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Abstract

Vast and diverse knowledge about the rela-001
tions in the world help humans comprehend002
and argue about their environment. Equipping003
machines with this knowledge is challenging004
yet essential for general reasoning capabilities.005
Here, we propose to apply unsupervised rela-006
tion extraction (URE), aiming to induce gen-007
eral relations between concepts from natural008
language. Previous work in URE has predom-009
inantly focused on relations between named010
entities in the encyclopedic domain. The more011
general, and more challenging, domain of com-012
mon sense relation learning has not yet been013
addressed, partially due to a lack of datasets.014
We present a framework for common sense re-015
lation extraction from free-text, associated with016
two benchmark datasets. We present initial ex-017
periments using three state-of-the-art models018
developed for encyclopedic relation induction.019
Our results verify the utility of our benchmarks020
for common sense relation extraction, and sug-021
gest ample scope for future work on this impor-022
tant, yet challenging, task.1023

1 Introduction024

Humans possess a vast repository of basic facts025

and relations, which they use to perceive, navi-026

gate, reason about their environment – a resource027

called common sense knowledge. For instance,028

humans know that ‘eating is the FUNCTION of029

forks’, or ‘being scared is the EMOTIONAL EVAL-030

UATION of seeing a ghost’.2 Equipping machines031

with similar resources has attracted substantial at-032

tention in recent years (Davis and Marcus, 2015),033

for instance by incorporating existing resources034

(like ConceptNet; Liu and Singh (2004)) into035

models to solve downstream tasks like question036

answering (Lin et al., 2019); or by leveraging large037

1Code and data will be made publicly available upon ac-
ceptance under a CC BY SA 4.0 license.

2We denote concepts in italics, and RELATIONS in small
caps throughout the paper.
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Figure 1: Illustration of WAREL, which consists of asso-
ciations between cue words (bagpipe) and associations
(kilt, red, ...) together with association explanations
(speech bubbles) and discrete relation type labels (arrow
labels).

pre-trained language models as common sense re- 038

sources (Davison et al., 2019; Petroni et al., 2019; 039

Shwartz et al., 2020). Prior work predominantly 040

focussed on the fact that concepts are related, but 041

less so on the specific relations between concepts. 042

However, scalable knowledge of common sense 043

relations is likely to benefit common sense reason- 044

ing applications. This paper introduces the task of 045

common sense relation extraction. 046

Given the broad nature of common sense knowl- 047

edge, manual collection of exhaustive concept re- 048

lation data bases is infeasible. Instead, we fol- 049

low recent work in the encyclopedic domain (Yao 050

et al., 2011; Marcheggiani and Titov, 2016; Tran 051

et al., 2020), and infer common sense relations 052

between pairs of concept from concept mentions 053

in text. Intuitively, given a corpus of sentences 054

which mention pairs of concepts, we want to learn 055

a small number of underlying common sense rela- 056

tions which explain the associations between the 057

two concepts. Examples of common relations in- 058

clude USED-FOR, MADE-OF, or LOCATION, and 059

relation inventories used in this work are discussed 060

further in § 3. In the encyclopedic domain, rele- 061
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vant corpora have been constructed using templates062

and heuristic supervision (Yao et al., 2011), how-063

ever, the quality of the resulting data sets has been064

shown to be low (Gao et al., 2021). This problem is065

exacerbated in the common sense scenario where066

relations are broader, and while encyclopedic re-067

lations typically concern named entities, common068

sense relations span concepts, actions, properties069

and more. The core contribution of this paper are070

two sizeable, English data sets with complementary071

strengths to train and test common sense relation072

extraction models.073

First, CNREL (Table 1, top) is based on074

ConceptNet (Speer et al., 2017), where we as-075

sociate relation-labelled concept pairs with natural076

language sentences from the OMCS data set (Singh077

et al., 2002) using heuristic supervision. This data078

set is large, yet potentially noisy as sentences are079

not guaranteed to express the intended relation. In080

addition OMCS sentences are often templated.081

Second, we collected a novel data set, WAREL082

(Table 1, bottom), which encodes relational human083

common sense knowledge through word associa-084

tions (Deyne et al., 2019; Liu et al., 2021a). In a085

large crowd-sourcing study, we (a) collected hu-086

man concept associations presenting participants087

with a cue word (dog) and collecting the words that088

spontaneously came to their mind (bark, pet, ...)089

(Fig. 1, circles); (b) asked the same participants to090

explain their associations in a short sentence (Fig. 1,091

speech bubbles); and (c) labelled a subset of expla-092

nations with a relation type from a pre-defined set093

(Fig 1, arrow labels). The resulting data set is of094

high quality and diversity, albeit smaller in size095

tnan CNREL.096

Using our data sets, we present a series of initial097

experiments. We test three models proposed in the098

recent unsupervised relation extraction (URE) lit-099

erature. Results show the utility of our data sets,100

and that common sense relation extraction is a chal-101

lenging task, constituting fruitful ground for future102

research on common sense knowledge induction.103

In sum, our contributions are104

• The new task of common-sense relation ex-105

traction from natural language106

• Two large-scale data sets, with different size107

and quality trade-offs, to train and evaluate108

common sense relation extraction models109

• Experiments with three URE models adapted110

from the encyclopedic relation extraction do-111

Sentence [ RELATION ]

