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Abstract

A fundamental objective in intelligent robotics is to move towards lifelong learning robots
that can learn to manipulate in unseen scenarios over time. However, continually learning new
tasks and manipulation skills from demonstration would introduce catastrophic forgetting
due to data distribution shifts. To mitigate the problem, we store a subset of demonstrations
from previous tasks and utilize them in two manners: leveraging experience replay to retain
learned skills and applying a novel Retrieval-based Local Adaptation technique to recover
relevant knowledge. Besides, task boundaries and IDs are unavailable in scalable, real-world
settings, our method enables a lifelong learning robot to perform effectively without relying
on such information. We also incorporate a selective weighting mechanism to focus on
the most ”forgotten” action segment, ensuring effective skill recovery during adaptation.
Experimental results across diverse manipulation tasks demonstrate that our framework
provides a plug-and-play paradigm for lifelong learning, enhancing robot performance in
open-ended, task-agnostic scenarios.

1 Introduction

Significant progress has been made in applying lifelong learning to domains such as computer vision (Huang
et al., 2024; Du et al., 2024; Cai & Müller, 2023; Gurbuz et al., 2024; Mai et al., 2021; Singh et al., 2024)
and natural language processing (Shi et al., 2024; Razdaibiedina et al., 2023; de Masson D’Autume et al.,
2019; Biesialska et al., 2020). However, extending lifelong learning to robotics poses additional challenges, as
robots must interact with the environment under sequential decision-making constraints. The high cost and
complexity of physical interactions (Zhu et al., 2022; Du et al., 2023) limit the amount of available training
data, making it critical to develop effective strategies to sustain robots’ long-term performance (Thrun &
Mitchell, 1995). Additionally, in realistic and scalable scenarios, lifelong learning robots must operate in a
task-agnostic setting, where they are not provided with specific task boundaries or IDs for each new task.
This further complicates the challenge, as robots must continually learn without knowing task distinctions.

In practical lifelong robot learning settings (Liu et al., 2024; 2023) — distinct from offline pre/post-training
on large cross-embodied datasets — robots learn tasks sequentially, with limited access to past data due to
on-device storage, bandwidth, and privacy constraints. This process often faces significant task distribution
shifts, leading to catastrophic forgetting. While many approaches have been proposed to address this challenge
(Wang et al., 2024a), they often rely on task boundaries or IDs, limiting their scalability in open-ended
real-world scenarios (Koh et al., 2021).

To tackle these issues, we propose a task-agnostic, memory-based approach for lifelong learning of robotic
manipulation skills from demonstrations. Noteworthy, “task-agnostic” does not mean the robot ignores
the task context—it should be aware of language instructions and observations to fulfill the job; rather, it
means the proposed algorithm effectively handles multiple continually encountered tasks and integrates new
knowledge without relying on known task boundaries or IDs. Our method employs a compact storage memory
M that holds a small set of previous tasks’ demonstrations. During training, we replay samples from M to
preserve prior knowledge and skills. However, partial forgetting remains inevitable due to the multitasking
nature of lifelong learning and the emphasis on training the current new task (Wang et al., 2024b). Therefore,
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Figure 1: Method Overview. Our approach addresses the challenge of lifelong learning without relying on
task boundaries or IDs. To emulate human learning patterns, we propose a method consisting of three
phases: Lifelong Learning, Reviewing, and Testing. In the Lifelong Learning phase, the robot is exposed to
various demonstrations, storing a subset of the data in a storage memory M. During the Reviewing phase
before policy deployment, the method retrieves the most relevant data to locally adapt the policy network,
enhancing performance in the deployment scenario.

instead of attempting to retain every detail throughout continual training, more effective mechanisms are
needed to mitigate forgetting.

Human studies show that once knowledge is learned, even if it is forgotten over time, an efficient and targeted
review can trigger memory retrieval and rapidly recover lost proficiency—often faster than learning for the
first time (Sara, 2000; Roediger & Butler, 2011; Ebbinghaus, 2013; MacLeod, 1988). Inspired by the findings,
we enable robots to perform fast local adaptation before policy deployment, allowing them to review and
recover forgotten manipulation skills accumulated through lifelong learning. Crucially, we use the same
storage memory M for adaptation, avoiding any additional storage burden. Our system retrieves relevant
demonstrations based on contextual similarity (Du et al., 2023; van Dijk et al., 2024; de Masson D’Autume
et al., 2019) and automatically emphasizes the most failure-prone segments of each skill—typically critical
steps where mistakes are likely to occur. This selective weighting, without requiring human intervention
(Spencer et al., 2022; Mandlekar et al., 2020), promotes stable, task-agnostic lifelong learning. Our key
contributions are summarized as:

• Task-agnostic Retrieval-Based Local Adaptation: A novel local adaptation strategy that
retrieves relevant past demonstrations from M to recover forgotten skills, without requiring task
boundaries or IDs.

• Selective Weighting Mechanism: An automated scheme that emphasizes the most challenging
segments of retrieved demonstrations, optimizing real-time adaptation.

• A General Paradigm Solution: Our approach serves as a plug-and-play solution, complementing
existing memory-based lifelong learning algorithms by enabling skill recovery in sequences of open-
ended robotics tasks.

2 Related Works

Lifelong Robot Learning. Robots operating in continually changing environments need the ability to
learn and adapt on-the-fly (Thrun, 1995; Grollman & Jenkins, 2007; Mendez-Mendez et al., 2023). In recent
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years, lifelong robot learning has been applied to SLAM (Yin et al., 2023; Gao et al., 2022; Vödisch et al.,
2022), navigation (Kim et al., 2024), and manipulation (Chen et al., 2023; Xie & Finn, 2022; Parakh et al.,
2024; Lu et al., 2022; Auddy et al., 2023; Yang et al., 2022). Large language models have also been utilized
to improve knowledge transfer (Bärmann et al., 2023; Tziafas & Kasaei, 2024; Wang et al., 2023).

