

000

001 PROMPTHUB: ENHANCING MULTI-PROMPT VISUAL

002 IN-CONTEXT LEARNING WITH LOCALITY-AWARE FU-

003 SION, CONCENTRATION AND ALIGNMENT

004 **Anonymous authors**

005 Paper under double-blind review

006 **ABSTRACT**

007 Visual In-Context Learning (VICL) aims to complete vision tasks by imitating
 008 pixel demonstrations. Recent work (Wang et al., 2025) pioneered prompt
 009 fusion that combines the advantages of various demonstrations, which shows
 010 a promising way to extend VICL. Unfortunately, the patch-wise fusion frame-
 011 work and model-agnostic supervision hinder the exploitation of informative cues,
 012 thereby limiting performance gains. To overcome this deficiency, we introduce
 013 PromptHub, a framework that holistically strengthens multi-prompting through
 014 locality-aware fusion, concentration and alignment. PromptHub exploits spa-
 015 tial priors to capture richer contextual information, employs complementary
 016 concentration, alignment, and prediction objectives to mutually guide training,
 017 and incorporates data augmentation to further reinforce supervision. Extensive
 018 experiments on three fundamental vision tasks demonstrate the superiority of
 019 PromptHub. Moreover, we validate its universality, transferability, and robust-
 020 ness across diverse backbones, out-of-distribution settings, and various retrieval
 021 scenarios. This work establishes a reliable locality-aware paradigm for prompt
 022 fusion, moving beyond prior patch-wise approaches. Code will be available at
 023 <https://anonymous.4open.science/r/PromptHub-1770>.

024

1 INTRODUCTION

025 Foundation models like GPT (Brown et al., 2020), Llama (Touvron et al., 2023), Gemini (Team et al.,
 026 2023) and Flamingo (Alayrac et al., 2022) have demonstrated the emerging ability of demonstration-
 027 based prompt learning, aka In-Context Learning (ICL) (Dong et al., 2024; Zheng et al., 2023; Yang
 028 et al., 2023), which further facilitates their versatility in various tasks. The basic idea of ICL (Hendel
 029 et al., 2023; Wei et al., 2023; 2022; Jiang et al., 2024) is to prompt models with some demonstrative
 030 input-output pairs in addition to the query input, which can enhance the answer robustness. The
 031 reliability of ICL has been thoroughly validated (Shin et al., 2022; Yoo et al., 2022; Dai et al., 2023;
 032 Von Oswald et al., 2023). Recently, Visual ICL (VICL) (Bar et al., 2022; Wang et al., 2023b) have
 033 also become a popular topic, where pixel-space in-painting is the native paradigm.

034 Choosing appropriate prompts is critical in VICL. Many recent works (Zhang et al., 2023; Sun et al.,
 035 2025; Xu et al., 2024) focused on optimizing retrievers to select better suited prompt pairs, and Zhang
 036 et al. (2024) incorporated visual prompt tuning to enhance the robustness of VICL. Nature Language
 037 Processing (NLP) literature (Shi et al., 2022; Gao et al., 2024) suggests multiple prompts can enhance
 038 ICL with mitigated bias and richer context, offering insights essential for advancing VICL. Yet
 039 visual backbones like MAE-VQGAN (Bar et al., 2022) typically restrict inputs to a single prompt,
 040 rendering multi-prompting non-trivial. In practice, there are two heuristic strategies for extending
 041 single-prompting to multi-prompting, namely downscaling (Wang et al., 2023a) and ensemble (Sun
 042 et al., 2025). Building upon this, CONDENSER (Wang et al., 2025) was the first to adopt prompt
 043 fusion, integrating useful information from multiple prompts into a fused prompt, as illustrated in
 044 Figure 1(a). However, its patch-wise fusion strategy results in substantial underuse of valuable cues,
 045 while the model-agnostic supervision remains insufficient. Moreover, discrepancies between the
 046 fused prompt and the query pair may compel the backbone to distrust the fused representation,
 047 falling back on its own capacity for inference instead. This is precisely the situation we aim to avoid.

