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ABSTRACT

Visual In-Context Learning (VICL) aims to complete vision tasks by imitat-
ing pixel demonstrations. Recent work (Wang et al., [2025) pioneered prompt
fusion that combines the advantages of various demonstrations, which shows
a promising way to extend VICL. Unfortunately, the patch-wise fusion frame-
work and model-agnostic supervision hinder the exploitation of informative cues,
thereby limiting performance gains. To overcome this deficiency, we introduce
PromptHub, a framework that holistically strengthens multi-prompting through
locality-aware fusion, concentration and alignment. PromptHub exploits spa-
tial priors to capture richer contextual information, employs complementary
concentration, alignment, and prediction objectives to mutually guide training,
and incorporates data augmentation to further reinforce supervision. Extensive
experiments on three fundamental vision tasks demonstrate the superiority of
PromptHub. Moreover, we validate its universality, transferability, and robust-
ness across diverse backbones, out-of-distribution settings, and various retrieval
scenarios. This work establishes a reliable locality-aware paradigm for prompt
fusion, moving beyond prior patch-wise approaches. Code will be available at
https://anonymous.4open.science/r/PromptHub—-1770.

1 INTRODUCTION

Foundation models like GPT (Brown et al., [2020), Llama (Touvron et al.,[2023)), Gemini (Team et al.}
2023) and Flamingo (Alayrac et al.| 2022) have demonstrated the emerging ability of demonstration-
based prompt learning, aka In-Context Learning (ICL) (Dong et al.| 2024} Zheng et al., 2023} |Yang
et al., [2023)), which further facilitates their versatility in various tasks. The basic idea of ICL (Hendel
et al.,2023; Wei et al., [2023;2022; Jiang et al., 2024) is to prompt models with some demonstrative
input-output pairs in addition to the query input, which can enhance the answer robustness. The
reliablity of ICL has been thoroughly validated (Shin et al., [2022; [Yoo et al.| [2022; Dai et al., 2023}
Von Oswald et al., [2023). Recently, Visual ICL (VICL) (Bar et al., 2022} [Wang et al.,[2023b)) have
also become a popular topic, where pixel-space in-painting is the native paradigm.

Choosing appropriate prompts is critical in VICL. Many recent works (Zhang et al., 2023} Sun et al.|
20255 Xu et al.,2024) focused on optimizing retrievers to select better suited prompt pairs, and|Zhang
et al.| (2024)) incorporated visual prompt tuning to enhance the robustness of VICL. Nature Language
Processing (NLP) literature (Shi et al., 20225 Gao et al.l 2024) suggests multiple prompts can enhance
ICL with mitigated bias and richer context, offering insights essential for advancing VICL. Yet
visual backbones like MAE-VQGAN (Bar et al., [2022) typically restrict inputs to a single prompt,
rendering multi-prompting non-trivial. In practice, there are two heuristic strategies for extending
single-prompting to multi-prompting, namely downscaling (Wang et al., 2023a)) and ensemble (Sun
et al., 2025). Building upon this, CONDENSER (Wang et al.,|2025) was the first to adopt prompt
fusion, integrating useful information from multiple prompts into a fused prompt, as illustrated in
Figure[I(a). However, its patch-wise fusion strategy results in substantial underuse of valuable cues,
while the model-agnostic supervision remains insufficient. Moreover, discrepancies between the
fused prompt and the query pair may compels the backbone to distrust the fused representation,
falling back on its own capacity for inference instead. This is precisely the situation we aim to avoid.
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Figure 1: (a) CONDENSER performs patch-wise fusion to fuse composite prompt, while leveraging
model-agnostic supervision signals at the input level. (b) PromptHub transcends CONDENSER by
enforcing a locality-aware chain that unifies fusion-utilization-prediction. It aligns spatial priors
into coherent prompt representations, reinforces the backbone’s concentration on fused cues, and
integrates label prediction to maintain the integrity of VICL pipeline. (c) Comparison of CONDENSER
and PromptHub across three tasks under both single-prompting and multi-prompting configurations.

We break these limits by proposing PromptHub, which aims at (i) integrate precise knowledge from
diverse prompts, (ii) mitigate fused prompt’s discrepancies to encourage the backbone’s effective trust
and reliance on it, and (iii) ultimately yield superior VICL predictions. To achieve this, we propose a
locality-aware fusion framework together with three cooperative learning objectives, as illustrated
in Figure [I(b). Specifically, we introduce a locality prior that applies spatially decaying weights
radiating from the current patch, thereby enhancing accurate feature extraction. This design allows the
fusion process to retain a global receptive field while alleviating the adverse effects of border noise.
During the optimization of PromptHub, we design three complementary objectives: (i) an end-to-end
semantic integrity loss to promote high-quality prompt fusion by aligning fused exemplars with query
semantics, as semantically closer prompt generally benefit VICL; (ii) a utilization loss that mitigates
discrepancies between the fused prompt and the query pair, thereby promoting the backbone’s trust
and reliance on the fused representation for imitation learning; and (iii) a label prediction loss, retained
from CONDENSER, which serves as the base supervision to preserve VICL’s contextual prediction
behavior. Additionally, we preliminarily explored VICL-oriented data augmentation strategies to
enhance the robustness of PromptHub. These designs realize chain-wide enhancements for VICL.

We evaluate PromptHub on segmentation, detection, and colorization. As shown in Figure Ekc),
extensive experiments demonstrated its superiority to state-of-the-art VICL baselines. We also
demonstrate PromptHub’s promising resource efficiency, compatibility with multiple backbones,
transferability and robustness to various prompt retrieval strategies including random selection.
Comprehensive ablations on diverse learning objectives, data augmentation techniques, and locality
fusion, confirming the success of our paradigm design. We further visualize the fused prompts, which
validates the reliablity of PromptHub. These findings strongly support the efficacy of PromptHub,
highlighting the significance of our approach in VICL.

To sum up, we make the following contributions.