C
N

R
E

L

a bottle is used to hold a liquid [USEDFOR]
engine is part of car [ PARTOF]
you are likely to find bread in a store [ATLOCATION]
bicycle racing is a sport [USEDFOR]
army is used for military purposes [HASCONTEXT]
wallet is about the same size as a pocket [LOCATION]

W
A

R
E

L codes are needed to decipher something. [FUNCTION]
our military has a large army branch. [PARTOF]
summer is always hot. [INHERENT-PROPERTY]
the leaves started to fall in autumn [TIME]

Table 1: Example sentences encoding relation types,
from CNREL (top) and WAREL (bottom). The concepts
are highlighted in blue. The bottom three CNREL ex-
amples illustrate the noise in the data set.

main, showing that broad-stroke common 112

sense relations are learnt, and verifying the 113

challenge of the task. 114

2 Background 115

We describe the resources and paradigms underly- 116

ing our own data sets, and previous work on URE. 117

2.1 ConceptNet and OMCS 118

The Open Mind Common Sense (OMCS)3 (Singh 119

et al., 2002) initiative was a decade-long effort to 120

crowd-source natural sentences expressing com- 121

mon sense knowledge. A large portion consists of 122

templated sentences, completed by crowd workers 123

(‘a fork is USED FOR ___’; see more examples in 124

Table 1), later augmented with free-form crowd- 125

sourced relation descriptions. ConceptNet 126

(Speer et al., 2017) is one of the largest common 127

sense KGs capturing general-domain knowledge, 128

consisting of links between pairs of associated con- 129

cept, labeled with one or more discrete relation 130

types from an ‘organically grown’ relation ontol- 131

ogy comprising 30 relation types (Liu and Singh, 132

2004). 133

ConceptNet was partially extracted from sen- 134

tences in OMCS, leading to a natural alignment of 135

concept pairs in ConceptNet with OMCS, and 136

projection of relation labels to OMCS sentences. 137

2.2 Word Associations 138

Word associations (Deese, 1966; Kiss et al., 1973) 139

are a prevalent paradigm in cognitive science to 140

probe the human mental lexicon (Nelson et al., 141

3https://s3.amazonaws.com/conceptnet/
downloads/2018/omcs-sentences-free.txt
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2004; Fitzpatrick, 2006). They reflect spontaneous142