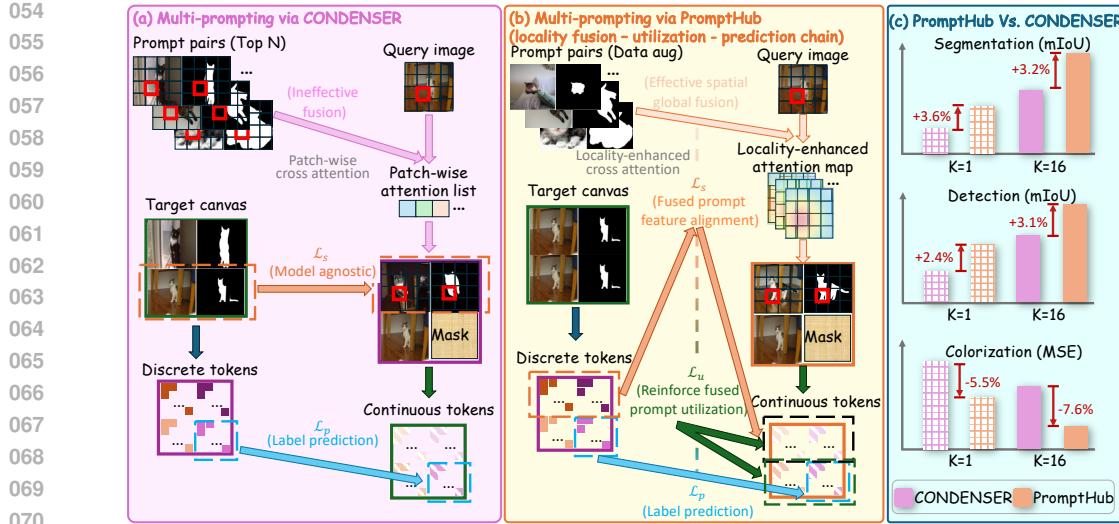


Figure 1: (a) CONDENSER performs patch-wise fusion to fuse composite prompt, while leveraging model-agnostic supervision signals at the input level. (b) PromptHub transcends CONDENSER by enforcing a locality-aware chain that unifies fusion-utilization-prediction. It aligns spatial priors into coherent prompt representations, reinforces the backbone’s concentration on fused cues, and integrates label prediction to maintain the integrity of VICL pipeline. (c) Comparison of CONDENSER and PromptHub across three tasks under both single-prompting and multi-prompting configurations.

We break these limits by proposing PromptHub, which aims at (i) integrate precise knowledge from diverse prompts, (ii) mitigate fused prompt’s discrepancies to encourage the backbone’s effective trust and reliance on it, and (iii) ultimately yield superior VICL predictions. To achieve this, we propose a locality-aware fusion framework together with three cooperative learning objectives, as illustrated in Figure 1(b). Specifically, we introduce a locality prior that applies spatially decaying weights radiating from the current patch, thereby enhancing accurate feature extraction. This design allows the fusion process to retain a global receptive field while alleviating the adverse effects of border noise. During the optimization of PromptHub, we design three complementary objectives: (i) an end-to-end semantic integrity loss to promote high-quality prompt fusion by aligning fused exemplars with query semantics, as semantically closer prompt generally benefit VICL; (ii) a utilization loss that mitigates discrepancies between the fused prompt and the query pair, thereby promoting the backbone’s trust and reliance on the fused representation for imitation learning; and (iii) a label prediction loss, retained from CONDENSER, which serves as the base supervision to preserve VICL’s contextual prediction behavior. Additionally, we preliminarily explored VICL-oriented data augmentation strategies to enhance the robustness of PromptHub. These designs realize chain-wide enhancements for VICL.

We evaluate PromptHub on segmentation, detection, and colorization. As shown in Figure 1(c), extensive experiments demonstrated its superiority to state-of-the-art VICL baselines. We also demonstrate PromptHub’s promising resource efficiency, compatibility with multiple backbones, transferability and robustness to various prompt retrieval strategies including random selection. Comprehensive ablations on diverse learning objectives, data augmentation techniques, and locality fusion, confirming the success of our paradigm design. We further visualize the fused prompts, which validates the reliability of PromptHub. These findings strongly support the efficacy of PromptHub, highlighting the significance of our approach in VICL.

To sum up, we make the following contributions.

- We introduce a locality-enhanced fusion strategy that balances spatial locality and receptive field, enabling more comprehensive extraction of effective information.
- We propose three complementary learning objectives that collaboratively enhance prompt fusion quality, strengthen prompt concentration, and improve contextual prediction, further reinforced with VICL-specific data augmentation.
- Extensive experiments show PromptHub’s efficacy beyond state-of-the-art techniques. Promising results also suggest that it is transferable across domains, applicability across diverse backbones and robust to prompt retrieval, establishing a reliable competitive new solution in VICL.

108

2 RELATED WORKS

109

2.1 LARGE VISION MODELS

110 The field of computer vision has witnessed substantial advancements, driven by abundant foundational
 111 models (Chang et al., 2022; Wang et al., 2023c; Oorloff et al., 2025). LVM (Bai et al., 2024), an
 112 auto-regressive generative model, effectively converted visual information into language-like visual
 113 sentences and improved understanding capabilities. MAE and Point-MAE (He et al., 2022; Pang
 114 et al., 2022), utilizing a masked reconstruction strategy, established unified visual architectures across
 115 various downstream tasks in both 2D and 3D domains. The ability for ICL has also been demonstrated
 116 within visual foundation models, as researchers employed specialized training methodologies (Bar
 117 et al., 2022; Fang et al., 2024; Wang et al., 2023b) to endow these models with superior in-context
 118 learning capabilities, thus providing a robust foundation for the domain of Visual ICL (VICL).
 119

120

2.2 VISUAL IN-CONTEXT LEARNING VIA IN-PAINTING

121 MAE-VQGAN (Bar et al., 2022) and Painter (Wang et al., 2023a) serve as crucial in-painting
 122 backbones for VICL, with copious works building upon and enhancing this framework. Existing
 123 work (Zhang et al., 2023; Sun et al., 2025; Xu et al., 2024) primarily focuses on retrieval to obtain
 124 better prompt pairs. Sun et al. (2025) studied prompt spatial arrangement, testing eight configurations
 125 and reporting improved results through voting. Zhang et al. (2024) pioneered visual prompt tuning
 126 (Pfeiffer et al., 2020; Hu et al., 2021; Liu et al., 2023; Bahng et al., 2022), adding a noise border to
 127 prompts. **PANICL** (Zhang et al., 2025) employs a training-free k-nearest-neighbor fusion integrates
 128 multiple prompts to alleviate the bias inherent in single prompt. **PICO** (Jiang et al., 2025) reformulates
 129 the personalized vision problem under the VICL paradigm and exhibits clear advantages. Hojel
 130 et al. (2024) focused on identifying task vector that activates backbone to optimize VICL process.
 131 **CONDENSER** (Wang et al., 2025) leveraged prompt fusion to aggregate informative cues from multiple
 132 prompts. However, the patch-wise information aggregation strategy in **CONDENSER** (Wang et al.,
 133 2025) exhibits inherent limitations, and its supervision over exemplar quality remains insufficiently
 134 comprehensive. Motivated by these gaps, we propose a spatially aware local fusion scheme coupled
 135 with three cooperative objectives, establishing a more reliable paradigm for prompt fusion.
 136