To standardize the investigation of lifelong decision-making and bridge research gaps, Liu et al. (2024)
introduced LIBERO, a benchmarking platform for lifelong robot manipulation where robots learn multiple
atomic manipulation tasks sequentially. Recent works exploring lifelong robot learning based on it include
Liu et al. (2023), which assigns a specific task identity to each task; Wan et al. (2024), which requires a
pre-training phase to build an initial skill set before lifelong learning; and Lee et al. (2024), tackles multi-stage
tasks by incrementally learning skill prototypes for each subgoal, which introduces additional complexities in
managing subgoal sequences. However, catastrophic forgetting for lifelong robot learning remains an open
challenge, especially when task boundaries and IDs are not available.

Task-agnostic Lifelong Learning. Despite the success of lifelong learning under clearly labeled task
sequences, a significant gap remains in algorithms that can operate independently of task boundaries or IDs
during both training and inference, thus aligning more closely with realistic and scalable scenarios. Many
approaches (Lee et al., 2020; Chen et al., 2020; Ardywibowo et al., 2022) focus on specialized parameters
via expanding network architectures. Meanwhile, researchers have tackled implicit task boundaries in
regularization-based methods by consolidating knowledge upon detecting a loss “plateau” (Aljundi et al.,
2019a; Kirkpatrick et al., 2017; Aljundi et al., 2018; Zenke et al., 2017) or through a bio-inspired approach
using selective sparsity and recurrent lateral connections (Lässig et al., 2023). Memory-based algorithms
further mitigate forgetting by prioritizing informative samples (Sun et al., 2022), discarding less critical
examples (Koh et al., 2021), refining decision boundaries (Shim et al., 2021), or enhancing gradient diversity
(Aljundi et al., 2019b). Methods aiming to exploit the replay buffer in online scenarios (Mai et al., 2021;
Caccia et al., 2021) have also demonstrated notable success. However, these algorithms remain largely
unexplored in robotic applications that entail sequential decision-making and real-world physical interactions.

Robot Learning with Adaptation. Recent advances have shown robots adapting to dynamic environments,
such as executing agile flight in strong winds (O’Connell et al., 2022), adapting quadruped locomotion through
test-time search (Peng et al., 2020), and generalizing manipulation skills from limited data (Julian et al., 2020;
Memmel et al., 2024; Lin et al., 2024). To enable few-shot or one-shot adaptation, meta-learning has been
extensively explored (Finn et al., 2017a) and successfully applied to robotics (Kaushik et al., 2020; Nagabandi
et al., 2018; Finn et al., 2017b; Schmied et al., 2023). However, meta-learning methods typically assume
access to a full distribution of tasks during meta-training, with both training and testing performed on tasks
sampled from this distribution. In contrast, our lifelong robot learning scenario operating sequentially lacks
such access, presenting unique challenges of catastrophic forgetting.

3 Preliminaries

To model realistic settings for lifelong robot learning, we define a set of manipulation tasks as T = {Tk}, k =
1, 2, . . . , T , where each Tk encompasses a distribution over environmental variations Ek (e.g., object positions,
robot initial states) and language descriptions Gk to guide robot’s actions (e.g., “pick the bottle and put it
into the basket,” “place the bottle in the basket please”). From each Tk, we sample specific environmental
settings e ∼ Ek and language descriptions g ∼ Gk to generate a concrete scenario Sk

n ∼ p(Tk), which also
serves as the basis for collecting demonstrations τk

n . Multiple demonstrations form the training dataset
Dk = {τk

n}, n = 1, 2, . . . , N for task Tk.

Notably, multiple tasks may share overlapping distributions in either environmental settings or language
descriptions. This natural setting closely mirrors real-world conditions, where it is difficult to determine
which task generated a given scenario - tasks are not always divisible. This ambiguity underpins the proposed
method’s task-agnostic design, which emphasizes retrieving relevant information rather than relying on task
boundaries or IDs.

The robot utilizes a visuomotor policy learned through behavior cloning to execute manipulation tasks by
mapping sensory inputs and language description to motor actions. The policy is trained by minimizing the
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Figure 2: Policy Backbone Architecture used in Training and Testing. We input various data modalities into
the system, including demonstration images, language descriptions, and the robot arm’s proprioceptive input
(joint and gripper states). Pretrained R3M (Nair et al., 2022) and (SentenceSimilarity, 2024) models process
the image and language data respectively. Along with the proprioceptive states processed by an MLP, the
embeddings are concatenated and passed through a Transformer to generate temporal embeddings. A GMM
(Gaussian Mixture Model) is then used as the policy head to sample actions for the robot. Throughout both
training and testing, we utilize a storage memory to store a subset of demonstrations gathered throughout
the training process.

discrepancy between the predicted actions and expert actions from demonstrations. Specifically, we optimize
the following loss function across a sequence of tasks T with Dk. Notably, Dk is only partially accessible for
k < K from the storage memory M, where K denotes the current task:

θ∗ = arg min
θ

1
K

K∑
k=1

E(ot,at)∼Dk, g∼Gk

[
lk∑

t=0
L (πθ(o≤t, g), at)

]
, (1)

θ denotes the model parameters, lk represents the number of samples for task k, o≤t denotes the sequence of
observations up to time t in demonstration n (i.e., o≤t = (o0, o1, . . . , ot)), and at is the expert action at time t.
The policy output, πθ(o≤t, g), is conditioned on both the observation sequence and the language description.

By optimizing this objective function, the policy effectively continues learning new knowledge and skills in its
life span, without the need for task boundaries or IDs, thereby facilitating robust and adaptable task-agnostic
lifelong learning.

4 Retrieval-based Weighted Local Adaptation (RWLA) for Lifelong Robot Learning

In this section, we outline our proposed method - Retrieval-based Weighted Local Adaptation (RWLA) -
depicted in Figure 1, with corresponding pseudocode in Algorithm 1. To effectively interact with complex
physical environments, the network integrates multiple input modalities, including visual inputs from
workspace and wrist cameras, proprioceptive inputs of joint and gripper states, and language descriptions.