* We introduce a locality-enhanced fusion strategy that balances spatial locality and receptive field,
enabling more comprehensive extraction of effective information.

* We propose three complementary learning objectives that collaboratively enhance prompt fusion
quality, strengthen prompt concentration, and improve contextual prediction, further reinforced
with VICL-specific data augmentation.

* Extensive experiments show PromptHub’s efficacy beyond state-of-the-art techniques. Promising
results also suggest that it is transferable across domains, applicability across diverse backbones
and robust to prompt retrieval, establishing a reliable competitive new solution in VICL.
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2 RELATED WORKS

2.1 LARGE VISION MODELS

The field of computer vision has witnessed substantial advancements, driven by abundant foundational
models (Chang et al} [2022}; |Wang et al., [2023c}; (Oorloff et al., [2025). LVM (Bai et al., [2024), an
auto-regressive generative model, effectively converted visual information into language-like visual
sentences and improved understanding capabilities. MAE and Point-MAE (He et al., 2022} |Pang
et al.,|2022), utilizing a masked reconstruction strategy, established unified visual architectures across
various downstream tasks in both 2D and 3D domains. The ability for ICL has also been demonstrated
within visual foundation models, as researchers employed specialized training methodologies (Bar|
et al.}2022; [Fang et al[2024; Wang et al., 2023b) to endow these models with superior in-context
learning capabilities, thus providing a robust foundation for the domain of Visual ICL (VICL).

2.2  VISUAL IN-CONTEXT LEARNING VIA IN-PAINTING

MAE-VQGAN (Bar et al., [2022) and Painter (Wang et al., 2023a) serves as crucial in-painting
backbones for VICL, with copious works building upon and enhancing this framework. Existing
work (Zhang et al., [2023};|Sun et al., 2025; | Xu et al., 2024} primarily focuses on retrieval to obtain
better prompt pairs. [Sun et al.|(2025) studied prompt spatial arrangement, testing eight configurations
and reporting improved results through voting. [Zhang et al.| (2024) pioneered visual prompt tuning
(Pfeiffer et al.,|2020; [Hu et al., [2021} |Liu et al., 2023} |Bahng et al., |2022), adding a noise border to
prompts. PANICL (Zhang et al.| [2025)) employs a training-free k-nearest-neighbor fusion integrates
multiple prompts to alleviate the bias inherent in single prompt. PICO (Jiang et al.|[2025)) reformulates
the personalized vision problem under the VICL paradigm and exhibits clear advantages. Hojel
et al.| (2024)) focused on identifying task vector that activates backbone to optimize VICL process.
CONDENSER (Wang et al., 2025) leveraged prompt fusion to aggregate informative cues from multiple
prompts. However, the patch-wise information aggregation strategy in CONDENSER (Wang et al.,
2025)) exhibits inherent limitations, and its supervision over exemplar quality remains insufficiently
comprehensive. Motivated by these gaps, we propose a spatially aware local fusion scheme coupled
with three cooperative objectives, establishing a more reliable paradigm for prompt fusion.

3 METHOD: PROMPTHUB

3.1 PROBLEM FORMULATION AND METHOD OVERVIEW

Given a prompt database, D = {Pi}izll, where each prompt comprises an image-label pair. The
pixel-level retriever R identifies top-N similar prompt pairs P = {P, = (X,,, Y,,)}2_,, for a given
query image X, € R”*W>3_Following previous settings, we adopt MAE-VQGAN, configured with
patch size of 16 and feature dimension of D, as the backbone. Under general setting, the closest pair
Py = (X1,Y1) € REX2WX3 provides the prompt. We concatenate prompt P; with the query image

X
X, to construct the canvas S, = [ Xl
q

The backbone output at the masked location corresponds to the X,’s predicted label Yq.

[]}\%] , where [M] denotes the mask need to be recovered.

In our framework, /N prompt pairs P and query image X, are processed by the query-adaptive
PromptHub module, producing fused features Fy,, Fy, € R6% 16 %D Fx,, Fy, and query image

Fx, Fy, .
Fy F ].ThenSfls

passed through MAE-VQGAN, excluding the patch embedding, to generate the VICL answer.

features FXq, mask features F[ M) are concatenated into the canvas Sy =

3.2 PROMPTHUB MODULE DESIGN

To expand the receptive field during fusion while mitigating the impact of boundary noise, we employ
a locality-enhanced prompt fusion strategy. PromptHub locally fuse P into a unified prompt pair
(Fx,, Fy, ) in the embedding space. The workflow is shown in Figure

We first process images (X,, P) by embedding layer to yield Ex_, Ex, , By, y € R 76X 16 %D
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Figure 2: The training and inference framework of PromptHub based on MAE-VQGAN.

Subsequently, we deploy a self-attention transformation SA(-) to align the query and prompts to
similar patterns, thereby generating the resultant features Fix_, Fix,.y, Fy;,y -

Thereafter, we use a query-adaptive locality-enhanced cross-attention to extract spatial information
from prompt pairs features (Fx,, ., F'y;,y ), which achieves the fused exemplar features (Fx,, Fy;).

We define the locality prior as a probability distribution controlled by the hyper-parameter o. To
effectively represent this locality distribution, we employ either Gaussian prior or Laplacian prior,
with the choice governed by a hyperparameter:
132 _w)?
exp (7 (w=h) ;gy ) ) ,

Y(h,w,z,y) = V@R (y—w)? : M
exp (WW) , Locality prior = Laplacian prior

Locality prior = Gaussian prior

o

For each query image token F'x, [h, w], it has a specific locality matrix ¥y, ,, centered at (h, w):

/l/)(hvwalal) w(h wala 16)
Up = : : . )
¢(h w, 16’1) 1/’(}1 w, 16’%)

During the VICL inference phase, no matched query label Y; is available for constructing fused
prompt label Fy,. However, the specific correspondence still exists between prompt images Xi.n
and prompt labels Y;.. Therefore, we share the prompt images features F'x, , as the key in the
attention mechanism, compute the generalized attention scores, and subsequently perform localized

weighting to procure locality-enhanced attention weights Ay, ,, € RV 6% 16 for Fi s [h,w:

Fx [h,w] x Wo) x (Fx, v x Wi) "
Ah,w:softmax<( x, 1. ] Q\)/E( X X W) ~\I/h7w>, 3)

which - denotes element-wise multiplication, x denotes matrix multiplication, and Wq, Wx €
RPXP represent the projection layers for mapping @ and K in the attention mechanism.

