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ABSTRACT

Visual In-Context Learning (VICL) aims to complete vision tasks by imitat-
ing pixel demonstrations. Recent work (Wang et al., 2025) pioneered prompt
fusion that combines the advantages of various demonstrations, which shows
a promising way to extend VICL. Unfortunately, the patch-wise fusion frame-
work and model-agnostic supervision hinder the exploitation of informative cues,
thereby limiting performance gains. To overcome this deficiency, we introduce
PromptHub, a framework that holistically strengthens multi-prompting through
locality-aware fusion, concentration and alignment. PromptHub exploits spa-
tial priors to capture richer contextual information, employs complementary
concentration, alignment, and prediction objectives to mutually guide training,
and incorporates data augmentation to further reinforce supervision. Extensive
experiments on three fundamental vision tasks demonstrate the superiority of
PromptHub. Moreover, we validate its universality, transferability, and robust-
ness across diverse backbones, out-of-distribution settings, and various retrieval
scenarios. This work establishes a reliable locality-aware paradigm for prompt
fusion, moving beyond prior patch-wise approaches. Code will be available at
https://anonymous.4open.science/r/PromptHub-1770.

1 INTRODUCTION

Foundation models like GPT (Brown et al., 2020), Llama (Touvron et al., 2023), Gemini (Team et al.,
2023) and Flamingo (Alayrac et al., 2022) have demonstrated the emerging ability of demonstration-
based prompt learning, aka In-Context Learning (ICL) (Dong et al., 2024; Zheng et al., 2023; Yang
et al., 2023), which further facilitates their versatility in various tasks. The basic idea of ICL (Hendel
et al., 2023; Wei et al., 2023; 2022; Jiang et al., 2024) is to prompt models with some demonstrative
input-output pairs in addition to the query input, which can enhance the answer robustness. The
reliablity of ICL has been thoroughly validated (Shin et al., 2022; Yoo et al., 2022; Dai et al., 2023;
Von Oswald et al., 2023). Recently, Visual ICL (VICL) (Bar et al., 2022; Wang et al., 2023b) have
also become a popular topic, where pixel-space in-painting is the native paradigm.

Choosing appropriate prompts is critical in VICL. Many recent works (Zhang et al., 2023; Sun et al.,
2025; Xu et al., 2024) focused on optimizing retrievers to select better suited prompt pairs, and Zhang
et al. (2024) incorporated visual prompt tuning to enhance the robustness of VICL. Nature Language
Processing (NLP) literature (Shi et al., 2022; Gao et al., 2024) suggests multiple prompts can enhance
ICL with mitigated bias and richer context, offering insights essential for advancing VICL. Yet
visual backbones like MAE-VQGAN (Bar et al., 2022) typically restrict inputs to a single prompt,
rendering multi-prompting non-trivial. In practice, there are two heuristic strategies for extending
single-prompting to multi-prompting, namely downscaling (Wang et al., 2023a) and ensemble (Sun
et al., 2025). Building upon this, CONDENSER (Wang et al., 2025) was the first to adopt prompt
fusion, integrating useful information from multiple prompts into a fused prompt, as illustrated in
Figure 1(a). However, its patch-wise fusion strategy results in substantial underuse of valuable cues,
while the model-agnostic supervision remains insufficient. Moreover, discrepancies between the
fused prompt and the query pair may compels the backbone to distrust the fused representation,
falling back on its own capacity for inference instead. This is precisely the situation we aim to avoid.
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Figure 1: (a) CONDENSER performs patch-wise fusion to fuse composite prompt, while leveraging
model-agnostic supervision signals at the input level. (b) PromptHub transcends CONDENSER by
enforcing a locality-aware chain that unifies fusion-utilization-prediction. It aligns spatial priors
into coherent prompt representations, reinforces the backbone’s concentration on fused cues, and
integrates label prediction to maintain the integrity of VICL pipeline. (c) Comparison of CONDENSER
and PromptHub across three tasks under both single-prompting and multi-prompting configurations.

We break these limits by proposing PromptHub, which aims at (i) integrate precise knowledge from
diverse prompts, (ii) mitigate fused prompt’s discrepancies to encourage the backbone’s effective trust
and reliance on it, and (iii) ultimately yield superior VICL predictions. To achieve this, we propose a
locality-aware fusion framework together with three cooperative learning objectives, as illustrated
in Figure 1(b). Specifically, we introduce a locality prior that applies spatially decaying weights
radiating from the current patch, thereby enhancing accurate feature extraction. This design allows the
fusion process to retain a global receptive field while alleviating the adverse effects of border noise.
During the optimization of PromptHub, we design three complementary objectives: (i) an end-to-end
semantic integrity loss to promote high-quality prompt fusion by aligning fused exemplars with query
semantics, as semantically closer prompt generally benefit VICL; (ii) a utilization loss that mitigates
discrepancies between the fused prompt and the query pair, thereby promoting the backbone’s trust
and reliance on the fused representation for imitation learning; and (iii) a label prediction loss, retained
from CONDENSER, which serves as the base supervision to preserve VICL’s contextual prediction
behavior. Additionally, we preliminarily explored VICL-oriented data augmentation strategies to
enhance the robustness of PromptHub. These designs realize chain-wide enhancements for VICL.

We evaluate PromptHub on segmentation, detection, and colorization. As shown in Figure 1(c),
extensive experiments demonstrated its superiority to state-of-the-art VICL baselines. We also
demonstrate PromptHub’s promising resource efficiency, compatibility with multiple backbones,
transferability and robustness to various prompt retrieval strategies including random selection.
Comprehensive ablations on diverse learning objectives, data augmentation techniques, and locality
fusion, confirming the success of our paradigm design. We further visualize the fused prompts, which
validates the reliablity of PromptHub. These findings strongly support the efficacy of PromptHub,
highlighting the significance of our approach in VICL.

To sum up, we make the following contributions.

• We introduce a locality-enhanced fusion strategy that balances spatial locality and receptive field,
enabling more comprehensive extraction of effective information.