Instead of training all modules jointly in an end-to-end manner, we employ pretrained visual and language
encoders that leverage prior semantic knowledge. Pretrained encoders enhance performance on downstream
manipulation tasks (Liu et al., 2023) and are well-suited to differentiate between various scenarios and tasks.
They produce consistent representations that are essential both for managing multiple tasks throughout
lifelong training and for retrieving relevant data to support our proposed local adaptation before policy
deployment.
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Algorithm 1 RWLA for Task-agnostic Lifelong Robot Learning
Lifelong Learning Phase:

1. Initialize model parameter θ, storage memory M = {}, and tasks {Ti}, i = 1, 2, . . . , T
2. K ∈ {1, 2, . . . , T}

(a) Train θ on DK ∪M using Eq 1
(b) Randomly store a small number of demonstrations from DK into M

During deployment, robot encounters a testing scenario Sdeploy ∼ p(Ti), 1 ≤ i ≤ T :
Reviewing Phase:

1. Rollout 10 episodes on Sdeploy to assess robot’s performance with θ
2. Retrieve Ñ demonstrations from M based on embedding distance using Eq 2 (Section 4.1)
3. Compute wt,n based on selective weighting (Section 4.2.1)
4. θ′ ← Locally adapt θ using Eq 3 as skill recovery within limited epochs (Section 4.2.2)

Testing Phase: Test θ′ in Sdeploy

When learning new tasks, the robot preserves previously acquired skills by replaying prior manipulation
demonstrations stored in storage memory M (Chaudhry et al., 2019). Trained with the combined data from
the latest scenarios and M, the model can acquire new skills while mitigating catastrophic forgetting of
old tasks, thereby maintaining a balance between stability and plasticity (Wang et al., 2024a). Figure 2
illustrates the network architecture, and implementation details are provided in Appendix A.2.

4.1 Data Retrieval

The proposed task-agnostic lifelong learning algorithm retrieves relevant demonstrations from M based on
similarity to the deployment scenario Sdeploy. Besides, due to the blurry task boundaries, some tasks share
similar visual observations but differ in their task objectives, while others have similar goals but involve
different backgrounds, objects, etc. To account for these variations, the retrieval process compares both visual
inputs from the workspace camera (Du et al., 2023) and language descriptions (de Masson D’Autume et al.,
2019) using L2 distances of their embeddings, following a simple rule:

DR = αv · Dv + αl · Dl, (2)

where DR is the weighted retrieval distance, Dv represents the distance between the embeddings of the
scene observation from the workspace camera, and Dl depicts the distance between the language description
embeddings. The parameters αv and αl control the relative importance of visual and language-based distances.
Based on the distances DR, the most relevant demonstrations can be retrieved from M, as illustrated in
Figure 3.

4.2 Weighted Local Adaptation

4.2.1 Learn from Errors by Selective Weighting

To make the best use of the limited data, we enhance their utility by assigning weights to critical or vulnerable
segments in each retrieved demonstration. Specifically, before local adaptation, the robot performs several
rollouts on the encountered scenario using the current model trained during the Lifelong Learning phase. This
procedure allows us to evaluate the model’s performance and identify any forgetting effects (as illustrated in
step 2, the Reviewing phase in Figure 1).

If a trial fails, we compare each image in the retrieved demonstrations against all images from the failed
trajectories using L2 distance of their embeddings. This comparison yields an Embedding Distance Matrix
(EDM, shown in Figure 11) for each retrieved demonstration, where each value represents an embedding
distance of a demonstration frame and an image from the failed rollout. This metric determines whether a
particular frame has occurred during a failed rollout. Through this process, we identify the Separation Segment

— frames in a demonstration where the failed rollout’s behavior starts to diverge from the demonstration (see
Figure 4). Since these Separation Segments highlight expected behaviors that did not occur, we consider
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Figure 4: Trajectory and Weighting Visualizations.
To identify the point of failure, we compute the
similarity between the retrieved demonstrations and
failed trajectories at each frame. Once the separation
segment is detected, higher weights are assigned to
the frames in the segment of retrieved demonstrations
during local adaptation.

them critical points contributing to failure. We assign higher weights to these frames, which will scale the
losses during local adaptation. Detailed heuristics and implementation specifics are provided in Appendix
A.4.

4.2.2 Local Adaptation with Fast Finetuning

Finally, we fine-tune the network’s parameters to better adapt to the deployment scenario Sdeploy using the
retrieved demonstrations from M, focusing more on the Separation Segments identified through selective
weighting. Despite this limited data, our experiments demonstrate that the model can effectively recover
learned knowledge and skills and improve the robot’s performance across various tasks. Overall, the proposed
weighted local adaptation is formalized as follows:

θ∗ = arg min
θ

Ñ∑
n=1

ln∑
t=1

wt,nL (πθ(o≤t,n, gn), at,n) , (3)

where Ñ is the number of retrieved demonstrations, ln is the length of demonstration n, and wt,n is the weight
assigned to sample t in demonstration n. The variables o≤t,n and at,n denote the sequence of observations
up to time t and the corresponding expert action, respectively, while gn is the language description for
demonstration n. The parameter θ represents the network’s parameters before local adaptation.

5 Experiments

We conduct a comprehensive set of experiments to evaluate the effectiveness of RWLA for task-agnostic
lifelong robot learning. Specifically, our experiments aim to address the following key questions:

1. Effect of Blurry Task Boundaries: How do the blurry task boundaries influence the model’s
performance and data retrieval during testing?

2. Advantages of RWLA: Does the proposed approach enhance the robot’s performance across diverse
tasks?
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3. Impact of Selective Weighting: Is selective weighting based on rollout failures effective?

4. Generalizability: Can our method be applied to different memory-based lifelong robot learning
approaches, serving as a paradigm that enhances performance?

5. Robustness: How robust is our approach to imperfect demonstration retrieval, particularly when
ambiguous task boundaries cause retrieved examples to mismatch the deploying scenario?

