementaions provided by Tran et al. (2020)
https://github.com/ttthy/ure



c1 and cy are not typically named entities in the
common sense domain.

BERT embeds s using BERT (Devlin et al., 2019),
and uses the concatenation of the final hidden layer
of ¢ and ca: g(c1,c2,8) = [c},ch]. We use the
BERT-base for all experiments, whose parameters
are fixed during training.

5.2 Evaluations Metrics

We report results in terms of V-measure (Rosenberg
and Hirschberg, 2007), an information theoretic
measure of the extent to which clusters consist of
instances from a single gold class (homogeneity),
and to which all instance of a gold class are con-
tained in a single cluster (homogeneity). V-measure
is the harmonic mean of the two.

5.3 In-domain Results

Do recent models for encyclopedic relation extrac-
tion transfer to the common sense domain? We
trained the models in § 4 separately on CNREL
and WAREL and evaluated on the corresponding
test sets. The left part of Table 2 presents the re-
sults. Note that the numbers are not comparable
across CNREL and WAREL due to different eval-
uation sets and relation inventories. All models
outperform the random baseline, and overall weak
supervision (SRE) improved results (URE) even
with a very small set of labels (N=350) for WAREL.
BERT performs best in the unsupervised regime
(URE), while Feature outperforms BERT under
supervision. Supervision leads to larger improve-
ments for CNREL than WAREL. This might be
explained by the small WAREL development set.

5.4 Out-of-domain Results

An ideal common sense relation extraction model
would be able to distill relations from any natural
language resource. To this end, we apply models
trained on WAREL to the “out of domain” CNREL
data, and vice versa. Recall that the data sets differ
both in style (CNREL being more templated) and
relation inventory, constituting a challenging do-
main shift. Furthermore, we ask whether a model
trained on a larger but noisier out-of-domain data
(CNREL) has an advantage over a model trained
on a smaller in-domain data set (WAREL). Models
are trained and selected on the source domain and
then tested on the target domain.

Results are shown in the right half of Table 2.
Comparing with results in the left half, it can be

20.0 % - _
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—o— vm.
12.5 1 hom.
10.04 —&— com.
0.2 0.4 0.6 0.8 1.0

Training set portion

Figure 3: URE BERT trained on varying portions of CN-
REL train, and tested on WAREL. Stars show in-domain
performance on the full WAREL (=0.2 x |CNREL |).
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Figure 4. Relation clusters predicted by URE BERT
on CNREL (in-domain). The x-axis is the cluster index.
The y-axis is the number of instances per cluster. Top1—
Top3 indicate the number of instances of the three most
prevalent gold class labels.

seen that the transfer from CNREL to WAREL im-
proved model performance across the board, while
the transfer from WAREL to CNREL lead to per-
formance degradation. This suggests CNREL has
wider knowledge coverage, due to its larger scale.
We further investigate the impact of training set
size by training URE BERT on subsets of CNREL
of varying size, and evaluating on WAREL. Fig. 3
shows that more data leads to higher performance,
but also that URE BERT trained on an equivalent
amount of in-domain WAREL data (a fifth of the
size of CNREL) achieves higher performance (stars
in Fig. 3). We conclude that high quality, in-domain
data results in better performance when data scale
is small, but this can be compensated with larger
data scale.

5.5 Qualitative Results

We qualitatively inspect the clustering induced by
the best-performing unsupervised model, namely
in-domain BERT on CNREL. Following previous
work (Yuan and Eldardiry, 2021), we measure the
purity of each cluster by analysing its coverage of
true relations. Ideally, each cluster would be domi-
nated by a single (or few) gold class. Fig. 4 shows
that most induced clusters are indeed dominated by



In-domain Out-of-domain

Test Set Model URE SRE URE SRE
vm hom com | vm hom com H vm hom com | vm hom com
Random | 04 04 04 | 04 04 04 04 04 04|04 04 04
CNREL EType+ | 19.2 143 29.1 | 21.5 16,5 309 || 199 152 28.8 | 148 105 264
Feature | 204 19.5 215|348 338 359 128 10.1 202 | 85 64 128
BERT 234 229 239|328 322 3341 85 8 9 2 1.3 45
Random | 6.9 8.1 6.0 | 69 8.1 6.0 69 8.1 60 | 69 8.1 6.0
WAREL EType+ | 13.2 9.6 21.6 | 11 72 252|168 134 229|207 17.7 249
Feature | 12.7 10 179 | 26.8 21.1 36.7 19 17.8 204|214 21 219
BERT 199 202 19.7 | 185 14.1 272 | 19.2 19.1 194|203 202 204

Table 2: Common relation extraction results for models evaluated on CNREL (top) and WAREL (bottom). For
In-domain results, models were trained on the training portion of the same data set. For, out-of-domain results
models were trained on the respective other data set. We report homogeneity (hom), completeness (com) and

V-Measure (vm), averaged over three runs.