• We propose three complementary learning objectives that collaboratively enhance prompt fusion
quality, strengthen prompt concentration, and improve contextual prediction, further reinforced
with VICL-specific data augmentation.

• Extensive experiments show PromptHub’s efficacy beyond state-of-the-art techniques. Promising
results also suggest that it is transferable across domains, applicability across diverse backbones
and robust to prompt retrieval, establishing a reliable competitive new solution in VICL.
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2 RELATED WORKS

2.1 LARGE VISION MODELS

The field of computer vision has witnessed substantial advancements, driven by abundant foundational
models (Chang et al., 2022; Wang et al., 2023c; Oorloff et al., 2025). LVM (Bai et al., 2024), an
auto-regressive generative model, effectively converted visual information into language-like visual
sentences and improved understanding capabilities. MAE and Point-MAE (He et al., 2022; Pang
et al., 2022), utilizing a masked reconstruction strategy, established unified visual architectures across
various downstream tasks in both 2D and 3D domains. The ability for ICL has also been demonstrated
within visual foundation models, as researchers employed specialized training methodologies (Bar
et al., 2022; Fang et al., 2024; Wang et al., 2023b) to endow these models with superior in-context
learning capabilities, thus providing a robust foundation for the domain of Visual ICL (VICL).

2.2 VISUAL IN-CONTEXT LEARNING VIA IN-PAINTING

MAE-VQGAN (Bar et al., 2022) and Painter (Wang et al., 2023a) serves as crucial in-painting
backbones for VICL, with copious works building upon and enhancing this framework. Existing
work (Zhang et al., 2023; Sun et al., 2025; Xu et al., 2024) primarily focuses on retrieval to obtain
better prompt pairs. Sun et al. (2025) studied prompt spatial arrangement, testing eight configurations
and reporting improved results through voting. Zhang et al. (2024) pioneered visual prompt tuning
(Pfeiffer et al., 2020; Hu et al., 2021; Liu et al., 2023; Bahng et al., 2022), adding a noise border to
prompts. PANICL (Zhang et al., 2025) employs a training-free k-nearest-neighbor fusion integrates
multiple prompts to alleviate the bias inherent in single prompt. PICO (Jiang et al., 2025) reformulates
the personalized vision problem under the VICL paradigm and exhibits clear advantages. Hojel
et al. (2024) focused on identifying task vector that activates backbone to optimize VICL process.
CONDENSER (Wang et al., 2025) leveraged prompt fusion to aggregate informative cues from multiple
prompts. However, the patch-wise information aggregation strategy in CONDENSER (Wang et al.,
2025) exhibits inherent limitations, and its supervision over exemplar quality remains insufficiently
comprehensive. Motivated by these gaps, we propose a spatially aware local fusion scheme coupled
with three cooperative objectives, establishing a more reliable paradigm for prompt fusion.

3 METHOD: PROMPTHUB

3.1 PROBLEM FORMULATION AND METHOD OVERVIEW

Given a prompt database, D = {Pi}|D|
i=1, where each prompt comprises an image-label pair. The

pixel-level retriever R identifies top-N similar prompt pairs P = {P
n
= (Xn, Yn)}Nn=1, for a given

query imageXq ∈ RH×W×3. Following previous settings, we adopt MAE-VQGAN, configured with
patch size of 16 and feature dimension of D, as the backbone. Under general setting, the closest pair
P1 = (X1, Y1) ∈ RH×2W×3 provides the prompt. We concatenate prompt P1 with the query image

Xq to construct the canvas S1 =

[
X1 Y1
Xq [M ]

]
, where [M ] denotes the mask need to be recovered.

The backbone output at the masked location corresponds to the Xq’s predicted label Ŷq .

In our framework, N prompt pairs P and query image Xq are processed by the query-adaptive
PromptHub module, producing fused features FXf

, FYf
∈ RH

16×
W
16×D. FXf

, FYf
and query image

features FXq , mask features F[M ] are concatenated into the canvas Sf =

[
FXf

FYf

FXq
F[M ]

]
. Then Sf is

passed through MAE-VQGAN, excluding the patch embedding, to generate the VICL answer.

3.2 PROMPTHUB MODULE DESIGN

To expand the receptive field during fusion while mitigating the impact of boundary noise, we employ
a locality-enhanced prompt fusion strategy. PromptHub locally fuse P into a unified prompt pair
(FXf

, FYf
) in the embedding space. The workflow is shown in Figure 3.

We first process images (Xq,P) by embedding layer to yield EXq , EX1:N
, EY1:N

∈ RH
16×

W
16×D.
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Figure 2: The training and inference framework of PromptHub based on MAE-VQGAN.

Subsequently, we deploy a self-attention transformation SA(·) to align the query and prompts to
similar patterns, thereby generating the resultant features FXq

, FX1:N
, FY1:N

.

Thereafter, we use a query-adaptive locality-enhanced cross-attention to extract spatial information
from prompt pairs features (FX1:N

, FY1:N
), which achieves the fused exemplar features (FXf

, FYf
).

We define the locality prior as a probability distribution controlled by the hyper-parameter σ. To
effectively represent this locality distribution, we employ either Gaussian prior or Laplacian prior,
with the choice governed by a hyperparameter:

ψ(h,w, x, y) =


exp

(
− (x−h)2+(y−w)2

2σ2

)
, Locality prior = Gaussian prior

exp

(
−
√

(x−h)2+(y−w)2

σ

)
, Locality prior = Laplacian prior

. (1)

For each query image token FXq
[h,w], it has a specific locality matrix Ψh,w centered at (h,w):

Ψh,w =

 ψ(h,w, 1, 1) · · · ψ(h,w, 1, W16 )
...

. . .
...