5.1 Experimental Setup

5.1.1 Benchmarks

We evaluate our proposed methods using LIBERO benchmarks (Liu et al., 2024): libero_spatial,
libero_object, libero_goal, and libero_different_scenes. These environments feature a variety of
task goals, objects, and layouts. The first three benchmarks all include 10 distinct task goals (e.g., “Put
the bottle into the basket.”, “Open the middle drawer of the cabinet.”), each with up to 50 demonstrations
collected from sampled simulation scenarios with different initial states of objects and the robot. Specifically,
libero_different_scenes is created from LIBERO’s LIBERO_90, which encompasses 20 tasks from distinct
scenes.

We paraphrased the assigned single task goal into diverse language descriptions to obscure task boundaries
(See Figure 7). These enriched language descriptions were generated by rephrasing the original task goal from
the benchmark using a large language model provided by Phi-3-mini-4k-instruct Model (mini-4k instruct,
2024), ensuring consistent meanings while varying phraseology and syntax. Please see Appendix A.3 for more
details.

5.1.2 Baselines

We evaluate our proposed method against the following baseline approaches:

1. Elastic Weight Consolidation (EWC) (Kirkpatrick et al., 2017): A regularization-based approach
that relies on task boundaries and restricts network parameters’ updates to prevent catastrophic
forgetting of previously learned tasks.

2. Experience Replay (ER) (Chaudhry et al., 2019): A core component of our training setup, ER
utilizes a storage memory to replay past demonstrations, helping the model maintain previously
acquired skills and mitigate forgetting.

3. Average Gradient Episodic Memory (AGEM) (Hu et al., 2020): Employs a memory buffer to
constrain gradients during the training of new tasks, ensuring that updates do not interfere with
performance on earlier tasks.

4. AGEM-RWLA: An extension of AGEM that incorporates RWLA before policy deployment,
enhancing the model’s ability to adapt to specific scenarios. This allows us to assess the generalizability
of our proposed method as a paradigm framework on other memory-based lifelong learning approaches.

5. PackNet (Mallya & Lazebnik, 2018): An architecture-based lifelong learning algorithm that itera-
tively prunes the network after training each task, preserving essential nodes while removing less
critical connections to accommodate subsequent tasks. However, its pruning and post-training phases
rely heavily on clearly defined task IDs, making PackNet a reference baseline when the IDs are
well-defined.

5.1.3 Metrics

We focus on the success rate of task execution, as it is a crucial metric for manipulation tasks in interactive
robotics. Consequently, we adopt the Average Success Rate (ASR) as our primary evaluation metric to
address the challenge of catastrophic forgetting within the lifelong learning framework, evaluating success
rates on three random seeds across all diverse tasks within each benchmark.
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Table 1: Comparison with Baselines. The Average Success Rates (ASR, %) across various baselines are shown
below. We provide PackNet’s performance as a reference point for cases where task IDs are accessible. Both
EWC and vanilla AGEM demonstrate weak performance across all benchmarks. Under our Retrieval-based
Weighted Local Adaptation (RWLA) paradigm, both ER and AGEM show significant improvements over
their vanilla counterparts, highlighting the effectiveness of RWLA.

Benchmark\Method
Task Boundaries Task IDs Task-agnostic

EWC PackNet AGEM AGEM-RWLA ER ER-RWLA (ours)
libero_spatial 0.0 53.17 7.33 35.83 15.67 39.83
libero_object 1.50 73.67 27.17 51.17 56.50 62.33
libero_goal 0.33 66.33 10.83 58.67 52.33 62.33

libero_different_scenes 2.58 32.92 20.43 41.75 34.08 45.17
Overall ASR 1.10 56.52 16.44 46.85 39.65 52.42

5.1.4 Model, Training, and Evaluation

As illustrated in Figure 2, our model utilizes pretrained encoders for visual and language inputs: R3M (Nair
et al., 2022) for visual encoding, Sentence Similarity model (SS Model) (SentenceSimilarity, 2024) for language
embeddings, and a trainable MLP-based network to encode proprioceptive inputs. Embeddings from ten
consecutive time steps are processed through a transformer-based temporal encoder, with the resulting output
passed to a GMM-based policy head for action sampling. Specifically, R3M, a ResNet-based model trained on
egocentric videos using contrastive learning, captures temporal dynamics and semantic features from scenes,
while the Sentence Similarity Model captures semantic meanings in language descriptions, enabling the model
to differentiate between various instructions.

To standardize the comparisons with baseline lifelong robot learning algorithms in LIBERO benchmarks, the
model first undergoes a Lifelong learning phase, where it is trained sequentially on demonstrations from 10
or 20 tasks, depending on the specific benchmark, with each task trained for 50 epochs. A small number of
demonstrations from each task is stored in M, playing a dual-use for experience replay and RWLA. Every 10
epochs, we check the model’s performance and save the version that achieves the highest Success Rate to
prevent over-fitting.

After training on all tasks sequentially, we conduct reviewing and testing on various scenarios sampled from
each task for comprehensive analysis. During the reviewing stage, we firstly evaluate potential forgetting by
having the agent perform 10 rollout episodes on the deployment scenario Sdeploy. We then retrieve the most
similar demonstrations fromM and fine-tune the model for only 20 epochs using the retrieved demonstrations
with selective weighting. Finally, we deploy the adapted model for 20 episodes—the testing phase—to assess
performance improvements. All training, local adaptation, and testing in the benchmarks are conducted
using three random seeds (1, 21, and 42) to reduce the impact of randomness.

5.2 Results

5.2.1 Comparison with Baselines

To address Question 2, we compared RWLA, with all baseline approaches. As shown in Table 1, ER-
RWLA consistently outperforms baselines of EWC, AGEM, ER, and AGEM-RWLA. By incorporating local
adaptation before policy deployment — our method mirrors how humans review and reinforce knowledge
when it is partially forgotten — the continually learning robot could also regain its proficiency on previous
tasks.