human associations between concepts. In a typical143

study, a participant is presented with a cue word144

(trombone) and asked to spontaneously produce the145

words that come to mine in response (music, ...).146

Through large-scale crowd-sourcing studies cover-147

ing over 12K cues and thousands of participants, a148

large word associations graph (SWOW; Deyne et al.149

(2019)) has been constructed, as a resource of hu-150

man concept association strength. SWOW has re-151

cently been shown to be an effective knowledge152

resource for common sense reasoning models (Liu153

et al., 2021a). The nature of the underlying rela-154

tions, however, is an open research problem.155

2.3 Unsupervised Relation Extraction156

Unsupervised relations extraction (URE) has been157

tackled predominantly in the context of factual re-158

lational knowledge about named entities. Typical159

models are presented with corpora of contexts men-160

tioning pairs of entities and tasked with assigning161

inputs into clusters resembling the relations con-162

necting concept pairs. Existing approaches can be163

grouped into generative and discriminative. Yao164

et al. (2011) extend the standard LDA model to165

URE by considering relations as topics and docu-166

ments as co-occurred mentions along with the de-167

pendency features. In discriminative line, Marcheg-168

giani and Titov (2016) propose to learn relation169

clusters using variational auto-encoder (VAE): the170

encoder is a relation classifier aiming to predict171

a relation for a given input, and the decoder re-172

constructs one entity given the predicted relation173

and the other entity. Follow-up work focused on174

stabilizing training (Simon et al., 2019), leveraged175

self-supervision via boostrapping (Hu et al., 2020),176

or developed better feature sets (Tran et al., 2020).177

The discriminative is advantageous as it allows178

to incorporate diverse relational representations,179

which is important in common sense domain. In180

this paper, we apply three recent URE models to181

common sense RE.182

3 Common Sense Relation Extraction183

3.1 Task Formulation184

Our goal is to induce latent common sense relations185

between pairs of concepts from natural language186

text. As input, we assume a large corpus of sen-187

tences s which mention two concepts (c1, c2) of in-188

terest D = {(c1, c2, s)}N1 (see examples in speech189

bubbles in Fig 1 and Table 1). The task is to cluster190

these sentences into groups reflective of a ground- 191

truth common sense relation (e.g., USED-FOR). 192

For unsupervised RE, we only require a large set 193

of contexts, which are predictive of the relations of 194

interest (rather than accidental co-mentions). For 195

evaluation, we additionally require a smaller cor- 196

pus, where sentences are labeled with the true rela- 197

tions. We present two such data sets below. 198

3.2 CNREL 199

We use distant supervision to derive a large-scale 200

corpus of common sense relations holding between 201

concept pairs from ConceptNet and OMCS. 202

Specifically, following previous work on RE from 203

Wikipedia (Lin and Pantel, 2001; Yao et al., 2011; 204

Marcheggiani and Titov, 2016), we align a sen- 205

tence s in OMCS with a relational triple (c1, r, 206

c2) in ConceptNet (version 5.5;4 Speer et al. 207

(2017)) if both c1 and c2 are mentioned in s (ex- 208

act string match based on the lemma); and label 209

the sentence s with relation type r. Many aligned 210

sentences will not be predictive of the relation (see 211

Table 1). We enhance the quality of the data by 212

filtering out triples using a list of criteria adapted 213

prior work (Yao et al., 2012), with the intuition 214

that in relation-relevant contexts, the two concepts 215

should be mentioned close to one another and con- 216

nected with semantically meaningful dependency 217

path.5 218

Relation inventory The training set of CNREL 219

covers all 30 ConceptNet relations, 6 (e.g, ISA, 220

ATLOCATION, USEDFOR). For comparability with 221

the WAREL data (§ 3.3), we include the 17 most 222

common relations in the test and dev set.7 We 223

sampled up to 1K instances for each of the 17 most 224

common relations, and split the resulting set into 225

dev (20%) and test set (80%). 226

Summary Our final data set consists of 83K train, 227

3K dev and 11K test instances (details in Table 4 228

4ConceptNet and OMCS are open source, licensed un-
der CC BY SA 4.0.

5We retain triples whose ConceptNet confidence score
is > 1; filter out sentences of length > 30 words, sentences
where the two concepts are < 10 words apart or the depen-
dency path connecting the words is of length < 10. Finally,
the dependency path (from benepar model in spaCy 3.0.6)
must not contain the labels ‘parataxis’, ‘pcomp’, or ‘punct’.

6For detailed definitions and examples see https:
//github.com/commonsense/conceptnet5/
wiki/Relations

7The full set (and distribution) of 30 ConceptNet rela-
tions is in Fig. 6 (Appendix), and the 17 test relations and their
distribution in Appendix Fig. 7.
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Experiment 1 Experiment 2

Word Association Association Explanation Relation Labeling

Cue: “bagpipe”

R1: “instrument”
R2: “wood”
R3: “kilt”

The bagpipe is a very nice instrument
The bagpipe is made of wood
Men playing bagpipes often wear kilts

Superordinate
Made-of
Thematic

Given the cue, which 
words  spontaneously 
come to mind?

In a short sentence, explain why you linked the 
cue with your response. 

Assign the most appropriate 
label to the cue-response 
relation expressed in the 
explanation

Figure 2: Overview over the data collection paradigm for WAREL.

in the Appendix). The heuristic alignment of CN-229

REL allowed us to construct sizeable labelled dev230

and test sets. However, the relation labels remain231

noisy even after aggressive filtering. For instance,232

the example of wallet and pocket in Table 1 en-233

codes the SIZE between the two concepts, instead234

of the intended LOCATION relation. Furthermore,235

sentences tend to be of a templated nature, calling236

into question the extensibility of models learnt on237

CNREL to other domains (e.g., corpora of news or238

web text). We address this question in our exper-239

iments (§ 5.4), and we propose a second data set240

which is of higher quality and diversity next.241

3.3 WAREL242

We propose a new framework to collect common243

sense relations between pairs of concepts (words)244

by crowd-sourcing explicit explanations of the re-245

lations. We adopt the word association paradigm246

(§ 2.2). Previous work (Liu et al., 2021a) has shown247

that large-scale word association network (WAN)248

contain common sense knowledge that can benefit249

common sense reasoning models for NLP. How-250

ever, WANs typically provide responses associated251

with a cue word, while the underlying reasons or252

relations between cue-association pairs remain un-253

known. This lack of explainability limits its appli-254

cation to relation reasoning tasks. Our new data set255

can help to understand why humans make certain256

associations, and can serve as an explicit knowl-257

edge resource for reasoning models.258

We collect the WAREL dataset by crowdsourc-259

ing via Amazon Mechanical Turk using a two-stage260

framework (Fig. 2). We first introduce our relation261

inventory, before describing the paradigm on a high262

level. Our study was approved by the university263

ethics board, and workers were paid above mini-264

mum wage. Detailed information is provided in265

Appendix A.266

Relation Inventory The relation inventory un- 267

derlying human word associations has been ad- 268

dressed on a theoretical or small-scale experimental 269

level (Wu and Barsalou, 2009; McRae et al., 2012), 270

and we construct a relation type inventory based 271

on these works. We do not adopt ConceptNet 272

relations, because (1) they resulted from the ag- 273

gregation of several sources, baring a theoretical 274

justification; (2) are dominated by overly broad 275

types (HASCONTEXT); (3) contain several very 276

similar types (CAUSES and HASSUBEVENT) that 277

are hard to distinguish reliably in a crowd sourcing 278

setup. Departing from the set of (Wu and Barsalou, 279

2009), we ran three pilot studies and converged on 280

an inventory of 16 relations. The full set, including 281

examples is presented in Fig. 8 and Table 7 in the 282

Appendix. 283

Experiment 1 In the first experiment, we collect 284

(a) word associations and (b) explanations from 285

the same annotator, ensuring that the explanation 286

indeed explains the intended, underlying associa- 287

tion. Given a cue word, a worker first generates 288

up to three spontaneous associations (Fig 2, left), 289

and immediately after provides natural language 290

explanations to describe why they linked the cue 291

and each association (Fig 2, center). The resulting 292

explanations will serve as our text corpus of sen- 293

tences expressing relations between concept pairs. 294

The cue words in our experiment (N=1100) were 295

sampled from a large-scale word association KG 296

(SWOW; §2.2), ensuring a balanced distribution 297

over the POS tags N, V, ADJ and ADV; as well 298

as abstract vs concrete concepts. A single batch 299

consisted of 5 randomly sampled cues, for which 300

the worker provided associations and explanations. 301

Each batch was labelled by 10 different workers. 302

Word associations and underlying reasoning are 303

subjective, hence standard quality assessment via 304

annotator agreement does not apply. Instead, we 305
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ensure high data quality by filtering responses wrt.306