137

3 METHOD: PROMPTHUB

138

3.1 PROBLEM FORMULATION AND METHOD OVERVIEW

139 Given a prompt database, $\mathcal{D} = \{P_i\}_{i=1}^{|\mathcal{D}|}$, where each prompt comprises an image-label pair. The
 140 pixel-level retriever \mathcal{R} identifies top- N similar prompt pairs $\mathcal{P} = \{P_n = (X_n, Y_n)\}_{n=1}^N$, for a given
 141 query image $X_q \in \mathbb{R}^{H \times W \times 3}$. Following previous settings, we adopt MAE-VQGAN, configured with
 142 patch size of 16 and feature dimension of D , as the backbone. Under general setting, the closest pair
 143 $P_1 = (X_1, Y_1) \in \mathbb{R}^{H \times 2W \times 3}$ provides the prompt. We concatenate prompt P_1 with the query image

144 X_q to construct the canvas $S_1 = \begin{bmatrix} X_1 & Y_1 \\ X_q & [M] \end{bmatrix}$, where $[M]$ denotes the mask need to be recovered.
 145

146 The backbone output at the masked location corresponds to the X_q ’s predicted label \hat{Y}_q .

147 In our framework, N prompt pairs \mathcal{P} and query image X_q are processed by the query-adaptive
 148 PromptHub module, producing fused features $F_{X_f}, F_{Y_f} \in \mathbb{R}^{\frac{H}{16} \times \frac{W}{16} \times D}$. F_{X_f}, F_{Y_f} and query image
 149 features F_{X_q} , mask features $F_{[M]}$ are concatenated into the canvas $S_f = \begin{bmatrix} F_{X_f} & F_{Y_f} \\ F_{X_q} & F_{[M]} \end{bmatrix}$. Then S_f is
 150 passed through MAE-VQGAN, excluding the patch embedding, to generate the VICL answer.
 151

152

3.2 PROMPTHUB MODULE DESIGN

153 To expand the receptive field during fusion while mitigating the impact of boundary noise, we employ
 154 a locality-enhanced prompt fusion strategy. PromptHub locally fuse \mathcal{P} into a unified prompt pair
 155 (F_{X_f}, F_{Y_f}) in the embedding space. The workflow is shown in Figure 3.

156 We first process images (X_q, \mathcal{P}) by embedding layer to yield $E_{X_q}, E_{X_{1:N}}, E_{Y_{1:N}} \in \mathbb{R}^{\frac{H}{16} \times \frac{W}{16} \times D}$.
 157

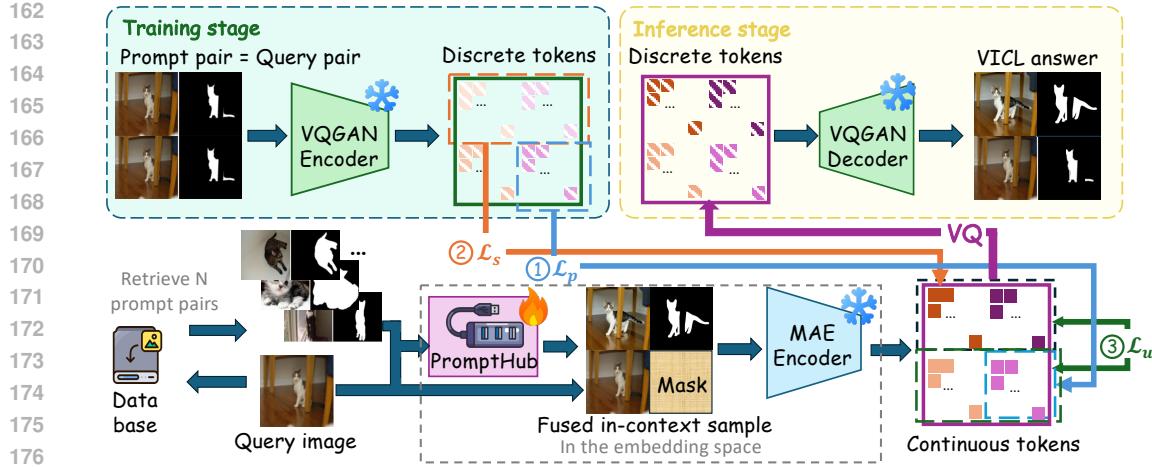


Figure 2: The training and inference framework of PromptHub based on MAE-VQGAN.

Subsequently, we deploy a self-attention transformation $SA(\cdot)$ to align the query and prompts to similar patterns, thereby generating the resultant features $F_{X_q}, F_{X_{1:N}}, F_{Y_{1:N}}$.

Thereafter, we use a query-adaptive locality-enhanced cross-attention to extract spatial information from prompt pairs features ($F_{X_{1:N}}, F_{Y_{1:N}}$), which achieves the fused exemplar features (F_{X_f}, F_{Y_f}).