In contrast, PackNet — relying on explicit task IDs — allocates a separate slice of network weights to each
new task. Noteworthy, this strategy works well early on, but as the number of tasks increases, the network’s
trainable capacity under PackNet diminishes, leaving less flexibility for future tasks. This limitation becomes
evident in the libero_different_scenes benchmark, which includes 20 tasks, see Appendix A.6. PackNet’s
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success rate drops significantly for later tasks, resulting in poor overall performance and highlighting its
constraints on plasticity compared with the proposed ER-RWLA.

Additionally, when we applied RWLA to the AGEM baseline (AGEM-RWLA), it also improved its performance,
demonstrating the effectiveness of our method as a paradigm for memory-based lifelong robot learning methods.
These findings support our conclusions regarding Question 4.

5.2.2 Ablation Studies

Table 2: Ablation Study on Selective Weighting. This table presents ASR
(%) for uniform (RULA) and weighted (RWLA) local adaptation across 15,
20, and 25 epochs of adaptation under three random seeds, with evalua-
tions conducted on all 10 tasks within the benchmarks: libero_spatial,
libero_object, and libero_goal. Compared to RULA, selective weighting
scheme improves the method’s performance on most benchmarks.

Benchmark Method 15 Epochs 20 Epochs 25 Epochs Overall ASR

libero_spatial
RULA 35.33 38.17 38.17 37.22
RWLA 36.17 39.83 37.83 37.94

libero_object
RULA 57.83 60.67 58.00 58.83
RWLA 58.00 62.33 61.50 60.61

libero_goal
RULA 61.33 62.00 66.17 63.17
RWLA 62.83 62.33 67.50 64.22

We performed two ablation
studies to validate the effec-
tiveness of our implementation
choices and address Questions
1, 3, and 5.

Selective Weighting. In
the first ablation, we evaluated
the impact of selective weight-
ing on libero_spatial,
libero_object, and
libero_goal benchmarks
to demonstrate its importance
for effective local adaptation.
We compared a variant of
RWLA: RULA, which applies
uniform local adaptation
without selective weighting,

adapting retrieved demonstrations uniformly. Both methods are trained with ER. Since early stopping during
local adaptation at test time is infeasible, and training can be unstable, particularly regarding manipulation
success rates, we conducted RWLA using three different numbers of epochs — 15, 20, and 25.

The results presented in Table 2 indicate that selective weighting enhances performance across different
adaptation durations and various benchmarks, addressing Question 3. The gains over uniform adaptation
are modest but systematic, echoing findings from (Byrd & Lipton, 2019), that importance weighting does
not yield substantial performance jumps once expressive models have converged. Crucially, RWLA achieves
these consistent improvements with negligible overhead — only a handful of demonstrations and a few extra
adaptation epochs — making selective weighting a practical, low-cost boost for reliable skill recovery.

Language Encoding Model. To investigate the impact of language encoders under blurred task boundaries
with paraphrased descriptions, we ablated the choice of language encoding model. Specifically, we compared our
chosen Sentence Similarity (SS) Model, which excels at clustering semantically similar language descriptions,
with BERT, the default language encoder from LIBERO. We selected the libero_goal benchmark for this
study because its tasks are visually similar, making effective language embedding crucial for distinguishing
tasks and aiding data retrieval for local adaptation.

Our experimental results yield the following observations:

(1) As illustrated in Figure 5 (a) and (b), the PCA results show that the SS Model effectively differentiates
tasks, whereas BERT struggles, leading to inadequate task distinction. Consequently, as shown in Figure 5
(c), the model trained with BERT embeddings on libero_goal performs worse than the one trained with SS
Model embeddings.

(2) Due to this limitation, BERT is unable to retrieve the most relevant demonstrations (those most similar
to the current scenario from the storage memory M). As a result, RWLA with BERT does not achieve good
performance. These two findings address Question 1.
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(c) Bar Chart of Average Success Rates (ASR) and Retrieval Accuracy (RA) across 10 tasks

Figure 5: In Figures 5a and 5b, PCA is used to visualize the distribution of language embeddings of 3 tasks
from BERT and SS, respectively. In Figure 5c, the SS model, which distinguishes task descriptions, has
higher average success rates (ASR) and retrieval accuracy (RA) than BERT. The error bars represent the
standard deviations of ASR and RA for each task over 20 repetitions with 3 random seeds.

(3) Interestingly, from Figure 5 (c), despite BERT’s low Retrieval Accuracy (RA = proportion of the top Ñ
demonstrations retrieved fromM that come from the ground-truth task of Sdeploy), if it attains a moderately
acceptable rate (e.g., 0.375), the RWLA based on BERT embeddings can still enhance model performance.
This demonstrates the robustness and fault tolerance of our proposed approach, further addressing Questions
4 and 5.

6 Conclusion and Discussion

We introduce a task-agnostic lifelong robot learning framework that combines retrieval-based local adaptation
with selective weighting before policy deployment. During continual learning, when performance on a
previously learned task degrades, the robot triggers an on-demand “review” phase that uses just a few stored
demonstrations to rapidly recover the forgotten skills — without requiring task IDs or boundaries. The
method is robust and plug-and-play, seamlessly enhancing the memory-based lifelong learning robot’s ability
to retain and recover prior knowledge while it continues to acquire new skills.

A limitation of our framework is the scalability of the storage memory M, as we continuously accumulate
demonstrations. However, since image embeddings—serving dual purposes (input to the manipulation policy
and data retrieval for local adaptation)—are generated by a pre-trained model, our approach is naturally
extendable: this allows for significant storage reduction in future implementations, by simply storing smaller
embeddings instead of raw images in M.
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A Appendix for Task-agnostic Lifelong Robot Learning with Retrieval-based
Weighted Local Adaptation

A.1 Notations

Table 3: Mathematical Notations

Symbol Description
k Index of tasks, k = 1, . . . , K
K Total number of tasks
n Index of retrieved demonstrations
Ñ Number of retrieved demonstrations
i Index of samples within a demonstration
t Time step
lk Number of samples for task k
ln Length of retrieved demonstration n
Tk Task k (represented by multiple goal descriptions)
Dk Set of demonstrations for task k
τk

i Demonstration (trajectory) i for task k
M Storage memory buffer
ot Observation vector at time t

o≤t Sequence of observation vectors up to time t to deal with partial observability
at Action vector at time t
ak

t Action vector at time t for task k
xi,n Input of sample i in retrieved demonstration n
yi,n Label (action) of sample i in retrieved demonstration n
θ Model parameters
θ∗ Optimal model parameters
θk Model parameters after adaptation on task k
πθ Policy parameterized by θ

πθ(s≤t, Tk) Policy output given states up to time t and task Tk

L Loss function
p(y | x; θ) Probability of label y given input x and parameters θ

wi,n Weight assigned to sample i in retrieved demonstration n during adaptation
E Expectation operator
gi Goal descriptions in task Tk

A.2 Implementation and Training Details

A.2.1 Network Architecture and Modularities

Table 4 summarizes the core components of our network architecture, while Table 5 details the input and
output dimensions.