a number of criteria including explanation length307

and diversity (cf., Appendix C.1 for details). We re-308

tained the annotations of 258 workers (out of 326).309

The final data set comprises 15K cue-association310

pairs along with 19K explanations.311

Experiment 2 In a second experiment, we col-312

lected explicit relation labels for a subset of the313

annotations obtained in Experiment 1, as a devel-314

opment and test set for common sense relation ex-315

traction models (Fig 2, right). Given tuples of cue,316

association and explanation (c1, c2, s) a worker317

will choose the most appropriate relation type from318

the relation inventory explained above.319

We sampled 757 instances from the data from320

Experiment 1 for labeling, excluding template-like321

explanations (e.g., “A is a B”) to create a chal-322

lenging test set and avoid the prevalence of tem-323

plate sentences characteristic of OMCS. The data324

includes cue POS-tags N, V and ADJ, as ADV325

associations proved challenging to annotate. We326

ensure high-quality labels through (a) detailed in-327

structions; (b) a training phase; (c) careful selection328

of 45 reliable crowd workers who achieved accu-329

racy > 0.5 in training; and (d) continuing feedback330

to annotators throughout annotation.331

Each (c1, c2, s)-tuple was labeled by 5 workers.332

The ground truth was derived through majority vot-333

ing, if the class was chosen by at least 3/5 workers.334

Otherwise, a label was chosen by one of the paper335

authors. We discard 53 instances for which none of336

the two workers agreed.8 The final data set consists337

of 699 labeled instances, split into 50/50 test/dev.338

Summary Our final dataset consists of 19K train,339

350 dev, and 349 test instances. Unlike CNREL,340

this dataset conveys explicit relations between con-341

cepts , rather than accidental co-occurrences, and342

is of higher linguistic diversity. Furthermore, the343

WAREL dev and test set labels were manually veri-344

fied by humans. Examples are provided in Table 1345

(bottom). OMCS is the result of a decade-long346

collection effort, whereas WAREL was efficient to347

obtain via crowd-sourcing, and hence can be effi-348

ciently scaled up, or extended to other languages.349

4 Relation Extraction Framework350

In the remainder of the paper, we apply a series351

of recent models from the URE literature to the352

8See Table 5 in Appendix C.2 for examples with varying
levels of annotator agreement.

common sense domain, using our proposed data 353

sets. We frame the task as open-domain relation 354

discovery where no predefined relationships. Given 355

a sentence s mentioning a pair of concepts c1 and 356

c2, a URE model learns (1) to map the sentence 357

to a latent relation representation (“encoder”); and 358

(2) a relation classifier to assign the representation 359

to a discrete relation cluster; (3) a “link predic- 360

tor” which reconstructs the relational triple as an 361

unsupervised training objective. We evaluate the 362

extent to which induce clusters reflect the underly- 363

ing classes in the data. 364

Encoder and Relation Classifier For a given 365

triple (c1, c2, s), the relation classifier predicts the 366

relational distribution of a relation latent represen- 367

tation encoded by an encoder: 368

z = w⊤gθ(c1, c2, s) + b

p(r | z) =
exp(zr + b)∑
r′ exp (zr′ + b)

,
369

where gθ is an encoder that maps (c1, c2, s) to 370

a high-dimensional representation; and w⊤ ∈ 371

Rd×K is the parameters of relation classifier, d de- 372

notes the dimension of the latent representation, 373

K is the number of clusters (a pre-defined model 374

parameter), and zr the rth element of z. 375

Link Predictor A good latent relation represen- 376

tation z should capture relevant contextual informa- 377

tion and be capable of predicting missing context. 378

Accordingly, the link predictor calculates the prob- 379

ability of predicting a missing concept given the 380

predicted latent representation and one known con- 381

cept (e.g., c2): 382

p(c1 | c2, r) ∝ exp(ψ(c1, r, c2)) (1) 383

where ψ is an energy function. The model for 384

p(c2 | c1, r) is analogous. Following previous 385

work (Marcheggiani and Titov, 2016; Simon et al., 386

2019), we use the combination of RESCAL and 387

selectional preferences as the energy function: 388

ψ (c1, r, c2) = uT
c1Aruc2︸ ︷︷ ︸
RESCAL

+ uT
c1Br + uT

c2Cr︸ ︷︷ ︸
Selectional Preferences

389

where uci is the concept embedding of ci learnt 390

via the model, A, B and C are model parameters, 391

optimized to reconstruct the missing concept. 392
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4.1 Learning393

The URE model jointly learns the relation clas-394

sifier and link predictor by maximizing the joint395

probability of relation classifier and link predictor,396 ∑
r∈R

p(r | x) log p (c1 | c2, r) log p (c2 | c1, r) .397

Unfortunately, p(ci | c−i, r) in Eq (1) requires iter-398

ating over all potential concepts in the vocabulary,399

a very large set in the common sense domain. In-400

stead of a multi-class (softmax) classifier, which401

would be infeasible, we train a binary (sigmoid)402

classifier to distinguish a positive triple (ci, r, c−i)403

from a set of sampled negative triples. Correspond-404

ingly, the link predictor can be approximated as405

follows:406

LLP = E
(c1,c2,s)∼χ

r∼gθ(s)