Ultimately, we multiply the locality-enhanced attention weights with the features Fy,,, and Fy1 N
through linearly transformed to obtain the fused prompt pair features Fx,, Fy, € R16 %16 XD
Wy x, Wyy € RPXP denote linear layers in attention mechanism for image and label, respectively.

FXf [h, w] = Ah,w X (FXI:N X WVX), Fyf [h,w] = Ah,w X (FY1:N X WVY) . (4)

3.3 LEARNING OBJECTIVES

We introduce three complementary learning objectives to guide fusion module’s training, collectively
strengthening “fusion-utilization—prediction” closed-loop for robust VICL, as illustrated in Figure 2]
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Figure 3: PromptHub module design. N prompt pairs  Figure 4: Data augment of
and query image are embedded into the MAE patch space, = PromptHub. In training, the top-/NV
where locality-enhanced fusion integrates spatially cues into  pairs are randomly substituted with
a fused prompt aligned with query’s informative content. either query pairs or random pairs.

(i) Ensuring label prediction performance.  Following CONDENSER and InMeMo, we also
adopt a label prediction loss as the fundamental objective to preserve VICL’s contextual prediction
behavior. Without this base supervision, parameterized VICL paradigms cannot function properly.
Upon deriving the fused in-context sample Sy, we propagate it through the MAE encoder, generating
TS, 1Y
a canvas of continuous tokens [T)C( s TZ 7| € R% *%5 %D | These tokens are calibrated during
X‘I
pretraining to correspond with the VQGAN codebook space. Simultaneously, We construct the target

canvas S, = {ﬁ Yy ] € R2H*2WX3 by integrating the query pair as a prompt pair and process
q

q

d(1)  d(1)

T T,

it through the VQGAN encoder, obtaining the corresponding discrete tokens lTij("z) T};‘b) €
Xq Y‘I

{1,2,..., N, }% X3S from the codebook. Here, N, denotes the size of the codebook space, with
N, = D. Td(l) and Ty, d(1) represent the discrete tokens output as prompt, while T’y 4 and Ty d(2)

correspond to ‘the dlscrete tokens output as query. To optimize the label prediction results we ahgn
the bottom-right portion T; [ M) which will be reconstructed by the VQGAN decoder, with the target

T{i@) using a cross-entropy loss. Here, £,, denotes the loss function for label prediction:
q

_ (2
Ly = By 100,35 108 Tl [ T )

(ii) Fused-prompt feature alignment. The backbone tends to produce accurate predictions when
exposed to the same prompt as the query. We employ a cross-entropy alignment between the continu-
ous tokens derived from the fused prompt pair (T)C( Ty ) and the discrete tokens corresponding to

the query pair as a prompt (Td(l) T (1)) to make fused prompt pair closely approximate the query
pair. The semantic integrity loss for 1mproved fusion is denoted as L.

L= ~E a1 5 1) <logTX [h,w, T4¢") +log T, [, w Td(l)}) 6)

(iii) Enhance fused prompt utilization. = Owing to discrepancy between fused prompt and query
pair, backbone may regard useful prompt as unreliable and instead rely on its own capacity. We employ
a cosine-similarity loss £,,, designed to reduce the dissimilarity between query pair (1'% T[ M]) and

fused prompt (Tf(f , Tf/f ), thereby enhancing the backbone’s utilization of fused prompt.

Lo = —E(pw)mua((1, £]x[1,5%7) (cos (T)%f (h,w], Tk, [h,w]) + cos (Tf/f [h, w], Ty [Py w])) .
(N

We adopt A and ~ to balance diffenent losses. Let 6 denote the parameters of PromptHub. The
ultimate synergistic optimization objective is formulated as:

main Ly + Ao+ 7Ly )
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3.4 RETRIEVE SCHEME FOR DATA AUGMENT

In the inference phase, we consistently retrieve the top-N most similar prompt pairs P = { P, }Y_;
from the database D, utilizing the most relevant raw prompt pairs for improved VICL.

During training, we employ a data augmentation strategy to enhance two regularization objectives’
effect. Based on the retrieved top-N prompt pairs P = {P, })__,, we might replace some prompt
pairs P,, with either query pairs P, = (X, Y,) or randomly retrieved pairs P, as shown in Figure

(i) Substitute with query pair to better utilize the fused prompt.  Under typical settings, defining
prompt pair P; as query pair P, generally yields minimal discrepancy. To this end, we replace current
prompt pairs P,, with query pairs P, with probability p,. This substitution establishes a purified
learning objective that minimizes discrepancy as much as possible, hence enhancing L,,.

(ii) Substitute with random pair to enhance PromptHub’s robustness. With probability p,., we
substitute prompt pair P,, with a randomly retrieved pair P,, introducing a controlled level of noise
that enhances £ and PromptHub’s stability. This technique guarantees when high-quality prompts
are unavailable during inference, PromptHub retains its capacity to achieve robust VICL results.

4 EXPERIMENTS

4.1 EXPERIMENTAL SETUP

Downstream Tasks and Datasets. To ensure a fair comparison, we employ three well-established
tasks foreground segmentation, single-object detection, and colorization along with their associated
datasets, within the domain of VICL. For foreground segmentation, we employ Pascal-5* (Shaban
et al.,[2017), which consists of four folds, with each fold containing data from five different classes.
We conduct experiments across all folds and analyze the results by presenting the mean intersection
over union (mloU) for each fold. In the case of single-object detection, we utilize the Pascal
VOC2012 (Everingham et al., 2015) dataset, also employing mloU as the evaluation metric. For the
coloring task, we randomly select 50,000 images from the ImageNet-1K ILSVRC2012 (Russakovsky
et al.} 2015) training set, with 50 images chosen from each of the 1,000 classes to form the label
portion of our training set. The 50,000 images from the validation set of ImageNet-1K ILSVRC2012
are used as the label portion of our test set. We convert training set and test set label portion to
grayscale images, which served as the input queries. We use MSE as the evaluation metric.