ψ(h,w, H
16 , 1) · · · ψ(h,w, H

16 ,
W
16 )

 . (2)

During the VICL inference phase, no matched query label Yq is available for constructing fused
prompt label FYf

. However, the specific correspondence still exists between prompt images X1:N

and prompt labels Y1:N . Therefore, we share the prompt images features FX1:N
as the key in the

attention mechanism, compute the generalized attention scores, and subsequently perform localized
weighting to procure locality-enhanced attention weights Ah,w ∈ RN× H

16×
W
16 for FXf

[h,w]:

Ah,w = softmax

((
FXq

[h,w]×WQ

)
× (FX1:N

×WK)
⊤

√
D

·Ψh,w

)
, (3)

which · denotes element-wise multiplication, × denotes matrix multiplication, and WQ,WK ∈
RD×D represent the projection layers for mapping Q and K in the attention mechanism.

Ultimately, we multiply the locality-enhanced attention weights with the features FX1:N
and FY1:N

through linearly transformed to obtain the fused prompt pair features FXf
, FYf

∈ RH
16×

W
16×D.

WV X ,WV Y ∈ RD×D denote linear layers in attention mechanism for image and label, respectively.

FXf
[h,w] = Ah,w × (FX1:N

×WV X ) , FYf
[h,w] = Ah,w × (FY1:N

×WV Y ) . (4)

3.3 LEARNING OBJECTIVES

We introduce three complementary learning objectives to guide fusion module’s training, collectively
strengthening “fusion–utilization–prediction” closed-loop for robust VICL, as illustrated in Figure 2.
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Figure 3: PromptHub module design. N prompt pairs
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Figure 4: Data augment of
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pairs are randomly substituted with
either query pairs or random pairs.

(i) Ensuring label prediction performance. Following CONDENSER and InMeMo, we also
adopt a label prediction loss as the fundamental objective to preserve VICL’s contextual prediction
behavior. Without this base supervision, parameterized VICL paradigms cannot function properly.
Upon deriving the fused in-context sample Sf , we propagate it through the MAE encoder, generating

a canvas of continuous tokens
[
T c
Xf

T c
Yf

T c
Xq

T c
[M ]

]
∈ R 2H

16 × 2W
16 ×D . These tokens are calibrated during

pretraining to correspond with the VQGAN codebook space. Simultaneously, We construct the target

canvas Sq =

[
Xq Yq
Xq Yq

]
∈ R2H×2W×3 by integrating the query pair as a prompt pair and process

it through the VQGAN encoder, obtaining the corresponding discrete tokens

[
T

d(1)
Xq

T
d(1)
Yq

T
d(2)
Xq

T
d(2)
Yq

]
∈

{1, 2, ..., Nc}
2H
16 × 2W

16 from the codebook. Here, Nc denotes the size of the codebook space, with
Nc = D. T d(1)

Xq
and T d(1)

Yq
represent the discrete tokens output as prompt, while T d(2)

Xq
and T d(2)

Yq

correspond to the discrete tokens output as query. To optimize the label prediction results, we align
the bottom-right portion T c

[M ], which will be reconstructed by the VQGAN decoder, with the target

T
d(2)
Yq

using a cross-entropy loss. Here, Lp denotes the loss function for label prediction:

Lp = −E(h,w)∼U([1, H
16 ]×[1,W16 ])

log T c
[M ]

[
h,w, T

d(2)
Yq

]
. (5)

(ii) Fused-prompt feature alignment. The backbone tends to produce accurate predictions when
exposed to the same prompt as the query. We employ a cross-entropy alignment between the continu-
ous tokens derived from the fused prompt pair (T c

Xf
, T c

Yf
) and the discrete tokens corresponding to

the query pair as a prompt (T d(1)
Xq

, T
d(1)
Yq

) to make fused prompt pair closely approximate the query
pair. The semantic integrity loss for improved fusion is denoted as Ls.

Ls = −E(h,w)∼U([1, H
16 ]×[1,W16 ])

(
log T c

Xf
[h,w, T

d(1)
Xq

] + log T c
Yf
[h,w, T

d(1)
Yq

]
)
. (6)

(iii) Enhance fused prompt utilization. Owing to discrepancy between fused prompt and query
pair, backbone may regard useful prompt as unreliable and instead rely on its own capacity. We employ
a cosine-similarity loss Lu, designed to reduce the dissimilarity between query pair (T c

Xq
, T c

[M ]) and
fused prompt (T c

Xf
, T c

Yf
), thereby enhancing the backbone’s utilization of fused prompt.

Lu = −E(h,w)∼U([1, H
16 ]×[1,W16 ])

(
cos
(
T c
Xf

[h,w] , T c
Xq

[h,w]
)
+ cos

(
T c
Yf
[h,w], T c

[M ][h,w]
))

.

(7)

We adopt λ and γ to balance diffenent losses. Let θ denote the parameters of PromptHub. The
ultimate synergistic optimization objective is formulated as:

min
θ

Lp + λLs + γLu. (8)
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3.4 RETRIEVE SCHEME FOR DATA AUGMENT

In the inference phase, we consistently retrieve the top-N most similar prompt pairs P = {Pn}Nn=1
from the database D, utilizing the most relevant raw prompt pairs for improved VICL.

During training, we employ a data augmentation strategy to enhance two regularization objectives’
effect. Based on the retrieved top-N prompt pairs P = {Pn}Nn=1, we might replace some prompt
pairs Pn with either query pairs Pq = (Xq, Yq) or randomly retrieved pairs Pr, as shown in Figure 4.

(i) Substitute with query pair to better utilize the fused prompt. Under typical settings, defining
prompt pair P1 as query pair Pq generally yields minimal discrepancy. To this end, we replace current
prompt pairs Pn with query pairs Pq with probability pq. This substitution establishes a purified
learning objective that minimizes discrepancy as much as possible, hence enhancing Lu.

(ii) Substitute with random pair to enhance PromptHub’s robustness. With probability pr, we
substitute prompt pair Pn with a randomly retrieved pair Pr, introducing a controlled level of noise
that enhances Ls and PromptHub’s stability. This technique guarantees when high-quality prompts
are unavailable during inference, PromptHub retains its capacity to achieve robust VICL results.