[−2 log σ (ψ (c1, r, c2))

−
n∑

j=1

E
c′∼E

[
log σ

(
−ψ

(
c1, r, c

′))]

−
n∑

j=1

E
c′∼E

[
log σ

(
−ψ

(
c′, r, c2

))]
407

where σ is the sigmoid function, c′∼E denotes sam-408

ple negative concepts from the vocabulary and n409

is the number of negative samples. Following (Si-410

mon et al., 2019), we add two extra regularizers411

to stabilize model predictions by encouraging to412

predict a skewed relational distribution (LS) per413

instance and uniform distribution over all instances414

per minibatch (LD),415

LS = −E(c1,c2,s)∼χp(r|s) log p(r|s)
LD = Er∼gθ(s) (q(r) log q(r)) ,

416

where q(r) =
∑B

i=1
p(r|xi)

B is the mean predicted417

relation within a minibatch of size B, leading to418

the final loss,419

L = LLP + αLS + βLD, (2)420

with α and β being hyper-parameters to control the421

strength of each regularizer.422

Unsupervised Training In unsupervised train-423

ing, the model is trained via Eqn (2). The labelled424

data is only used for model selection.425

Supervised Training As our relation inventory 426

is a set of closed relation types with limited num- 427

bers and is shared between dev and test, making 428

it feasible to train a relation classifier using dev 429

and compare the results with unsupervised training. 430

We also include a supervised variant of the model, 431

where we use a small amount of labelled data to 432

train the relation classifier, and discard the link- 433

predictor component. In this case, the loss is the 434

cross-entropy between the gold and the predicted 435

relation distribution: 436

LCE = −E(c1,c2,s)∼χyr log p(r|s), 437

where yr is the true relation label. 438

5 Experiments 439

We instantiate the above framework with three en- 440

coders (explained below), and compare against a 441

random baseline. We set α = 0.01, β = 0.02 and 442

n = 5. For models trained and evaluated on in- 443

domain data, we set the number of classes in the 444

classifier same as the number of ground truth labels 445

(K = 17 for CNREL and K = 16 for WAREL). 446

For models evaluated on out-of-domain evaluation, 447

we set the number of K as the combined of dev 448

and test sets (K = 33). All reported results are 449

averages over three runs using different random 450

seeds. Models are stable under runs, so we didn’t 451

report the variance. 452

5.1 Encoders 453

We conduct experiments with three types of en- 454

coders from the recent URE literature, which use 455

different features.9 456

Feature (Marcheggiani and Titov, 2016) leverages 457

8 linguistic features to represent information cov- 458

ered in each input sentence and the entity pair, in- 459

cluding the surface forms and POS tags of c1 and 460

c2, and bag of words, POS sequence, and depen- 461

dency path between c1 and c2, and the lemmas of 462

trigger words from the dependency path. No pa- 463

rameters are learnt for the encoder function g, as 464

all features are pre-defined. 465

EType+ (Tran et al., 2020) originally used entity 466

type as information (Person, location, ...) as fea- 467

tures, i.e., g(c1, c2, s) = [ct1, c
t
2], where ct1 and ct2 468

indicate the entity type embeddings. In our exper- 469

iment, we instead use the POS tag of entities, as 470

9We use the implementaions provided by Tran et al. (2020)
https://github.com/ttthy/ure
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c1 and c2 are not typically named entities in the471

common sense domain.472

BERT embeds s using BERT (Devlin et al., 2019),473

and uses the concatenation of the final hidden layer474

of c1 and c2: g(c1, c2, s) = [cb1, c
b
2]. We use the475

BERT-base for all experiments, whose parameters476

are fixed during training.477

5.2 Evaluations Metrics478

We report results in terms of V-measure (Rosenberg479

and Hirschberg, 2007), an information theoretic480

measure of the extent to which clusters consist of481

instances from a single gold class (homogeneity),482

and to which all instance of a gold class are con-483

tained in a single cluster (homogeneity). V-measure484

is the harmonic mean of the two.485

5.3 In-domain Results486

Do recent models for encyclopedic relation extrac-487

tion transfer to the common sense domain? We488

trained the models in § 4 separately on CNREL489

and WAREL and evaluated on the corresponding490

test sets. The left part of Table 2 presents the re-491

sults. Note that the numbers are not comparable492

across CNREL and WAREL due to different eval-493

uation sets and relation inventories. All models494

outperform the random baseline, and overall weak495

supervision (SRE) improved results (URE) even496

with a very small set of labels (N=350) for WAREL.497

BERT performs best in the unsupervised regime498

(URE), while Feature outperforms BERT under499

supervision. Supervision leads to larger improve-500

ments for CNREL than WAREL. This might be501

explained by the small WAREL development set.502

5.4 Out-of-domain Results503

An ideal common sense relation extraction model504

would be able to distill relations from any natural505

language resource. To this end, we apply models506

trained on WAREL to the “out of domain” CNREL507

data, and vice versa. Recall that the data sets differ508

both in style (CNREL being more templated) and509

relation inventory, constituting a challenging do-510

main shift. Furthermore, we ask whether a model511

trained on a larger but noisier out-of-domain data512

(CNREL) has an advantage over a model trained513

on a smaller in-domain data set (WAREL). Models514

are trained and selected on the source domain and515

then tested on the target domain.516

Results are shown in the right half of Table 2.517

Comparing with results in the left half, it can be518

0.2 0.4 0.6 0.8 1.0
Training set portion

10.0

12.5

15.0

17.5

20.0

vm.
hom.
com.