Implementation Details. We adopt MAE-VQGAN (Bar et al.| [2022) as the backbone architecture
and utilize Prompt-SelF’s (Sun et al.|[2025) pixel-level retriever for prompt retrieval. During training,
we use the training set as the database for prompt pairs while also employing the training set as the
query. In the testing phase, the validation set serves as the query collection, while the training set acts
as the database. The input image resolution to the model is 224 x 224, with each sub-image having a
resolution of 112 x 112. We utilized Gaussian prior as the default locality prior.

Training Configurations. ~We employed SGD optimizer with a learning rate initialized at 0.04,
which decays according to cosine annealing warm restarts scheduler. For segmentation and detection
tasks, training is performed for 100 epochs, while coloring task requires 10 epochs. The corresponding
o values for foreground segmentation, object detection, and colorization tasks are 0.5, 0.5, and 2.5,
respectively. Hyper-parameter ) is set to 0.5, and + is set to 0.2. The experiments were performed on
single 80G A100 GPUs with a batch size of 16.

4.2 COMPARISON WITH STATE-OF-THE-ARTS

Baselines. We compare our method against comprehensive state-of-the-art approaches built on the
MAE-VQGAN framework. Our competitors are categorized into four groups: (1) Zero-shot methods,
including MAE-VQGAN (Bar et al., 2022)) and UnsupPR (Zhang et al., 2023)) and Prompt-SelF (Sun
et al.| [2025)), which do not require additional retriever training; (2) Methods that necessitate retriever
training, such as SupPR (Zhang et al.| 2023) and Partial2Global (Xu et al.l [2024)); (3) Approach
that leverages prompt tuning, exemplified by InMeMo (Zhang et al.,2024); (4) Method of finding
and utilizing the task vector VTV (Hojel et al) 2024). (5) Method that employs prompt fusion,
CONDENSER (Wang et al.| 2025), to enable multi-prompt VICL, with comparisons reported under
both single-prompting and multi-prompting settings.
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Table 1: PromptHub performance is compared with different baselines in three downstream tasks
foreground segmentation (Seg.), single-object detection (Det.), and image colorization (Col.). The
results for N = 1, 16, representing the cases with 1 and 16 prompts respectively, are listed separately.
The highest results are denoted in bold, while the suboptimal results are indicated in italics.

Seg. (mIoU 1)

Model Fold-0 Fold-1 Fold2 Fold-3 Mean D¢t (mIoUD Col. (MSE)
Zero-Shot

Random (Bar et al.|[2022) 28.66 30.21 27.81 23.55 27.56 25.45 0.67
UnsupPR (Zhang et al.[[2023) 34.75 35.92 32.41 31.16  33.56 26.84 0.63
Prompt-SelF (Sun et al..[2025) 35.69 38.25 35.86 3337 3579 28.08 0.63
Retriever Training

SupPR (Zhang et al.||2023) 37.08 38.43 34.40 3232 3556 28.22 0.63
Partial2Global (Xu et al.[[2024) 38.81 41.54 37.25 36.01 38.40 30.66 0.58
PEFT

InMeMo (Zhang et al.|{[2024) 41.65 47.68 42.43 40.80 43.14 43.21 -
Task Vectors

VTV (Hojel et al.|2024) 38.00 37.00 33.00 32.00 33.50 - -
Prompt Fusion

CONDENSER y—1 (Wang et al.|2025) 42,13  50.31 4220 4190 44.14 43.22 0.560
CONDENSER y—15 (Wang et al.;2025) 45.53  52.06 44.33  44.58 46.63 44.64 0.539
PromptHuby—; (Ours) 4403 5179 4374 4326 4571 44.27 0.531
PromptHub y—16 (Ours) 46.68 53.08 46.15 46.52 48.10 46.02 0.501

(i) Performance on Standard Tasks. Table|I|demonstrates that PromptHub achieves consistent
improvements across all tasks under both single-prompt and multi-prompt settings. In single-prompt
scenario, PromptHub surpasses CONDENSER by 3.6%, 2.4%, and 5.5% on segmentation, detection,
and colorization, respectively. Under multi-prompt scenario, it further attains gains of 3.2%, 3.1%,
and 7.6% on same tasks. PromptHub’s output visualization is discussed further in the appendix.

(ii) Performance on Domain Adaption Task. In real-world applications, the data for inference
may undergo domain adaptation compared to

the training data. Thus, testing the transferabil- Table 2: Transferability evaluation. We train mod-
ity of different VICL schemes is crucial. We els on COCO-5 and test on Pascal-5°.

trained the PromptHub on the COCO-5" (Lin; Seg. (mlIoU 1)

et al, [2014) using the same settings as previ- Fold0 Fold-1 Fold-2 Fold-3 Mean
ous works (Wang et al., 2025; Sun et al.| [2025} ff&mi/l[-SelF ‘3‘(8)-;2 ﬁé‘z‘ Zg-i‘; 25?% ig-gg
Zhang et al.}|2024), and evaluate it on the Pascal- CONDENSERy_, 4039 4454 4023 3633 4037
5. As shown in Table |2 PromptHub demon-  CONDENSERy—is 4037 4485 41.03 3584 4052
strates substantially larger improvements than giggg:gﬂ';xiﬁ PR S A R
other baselines, outperforming CONDENSER by

4.5% in the multi-prompt setting, highlighting the strong transferability of PromptHub.