4 EXPERIMENTS

4.1 EXPERIMENTAL SETUP

Downstream Tasks and Datasets. To ensure a fair comparison, we employ three well-established
tasks foreground segmentation, single-object detection, and colorization along with their associated
datasets, within the domain of VICL. For foreground segmentation, we employ Pascal-5i (Shaban
et al., 2017), which consists of four folds, with each fold containing data from five different classes.
We conduct experiments across all folds and analyze the results by presenting the mean intersection
over union (mIoU) for each fold. In the case of single-object detection, we utilize the Pascal
VOC2012 (Everingham et al., 2015) dataset, also employing mIoU as the evaluation metric. For the
coloring task, we randomly select 50,000 images from the ImageNet-1K ILSVRC2012 (Russakovsky
et al., 2015) training set, with 50 images chosen from each of the 1,000 classes to form the label
portion of our training set. The 50,000 images from the validation set of ImageNet-1K ILSVRC2012
are used as the label portion of our test set. We convert training set and test set label portion to
grayscale images, which served as the input queries. We use MSE as the evaluation metric.

Implementation Details. We adopt MAE-VQGAN (Bar et al., 2022) as the backbone architecture
and utilize Prompt-SelF’s (Sun et al., 2025) pixel-level retriever for prompt retrieval. During training,
we use the training set as the database for prompt pairs while also employing the training set as the
query. In the testing phase, the validation set serves as the query collection, while the training set acts
as the database. The input image resolution to the model is 224× 224, with each sub-image having a
resolution of 112× 112. We utilized Gaussian prior as the default locality prior.

Training Configurations. We employed SGD optimizer with a learning rate initialized at 0.04,
which decays according to cosine annealing warm restarts scheduler. For segmentation and detection
tasks, training is performed for 100 epochs, while coloring task requires 10 epochs. The corresponding
σ values for foreground segmentation, object detection, and colorization tasks are 0.5, 0.5, and 2.5,
respectively. Hyper-parameter λ is set to 0.5, and γ is set to 0.2. The experiments were performed on
single 80G A100 GPUs with a batch size of 16.

4.2 COMPARISON WITH STATE-OF-THE-ARTS

Baselines. We compare our method against comprehensive state-of-the-art approaches built on the
MAE-VQGAN framework. Our competitors are categorized into four groups: (1) Zero-shot methods,
including MAE-VQGAN (Bar et al., 2022) and UnsupPR (Zhang et al., 2023) and Prompt-SelF (Sun
et al., 2025), which do not require additional retriever training; (2) Methods that necessitate retriever
training, such as SupPR (Zhang et al., 2023) and Partial2Global (Xu et al., 2024); (3) Approach
that leverages prompt tuning, exemplified by InMeMo (Zhang et al., 2024); (4) Method of finding
and utilizing the task vector VTV (Hojel et al., 2024). (5) Method that employs prompt fusion,
CONDENSER (Wang et al., 2025), to enable multi-prompt VICL, with comparisons reported under
both single-prompting and multi-prompting settings.
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Table 1: PromptHub performance is compared with different baselines in three downstream tasks
foreground segmentation (Seg.), single-object detection (Det.), and image colorization (Col.). The
results for N = 1, 16, representing the cases with 1 and 16 prompts respectively, are listed separately.
The highest results are denoted in bold, while the suboptimal results are indicated in italics.

Seg. (mIoU ↑)Model Fold-0 Fold-1 Fold-2 Fold-3 Mean Det. (mIoU ↑) Col. (MSE ↓)

Zero-Shot
Random (Bar et al., 2022) 28.66 30.21 27.81 23.55 27.56 25.45 0.67
UnsupPR (Zhang et al., 2023) 34.75 35.92 32.41 31.16 33.56 26.84 0.63
Prompt-SelF (Sun et al., 2025) 35.69 38.25 35.86 33.37 35.79 28.08 0.63

Retriever Training
SupPR (Zhang et al., 2023) 37.08 38.43 34.40 32.32 35.56 28.22 0.63
Partial2Global (Xu et al., 2024) 38.81 41.54 37.25 36.01 38.40 30.66 0.58

PEFT
InMeMo (Zhang et al., 2024) 41.65 47.68 42.43 40.80 43.14 43.21 -

Task Vectors
VTV (Hojel et al., 2024) 38.00 37.00 33.00 32.00 33.50 - -

Prompt Fusion
CONDENSERN=1 (Wang et al., 2025) 42.13 50.31 42.20 41.90 44.14 43.22 0.560
CONDENSERN=16 (Wang et al., 2025) 45.53 52.06 44.33 44.58 46.63 44.64 0.539

PromptHubN=1 (Ours) 44.03 51.79 43.74 43.26 45.71 44.27 0.531
PromptHubN=16 (Ours) 46.68 53.08 46.15 46.52 48.10 46.02 0.501

(i) Performance on Standard Tasks. Table 1 demonstrates that PromptHub achieves consistent
improvements across all tasks under both single-prompt and multi-prompt settings. In single-prompt
scenario, PromptHub surpasses CONDENSER by 3.6%, 2.4%, and 5.5% on segmentation, detection,
and colorization, respectively. Under multi-prompt scenario, it further attains gains of 3.2%, 3.1%,
and 7.6% on same tasks. PromptHub’s output visualization is discussed further in the appendix.

(ii) Performance on Domain Adaption Task. In real-world applications, the data for inference

Table 2: Transferability evaluation. We train mod-
els on COCO-5i and test on Pascal-5i.

Model Seg. (mIoU ↑)
Fold-0 Fold-1 Fold-2 Fold-3 Mean

Prompt-SelF 40.13 42.14 37.84 38.52 39.66
InMeMo 38.74 43.82 40.45 37.12 40.03
CONDENSERN=1 40.39 44.54 40.23 36.33 40.37
CONDENSERN=16 40.37 44.85 41.03 35.84 40.52
PromptHubN=1 41.05 44.72 40.84 39.02 41.41
PromptHubN=16 42.30 45.69 41.22 40.21 42.36

may undergo domain adaptation compared to
the training data. Thus, testing the transferabil-
ity of different VICL schemes is crucial. We
trained the PromptHub on the COCO-5i (Lin
et al., 2014) using the same settings as previ-
ous works (Wang et al., 2025; Sun et al., 2025;
Zhang et al., 2024), and evaluate it on the Pascal-
5i. As shown in Table 2, PromptHub demon-
strates substantially larger improvements than
other baselines, outperforming CONDENSER by
4.5% in the multi-prompt setting, highlighting the strong transferability of PromptHub.