Figure 3: URE BERT trained on varying portions of CN-
REL train, and tested on WAREL. Stars show in-domain
performance on the full WAREL (=0.2 × |CNREL |).

6 3 2 9 1012 0 15 4 8 13 5 14 1 7 16110
1000
2000
3000
4000
5000
6000
7000 Top1

Top2
Top3
Others

Figure 4: Relation clusters predicted by URE BERT
on CNREL (in-domain). The x-axis is the cluster index.
The y-axis is the number of instances per cluster. Top1–
Top3 indicate the number of instances of the three most
prevalent gold class labels.

seen that the transfer from CNREL to WAREL im- 519

proved model performance across the board, while 520

the transfer from WAREL to CNREL lead to per- 521

formance degradation. This suggests CNREL has 522

wider knowledge coverage, due to its larger scale. 523

We further investigate the impact of training set 524

size by training URE BERT on subsets of CNREL 525

of varying size, and evaluating on WAREL. Fig. 3 526

shows that more data leads to higher performance, 527

but also that URE BERT trained on an equivalent 528

amount of in-domain WAREL data (a fifth of the 529

size of CNREL) achieves higher performance (stars 530

in Fig. 3). We conclude that high quality, in-domain 531

data results in better performance when data scale 532

is small, but this can be compensated with larger 533

data scale. 534

5.5 Qualitative Results 535

We qualitatively inspect the clustering induced by 536

the best-performing unsupervised model, namely 537

in-domain BERT on CNREL. Following previous 538

work (Yuan and Eldardiry, 2021), we measure the 539

purity of each cluster by analysing its coverage of 540

true relations. Ideally, each cluster would be domi- 541

nated by a single (or few) gold class. Fig. 4 shows 542

that most induced clusters are indeed dominated by 543

7



In-domain Out-of-domain
Test Set Model URE SRE URE SRE

vm hom com vm hom com vm hom com vm hom com

CNREL

Random 0.4 0.4 0.4 0.4 0.4 0.4 0.4 0.4 0.4 0.4 0.4 0.4
EType+ 19.2 14.3 29.1 21.5 16.5 30.9 19.9 15.2 28.8 14.8 10.5 26.4
Feature 20.4 19.5 21.5 34.8 33.8 35.9 12.8 10.1 20.2 8.5 6.4 12.8
BERT 23.4 22.9 23.9 32.8 32.2 33.4 8.5 8 9 2 1.3 4.5

WAREL

Random 6.9 8.1 6.0 6.9 8.1 6.0 6.9 8.1 6.0 6.9 8.1 6.0
EType+ 13.2 9.6 21.6 11 7.2 25.2 16.8 13.4 22.9 20.7 17.7 24.9
Feature 12.7 10 17.9 26.8 21.1 36.7 19 17.8 20.4 21.4 21 21.9
BERT 19.9 20.2 19.7 18.5 14.1 27.2 19.2 19.1 19.4 20.3 20.2 20.4

Table 2: Common relation extraction results for models evaluated on CNREL (top) and WAREL (bottom). For
In-domain results, models were trained on the training portion of the same data set. For, out-of-domain results
models were trained on the respective other data set. We report homogeneity (hom), completeness (com) and
V-Measure (vm), averaged over three runs.

C6 MANNEROF, CAUSES, ISA, HASSUBEVENT,
HASPREREQUISITE

C2 ISA, ATLOCATION, HASA, PARTOF, HASPROPERTY

C4 DESIRES, NOTDESIRES, HASPROPERTY, ATLOCA-
TION, CAPABLEOF

C12 USEDFOR, MANNEROF, ISA, CAPABLEOF, RE-
CEIVESACTION

Table 3: Top five true relation labels in induced clusters
6, 2, 4, and 12 by BERT URE on CNREL.