Model

(iii) Performance under the multi-prompting Segmentation Detection Colorization
scenario. To validate the scalability of 48 46 0.50
PromptHub, we compare it with CONDENSER ¢
under various N, specifically 1, 2, 4, 8, 16, 3 “ 3% w 052
and 32. In addition, we report results under & A Am E EO
. 353 366363 42 54

down-samplingny—2 y=7 (Zhang et all 2023) . A
and answer-level y—1¢ (Sun et al., [2025). The o Y 0.56

. 12 4 81632 12 4 81632 12481632
experimental results demonstrate our approach Prompt Number Prompt Number Prompt Number
not Only imprOVeS performance as N increases pPromptHub *Condenser ADown-sampling fusion lAnswer-level fusion]

9

but also consistently surpasses other baselines Figure 5: Performance comparison with baselines
by a large margin, as shown in Figure 3] in multi-prompt VICL scenario.

4.3 MODEL ANALYSIS

For a comprehensive ablation study, we designed several variants, as summarized in Table[3] where
Variants (0) — (1) correspond to the canonical configurations.

(i) Effectiveness of Learning Objectives. = To comprehensively evaluate the contributions of
each learning objective, we conducted an ablation analysis by individually removing the three
objectives. The experimental results demonstrate “fusion-utilization-prediction” objectives are
mutually complementary, and omitting any of them leads to performance degradation in multi-prompt
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Table 3: Ablation study of PromptHub. The best are marked in bold and second-best in italic.
Seg. (mIoU 1)

#  Model Fold-0 Fold-1 Fold-2 Fold-3 Mean Det-(mloUD
(0)  PromptHuby_; 44.03 51.79 4374 4326 4571 44.27
(1)  PromptHuby_16 46.68  53.08 46.15 46.52 48.10 46.02
Effectiveness of Learning Objectives

2) whoLy, N=1 42.71 51.14 4278 4241 4476 43.45
3) WLy Nn=16 4554 5225 4459 4447  46.71 44.83
4  wloLsn=1 4223  50.52 4229 42.16  44.30 43.12
(5) wloLs N=16 4472 5177 4357 4330 4584 44.27
©) wloL,N=1 8.51 10.13 9.46 8.33 9.11 13.23
(7)  wloL, n=16 941 13.44 12.29 10.62  11.44 12.87
Effectiveness of Locality-Enhanced Fusion

) w/ Laplacian Priory—1 43.74 50.93 43.51 43.05 4531 43.93
) w/ Laplacian Priory—1¢ 46.93 52.87 46.39 46.16  48.09 45.78
(10)  Global Fusiony—1 4177  49.04 42,69 40.73  43.55 41.86
(11)  Global Fusiony—1¢ 4191 5045 43776 4243  44.64 42.49
(12)  Convolution-Based Fusiony—1 42.56 50.15 42.79 42,52 44.51 43.83
(13) Convolution-Based Fusiony—15  45.28 51.68 45.34 4551  46.95 45.07
Effectiveness of Data Augment Technique

(14)  w/o Data Augment— 43.11 5122 43.17 4234  44.96 43.52
(15) w/o Data Augmenty—1¢4 4584  52.01 4483 45,60 47.07 45.06

Prompt-SelF N_l'gﬂj :": n @! .- @. wn Eﬂn
LA Sl el -l it

1oU=15.20 1oU=55.00 10U=39.56 10U=27.53 1oU=14.10 IoU=10.15 IoU=44.01 IoU=22.23
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Figure 6: The visualization of the fused prompt pair after passing through the VQGAN decoder.

VICL. In particular, the primary objective, label prediction L, is indispensable for preserving
VICL’s contextual prediction behavior; without it, the training-based VICL paradigm with additional
parameters cannot function effectively. Meanwhile, L and £,, act as crucial regularization terms,
ensuring fused exemplars’ quality and the backbone’s effective utilization. The absence of either
damages the pipeline in VICL and results in mediocre performance.

(ii) Effectiveness of Locality-Enhanced Prompt Fusion. = We compare locality-enhanced fusion
with global fusion, patch-wise fusion (CONDENSER (Wang et al} [2025))), and convolution-based
fusion, where the latter replaces the spatial prior with convolutional transformations. Notably,
locality-enhanced fusion can be viewed as a higher-level framework, within which global fusion
and patch-wise fusion emerge as two complementary instantiations, corresponding to larger and
smaller values of the locality parameter o, respectively. As shown in Table |3} both types of locality
priors achieve superior performance. Upon observation, maintaining an appropriate balance between
global receptive fields and spatial locality proves essential. The locality accords with the fusion
principle that enriches information capture while mitigating long-range noise.

(iii) Effectiveness of Data Augment Technique. = We conducted experiments under scenarios
without data augmentation, only utilizing the top-N prompt pairs for fusion during training, as
illustrated in Variants (14) — (15). The results indicate that removing data augmentation diminishes
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the performance of PromptHub in VICL tasks, confirming the effectiveness of data augmentation. It
better reinforce fused prompt utilization and enhances noise resistance.

(iv) Other Backbone Painter.  We replaced backbone with Painter (Wang et al 2023a)) while
maintaining same loss introduced by

(2023a). Experimental Table 4: Experiments were conducted on Painter
le[

: . Seg. (mIoU 1) Det.
results in Table 4| demonstrated perfor-  Model Fold-0 Fold-l Fold2 Fold-3 Mean (mloU7)

mance are 1mproved with Increasing Painter-only 63.01 61.07 5135 6090 59.08 74.35

prompt number, achieving optimal re-  w/promptHuby—,  63.25 6086 5384 60.73 59.67  74.45
sults. These further validates the gen- W/ PromptHuby_is 6427 6264 5549 6258 6125 7592

erality of PromptHub across models.