C6 MANNEROF, CAUSES,
HASPREREQUISITE

HASSUBEVENT,

C2 ISA, ATLOCATION, HASA, PARTOF, HASPROPERTY

C4 DESIRES, NOTDESIRES,
, CAPABLEOF

C12 USEDFOR, MANNEROF, s
CEIVESACTION

CAPABLEOF, RE-

Table 3: Top five true relation labels in induced clusters
6, 2,4, and 12 by BERT URE on CNREL.

the top three relation labels (but see e.g,. cluster 6
for an exception).

We print the top 5 dominating gold classes for se-
lected clusters in Table 3. C6 covers action related
relations, while C2 relates to the spatial and part-
whole properties of objects. Desires/goals are cap-
tured in C4, while C12 covers ‘utility’ knowledge.
Overall, we also observed that the most dominant
relation in CNREL, ISA, penetrates most clusters.
While overall, our results indicate that BERT learns
broad-stroke common sense relations in an unsu-
pervised manner, there is ample room for future
work.

6 Discussion and Conclusion

We introduced the new task of common sense re-
lation extraction from natural language corpora.
We formalized the task as unsupervised clustering
of sentences s which express a relation between
two mentioned concepts c; and ca, and contributed
two data sets for model training and evaluation:
The larger yet noisier CNREL, where sentences
were heuristically aligned with concept/relation tu-

ples and hence often do not reflect the underlying
relation. WAREL is a crowd-sourced data set of
word association explanations, ensuring that all sen-
tences indeed express a relation between concepts.
Initial experiments with existing relation extraction
models under no or little supervision show that
some meaningful relation clusters emerged, and
that common sense RE is a challenging task, with
ample scope for future work.

We adopted encoders from the encyclopedic do-
main, and one direction for future work would be
the development of common-sense adapted sen-
tence encoders, such as the pre-trained COMET
model (Bosselut et al., 2019). Ample recent work
has probed large pre-trained language models for
common sense knowledge (Trinh and Le, 2018;
Cui et al., 2021). This line of work can be extended
to the more challenging common sense relation
probing, using the high-quality WAREL data as a
testbed. Finally, the WAREL sets could also be
used to train and test models for common sense
relation generation; and our resource of relational
common sense knowledge can be incorporated into
reasoning models for downstream tasks like ques-
tion answering.

Our WAREL collection paradigm is efficient (it
took < 4 months compared to decades of effort
for OMCS) and hence can be extended to other
languages, communities and cultures. This pro-
vides the opportunity to collect diverse associa-
tions avoiding the pitfalls of a bias toward English-
speaking cultures in NLP (Liu et al., 2021b).
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A Dataset Collection Details for WAREL

Our study received ethics approval (# 2021-22495-
22206-5) from the university ethics review board.

Full Instructions We collect the WAREL dataset
by crowdsourcing via Amazon Mechanical Turk.
Figure 5 presents the annotation interface. The
instruction page, includes (1) the Plain English
Statement for this project, including what data will
be collected, how the data will be processed and
used (2) a consent form to inform workers the po-
tential any risks so that workers can decide whether

10

to work on this task. To avoid any potential con-
fronting content, we removed profane words '°
before sampling cue seeds from SWOW for Exper-
imentl.

The payment for both experiments is calculated
based on the minimum wage salary in the coun-
try where the authors located in, which is much
higher than the United States (the location of our
annotators).

Task and Payment for Experiment 1 We take 5
words as a batch and assign it to 10 workers. Each
worker first produces up to three responses for all
five words, and then generates an explanation given
each pair of associated words. Workers can skip
cues (if their meaning is unknown) or provide fewer
than three responses (if they cannot think of more).
Each batch is paid with $0.66 reward with extra
bonus up to $1, depending on the number of known
cues, associations and explanations. This task takes
approximately 5 minutes, as estimated by locally
conducted pilot studies. Finally, we paid an average
of $1.48 per batch (estimated time =5 mins; hourly
wage =~ $17.76) .

Task and Payment for Experiment 2 Each
batch consists of 30 (¢, ¢, s) triples. A worker
will select the most appropriate relation label from
a pre-specified list to each triple in the batch. This
task takes approximately 15 mins to 30 mins, vary-
ing from different individuals. The amount of time
is estimated by three pilot by the authors and volun-
teers who are college students from the university.
Each batch is paid with $1 reward with extra bonus
up to $8, depending on the annotation quality. We
paid an average of 5.92 per batch (estimated time
= 15 mins to 30 mins; hourly wage ~ $11.84 to
$23.68).