the top three relation labels (but see e.g,. cluster 6544

for an exception).545

We print the top 5 dominating gold classes for se-546

lected clusters in Table 3. C6 covers action related547

relations, while C2 relates to the spatial and part-548

whole properties of objects. Desires/goals are cap-549

tured in C4, while C12 covers ‘utility’ knowledge.550

Overall, we also observed that the most dominant551

relation in CNREL, ISA, penetrates most clusters.552

While overall, our results indicate that BERT learns553

broad-stroke common sense relations in an unsu-554

pervised manner, there is ample room for future555

work.556

6 Discussion and Conclusion557

We introduced the new task of common sense re-558

lation extraction from natural language corpora.559

We formalized the task as unsupervised clustering560

of sentences s which express a relation between561

two mentioned concepts c1 and c2, and contributed562

two data sets for model training and evaluation:563

The larger yet noisier CNREL, where sentences564

were heuristically aligned with concept/relation tu-565

ples and hence often do not reflect the underlying 566

relation. WAREL is a crowd-sourced data set of 567

word association explanations, ensuring that all sen- 568

tences indeed express a relation between concepts. 569

Initial experiments with existing relation extraction 570

models under no or little supervision show that 571

some meaningful relation clusters emerged, and 572

that common sense RE is a challenging task, with 573

ample scope for future work. 574

We adopted encoders from the encyclopedic do- 575

main, and one direction for future work would be 576

the development of common-sense adapted sen- 577

tence encoders, such as the pre-trained COMET 578

model (Bosselut et al., 2019). Ample recent work 579

has probed large pre-trained language models for 580

common sense knowledge (Trinh and Le, 2018; 581

Cui et al., 2021). This line of work can be extended 582

to the more challenging common sense relation 583

probing, using the high-quality WAREL data as a 584

testbed. Finally, the WAREL sets could also be 585

used to train and test models for common sense 586

relation generation; and our resource of relational 587

common sense knowledge can be incorporated into 588

reasoning models for downstream tasks like ques- 589

tion answering. 590

Our WAREL collection paradigm is efficient (it 591

took < 4 months compared to decades of effort 592

for OMCS) and hence can be extended to other 593

languages, communities and cultures. This pro- 594

vides the opportunity to collect diverse associa- 595

tions avoiding the pitfalls of a bias toward English- 596

speaking cultures in NLP (Liu et al., 2021b). 597
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A Dataset Collection Details for WAREL744

Our study received ethics approval (# 2021-22495-745

22206-5) from the university ethics review board.746

Full Instructions We collect the WAREL dataset747

by crowdsourcing via Amazon Mechanical Turk.748

Figure 5 presents the annotation interface. The749

instruction page, includes (1) the Plain English750

Statement for this project, including what data will751

be collected, how the data will be processed and752

used (2) a consent form to inform workers the po-753

tential any risks so that workers can decide whether754

to work on this task. To avoid any potential con- 755

fronting content, we removed profane words 10 756

before sampling cue seeds from SWOW for Exper- 757

iment1. 758

The payment for both experiments is calculated 759

based on the minimum wage salary in the coun- 760

try where the authors located in, which is much 761

higher than the United States (the location of our 762

annotators). 763

Task and Payment for Experiment 1 We take 5 764

words as a batch and assign it to 10 workers. Each 765

worker first produces up to three responses for all 766

five words, and then generates an explanation given 767

each pair of associated words. Workers can skip 768

cues (if their meaning is unknown) or provide fewer 769

than three responses (if they cannot think of more). 770

Each batch is paid with $0.66 reward with extra 771

bonus up to $1, depending on the number of known 772

cues, associations and explanations. This task takes 773

approximately 5 minutes, as estimated by locally 774

conducted pilot studies. Finally, we paid an average 775

of $1.48 per batch (estimated time =5 mins; hourly 776

wage ≈ $17.76) . 777

Task and Payment for Experiment 2 Each 778

batch consists of 30 (c1, c2, s) triples. A worker 779

will select the most appropriate relation label from 780

a pre-specified list to each triple in the batch. This 781

task takes approximately 15 mins to 30 mins, vary- 782

ing from different individuals. The amount of time 783

is estimated by three pilot by the authors and volun- 784

teers who are college students from the university. 785

Each batch is paid with $1 reward with extra bonus 786

up to $8, depending on the annotation quality. We 787

paid an average of 5.92 per batch (estimated time 788

= 15 mins to 30 mins; hourly wage ≈ $11.84 to 789

$23.68). 790

Data Privacy and Usage Our collected data does 791

not include any personal information except the 792

worker ID, which is a unique identifier for each 793

AMT worker. To anonymize the data, we removed 794

the worker ID in our published dataset. Our col- 795

lected data will be publicized on for research pur- 796

pose. 797

B Data Statistics for WAREL and CNREL 798

Table 4 presents the statistics of CNREL and 799

WAREL. It can be seen that the two datasets share 800

some similarities in terms of the number of relation 801

10https://www.cs.cmu.edu/ biglou/resources/bad-words.txt
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Experiment1: 
Word Association & Explanation

Experiment2:
Relation Labelling

Figure 5: Annotation interface for collecting WAREL.

inventory, the average sentence length, the number802

of vocabularies. One key difference is the scale of803

sentences per (c1, c2) share. Each pair in CNREL804

are mentioned in multiple sentences (average is805

6.7), but about only 1 sentence in WAREL.806

B.1 CNREL807

Figure 6 and Figure 7 present the train, dev and test808

relation distribution on CNREL. The dev and test809

set are both label balanced, but the distribution of810

the training set still have the long-tail problem.811
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Figure 6: Relation distribution on CNREL training set.

B.2 WAREL812

Table 7 provides the definition for relation inven-813

tory we used for collecting WAREL. Figure 8814
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Figure 7: Relation distribution CNREL dev and test set.
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Dataset split #pairs #sent #cn_rel #avg.sent_len #vocab
CNREL train 12342 83824 30 10.3 6470

dev 1982 2956 17 10.5 1926
test 4733 11826 17 10.4 3363

WAREL train 15330 19002 - 9.7 6281
dev 292 350 16 8.9 1225
test 283 349 16 9.0 1220

Table 4: The statistics of CNREL and WAREL.