36.335.3 36.6

28.528.3 28.8

PromptHub Condenser Down-sampling fusion Answer-level fusion

Segmentation Detection Colorization

…

…

Figure 5: Performance comparison with baselines
in multi-prompt VICL scenario.

(iii) Performance under the multi-prompting
scenario. To validate the scalability of
PromptHub, we compare it with CONDENSER
under various N , specifically 1, 2, 4, 8, 16,
and 32. In addition, we report results under
down-samplingN=2,N=7 (Zhang et al., 2023)
and answer-levelN=16 (Sun et al., 2025). The
experimental results demonstrate our approach
not only improves performance as N increases,
but also consistently surpasses other baselines
by a large margin, as shown in Figure 5.

4.3 MODEL ANALYSIS

For a comprehensive ablation study, we designed several variants, as summarized in Table 3, where
Variants (0) – (1) correspond to the canonical configurations.

(i) Effectiveness of Learning Objectives. To comprehensively evaluate the contributions of
each learning objective, we conducted an ablation analysis by individually removing the three
objectives. The experimental results demonstrate “fusion-utilization-prediction” objectives are
mutually complementary, and omitting any of them leads to performance degradation in multi-prompt
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Table 3: Ablation study of PromptHub. The best are marked in bold and second-best in italic.
Seg. (mIoU ↑)# Model Fold-0 Fold-1 Fold-2 Fold-3 Mean Det. (mIoU ↑)

(0) PromptHubN=1 44.03 51.79 43.74 43.26 45.71 44.27
(1) PromptHubN=16 46.68 53.08 46.15 46.52 48.10 46.02
Effectiveness of Learning Objectives
(2) w/o Lu N=1 42.71 51.14 42.78 42.41 44.76 43.45
(3) w/o Lu N=16 45.54 52.25 44.59 44.47 46.71 44.83
(4) w/o Ls N=1 42.23 50.52 42.29 42.16 44.30 43.12
(5) w/o Ls N=16 44.72 51.77 43.57 43.30 45.84 44.27
(6) w/o Lp N=1 8.51 10.13 9.46 8.33 9.11 13.23
(7) w/o Lp N=16 9.41 13.44 12.29 10.62 11.44 12.87

Effectiveness of Locality-Enhanced Fusion
(8) w/ Laplacian PriorN=1 43.74 50.93 43.51 43.05 45.31 43.93
(9) w/ Laplacian PriorN=16 46.93 52.87 46.39 46.16 48.09 45.78
(10) Global FusionN=1 41.77 49.04 42.69 40.73 43.55 41.86
(11) Global FusionN=16 41.91 50.45 43.76 42.43 44.64 42.49
(12) Convolution-Based FusionN=1 42.56 50.15 42.79 42.52 44.51 43.83
(13) Convolution-Based FusionN=16 45.28 51.68 45.34 45.51 46.95 45.07

Effectiveness of Data Augment Technique
(14) w/o Data AugmentN=1 43.11 51.22 43.17 42.34 44.96 43.52
(15) w/o Data AugmentN=16 45.84 52.01 44.83 45.60 47.07 45.06

IoU=40.94 IoU=89.58 IoU=89.93 IoU=77.62 IoU=51.67 IoU=49.65 IoU=61.20 IoU=50.25

IoU=16.84 IoU=55.92 IoU=48.88 IoU=31.99 IoU=29.16 IoU=15.99 IoU=47.81 IoU=26.15

IoU=15.20 IoU=55.00 IoU=39.56 IoU=27.53 IoU=14.10 IoU=10.15 IoU=44.01 IoU=22.23

Condenser	𝑵#𝟏𝟔

PromptHub	𝑵#𝟏𝟔

Ground Truth

Prompt-SelF	𝑵#𝟏

Figure 6: The visualization of the fused prompt pair after passing through the VQGAN decoder.

VICL. In particular, the primary objective, label prediction Lp, is indispensable for preserving
VICL’s contextual prediction behavior; without it, the training-based VICL paradigm with additional
parameters cannot function effectively. Meanwhile, Ls and Lu act as crucial regularization terms,
ensuring fused exemplars’ quality and the backbone’s effective utilization. The absence of either
damages the pipeline in VICL and results in mediocre performance.

(ii) Effectiveness of Locality-Enhanced Prompt Fusion. We compare locality-enhanced fusion
with global fusion, patch-wise fusion (CONDENSER (Wang et al., 2025)), and convolution-based
fusion, where the latter replaces the spatial prior with convolutional transformations. Notably,
locality-enhanced fusion can be viewed as a higher-level framework, within which global fusion
and patch-wise fusion emerge as two complementary instantiations, corresponding to larger and
smaller values of the locality parameter σ, respectively. As shown in Table 3, both types of locality
priors achieve superior performance. Upon observation, maintaining an appropriate balance between
global receptive fields and spatial locality proves essential. The locality accords with the fusion
principle that enriches information capture while mitigating long-range noise.

(iii) Effectiveness of Data Augment Technique. We conducted experiments under scenarios
without data augmentation, only utilizing the top-N prompt pairs for fusion during training, as
illustrated in Variants (14) – (15). The results indicate that removing data augmentation diminishes
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the performance of PromptHub in VICL tasks, confirming the effectiveness of data augmentation. It
better reinforce fused prompt utilization and enhances noise resistance.