We define the locality prior as a probability distribution controlled by the hyper-parameter σ . To effectively represent this locality distribution, we employ either Gaussian prior or Laplacian prior, with the choice governed by a hyperparameter:

$$\psi(h, w, x, y) = \begin{cases} \exp\left(-\frac{(x-h)^2 + (y-w)^2}{2\sigma^2}\right), & \text{Locality prior = Gaussian prior} \\ \exp\left(-\frac{\sqrt{(x-h)^2 + (y-w)^2}}{\sigma}\right), & \text{Locality prior = Laplacian prior} \end{cases}. \quad (1)$$

For each query image token $F_{X_q}[h, w]$, it has a specific locality matrix $\Psi_{h,w}$ centered at (h, w) :

$$\Psi_{h,w} = \begin{bmatrix} \psi(h, w, 1, 1) & \cdots & \psi(h, w, 1, \frac{W}{16}) \\ \vdots & \ddots & \vdots \\ \psi(h, w, \frac{H}{16}, 1) & \cdots & \psi(h, w, \frac{H}{16}, \frac{W}{16}) \end{bmatrix}. \quad (2)$$

During the VICL inference phase, no matched query label Y_q is available for constructing fused prompt label F_{Y_f} . However, the specific correspondence still exists between prompt images $X_{1:N}$ and prompt labels $Y_{1:N}$. Therefore, we share the prompt images features $F_{X_{1:N}}$ as the key in the attention mechanism, compute the generalized attention scores, and subsequently perform localized weighting to procure locality-enhanced attention weights $A_{h,w} \in \mathbb{R}^{N \times \frac{H}{16} \times \frac{W}{16}}$ for $F_{X_f}[h, w]$:

$$A_{h,w} = \text{softmax} \left(\frac{(F_{X_q}[h, w] \times W_Q) \times (F_{X_{1:N}} \times W_K)^\top}{\sqrt{D}} \cdot \Psi_{h,w} \right), \quad (3)$$

which \cdot denotes element-wise multiplication, \times denotes matrix multiplication, and $W_Q, W_K \in \mathbb{R}^{D \times D}$ represent the projection layers for mapping Q and K in the attention mechanism.

Ultimately, we multiply the locality-enhanced attention weights with the features $F_{X_{1:N}}$ and $F_{Y_{1:N}}$ through linearly transformed to obtain the fused prompt pair features $F_{X_f}, F_{Y_f} \in \mathbb{R}^{\frac{H}{16} \times \frac{W}{16} \times D}$. $W_{VX}, W_{VY} \in \mathbb{R}^{D \times D}$ denote linear layers in attention mechanism for image and label, respectively.

$$F_{X_f}[h, w] = A_{h,w} \times (F_{X_{1:N}} \times W_{VX}), \quad F_{Y_f}[h, w] = A_{h,w} \times (F_{Y_{1:N}} \times W_{VY}). \quad (4)$$

3.3 LEARNING OBJECTIVES

We introduce three complementary learning objectives to guide fusion module's training, collectively strengthening “fusion–utilization–prediction” closed-loop for robust VICL, as illustrated in Figure 2.

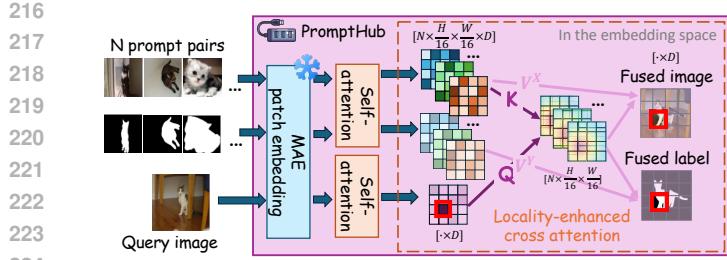


Figure 3: **PromptHub module design.** N prompt pairs and query image are embedded into the MAE patch space, where locality-enhanced fusion integrates spatially cues into a fused prompt aligned with query’s informative content.

(i) Ensuring label prediction performance. Following CONDENSER and InMeMo, we also adopt a label prediction loss as the fundamental objective to preserve VICL’s contextual prediction behavior. Without this base supervision, parameterized VICL paradigms cannot function properly. Upon deriving the fused in-context sample S_f , we propagate it through the MAE encoder, generating a canvas of continuous tokens $\begin{bmatrix} T_{X_f}^c & T_{Y_f}^c \\ T_{X_q}^c & T_{[M]}^c \end{bmatrix} \in \mathbb{R}^{\frac{2H}{16} \times \frac{2W}{16} \times D}$. These tokens are calibrated during pretraining to correspond with the VQGAN codebook space. Simultaneously, We construct the target canvas $S_q = \begin{bmatrix} X_q & Y_q \\ X_q & Y_q \end{bmatrix} \in \mathbb{R}^{2H \times 2W \times 3}$ by integrating the query pair as a prompt pair and process it through the VQGAN encoder, obtaining the corresponding discrete tokens $\begin{bmatrix} T_{X_q}^{d(1)} & T_{Y_q}^{d(1)} \\ T_{X_q}^{d(2)} & T_{Y_q}^{d(2)} \end{bmatrix} \in \{1, 2, \dots, N_c\}^{\frac{2H}{16} \times \frac{2W}{16}}$ from the codebook. Here, N_c denotes the size of the codebook space, with $N_c = D$. $T_{X_q}^{d(1)}$ and $T_{Y_q}^{d(1)}$ represent the discrete tokens output as prompt, while $T_{X_q}^{d(2)}$ and $T_{Y_q}^{d(2)}$ correspond to the discrete tokens output as query. To optimize the label prediction results, we align the bottom-right portion $T_{[M]}^c$, which will be reconstructed by the VQGAN decoder, with the target $T_{Y_q}^{d(2)}$ using a cross-entropy loss. Here, \mathcal{L}_p denotes the loss function for *label prediction*:

$$\mathcal{L}_p = -\mathbb{E}_{(h,w) \sim \mathcal{U}([1, \frac{H}{16}] \times [1, \frac{W}{16}])} \log T_{[M]}^c [h, w, T_{Y_q}^{d(2)}]. \quad (5)$$