Data Privacy and Usage Our collected data does
not include any personal information except the
worker ID, which is a unique identifier for each
AMT worker. To anonymize the data, we removed
the worker ID in our published dataset. Our col-
lected data will be publicized on for research pur-
pose.

B Data Statistics for WAREL and CNREL

Table 4 presents the statistics of CNREL and
WAREL. It can be seen that the two datasets share
some similarities in terms of the number of relation

Ohttps://www.cs.cmu.edu/ biglou/resources/bad-words.txt
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Welcome to our study on word
associations!

This HIT consists of two parts. In Part 1, you will play the “word
association game”: given a cue word, you will write down three

YYou will be asked for five cue
words. In Part 2, you will answer some follow-up questions on the
associations you provided

(please click here to read details described in the Plain English Statement about tis project) ].

Each valid HIT will be paid at least $0.66. A HIT including more
associations and more valid follow-up answers by following the rules will
be paid up to extra $1 bonus. This HIT will take you approximately 5
minutes.

Part 1 Instructions

On the top of the screen will appear a cue word. Your task is to enter the
first three words that come to your mind when reading this cue word.

If you don't know this word, press the L

If you do know the cue word, type up to three distinct spontaneous
associations - the more the better! You must provide at least two
associations. Once finished, press| Next |.

Examples
Below, we list two examples for the cues “watermelon” and “run”.

cue

watermelon green seeds summer

run morning fast exercise
1 agree to work on this task after reading the instruction and consent form

(click to read the consent form) |.

Continue

(]

Instructions:

Below, we show a cue-association pair you produced in Part
1. Please write a short sentence that explains the link you
wished to assign to the association in relation to the cue
word.

Your explanation must meet the following criteria:

1. Your explanation must include cue and association
words. You may use different word forms (e.g., plural
“seed” — “seeds”) to make your sentence grammatical.

2. Your explanation must be between 5 and 20 words long.
It should usually be a single sentence.

Some hints

Remember that the explanation need to include both cue and
association, otherwise the submission will not be rejected.

Cue ${cuet}
Association kilt
Explanation

Instructions
On the top of the screen will appear a paragraph as follows:
When | see 'cue'., it might make me think of the ‘association’, because .

After reading this paragraph, your task is to select the most appropriate relation labels for
the given word pair (cue, association). All relations can be applied to both directions
(from cue to association or from association to cue).

If you do know the cue and association word, select the most appropriate coarse-relation
and fine-grained relation type. Once finished, press |
If you don't know the cue or association word, select the None-of-the-Above button and
type your reasons.

Note that the cue or association words in the explanation could be different word forms
(e.g., cookie and cookies in the following example.)

Next |

Examples

When | see bite, it might make me think of the tooth, because you bite things with your
tooth .

“The most appropriate coarse-relation for bite and tooth is:

Concept-Properties
ituational

() Taxonomic

inguistic

() None-of-the-Above

‘The most appropriate fine-grained relation for cookie and candy is:

) Time

J Location
Function
Has-Prerequisite
) Result-In

) Action
Thematic

Figure 5: Annotation interface for collecting WAREL.
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B.1 CNREL

Figure 6 and Figure 7 present the train, dev and test
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Figure 6: Relation distribution on CNREL training set.

B.2 WAREL

Table 7 provides the definition for
tory we used for collecting WAR

Figure 8: Relation distribution on WAREL dev and test

set.

relation inven-
EL. Figure 8
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Dataset | split | #pairs | #sent | #cn_rel | #avg.sent_len | #vocab

CNREL | train | 12342 | 83824 | 30 10.3 6470
dev | 1982 | 2956 | 17 10.5 1926
test | 4733 | 11826 | 17 10.4 3363

WAREL | train | 15330 | 19002 | - 9.7 6281
dev | 292 350 16 8.9 1225
test | 283 349 16 9.0 1220

Table 4: The statistics of CNREL and WAREL.

shows the relation distribution of WAREL dev and
test set.

C Quality Control

C.1 Quality Control in Experiment 1

We list the detailed criteria to control the quality of
the generated explanations in the Experiment 1. To
collect high quality data, we introduce a number of
strategies to control the quality, starting from the
design of the guideline, to the selection of work-
ers and the post-selection of explanations. In the
guidelines, we set two criteria for the generated
explanation: (1) the explanation must include the
cue and association words. Different word forms
(e.g., plural “seed” — “seeds”) are allowed to en-
sure grammaticality; (2) the explanation should be
a single sentence, and between 5 and 20 words
long.

After obtaining the explanation, we filter out
workers and explanations using the following cri-
teria: a) workers who marked more than 3 of 5
cues as unknown b) workers whose explanations
did not include the cue and association; or ¢) work-
ers whose explanations rigidly follow a template
(using manual inspection).