Image Encoding: We employ the R3M visual encoder (Nair et al., 2022), pretrained on large-scale robotic
data, to extract rich image features. These features are then passed through a lightweight MLP that projects
them into a compact 64-dimensional embedding.

Language Encoding: Natural language instructions are first embedded by a sentence-similarity model
(SentenceSimilarity, 2024), yielding a 384-dimensional vector. A lightweight MLP then compresses this into a
64-dimensional latent representation, aligned with the other modalities.
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Table 4: Network architecture of the proposed Model.

Module Configuration
Pretrained Image Encoder ResNet-based R3M (Nair et al., 2022), output size: 512
Image Embedding Layer MLP, input size: 512, output size: 64

Pretrained Language Encoder Sentence Similarity (SS) Model (SentenceSimilarity, 2024),
output size: 384

Language Embedding Layer MLP, input size: 384, output size: 64
Extra Modality Encoder (Proprio) MLP, input size: 9, output size: 64
Temporal Position Encoding sinusoidal positional encoding, input size: 64

Temporal Transformer heads: 6, sequence length: 10,
dropout: 0.1, head output size: 64

Policy Head (GMM) modes: 5, input size: 64, output size: 7

Table 5: Inputs and Output Shape.

Modularities Shape
Image from Workspace Camera 128× 128× 3

Image from Wrist Camera 128× 128× 3
Max Word Length 75

Joint States 7
Gripper States 2

Action 7

Proprioceptive Encoding: Joint angles and gripper states are processed through a small MLP stack,
whose final layer also outputs a 64-dimensional vector. This ensures that vision, language, and proprioception
share the same embedding size.

Temporal Transformer: At each timestep, we concatenate the three 64-dim modality embeddings and feed
the sequence (up to 10 steps) into a 4-layer Transformer decoder. Each layer has 6 attention heads (64-dim
head outputs), a 256-unit MLP, sinusoidal positional encodings, and 0.1 dropout to guard against overfitting.

Policy Head: The Transformer’s final output is passed to a GMM-based head with 2 fully-connected layers.
It predicts a 5-component Gaussian mixture—outputting per-mode means, standard deviations (clamped ≥
1e-4), and mixture logits.

A.2.2 Training Hyperparameters

Table 6 provides a summary of the essential hyperparameters used during training and local adaptation.
The model training was conducted using a combination of A40, A100, and L40S GPUs in a multi-GPU
configuration to optimize the training process. This distributed computing setup significantly enhanced
efficiency, reducing the training time per benchmark from 12 hours on a single GPU to 6 hours using 3 GPUs
in parallel. For each task, demonstration data was initially collected and provided by LIBERO benchmark.
However, due to version discrepancies that introduced visual and physical variations in the simulation, we
reran the demonstrations with the latest version to obtain updated observations. It is important to note that
occasional rollout failures occurred because different versions of RoboMimic Simulation (Mandlekar et al.,
2021) utilize varying versions of the MuJoCo Engine (Todorov et al., 2012).

Task performance was evaluated every 10 epochs using 20 parallel processes to maximize efficiency. The
best-performing model from these evaluations was retained for subsequent tasks. After training on each
task, we reassessed the model’s performance across all previously encountered tasks. Although we report
results only at the end of the full sequence, RWLA remains fully compatible with intermittent skill recovery
during continuous deployment: it can be invoked when performance degradation happens, mirroring realistic
lifelong-learning robots that adapt on an as-needed basis.
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Table 6: Hyperparameter for Training and Adaptation.

Hyperparameter Value
Batch Size 32
Learning Rate 0.0001
Optimizer AdamW
Betas [0.9, 0.999]
Weight Decay 0.0001
Gradient Clipping 100
Loss Scaling 1.0
Training Epochs 50
Image Augmentation Translation, Color Jitter
Evaluation Frequency Every 10 epochs
Number of Demos per Task Up to 50 1

Number of Demos per Task in M (Ñ) 8
Rollout Episodes before Adaptation 10
Distance weights [αv, αl] for libero_spatial and libero_object [1.0, 0.5]
Distance weights [αv, αl] for libero_goal [0.5, 1.0]
Distance weights [αv, αl] for libero_different_scenes [1.0, 0.1]
Weights Added for Separation Segments 0.3
Clipping Range for Selective Weighting 2
Default Local Adaptation Epochs 20

A.2.3 Baseline Details

We follow the implementation of baselines and hyperparameters for individual algorithms from (Liu et al.,
2024), maintaining the same backbone model and storage memory structure as in our approach. During
training, we also apply the same learning hyperparameters outlined in Table 6.

A.3 Details about Blurred Task Boundary setting

In this paper, we blur task boundaries by using multiple paraphrased descriptions that define the task goals.
The following section elaborate more details about our dataset and process of task description paraphrase.

A.3.1 Datasets Structure

Our dataset inherent the dataset from LIBERO Liu et al. (2024), maintaining all the attributes and data.
Additionally, we add demo description to each demonstration to blur task boundary and augment language
description during training (See Figure 6). Unlike the dataset from LIBERO, which groups demonstrations
together under one specific task, our dataset wrap all demonstrations with random order to eliminate the
task boundary.