(ii) Fused-prompt feature alignment. The backbone tends to produce accurate predictions when exposed to the same prompt as the query. We employ a cross-entropy alignment between the continuous tokens derived from the fused prompt pair $(T_{X_f}^c, T_{Y_f}^c)$ and the discrete tokens corresponding to the query pair as a prompt $(T_{X_q}^{d(1)}, T_{Y_q}^{d(1)})$ to make fused prompt pair closely approximate the query pair. The semantic integrity loss for improved *fusion* is denoted as \mathcal{L}_s .

$$\mathcal{L}_s = -\mathbb{E}_{(h,w) \sim \mathcal{U}([1, \frac{H}{16}] \times [1, \frac{W}{16}])} \left(\log T_{X_f}^c [h, w, T_{X_q}^{d(1)}] + \log T_{Y_f}^c [h, w, T_{Y_q}^{d(1)}] \right). \quad (6)$$

(iii) Enhance fused prompt utilization. Owing to discrepancy between fused prompt and query pair, backbone may regard useful prompt as unreliable and instead rely on its own capacity. We employ a cosine-similarity loss \mathcal{L}_u , designed to reduce the dissimilarity between query pair $(T_{X_q}^c, T_{[M]}^c)$ and fused prompt $(T_{X_f}^c, T_{Y_f}^c)$, thereby enhancing the backbone’s *utilization* of fused prompt.

$$\mathcal{L}_u = -\mathbb{E}_{(h,w) \sim \mathcal{U}([1, \frac{H}{16}] \times [1, \frac{W}{16}])} \left(\cos(T_{X_f}^c [h, w], T_{X_q}^c [h, w]) + \cos(T_{Y_f}^c [h, w], T_{[M]}^c [h, w]) \right). \quad (7)$$

We adopt λ and γ to balance different losses. Let θ denote the parameters of PromptHub. The ultimate synergistic optimization objective is formulated as:

$$\min_{\theta} \mathcal{L}_p + \lambda \mathcal{L}_s + \gamma \mathcal{L}_u. \quad (8)$$

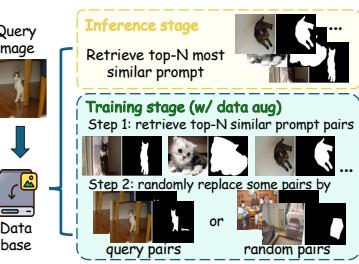


Figure 4: **Data augment of PromptHub.** In training, the top- N pairs are randomly substituted with either query pairs or random pairs.