(iv) Other Backbone Painter. We replaced backbone with Painter (Wang et al., 2023a) while

Table 4: Experiments were conducted on Painter
Seg. (mIoU ↑) Det.Model Fold-0 Fold-1 Fold-2 Fold-3 Mean (mIoU ↑)

Painter-only 63.01 61.07 51.35 60.90 59.08 74.35
w/ PromptHubN=1 63.25 60.86 53.84 60.73 59.67 74.45
w/ PromptHubN=16 64.27 62.64 55.49 62.58 61.25 75.92

maintaining same loss introduced by
Wang et al. (2023a). Experimental
results in Table 4 demonstrated perfor-
mance are improved with increasing
prompt number, achieving optimal re-
sults. These further validates the gen-
erality of PromptHub across models.

PromptHub                     Condenser

Figure 7: Comparison of PromptHub and
CONDENSER across different retrieval.

(v) Impact on Different Retrievers. Explor-
ing better prompt retrieval and investigating multi-
prompt fusion are two orthogonal research directions,
while the fusion plugin can be adapted to different re-
trievers. We investigated performance of PromptHub
using different retrievers, as presented in Figure 7.
We evaluated four types of retrievers: random se-
lection (Bar et al., 2022), UnsupPR (Zhang et al.,
2023), SupPR (Zhang et al., 2023) and Pixel-Level
retriever (Sun et al., 2025). Experimental results
demonstrate PromptHub is more effective than CON-
DENSER across all retrieval schemes, further high-
lighting its generalizability. Additionally, the perfor-
mance of our method is influenced by the choice of re-
triever; pixel-level retrievers consistently deliver best
results, underscoring the alignment between pixel-
level retrieval and locality-aware design philosophy.

(vi) Transferability on Unseen Tasks. We evaluate cross-task transferability by train-
ing all models solely on segmentation (Pascal-5, four folds) and directly testing them
on detection (Pascal VOC 2012) without any fine-tuning. We compare PromptHub with
the CONDENSER baseline using their released checkpoints, and report results in Table 5.

Table 5: Transferability experiment (unseen task) where
both CONDENSER and PromptHub are trained on seg-
mentation and evaluated on detection.

Det. (mIoU ↑)Method Fold-0 Fold-1 Fold-2 Fold-3 Mean

CondenserN=1 38.15 35.70 35.49 30.31 34.91
CondenserN=16 41.25 36.66 37.86 39.02 38.70
PromptHubN=1 41.59 36.25 37.71 32.15 36.93
PromptHubN=16 43.40 38.55 39.52 40.66 40.53

PromptHub consistently surpasses Con-
denser in this challenging unseen-task set-
ting. With N = 16, PromptHub achieves
a +1.83% mIoU gain, indicating that our
locality-aware fusion captures more robust
and transferable visual cues than the patch-
wise fusion used in Condenser. We note
that although the overall performance is
strong, the training process is not fully task-
agnostic. Since the model is trained to re-
construct segmentation masks, a domain gap naturally emerges when transferring to bounding box
detection, which leads to a certain degree of performance drop.

(vii) Performance Evaluation under Spatial Misalignment. Spatial misalignment between
prompts and queries may negatively affect prompt fusion performance. To evaluate performance

Table 6: Comparison of standard and perturbed mIoU
under spatial misalignment, along with the correspond-
ing performance drops.

Method Standard mIoU Perturbed mIoU Performance Drop

CondenserN=1 44.14 42.36 -1.78
CondenserN=16 46.63 45.24 -1.39
PromptHubN=1 45.71 44.28 -1.43
PromptHubN=16 48.10 47.21 -0.89

under position shifts, we conducted an ex-
periment where query pairs were horizon-
tally flipped and retrained to simulate se-
vere spatial misalignment between the re-
trieved prompts and the query image. We
compared the performance drop of CON-
DENSER and PromptHub under the per-
turbed conditions in Table 6. PromptHub
is substantially more robust to spatial mis-
alignment than CONDENSER. Its locality-aware fusion mitigates the sensitivity to positional shifts
that affects CONDENSER’s patch-wise fusion. In addition, increasing number of prompts N further
reduces misalignment effects by improving chance of encountering better-aligned prompt pairs.
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(viii) Performance Evaluation under Different Noise Ratios. We conducted a
controlled study to evaluate whether injecting random noisy prompt pairs at inference

Table 7: Comparison under different noise ratios for
PromptHubN=16 and its variant without augmentation.

Noise Seg. (mIoU ↑)Method Ratio Fold-0 Fold-1 Fold-2 Fold-3 Mean

w/ aug 0% 46.68 53.08 46.15 46.52 48.10
w/ aug 10% 46.34 52.82 46.21 46.67 48.01
w/ aug 25% 46.23 52.90 45.94 46.25 47.83
w/ aug 50% 44.12 51.39 44.98 44.17 46.17
w/ aug 100% 42.26 49.67 42.92 41.45 44.08
w/o aug 0% 45.84 52.01 44.83 45.60 47.07
w/o aug 10% 45.16 51.43 44.24 44.03 46.22
w/o aug 25% 44.28 51.19 43.85 43.16 45.62
w/o aug 50% 43.27 50.57 43.00 41.86 44.68
w/o aug 100% 42.09 49.45 42.69 39.73 43.49

degrades model performance. Specif-
ically, we compared results across
different noise injection ratios and
against a setting without the augmen-
tation described in Table 7. Our re-
sults show that the augmentation strat-
egy is essential for robustness. With
augmentation, the model maintains
strong performance under noise levels
ranging from 10% to 25% and only
exhibits noticeable degradation when
the noise level reaches 50% to 100%.
Without augmentation, performance
drops even at low noise levels and re-
mains consistently worse across all
noise ratios. These findings confirm the effectiveness of our data augmentation design.

Analyses of resources overhead, prediction and attention visualizations, hyperparameter, and data
augment with correlations between regularization losses and performance, are provided in appendix.