A.3.2 Description Paraphrase

We leverage the Phi-3-mini-4k-instruct model (mini-4k instruct, 2024) to paraphrase the task description.
The process and prompts that we use are illustrated in Figure 7. As shown for the libero_spatial task in
Figure 8, both BERT and Sentence Similarity Model struggle to distinguish tasks based on embeddings from
the paraphrased descriptions. This observation further underscores the task-blurry setting in our experiments.

1For each task, demonstration data was collected from LIBERO, but due to differences in simulation versions, the demonstra-
tions were rerun in the current simulation to collect new observations, with the possibility of occasional failures during rollout
(see Subsection A.2.2 for details).
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data

Demo_0 Demo_1 Demo_499……

demo_description: Pick up the book on 
the left and put it on top of the shelf.

actions: numpy.array
agentview_rgb: numpy.array
agentview_rgb: numpy.array

ee_pos: numpy.array
ee_states: numpy.array
joint_states: numpy.array
augmented_description: list[str]

demo_description: Please grab the 
tomato sauce and place it in the basket.

actions: numpy.array
agentview_rgb: numpy.array

agentview_rgb: numpy.array
ee_pos: numpy.array
ee_states: numpy.array
joint_states: numpy.array
augmented_description: list[str]

Figure 6: Data Structure

Prompt

1. rewrite this sentence in English:
2. Rephrase the given sentence a little bit in English:
3. Reconstruct this sentence in English:
4. Summarize the following sentence in English:
5. Modify this sentence to be more polite in English:
6. Paraphrase the following sentence in English politely:
7. rewrite this sentence in English with a happy tone:
8. Polish this sentence in English:
9. ……

Paraphrase Task Description

a. Pick up the book on the left and put it on top of the shelf
b. Place the book on the left on the shelf.
c. Please take the book on the left and put it on the shelf.
d. Pick up the left book and put it on the shelf.
e. ……

LLM

Phi-3-mini
-4k-instruct

Task Description:

• pick up the book on the left and place it on the shelf

• pick up the tomato sauce and put it in the basket

Paraphrase Task Description

a. Pick up the tomato sauce and place it in the basket.
b. Please grab the tomato sauce and place it in the basket.
c. Let's gather the delicious tomato sauce and lovingly place 

it in the basket!
d. ……

Figure 7: Paraphrase Description

A.4 Detailed Heuristics and Implementations for Selective Weighting

Selective weighting strives to concentrate the adaptation loss on the critical steps of a demonstration—those
at which the policy is most likely to diverge, forget, or fail. We detect these steps by measuring how a failed
rollout departs from the demonstration in the image–embedding space.

For every retrieved demonstration we compute an Embedding Distance Matrix (EDM) between its
frames and those of up to five failed rollouts. A row-wise minimum over the EDM yields the Embedding
Distance Curve (EDC), which tracks, step-by-step, the smallest visual discrepancy seen so far. Because raw
embedding distances are noisy (multi-modal actions, rendering noise), we smooth the EDC with a moving
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Figure 8: Task Blurry Effect on libero_spatial benchmark. After paraphrasing the task descriptions, both
BERT and SS models struggle to distinguish the tasks in libero_spatial.
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Figure 9: Hyperparameter Sensitivity Check.

average. The model typically fails when the EDC rises and stays high. We mark as a Separation Segment
the last contiguous block of frames whose smoothed distance is between 1

8 and 1
3 of the curve’s maximum. To

further mitigate noise effects, we pad this block by ±15 frames.

Starting from a uniform weight vector, we add 0.3 to every frame inside the Separation Segment (for each
retrieved demonstration based on the failed rollouts). Then, we clip weights to 2 and ℓ1-normalise all weights
in each demonstration, producing wt,n used in Eq. equation 3. This focuses gradient updates on the vulnerable
steps while keeping the overall loss scale stable.

Specifically, the hyperparameters such as thresholds ( 1
8 , 1

3 ) and padding (15 frames) were tuned on
libero_object to best capture true divergence points; performance gains generalize across libero_spatial
and libero_goal (Table 2).

A.5 Additional Experiments

A.5.1 Comparison with Adaptation-based baseline

Our method can also be regarded as a form of test-time adaptation, akin to Schmied et al. (2023); Liu et al.
(2023); Singh et al. (2024); Peng et al. (2020); de Masson D’Autume et al. (2019). To benchmark against an
adaptation-oriented alternative, we chose LoRA-FT (Schmied et al., 2023). During the one-step adaptation
phase, LoRA-FT (i) equips visual, language, and extra-modality encoders with LoRA adapters, (ii) inserts
LoRA on the queries and values of every Transformer decoder layer, and (iii) fully fine-tunes the policy head.

A model with the identical architecture is first pre-trained for 50 epochs on the libero_90 suite (90 short-
horizon tasks) in a multitask fashion. We then adapt LoRA-FT to unseen tasks from libero_spatial,
libero_object, and libero_goal. Both pre-training and adaptation use random seeds {1, 21, 42}. Unlike
our ER-RWLA method—which has already experienced a lifelong-learning phase and therefore reviews only
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a limited subset of demonstrations—LoRA-FT is granted access to the entire dataset of each target task
during adaptation.
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Figure 10: Average success rate (± std) over three
seeds on each benchmark. Both methods adapt for
20 epochs; LoRA-FT is allowed to see all demon-
strations of the target task, whereas our proposed
ER-RWLA only uses a small subset from M.

Figure 10 shows that our method consistently sur-
passes LoRA-FT across all three benchmarks. This
aligns with the observation of Liu et al. (2024): pre-
training on many short-horizon tasks can hurt down-
stream continual-learning or adaptation performance,
and training from scratch may even outperform such
pre-trained models. A likely cause is distributional
mismatch—the 90 pre-training tasks differ substan-
tially from the evaluation benchmarks—limiting pos-
itive transfer in LoRA-FT.