C.2 Labelled samples for Experiment 2

Table 5 presents some examples along their labels
from five annotators. We discarded examples for
which no two annotators agreed on a label (exam-
ples in the bottom part of Table 5).

D Training and Hyperparameters

All of our experiments are run on single GPU of
NVIDIA V100 SXM2 (32G). As the parameters in
encoder is small (or is fixed), the training time of
each run is within an hour on both datasets.

Table 6 presents the hyperparameters we use
in training three models. We manually tune the
key hyper-parameter: learning rate on different
sets using grid search from { 0.0001, 0.001, 0.005,

12

0.007} and the best one for each model is reported
in Table 6.



Type | cue association explanation ‘ { Annotation: count}

}2 honey  sweet honey is a very sweet substance. {Perceivable-Property: 5}

3 gypsy  europe gypsies now mainly live in europe. {Location: 4, Thematic: 1}

& baked  fried baked and fried are two ways to prepare | { Members-of-the-same-Category: 3, The-
food. matic: 1, PartOf: 1}

§ buddy  together buddies love to spend time together. {Emotion-Evaluation: 1, Result-In: 1, The-

§ matic: 1, Location: 1, Inherent-Property:

2 1}

- breath  oxygen when you breath you inhale oxygen. {Result-In: 1, Action: 1, PartOf: 1, Has-

Prerequisite: 1, Function: 1}

faithful committed being faithful in a relationship involves | { Members-of-the-same-Category: 1, The-
being committed to the other person. matic: 1, PartOf: 1, Synonym: 1, Has-

Prerequisite: 1}

staff employed  staff is the people employed by a particu- | {PartOf: 1, Thematic: 1, Has-Prerequisite:
lar organization. 1, Members-of-the-same-Category: 1, Func-

tion: 1}

Table 5: Samples of retained and discarded instances in WAREL Experiment 2. The Annotations column indicates
the labels assigned to the instance together with assignment count out of 5 annotations.

Parameter Value Parameter Value
Parameter Value
Optimizer AdaGrad Optimizer Adam Optimizer Adam
Number of epochs 10 Number of epochs 10
. . Number of epochs 5
Learning rate 0.007 Learning rate 0.001 .
. . Learning rate 0.001
Batch size 100 Batch size 100 .
. . . Batch size 64
Feature dimension 10 Early stop patience 10 .
. . . . Early stop patience 3
Early stop patience 3 Entity type dimension 10 .
. . L coefficient 0.01
L coefficient 0.01 L coefficient 0.01 I coofficient 0.02
L coefficient 0.02 L coefficient 0.02 a :
(a) Feature (b) EType+. (c) BERT

Table 6: Hyper-parameter values used in our experiments.
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Coarse Relation

Fine-grained Relation

| Definition

Concept-Properties
Concept-Properties

Concept-Properties

Concept-Properties
Concept-Properties

Perceivable-Property

PartOf
Inherent-Property

Material-MadeOf
Emotion-Evaluation

A perceivable property, including shape, color, pattern, texture,
size, touch, smell, and taste.

A a part or component of an entity or event.

The inborn, native or instinctive properties, which cannot be
directly perceived when encountering a concept, that requires
some kind of inference from perceptual data.

The material of something is made of.

An affective/emotional state or evaluation toward the situation
or one of its components.

Situational Time A time period associated with a situation or with one of its
properties.

Situational Location A place where an entity can be found, or where people engage
in an event or activity.

Situational Function The typical purpose, goal or role for which cue is used for asso-
ciation. Or the reverse way.

Situational Has-Prerequisite In order for the cue to happen, association needs to happen or
exist; association is a dependency of cue. Or the reverse way.

Situational Result-In The cue causes or produces the association. Or the reverse way.
A result (either cue or association) shoud be involved.

Situational Action An action that a participant (could be the cue, association or
others) performs in a situation. Cue and association must be
among the (participant, action, object).

Situational Thematic Cue and association participate in a common event or scenario.
None of the other situational properties applies.

Taxonomic Category-Exemplar-Pairs The cue and association are on different levels in a taxonomy.

Taxonomic Members-of-the-same-Category | The cue and assoiation are members of the same category.

Taxonomic Synonym The cue and associaiton are synonym.

Taxonomic Antonym The cue and association are antonym.

Linguistic Lexical Cue and association share the same base form.

Linguistic Common-Phrase The cue and association is a compound or multi-word expression
or form a new concept with two words.

Linguistic Sound-Similarity The cue and association are similar in sound.

None-of-the-Above

None-of-the-Above

Use this label only if other labels can not be assigned to the
instance or you don’t understand the cue, association or explana-
tion.

Table 7: The definition of associative relations used for labelling WAREL.
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