270 3.4 RETRIEVE SCHEME FOR DATA AUGMENT
271272 In the inference phase, we consistently retrieve the top- N most similar prompt pairs $\mathcal{P} = \{P_n\}_{n=1}^N$
273 from the database \mathcal{D} , utilizing the most relevant raw prompt pairs for improved VICL.274 During training, we employ a data augmentation strategy to enhance two regularization objectives'
275 effect. Based on the retrieved top- N prompt pairs $\mathcal{P} = \{P_n\}_{n=1}^N$, we might replace some prompt
276 pairs P_n with either query pairs $P_q = (X_q, Y_q)$ or randomly retrieved pairs P_r , as shown in Figure 4.
277278 (i) Substitute with query pair to better utilize the fused prompt. Under typical settings, defining
279 prompt pair P_1 as query pair P_q generally yields minimal discrepancy. To this end, we replace current
280 prompt pairs P_n with query pairs P_q with probability p_q . This substitution establishes a purified
281 learning objective that minimizes discrepancy as much as possible, hence enhancing \mathcal{L}_u .282 (ii) Substitute with random pair to enhance PromptHub's robustness. With probability p_r , we
283 substitute prompt pair P_n with a randomly retrieved pair P_r , introducing a controlled level of noise
284 that enhances \mathcal{L}_s and PromptHub's stability. This technique guarantees when high-quality prompts
285 are unavailable during inference, PromptHub retains its capacity to achieve robust VICL results.286 4 EXPERIMENTS
287288 4.1 EXPERIMENTAL SETUP
289290 **Downstream Tasks and Datasets.** To ensure a fair comparison, we employ three well-established
291 tasks foreground segmentation, single-object detection, and colorization along with their associated
292 datasets, within the domain of VICL. For **foreground segmentation**, we employ Pascal-5ⁱ (Shaban
293 et al., 2017), which consists of four folds, with each fold containing data from five different classes.
294 We conduct experiments across all folds and analyze the results by presenting the mean intersection
295 over union (mIoU) for each fold. In the case of **single-object detection**, we utilize the Pascal
296 VOC2012 (Everingham et al., 2015) dataset, also employing mIoU as the evaluation metric. For the
297 **coloring task**, we randomly select 50,000 images from the ImageNet-1K ILSVRC2012 (Russakovsky
298 et al., 2015) training set, with 50 images chosen from each of the 1,000 classes to form the label
299 portion of our training set. The 50,000 images from the validation set of ImageNet-1K ILSVRC2012
300 are used as the label portion of our test set. We convert training set and test set label portion to
301 grayscale images, which served as the input queries. We use MSE as the evaluation metric.302 **Implementation Details.** We adopt MAE-VQGAN (Bar et al., 2022) as the backbone architecture
303 and utilize Prompt-Self's (Sun et al., 2025) pixel-level retriever for prompt retrieval. During training,
304 we use the training set as the database for prompt pairs while also employing the training set as the
305 query. In the testing phase, the validation set serves as the query collection, while the training set acts
306 as the database. The input image resolution to the model is 224×224 , with each sub-image having a
307 resolution of 112×112 . We utilized Gaussian prior as the default locality prior.308 **Training Configurations.** We employed SGD optimizer with a learning rate initialized at 0.04,
309 which decays according to cosine annealing warm restarts scheduler. For segmentation and detection
310 tasks, training is performed for 100 epochs, while coloring task requires 10 epochs. The corresponding
311 σ values for foreground segmentation, object detection, and colorization tasks are 0.5, 0.5, and 2.5,
312 respectively. Hyper-parameter λ is set to 0.5, and γ is set to 0.2. The experiments were performed on
313 single 80G A100 GPUs with a batch size of 16.314 4.2 COMPARISON WITH STATE-OF-THE-ARTS
315316 **Baselines.** We compare our method against comprehensive state-of-the-art approaches built on the
317 MAE-VQGAN framework. Our competitors are categorized into four groups: (1) Zero-shot methods,
318 including MAE-VQGAN (Bar et al., 2022) and UnsupPR (Zhang et al., 2023) and Prompt-Self (Sun
319 et al., 2025), which do not require additional retriever training; (2) Methods that necessitate retriever
320 training, such as SupPR (Zhang et al., 2023) and Partial2Global (Xu et al., 2024); (3) Approach
321 that leverages prompt tuning, exemplified by InMeMo (Zhang et al., 2024); (4) Method of finding
322 and utilizing the task vector VTV (Hojel et al., 2024). (5) Method that employs prompt fusion,
323 CONDENSER (Wang et al., 2025), to enable multi-prompt VICL, with comparisons reported under
324 both single-prompting and multi-prompting settings.

Table 1: PromptHub performance is compared with different baselines in three downstream tasks foreground segmentation (**Seg.**), single-object detection (**Det.**), and image colorization (**Col.**). The results for $N = 1, 16$, representing the cases with 1 and 16 prompts respectively, are listed separately. The highest results are denoted in **bold**, while the suboptimal results are indicated in *italics*.

Model	Seg. (mIoU \uparrow)				Det. (mIoU \uparrow)	Col. (MSE \downarrow)
	Fold-0	Fold-1	Fold-2	Fold-3		
Zero-Shot						
Random (Bar et al., 2022)	28.66	30.21	27.81	23.55	27.56	0.67
UnsupPR (Zhang et al., 2023)	34.75	35.92	32.41	31.16	33.56	0.63
Prompt-SelF (Sun et al., 2025)	35.69	38.25	35.86	33.37	35.79	0.63
Retriever Training						
SupPR (Zhang et al., 2023)	37.08	38.43	34.40	32.32	35.56	0.63
Partial2Global (Xu et al., 2024)	38.81	41.54	37.25	36.01	38.40	0.58
PEFT						
InMeMo (Zhang et al., 2024)	41.65	47.68	42.43	40.80	43.14	43.21
Task Vectors						
VTM (Hojel et al., 2024)	38.00	37.00	33.00	32.00	33.50	-
Prompt Fusion						
CONDENSER $_{N=1}$ (Wang et al., 2025)	42.13	50.31	42.20	41.90	44.14	43.22
CONDENSER $_{N=16}$ (Wang et al., 2025)	45.53	52.06	44.33	44.58	46.63	44.64
PromptHub $_{N=1}$ (<i>Ours</i>)	44.03	51.79	43.74	43.26	45.71	44.27
PromptHub $_{N=16}$ (<i>Ours</i>)	46.68	53.08	46.15	46.52	48.10	46.02

(i) Performance on Standard Tasks. Table 1 demonstrates that PromptHub achieves consistent improvements across all tasks under both single-prompt and multi-prompt settings. In single-prompt scenario, PromptHub surpasses CONDENSER by 3.6%, 2.4%, and 5.5% on segmentation, detection, and colorization, respectively. Under multi-prompt scenario, it further attains gains of 3.2%, 3.1%, and 7.6% on same tasks. PromptHub’s output visualization is discussed further in the appendix.

(ii) Performance on Domain Adaption Task. In real-world applications, the data for inference may undergo domain adaptation compared to the training data. Thus, testing the transferability of different VICL schemes is crucial. We trained the PromptHub on the COCO-5 i (Lin et al., 2014) using the same settings as previous works (Wang et al., 2025; Sun et al., 2025; Zhang et al., 2024), and evaluate it on the Pascal-5 i . As shown in Table 2, PromptHub demonstrates substantially larger improvements than other baselines, outperforming CONDENSER by 4.5% in the multi-prompt setting, highlighting the strong transferability of PromptHub.