Note that, though we include such comparison with
continual inference-time adaptation methods such as
LoRA-FT, to assess our approach’s performance rela-
tive to, our motivations and settings still differ greatly.
Continual inference-time adaptation often aims to en-
able models to deal with continual domain transfer
with streaming data, while our approach focuses on
mitigating catastrophic forgetting through a brief, efficient "review" phase prior to policy deployment.

A.5.2 Hyperparameter Sensitivity Analysis on Selective Weighting.

Table 7: Detailed Comparisons on
libero_different_scenes Benchmark. It il-
lustrates that after reaching the capacity of PackNet,
its performance on new tasks would drop drastically.

Task ER-RWLA ER Packnet

0 0.85 ± 0.08 0.50 ± 0.03 1.00 ± 0.00
1 0.13 ± 0.08 0.27 ± 0.06 0.83 ± 0.09
2 0.73 ± 0.09 0.72 ± 0.10 0.92 ± 0.02
3 0.40 ± 0.03 0.13 ± 0.02 0.17 ± 0.03
4 0.93 ± 0.04 0.72 ± 0.10 1.00 ± 0.00
5 1.00 ± 0.00 0.57 ± 0.16 1.00 ± 0.00
6 0.52 ± 0.04 0.52 ± 0.03 0.78 ± 0.04
7 0.82 ± 0.07 0.63 ± 0.09 0.88 ± 0.02
8 0.32 ± 0.07 0.23 ± 0.06 0.00 ± 0.00
9 0.48 ± 0.15 0.38 ± 0.12 0.00 ± 0.00

10 0.23 ± 0.06 0.03 ± 0.02 0.00 ± 0.00
11 0.20 ± 0.03 0.10 ± 0.06 0.00 ± 0.00
12 0.23 ± 0.09 0.13 ± 0.02 0.00 ± 0.00
13 0.67 ± 0.09 0.83 ± 0.04 0.00 ± 0.00
14 0.15 ± 0.03 0.13 ± 0.04 0.00 ± 0.00
15 0.68 ± 0.09 0.30 ± 0.08 0.00 ± 0.00
16 0.03 ± 0.03 0.00 ± 0.00 0.00 ± 0.00
17 0.28 ± 0.08 0.02 ± 0.02 0.00 ± 0.00
18 0.10 ± 0.08 0.02 ± 0.02 0.00 ± 0.00
19 0.27 ± 0.16 0.58 ± 0.07 0.00 ± 0.00

Figure 9 presents the sensitivity analysis of the hyper-
parameters—lower threshold ( 1

8 ), higher threshold ( 1
3 ),

and padding step (15 steps)—used to identify Separa-
tion Segments during selective weighting. The exper-
iments are conducted on three random seeds as well.
The results demonstrate that our proposed method’s
performance is robust to variations in these hyperpa-
rameters.

A.6 Detailed Testing Results

We selected 20 typical scenarios among libero_90.
The list of those scenarios can be found in Table 8.
Additionally, the testing results of our method and
baselines including ER-RWLA, ER, Packnet, are
listed in Table 7.

A.7 Further Discussions

A.7.1 Potential
Forgetting during Local Adaptation

Our method addresses this issue through a robust de-
ployment strategy. After sequential learning, we pre-
serve the final model as a stable foundation. For each
testing scenario, we fine-tune a copy of this model
using our weighted local adaptation mechanism. Cru-
cially, we always return to the preserved final model for
subsequent scenarios, ensuring that each adaptation
starts from the same well-trained baseline and previous
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Table 8: Selected Tasks for libero_different_scenes benchmark from libero_90

Task ID Initial Descriptions Scenes
1 Close the top drawer of the cabinet Kitchen scene10
2 Open the bottom drawer of the cabinet Kitchen scene1
3 Open the top drawer of the cabinet Kitchen scene2
4 Put the frying pan on the stove Kitchen scene3
5 Close the bottom drawer of the cabinet Kitchen scene4
6 Close the top drawer of the cabinet Kitchen scene5
7 Close the microwave Kitchen scene6
8 Open the microwave Kitchen scene7
9 Put the right moka pot on the stove Kitchen scene8
10 Put the frying pan on the cabinet shelf Kitchen scene9
11 Pick up the alphabet soup and put it in the basket Living Room scene1
12 Pick up the alphabet soup and put it in the basket Living Room scene2
13 Pick up the alphabet soup and put it in the tray Living Room scene3
14 Pick up the black bowl on the left and put it in the tray Living Room scene4
15 Put the red mug on the left plate Living Room scene5
16 Put the chocolate pudding to the left of the plate Living Room scene6
17 Pick up the book and place it in the front compartment of the

caddy
Study scene1

18 Pick up the book and place it in the back compartment of the
caddy

Study scene2

19 Pick up the book and place it in the front compartment of the
caddy

Study scene3

20 Pick up the book in the middle and place it on the cabinet shelf Study scene4

adaptations do not influence future ones. This approach keeps local adaptations isolated and prevents the
accumulation of forgetting effects.

A.7.2 Future Work beyond LIBERO

Current LIBERO benchmarks treat similar scenarios (e.g., variations in object categories, layouts, or goals)
as distinct tasks. However, this does not reflect how humans learn continually — we tend to generalize
across such variations. Thus, we plan to identify equivariant features among similar tasks to avoid redundant
retraining or adaptation. This strategy will further mitigate catastrophic forgetting and improve the system’s
plasticity in more complex lifelong robot manipulation tasks with the proposed RWLA algorithm.
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Figure 11: Illustration of the selective weighting heuristic using (a) Embedding Distance Matrix (EDM)
and (b) Embedding Distance Curve (EDC). In the demonstration, the robot successfully picks up a jar
and places it into a basket. In the failed rollout, the robot fails during the picking stage, resulting in the
absence of subsequent steps. The steps surrounding the picking procedure are identified as the Separation
Segment and are assigned higher weights during adaptation to address the model’s shortcomings. Specifically,
the Separation Segment is determined by the smoothed minimum L2 distances from EDC—obtained from
EDM, where each of its entry indicates the embedding distance between a demonstration and failed rollout
frame, as shown in this figure.
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