4.4 DISCUSSION: WHAT DOES PROMPTHUB LEARN?

In Figure 6, we present visualizations of Prompt-SelF, as well as fusion samples reconstructed
through the VQGAN decoder for CONDENSERN=16 and PromptHubN=16. Given that this visu-
alization relies on reconstructed outputs, some bias may be inevitably introduced. We observe
that in Prompt-SelF, label prediction often tends to be highly similar to the retrieved prompt label,
leading to poor performance when the retrieved label show little similarity to ground-truth answer.

Table 8: Comparison the mIoU between the fused
prompt labels and the query labels across methods to
evaluate semantic alignment.

Seg. (mIoU ↑)Method Fold-0 Fold-1 Fold-2 Fold-3 Mean

CondenserN=1 18.93 29.73 24.26 27.94 25.22
CondenserN=16 14.27 24.56 18.85 20.56 19.56
PromptHubN=1 21.25 37.61 35.01 29.79 30.92
PromptHubN=16 25.22 43.22 36.07 30.41 33.73

The fusion results of CONDENSER appear
as noisy black-and-white patterns, which
may be attributed to its model-agnostic fea-
ture matching and patch-wise attention that
fail to generate smooth representations, of-
fering only heuristic contributions to perfor-
mance. In contrast, the fused prompts pro-
duced by PromptHub exhibit significantly
better visual quality, with fused prompts
showing high similarity to the query pairs
and smooth textures, thereby confirming the advantages of the locality-aware design and offering a
more reliable and trustworthy solution for prompt fusion in VICL. Furthermore, we quantitatively
compare the mIoU between fused prompt labels and query labels for CONDENSER and PromptHub,
as shown in Table 8. PromptHubN=16 achieves a 72% higher similarity to the ground truth compared
with CONDENSERN=16, demonstrating PromptHub produces higher-quality and more semantically
coherent fused prompts. Although fused prompts may exhibit a gap from realistic images due to lack
of fidelity constraints in decoding stage, our primary goal is to guide VICL inference rather than to
generate photorealistic images.

5 CONCLUSIONS

In this work, we introduced PromptHub, a interpretability paradigm realizes the chain-wide en-
hancements “locality fusion–utilization–prediction” for multi-prompt VICL. PromptHub balances
spatial locality with global receptive fields, supervises the quality of fused samples, and enhances
the backbone’s utilization on integrated prompts. Extensive experiments across diverse tasks and
backbones demonstrate clear improvements over previous methods. Furthermore, PromptHub’s
superior transferability, robustness and generalizability further highlight its potential for extensive
implementation in diverse scenarios. We finally visualize the fused prompts, the results outperform
patch-wise scheme and provide stronger interpretability for prompt fusion methods.
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A SCOPE OF LLM USAGE

To remain compliant with responsible LLM usage protocols, we limited the scope of LLMs to improv-
ing readability and grammar. Every scientific contribution, including the conceptual development,
experimental design, and analytical validation, was independently carried out and confirmed by the
authors, and we retain complete responsibility.

B FUTURE WORKS AND LIMITATIONS

B.1 WHITE-BOX DEPENDENCY

Like CONDENSER, PromptHub requires access to the backbone’s parameters and gradients to train
the fusion module, even though the backbone itself is frozen. This design has been instrumental in
ensuring the framework’s success and robustness in its current applications. But this makes scaling
to very large models or closed-source models challenging, as full gradients may be inaccessible
or too costly. While this enables superior performance, extending prompt fusion to black-box or
gradient-free settings is a key direction for future work.

B.2 EXTENDING APPLICABILITY TO LINGUISTIC AND MULTI-MODAL DOMAINS

PromptHub is designed for VICL tasks with constrained inputs, utilizing positional correspondences
between query and label image patches for locality-enhanced prompt fusion. Building on its success
in the visual domain, future work will expand its scope to multi-modal scenarios by exploring
generalized mechanisms that effectively align visual and linguistic modalities, enabling broader
applicability and integration.

C PRELIMINARY: MAE-VQGAN

MAE
Encoder

VQGAN
Encoder

Cross
Entropy

Loss

MAE
Encoder

Get
Quanti

fied
Tokens VQGAN

Decoder

(a)MAE-VQGAN’s Pre-Training Stage

(b)MAE-VQGAN’s Inference Stage

CVF Dataset’s 
Origin Image

Random 
Mask

Mask the Part
of the Label

Generated
Answer

Figure 8: Introduction to MAE-VQGAN (Bar
et al., 2022): (a) In the pre-training stage, MAE
(He et al., 2022) is trained to enhance its inference
capability through a masked reconstruction task on
CVF dataset. (b) In the inference stage, the prompt
pair is placed above, with the query positioned be-
low, and both are fed into the model for generative
processing.

As described in Figure 8, MAE-VQGAN (Bar
et al., 2022), comprising the MAE (He et al.,
2022) and VQGAN components, serves as a
backbone for VICL through an in-painting ap-
proach. Given an example and query for the
current task, MAE-VQGAN is treated as a ver-
satile model capable of solving several image-
to-image tasks.

During the pre-training phase, the model is
trained on a dataset CVF, where each image
is constructed from multiple sub-images, pro-
ceeding the masked reconstruction task. This
process fine-tune the MAE encoder to align the
distances with its the VQGAN’s codebook space.
In the inference phase, a in-context sample is fed
into the MAE encoder, and the corresponding
content from the VQGAN’s codebook space is
obtained, which is then passed to the VQGAN
decoder for generating the output.

We utilizes the pre-trained parameters of MAE-
VQGAN, freezing its parameters throughout the
entire process.
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D INFERENCE TIME AND GPU OVERHEAD

Table 9: Comparison of the inference time and
GPU overhead between PromptHub and baselines.