(iii) Performance under the multi-prompt scenario. To validate the scalability of PromptHub, we compare it with CONDENSER under various N , specifically 1, 2, 4, 8, 16, and 32. In addition, we report results under down-sampling $_{N=2, N=7}$ (Zhang et al., 2023) and answer-level $_{N=16}$ (Sun et al., 2025). The experimental results demonstrate our approach not only improves performance as N increases, but also consistently surpasses other baselines by a large margin, as shown in Figure 5.

4.3 MODEL ANALYSIS

For a comprehensive ablation study, we designed several variants, as summarized in Table 3, where Variants (0) – (1) correspond to the canonical configurations.

(i) Effectiveness of Learning Objectives. To comprehensively evaluate the contributions of each learning objective, we conducted an ablation analysis by individually removing the three objectives. The experimental results demonstrate “*fusion-utilization-prediction*” objectives are mutually complementary, and omitting any of them leads to performance degradation in multi-prompt

Table 2: Transferability evaluation. We train models on COCO-5 i and test on Pascal-5 i .

Model	Seg. (mIoU \uparrow)				Mean
	Fold-0	Fold-1	Fold-2	Fold-3	
Prompt-SelF	40.13	42.14	37.84	38.52	39.66
InMeMo	38.74	43.82	40.45	37.12	40.03
CONDENSER $_{N=1}$	40.39	44.54	40.23	36.33	40.37
CONDENSER $_{N=16}$	40.37	44.85	41.03	35.84	40.52
PromptHub $_{N=1}$	41.05	44.72	40.84	39.02	41.41
PromptHub $_{N=16}$	42.30	45.69	41.22	40.21	42.36

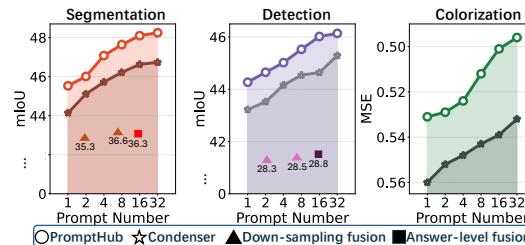


Figure 5: Performance comparison with baselines in multi-prompt VICL scenario.

378

379

Table 3: Ablation study of PromptHub. The best are marked in **bold** and second-best in *italic*.

380

381

#	Model	Seg. (mIoU \uparrow)					Det. (mIoU \uparrow)
		Fold-0	Fold-1	Fold-2	Fold-3	Mean	
(0)	PromptHub $_{N=1}$	44.03	51.79	43.74	43.26	45.71	44.27
(1)	PromptHub $_{N=16}$	46.68	53.08	<i>46.15</i>	46.52	48.10	46.02
Effectiveness of Learning Objectives							
(2)	w/o \mathcal{L}_u $N=1$	42.71	51.14	42.78	42.41	44.76	43.45
(3)	w/o \mathcal{L}_u $N=16$	45.54	52.25	44.59	44.47	46.71	44.83
(4)	w/o \mathcal{L}_s $N=1$	42.23	50.52	42.29	42.16	44.30	43.12
(5)	w/o \mathcal{L}_s $N=16$	44.72	51.77	43.57	43.30	45.84	44.27
(6)	w/o \mathcal{L}_p $N=1$	8.51	10.13	9.46	8.33	9.11	13.23
(7)	w/o \mathcal{L}_p $N=16$	9.41	13.44	12.29	10.62	11.44	12.87
Effectiveness of Locality-Enhanced Fusion							
(8)	w/ Laplacian Prior $_{N=1}$	43.74	50.93	43.51	43.05	45.31	43.93
(9)	w/ Laplacian Prior $_{N=16}$	46.93	52.87	46.39	46.16	48.09	45.78
(10)	Global Fusion $_{N=1}$	41.77	49.04	42.69	40.73	43.55	41.86
(11)	Global Fusion $_{N=16}$	41.91	50.45	43.76	42.43	44.64	42.49
(12)	Convolution-Based Fusion $_{N=1}$	42.56	50.15	42.79	42.52	44.51	43.83
(13)	Convolution-Based Fusion $_{N=16}$	45.28	51.68	45.34	45.51	46.95	45.07
Effectiveness of Data Augment Technique							
(14)	w/o Data Augment $_{N=1}$	43.11	51.22	43.17	42.34	44.96	43.52
(15)	w/o Data Augment $_{N=16}$	45.84	52.01	44.83	45.60	47.07	45.06

398

399

400

401

402

403

404

405

406

407

408

409

410

411

412

Figure 6: The visualization of the fused prompt pair after passing through the VQGAN decoder.

413

414

415

VICL. In particular, the primary objective, label prediction \mathcal{L}_p , is indispensable for preserving VICL’s contextual prediction behavior; *without it, the training-based VICL paradigm with additional parameters cannot function effectively*. Meanwhile, \mathcal{L}_s and \mathcal{L}_u act as crucial regularization terms, ensuring fused exemplars’ quality and the backbone’s effective utilization. *The absence of either damages the pipeline in VICL and results in mediocre performance.*

416

417

418

419

420

421

422

423

424

425

426

427

428

429

430

431

(ii) Effectiveness of Locality-Enhanced Prompt Fusion. We compare locality-enhanced fusion with global fusion, patch-wise fusion (CONDENSER (Wang et al., 2025)), and convolution-based fusion, where the latter replaces the spatial prior with convolutional transformations. *Notably, locality-enhanced fusion can be viewed as a higher-level framework, within which global fusion and patch-wise fusion emerge as two complementary instantiations, corresponding to larger and smaller values of the locality parameter σ , respectively.* As shown in Table 3, both types of locality priors achieve superior performance. *Upon observation, maintaining an appropriate balance between global receptive fields and spatial locality proves essential. The locality accords with the fusion principle that enriches information capture while mitigating long-range noise.*