(v) Impact on Different Retrievers. Explor- ERrondom  EEUnsupPR ESupPR EEPixel-Level

ing better prompt retrieval and investigating multi- 531
prompt fusion are two orthogonal research directions, _ 50
while the fusion plugin can be adapted to different re- 2471
. . . € 441
trievers. We investigated performance of PromptHub a1l .
using different retrievers, as presented in Figure [7] 38

Fold-0  Fold-1

We evaluated four types of retrievers: random se-

lection (Bar et all, 2022)), UnsupPR ERandom [SUnsupPR  ESISUpPR  [IPixel-Level
[2023), SupPR (Zhang et al.} and Pixel-Level 53
retriever 2025). Experimental results 5 23

demonstrate PromptHub is more effective than CON- £ ,,

DENSER across all retrieval schemes, further high- 41 % W W
lighting 1its generﬁli(zlgbi'litg. Add(iiti)onagly, ﬁh; perffor- 3840 Fold-l Fold-2 _ Fold3  Mean
mance of our method is influence the choice of re- (b) N =16

triever; pixel-level retrievers consisthtly deliver best 0 PromptHub - LZA Condenser
results, underscoring the alignment between pixel- Figure 7: Comparison of PromptHub and
level retrieval and locality-aware design philosophy. CONDENSER across different retrieval.

(vi) Transferability on Unseen Tasks. We evaluate cross-task transferability by train-
ing all models solely on segmentation (Pascal-5, four folds) and directly testing them
on detection (Pascal VOC 2012) without any fine-tuning. We compare PromptHub with
the CONDENSER baseline using their released checkpoints, and report results in Table [5]
PromptHub consistently surpasses Con-

denser in this challenging unseen-task set- Table 5: Transferability experiment (unseen task) where
ting. With N' = 16, PromptHub achieves both CONDENSER and PromptHub are trained on seg-
a +1.83% mloU gain, indicating that our mentation and evaluated on detection.

locality-aware fusion captures more robust Method Det. (mIoU 1)

and transferable visual cues than the patch- Fold-0  Fold-1 Fold-2 Fold-3 Mean
wise fusion used in Condenser. We note  Condensery_;  38.15 3570 3549 3031 3491
that although the overall performance is Condensery—15  41.25 36.66 3786 39.02 38.70
strong, the training process iy not ully rask-— UL G S 300 does 4083
agnostic. Since the model is trained to re-

construct segmentation masks, a domain gap naturally emerges when transferring to bounding box
detection, which leads to a certain degree of performance drop.

(vii) Performance Evaluation under Spatial Misalignment.  Spatial misalignment between
prompts and queries may negatively affect prompt fusion performance. To evaluate performance
under position shifts, we conducted an ex-

periment where query pairs were horizon- Table 6: Comparison of standard and perturbed mIoU

tally flipped and retrained to simulate se- under spatial misalignment, along with the correspond-
vere spatial misalignment between the re- ing performance drops.

trieved prompts and the query image~ We Method Standard mIoU Perturbed mIoU Performance Drop
compared the performance drop of CON-  ~ogensern_, 414 22,36 178
DENSER and PromptHub under the per-  Condensern—is 46.63 45.24 -1.39
turbed conditions in Table[§] PromptHub Eﬁﬁgiﬁ;“;x:s o Py 25133

is substantially more robust to spatial mis-
alignment than CONDENSER. Its locality-aware fusion mitigates the sensitivity to positional shifts
that affects CONDENSER’s patch-wise fusion. In addition, increasing number of prompts N further
reduces misalignment effects by improving chance of encountering better-aligned prompt pairs.



Under review as a conference paper at ICLR 2026

(viii) Performance Evaluation under Different Noise Ratios. We conducted a
controlled study to evaluate whether injecting random noisy prompt pairs at inference
degrades model performance. Specif-

ically, we compared results across Table 7: Comparison under different noise ratios for
different noise injection ratios and PromptHuby—;¢ and its variant without augmentation.
against a setting without the augmen- Noise Seg. (mloU 1)

tation described in Table[7] Ourre- ~ Method g i £old-0  Fold-1 Fold-2 Fold-3 Mean

sults show that the augmentation strat- =0 ™ oq ™ 4668 5308 4615 4652 48.10
egy is essential for robustness. With "y 000 10% 4634 5282 4621 4667 4801
augmentation, the model maintains  w/aug  25% 4623 5290 4594 4625 47.83
strong performance under noise levels ~ w/aug  50%  44.12 5139 4498  44.17  46.17
ranging from 10% to 25% and only ~ W/aug ~ 100% 4226  49.67 4292 4145 44.08
exhibits noticeable degradation when ~ Woaug 0% 4584 5201 4483 4560 47.07

: . wioaug 10% 4516 5143 4424 4403 4622
the noise level reaches 50% to 100%. 0, o 959, 4428 5119 4385 4316 4562

Without augmentation, performance  w/oaug  50% 4327 5057 4300 41.86  44.68
drops even at low noise levels and re-  w/oaug  100% 42.09 4945 4269 3973 4349
mains consistently worse across all

noise ratios. These findings confirm the effectiveness of our data augmentation design.

Analyses of resources overhead, prediction and attention visualizations, hyperparameter, and data
augment with correlations between regularization losses and performance, are provided in appendix.

4.4 DISCUSSION: WHAT DOES PROMPTHUB LEARN?

In Figure [6] we present visualizations of Prompt-SelF, as well as fusion samples reconstructed
through the VQGAN decoder for CONDENSER y—16 and PromptHub_—16. Given that this visu-
alization relies on reconstructed outputs, some bias may be inevitably introduced. We observe
that in Prompt-SelF, label prediction often tends to be highly similar to the retrieved prompt label,
leading to poor performance when the retrieved label show little similarity to ground-truth answer.
The fusion results of CONDENSER appear

as noisy black-and-white patterns, which Table 8: Comparison the mIoU between the fused

may be attributed to its model-agnostic fea- prompt labels and the query labels across methods to
ture matching and patch-wise attention that  evaluate semantic alignment.