shows the relation distribution of WAREL dev and815

test set.816

C Quality Control817

C.1 Quality Control in Experiment 1818

We list the detailed criteria to control the quality of819

the generated explanations in the Experiment 1. To820

collect high quality data, we introduce a number of821

strategies to control the quality, starting from the822

design of the guideline, to the selection of work-823

ers and the post-selection of explanations. In the824

guidelines, we set two criteria for the generated825

explanation: (1) the explanation must include the826

cue and association words. Different word forms827

(e.g., plural “seed” → “seeds”) are allowed to en-828

sure grammaticality; (2) the explanation should be829

a single sentence, and between 5 and 20 words830

long.831

After obtaining the explanation, we filter out832

workers and explanations using the following cri-833

teria: a) workers who marked more than 3 of 5834

cues as unknown b) workers whose explanations835

did not include the cue and association; or c) work-836

ers whose explanations rigidly follow a template837

(using manual inspection).838

C.2 Labelled samples for Experiment 2839

Table 5 presents some examples along their labels840

from five annotators. We discarded examples for841

which no two annotators agreed on a label (exam-842

ples in the bottom part of Table 5).843

D Training and Hyperparameters844

All of our experiments are run on single GPU of845

NVIDIA V100 SXM2 (32G). As the parameters in846

encoder is small (or is fixed), the training time of847

each run is within an hour on both datasets.848

Table 6 presents the hyperparameters we use849

in training three models. We manually tune the850

key hyper-parameter: learning rate on different851

sets using grid search from { 0.0001, 0.001, 0.005,852

0.007} and the best one for each model is reported 853

in Table 6. 854
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Type cue association explanation {Annotation: count}

R
et

ai
ne

d honey sweet honey is a very sweet substance. {Perceivable-Property: 5}
gypsy europe gypsies now mainly live in europe. {Location: 4, Thematic: 1}
baked fried baked and fried are two ways to prepare

food.
{Members-of-the-same-Category: 3, The-
matic: 1, PartOf: 1}

D
is

ca
rd

ed buddy together buddies love to spend time together. {Emotion-Evaluation: 1, Result-In: 1, The-
matic: 1, Location: 1, Inherent-Property:
1}

breath oxygen when you breath you inhale oxygen. {Result-In: 1, Action: 1, PartOf: 1, Has-
Prerequisite: 1, Function: 1}

faithful committed being faithful in a relationship involves
being committed to the other person.

{Members-of-the-same-Category: 1, The-
matic: 1, PartOf: 1, Synonym: 1, Has-
Prerequisite: 1}

staff employed staff is the people employed by a particu-
lar organization.

{PartOf: 1, Thematic: 1, Has-Prerequisite:
1, Members-of-the-same-Category: 1, Func-
tion: 1}

Table 5: Samples of retained and discarded instances in WAREL Experiment 2. The Annotations column indicates
the labels assigned to the instance together with assignment count out of 5 annotations.

Parameter Value

Optimizer AdaGrad
Number of epochs 10
Learning rate 0.007
Batch size 100
Feature dimension 10
Early stop patience 3
Ls coefficient 0.01
Ld coefficient 0.02

(a) Feature

Parameter Value

Optimizer Adam
Number of epochs 10
Learning rate 0.001
Batch size 100
Early stop patience 10
Entity type dimension 10
Ls coefficient 0.01
Ld coefficient 0.02

(b) EType+.

Parameter Value

Optimizer Adam
Number of epochs 5
Learning rate 0.001
Batch size 64
Early stop patience 3
Ls coefficient 0.01
Ld coefficient 0.02

(c) BERT

Table 6: Hyper-parameter values used in our experiments.
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Coarse Relation Fine-grained Relation Definition

Concept-Properties Perceivable-Property A perceivable property, including shape, color, pattern, texture,
size, touch, smell, and taste.

Concept-Properties PartOf A a part or component of an entity or event.
Concept-Properties Inherent-Property The inborn, native or instinctive properties, which cannot be

directly perceived when encountering a concept, that requires
some kind of inference from perceptual data.

Concept-Properties Material-MadeOf The material of something is made of.
Concept-Properties Emotion-Evaluation An affective/emotional state or evaluation toward the situation

or one of its components.
Situational Time A time period associated with a situation or with one of its

properties.
Situational Location A place where an entity can be found, or where people engage

in an event or activity.
Situational Function The typical purpose, goal or role for which cue is used for asso-

ciation. Or the reverse way.
Situational Has-Prerequisite In order for the cue to happen, association needs to happen or

exist; association is a dependency of cue. Or the reverse way.
Situational Result-In The cue causes or produces the association. Or the reverse way.

A result (either cue or association) shoud be involved.
Situational Action An action that a participant (could be the cue, association or

others) performs in a situation. Cue and association must be
among the (participant, action, object).

Situational Thematic Cue and association participate in a common event or scenario.
None of the other situational properties applies.

Taxonomic Category-Exemplar-Pairs The cue and association are on different levels in a taxonomy.
Taxonomic Members-of-the-same-Category The cue and assoiation are members of the same category.
Taxonomic Synonym The cue and associaiton are synonym.
Taxonomic Antonym The cue and association are antonym.
Linguistic Lexical Cue and association share the same base form.
Linguistic Common-Phrase The cue and association is a compound or multi-word expression

or form a new concept with two words.
Linguistic Sound-Similarity The cue and association are similar in sound.
None-of-the-Above None-of-the-Above Use this label only if other labels can not be assigned to the

instance or you don’t understand the cue, association or explana-
tion.

Table 7: The definition of associative relations used for labelling WAREL.
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