Method Inference Time GPU Cost
(ms/query) (MB/query)

MAE-VQGAN 51.26 416.14
InMeMo 54.28 497.50
Prompt-SelFN=16 984.62 441.75
CONDENSERN=1 59.17 565.42
CONDENSERN=16 66.61 1021.86
PromptHubN=1 63.14 569.88
PromptHubN=16 70.40 1032.50

As shown in Table 9, we compare the inference
time and GPU usage of PromptHub with other
baselines. The time for retrieving prompt pair
is not included in the inference time. All meth-
ods that require only prompt pair retrieval are
categorized under the MAE-VQGAN class. It
can be observed that the time overhead of our
approach increases only modestly compared to
other methods, with GPU usage growing at ap-
proximately 30MB per prompt pair. Therefore,
PromptHub is resource-efficient. This further
confirms the lightweight nature of the plug-in
PromptHub based on prompt fusion, which in-
curs only minimal additional computational and
GPU overhead. The study underscores the practical feasibility of deploying this approach in real-
world scenarios, offering an effective and resource-efficient solution.

E ANALYSIS OF HYPERPARAMETER

E.1 ANALYSIS OF HYPERPARAMETER σ
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Figure 9: Evaluation of PromptHub’s performance
on three tasks across varying values of σ.

The hyperparameter σ influences the neighbor-
hood range selected by PromptHub. When
σ → 0, the selected neighborhood consists
solely of the content of the current (h, w) to-
ken. As σ → ∞, the selected neighborhood
encompasses global information, equivalent to
the standard cross-attention. As shown in Fig-
ure 9, extremely large or small values of σ result
in either insufficient emphasis on local informa-
tion or neglect of global information. Moreover,
the optimal σ value varies across tasks. For high-
level and low-level tasks, σ = 0.5 and σ = 2.5
are both reasonable choices, respectively.

E.2 ANALYSIS OF HYPERPARAMETER λ, γ

As shown in Figure 10, the results indicate a
relative sensitivity to the hyperparameter. Ex-
cessively large values diminish the weight of
label prediction loss, while overly small values
render the model less effective. Setting λ = 0.4
and γ = 0.2 provides a favorable balance.

E.3 ANALYSIS OF HYPERPARAMETER pr, pq

As illustration in Figure 11, balanced pq and pr are crucial. Excessive pq, where most training
examples are queries, makes the fusion operation too easy, which may lead to low generalization
at test time. Conversely, excessive pr introduces too much noise, increasing learning difficulty and
making model training harder, often resulting in reduced performance. Very small ratios offer little
regularization. Our ablations show that intermediate values yield the best balance, with suitable
ranges of pr ∈ [0.1, 0.3] and pq ∈ [0.1, 0.4].
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Figure 10: Impact of hyperparameter λ and γ.
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Figure 11: Impact of hyperparameter pr and pq .

F ANALYSIS OF DATA AUG AND ITS IMPACT ON Ls AND Lu

To further substantiate the role of the two regularization losses and the benefit of data augmentation,
we conduct a joint examination of data augmentation with sample-wise correlations between Ls, Lu,
and inference quality, as shown in Figure 12. Specifically, we apply an exponential transformation to
Ls and observe that both regularization losses exhibit an inverse relationship with VICL prediction
accuracy. Moreover, the incorporation of data augmentation strengthens these correlations while
reducing the number of outliers, well aligned with the intended design rationale.

G EXPERIMENTAL ANALYSIS OF QUERY-CONDITIONAL SIGMA

We design a straightforward query-conditioned sigma mechanism to investigate the impact of adaptive
σ for the same task. Specifically, we average the embedding dimension of the query [batchsize,
patch-number, embeddim], apply a linear layer, and use a sigmoid activation to constrain the sigma
value within (0,1). We report its performance on segmentation and detection tasks.

Table 10: Comparison of results between query-conditioned sigma and hyperparameter sigma.

Method Fold-0 Fold-1 Fold-2 Fold-3 Mean Det

PromptHubN=1(query-adaptive sigma) 43.79 51.93 44.56 43.18 45.86 44.25
PromptHubN=16(query-adaptive sigma) 46.44 52.97 45.66 46.89 47.99 45.41
PromptHubN=1(hyperparameter sigma) 44.03 51.79 43.74 43.26 45.71 44.27
PromptHubN=16(hyperparameter sigma) 46.68 53.08 46.15 46.52 48.10 46.02

As shown in Table 10, employing a simple learnable σ within the same task yields limited improve-
ments. This suggests that more sophisticated spatially varying priors are required, which we leave for
future exploration.
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Figure 12: Joint examination of data aug with sample-wise correlations between Ls, Lu, and mIoU.

Table 11: Results of Multi-Objective Segmentation Experiments.
Method Fold-0 Fold-1 Fold-2 Fold-3 Mean

SupPR 26.85 32.73 33.48 28.40 30.37
InMeMo 28.13 38.31 37.94 33.08 34.37
PromptHubN=16 38.56 46.54 45.34 39.23 42.41

H EXPLORING COMPLEX CHALLENGES IN MULTI-OBJECTIVE
SEGMENTATION

We further report the numerical results on multi-object segmentation, using a subset filtered by
annotations. As shown in Table 11, on the complex task of multi-objective segmentation, our
PromptHub model achieves an average mIoU that surpasses the strongest competitor, InMeMo,
by approximately 23.4%. This demonstrates that our approach maintains strong transferability in
challenging tasks and exhibits robust generalization capability.

I MORE VISUALIZATION

I.1 VISUALIZATION OF VICL ANSWER VIA PROMPTHUB

As illustrated in Figure 13, PromptHub consistently outperforms prior baselines across all three tasks.
In particular, the segmentation and colorization results demonstrate that the predictions generated
by PromptHub exhibit smoother textures, which further substantiates the advantages of the locality-
aware paradigm. Moreover, the ability of PromptHub to strengthen multi-prompt VICL highlights its
potential to drive more comprehensive progress in this domain.

I.2 VISUALIZATION OF ATTENTION MAP

As shown in Figure 14, we visualize the attention map for prompt fusion with N = 2, demonstrating
that PromptHub effectively focuses on regions corresponding to the query image. The attention score
for the current patch is computed as the normalized result of its attention score from all query patches.
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Figure 13: Comparative visualization of our method against the existing state-of-the-art method for
Foreground Segmentation and Single-Object Detection and Colorization tasks.
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Figure 14: Visualization of attention map for N = 2.
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