fail to generate smooth representations, of-

. - PR Method Seg. (mloU 1)
fering only heuristic contributions to perfor- Fold-0 Fold-1 Fold-2 Fold-3 Mean
mance. In contrast, the fused prompts pro- =G gencery—, 1893 2973 2426 2794 2522

duced by PromptHub exhibit significantly ~ Condensery_1s 1427 2456 1885 2056  19.56
better visual quality, with fused prompts ~ PromptHuby—, 2125  37.61 3501 29.79  30.92
showing high similarity to the query pairs | PomptHuby—s 2522 4322 3607 3041 3373
and smooth textures, thereby confirming the advantages of the locality-aware design and offering a
more reliable and trustworthy solution for prompt fusion in VICL. Furthermore, we quantitatively
compare the mloU between fused prompt labels and query labels for CONDENSER and PromptHub,
as shown in Table[§] PromptHub y—16 achieves a 72% higher similarity to the ground truth compared
with CONDENSER y—14, demonstrating PromptHub produces higher-quality and more semantically
coherent fused prompts. Although fused prompts may exhibit a gap from realistic images due to lack
of fidelity constraints in decoding stage, our primary goal is to guide VICL inference rather than to
generate photorealistic images.

5 CONCLUSIONS

In this work, we introduced PromptHub, a interpretability paradigm realizes the chain-wide en-
hancements “locality fusion—utilization—prediction” for multi-prompt VICL. PromptHub balances
spatial locality with global receptive fields, supervises the quality of fused samples, and enhances
the backbone’s utilization on integrated prompts. Extensive experiments across diverse tasks and
backbones demonstrate clear improvements over previous methods. Furthermore, PromptHub’s
superior transferability, robustness and generalizability further highlight its potential for extensive
implementation in diverse scenarios. We finally visualize the fused prompts, the results outperform
patch-wise scheme and provide stronger interpretability for prompt fusion methods.

10
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A ScoOPE OF LLM USAGE

To remain compliant with responsible LLM usage protocols, we limited the scope of LLMs to improv-
ing readability and grammar. Every scientific contribution, including the conceptual development,
experimental design, and analytical validation, was independently carried out and confirmed by the
authors, and we retain complete responsibility.

B FUTURE WORKS AND LIMITATIONS

B.1 WHITE-BOX DEPENDENCY

Like CONDENSER, PromptHub requires access to the backbone’s parameters and gradients to train
the fusion module, even though the backbone itself is frozen. This design has been instrumental in
ensuring the framework’s success and robustness in its current applications. But this makes scaling
to very large models or closed-source models challenging, as full gradients may be inaccessible
or too costly. While this enables superior performance, extending prompt fusion to black-box or
gradient-free settings is a key direction for future work.

B.2 EXTENDING APPLICABILITY TO LINGUISTIC AND MULTI-MODAL DOMAINS

PromptHub is designed for VICL tasks with constrained inputs, utilizing positional correspondences
between query and label image patches for locality-enhanced prompt fusion. Building on its success
in the visual domain, future work will expand its scope to multi-modal scenarios by exploring
generalized mechanisms that effectively align visual and linguistic modalities, enabling broader
applicability and integration.

C PRELIMINARY: MAE-VQGAN

As described in Figure[8] MAE-VQGAN (Bar (GIMAE-VQGAN's Pre-Training Stage
et al.| [2022), comprising the MAE (He et al., ‘

iCross | . EREET

2022) and VQGAN components, serves as a maE D EMUOPY | waGaN | EEF
backbone for VICL through an in-painting ap- W R
proach. Given an example and query for the CVF Dataset’s

Origin Image

current task, MAE-VQGAN is treated as a ver-

. . . (b)MAE-VQGAN’s Inference Stage
satile model capable of solving several image- " Got

-~ -Quanti--—

to-image tasks. e Jed o ol
. .. . } Tokens __[VQGAN,

During the pre-training phase, the model is - C — ﬁ@% L

trained on a dataset CVF, where each image INosEtheln = . " Generated

is constructed from multiple sub-images, pro- fjthellubel el

ceeding the masked reconstruction task. This

process fine-tune the MAE encoder to align the Figure 8: Introduction to MAE-VQGAN (Bar
distances with its the VQGAN’s codebook space. et al, [2022)): (a) In the pre-training stage, MAE
In the inference phase, a in-context sample is fed (He et al.,2022) is trained to enhance its inference
into the MAE encoder, and the corresponding capability through a masked reconstruction task on
content from the VQGAN’s codebook space is CVF dataset. (b) In the inference stage, the prompt
obtained, which is then passed to the VQGAN pair is placed above, with the query positioned be-
decoder for generating the output. low, and both are fed into the model for generative

We utilizes the pre-trained parameters of MAE- processing.

VQGAN, freezing its parameters throughout the
entire process.
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D INFERENCE TIME AND GPU OVERHEAD

As shown in Table[9] we compare the inference
time and GPU usage of PromptHub with other  Table 9: Comparison of the inference time and
baselines. The time for retrieving prompt pair  GPU overhead between PromptHub and baselines.

is not includgd in the inference t@me. All meth- Method Inference Time  GPU Cost
ods that require only prompt pair retrieval are etho (ms/query) (MB/query)
categorized under the MAE-VQGAN class. It
can be observed that the time overhead of our MAE-VQGAN 51.26 416.14

. InMeMo 54.28 497.50
approach increases only modestly compared 00 Pprompt-SelFy_15 084.62 44175
other methods, with GPU usage growing at ap-  CONDENSERy—,; 59.17 565.42
proximately 30MB per prompt pair. Therefore, =~ CONDENSERy—16 66.61 1021.86
PromptHub is resource-efficient. This further =~ PromptHuby—, 63.14 569.88
confirms the lightweight nature of the plug-in _PromptHuby—is 7040 1032.50

PromptHub based on prompt fusion, which in-

curs only minimal additional computational and

GPU overhead. The study underscores the practical feasibility of deploying this approach in real-
world scenarios, offering an effective and resource-efficient solution.

E ANALYSIS OF HYPERPARAMETER

E.1 ANALYSIS OF HYPERPARAMETER o 48.2
5 47.2
3 3(55% 1 n’n/n—_n\n\ﬂ\u\u
The hyperparameter o influences the neighbor- €4 ‘3‘:% 1 0’—0——""—?\0\0\0\0
4321 : : | : : ; :
hood range selected by PromptHub. When 0 03 05 065 08 10 15 25
o — 0, the selected neighborhood consists o
solely of the content of the current (h, w) to- (a) Mean Performance on Segmentation
ken. As 0 — o0, the selectfed neighborhood —0— N=1 —o— N=16
encompasses global information, equivalent to 46.4
the standard cross-attention. As shown in Fig- 32 4211
ure[9] extremely large or small values of o result € Y |
in either insufficient emphasis on local informa- 41.4 P 0!5 0k 08 10 15 2%
tion or neglect of global information. Moreover, : : e : : :
the optimal o value varies across tasks. For high- (b) Performance on Detection
level and low-level tasks, o = 0.5 and 0 = 2.5 Nel No16
are both reasonable choices, respectively. 0.49
w 0.51-
2 053] o__o_’o/°/‘f\°—o\o
E.2 ANALYSIS OF HYPERPARAMETER A, 7y 0.551 ¢ : - . ! . i :
0 05 1.0 15 25 35 50 100
. . . . g
As shown in Figure [T0} the results indicate a (c) Performance on Image Coloring

relative sensitivity to the hyperparameter. Ex-
cessively large values diminish the weight of
label prediction loss, while overly small values
render the model less effective. Setting A = 0.4
and v = 0.2 provides a favorable balance.

Figure 9: Evaluation of PromptHub’s performance
on three tasks across varying values of o.

E.3 ANALYSIS OF HYPERPARAMETER p,., D4

As illustration in Figure @, balanced p, and p, are crucial. Excessive p,, where most training
examples are queries, makes the fusion operation too easy, which may lead to low generalization
at test time. Conversely, excessive p, introduces too much noise, increasing learning difficulty and
making model training harder, often resulting in reduced performance. Very small ratios offer little
regularization. Our ablations show that intermediate values yield the best balance, with suitable
ranges of p, € [0.1,0.3] and p, € [0.1,0.4].
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Figure 11: Impact of hyperparameter p, and p,,.

F ANALYSIS OF DATA AUG AND ITS IMPACT ON L, AND L,

To further substantiate the role of the two regularization losses and the benefit of data augmentation,
we conduct a joint examination of data augmentation with sample-wise correlations between L, L.,
and inference quality, as shown in Figure Specifically, we apply an exponential transformation to
L, and observe that both regularization losses exhibit an inverse relationship with VICL prediction
accuracy. Moreover, the incorporation of data augmentation strengthens these correlations while
reducing the number of outliers, well aligned with the intended design rationale.

G EXPERIMENTAL ANALYSIS OF QUERY-CONDITIONAL SIGMA

We design a straightforward query-conditioned sigma mechanism to investigate the impact of adaptive
o for the same task. Specifically, we average the embedding dimension of the query [batchsize,
patch-number, embeddim], apply a linear layer, and use a sigmoid activation to constrain the sigma
value within (0,1). We report its performance on segmentation and detection tasks.

Table 10: Comparison of results between query-conditioned sigma and hyperparameter sigma.

Method \Fold-O Fold-1 Fold-2 Fold-3 Mean  Det

PromptHub y —1 (query-adaptive sigma) 43.79 51.93 44.56 43.18 4586 44.25
PromptHub v —16(query-adaptive sigma) 46.44 52.97 45.66 46.89 4799 4541
PromptHub y—1 (hyperparameter sigma) 44.03 51.79 43.74 4326 4571 4427
PromptHub y—16(hyperparameter sigma) | 46.68 53.08 46.15 46.52  48.10 46.02

As shown in Table[I0] employing a simple learnable o within the same task yields limited improve-
ments. This suggests that more sophisticated spatially varying priors are required, which we leave for
future exploration.
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Figure 12: Joint examination of data aug with sample-wise correlations between L, £,,, and mloU.

Table 11: Results of Multi-Objective Segmentation Experiments.

Method \ Fold-0 Fold-1 Fold-2 Fold-3 Mean
SupPR 26.85 32.73 33.48 28.40  30.37
InMeMo 28.13 38.31 37.94 33.08 34.37

PromptHuby—16 | 38.56 46.54 45.34 39.23 4241

H EXPLORING COMPLEX CHALLENGES IN MULTI-OBJECTIVE
SEGMENTATION

We further report the numerical results on multi-object segmentation, using a subset filtered by
annotations. As shown in Table [T1] on the complex task of multi-objective segmentation, our
PromptHub model achieves an average mloU that surpasses the strongest competitor, InMeMo,
by approximately 23.4%. This demonstrates that our approach maintains strong transferability in
challenging tasks and exhibits robust generalization capability.

I MORE VISUALIZATION

1.1 VISUALIZATION OF VICL ANSWER VIA PROMPTHUB

As illustrated in Figure [I3] PromptHub consistently outperforms prior baselines across all three tasks.
In particular, the segmentation and colorization results demonstrate that the predictions generated
by PromptHub exhibit smoother textures, which further substantiates the advantages of the locality-
aware paradigm. Moreover, the ability of PromptHub to strengthen multi-prompt VICL highlights its
potential to drive more comprehensive progress in this domain.

[.2  VISUALIZATION OF ATTENTION MAP
As shown in Figure[T4] we visualize the attention map for prompt fusion with N' = 2, demonstrating

that PromptHub effectively focuses on regions corresponding to the query image. The attention score
for the current patch is computed as the normalized result of its attention score from all query patches.
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Figure 13: Comparative visualization of our method against the existing state-of-the-art method for
Foreground Segmentation and Single-Object Detection and Colorization tasks.

18



Under review as a conference paper at ICLR 2026

Map for Prompt 1

Figure 14: Visualization of attention map for N = 2.
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