(iii) Effectiveness of Data Augment Technique. We conducted experiments under scenarios without data augmentation, only utilizing the top- N prompt pairs for fusion during training, as illustrated in Variants (14) – (15). The results indicate that removing data augmentation diminishes

432 the performance of PromptHub in VICL tasks, confirming the effectiveness of data augmentation. It
 433 better reinforce fused prompt utilization and enhances noise resistance.
 434

435 **(iv) Other Backbone Painter.** We replaced backbone with Painter (Wang et al., 2023a) while
 436 maintaining same loss introduced by
 437 Wang et al. (2023a). Experimental
 438 results in Table 4 demonstrated perfor-
 439 mance are improved with increasing
 440 prompt number, achieving optimal
 441 results. These further validates the gen-
 442 erality of PromptHub across models.

443 **(v) Impact on Different Retrievers.** *Explor-
 444 ing better prompt retrieval and investigating multi-
 445 prompt fusion are two orthogonal research directions,
 446 while the fusion plugin can be adapted to different re-
 447 triever. We investigated performance of PromptHub
 448 using different retrievers, as presented in Figure 7.
 449 We evaluated four types of retrievers: random se-
 450 lection (Bar et al., 2022), UnsupPR (Zhang et al.,
 451 2023), SupPR (Zhang et al., 2023) and Pixel-Level
 452 retriever (Sun et al., 2025). Experimental results
 453 demonstrate PromptHub is more effective than CON-
 454 DENSER across all retrieval schemes, further high-
 455 lighting its generalizability. Additionally, the per-
 456 formance of our method is influenced by the choice of
 457 retriever; pixel-level retrievers consistently deliver best
 458 results, underscoring the alignment between pixel-
 459 level retrieval and locality-aware design philosophy.*

460 **(vi) Transferability on Unseen Tasks.** We evaluate cross-task transferability by train-
 461 ing all models solely on segmentation (Pascal-5, four folds) and directly testing them
 462 on detection (Pascal VOC 2012) without any fine-tuning. We compare PromptHub with
 463 the CONDENSER baseline using their released checkpoints, and report results in Table 5.
 464 PromptHub consistently surpasses Condenser in this challenging unseen-task set-
 465 ting. With $N = 16$, PromptHub achieves a +1.83% mIoU gain, indicating that our
 466 locality-aware fusion captures more robust and transferable visual cues than the patch-
 467 wise fusion used in Condenser. *We note that although the overall performance is
 468 strong, the training process is not fully task-
 469 agnostic. Since the model is trained to re-
 470 construct segmentation masks, a domain gap naturally emerges when transferring to bounding box
 471 detection, which leads to a certain degree of performance drop.*

472 **(vii) Performance Evaluation under Spatial Misalignment.** Spatial misalignment between
 473 prompts and queries may negatively affect performance under position shifts, we conducted an
 474 experiment where query pairs were horizontally flipped and retrained to simulate se-
 475 vere spatial misalignment between the re-
 476 trieval prompts and the query image. We
 477 compared the performance drop of CON-
 478 DENSER and PromptHub under the per-
 479 turbed conditions in Table 6. PromptHub
 480 is substantially more robust to spatial mis-
 481 alignment than CONDENSER. Its locality-aware fusion mitigates the sensitivity to positional shifts
 482 that affects CONDENSER’s patch-wise fusion. In addition, increasing number of prompts N further
 483 reduces misalignment effects by improving chance of encountering better-aligned prompt pairs.

Table 4: Experiments were conducted on Painter

Model	Seg. (mIoU \uparrow)				Det. (mIoU \uparrow)	
	Fold-0	Fold-1	Fold-2	Fold-3	Mean	Det. (mIoU \uparrow)
Painter-only	63.01	61.07	51.35	60.90	59.08	74.35
w/ PromptHub $N=1$	63.25	60.86	53.84	60.73	59.67	74.45
w/ PromptHub $N=16$	64.27	62.64	55.49	62.58	61.25	75.92

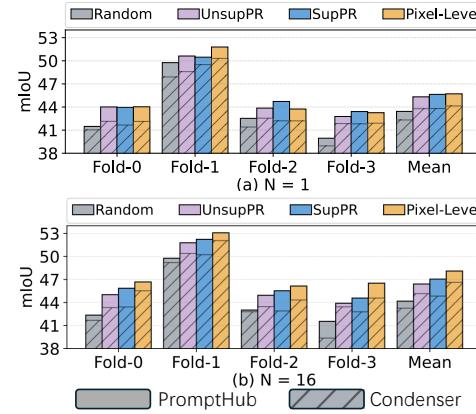


Figure 7: Comparison of PromptHub and CONDENSER across different retrieval.

Table 5: Transferability experiment (unseen task) where both CONDENSER and PromptHub are trained on seg-
 mentation and evaluated on detection.

Method	Det. (mIoU \uparrow)				
	Fold-0	Fold-1	Fold-2	Fold-3	Mean
Condenser $N=1$	38.15	35.70	35.49	30.31	34.91
Condenser $N=16$	41.25	36.66	37.86	39.02	38.70
PromptHub $N=1$	41.59	36.25	37.71	32.15	36.93
PromptHub $N=16$	43.40	38.55	39.52	40.66	40.53

Table 6: Comparison of standard and perturbed mIoU under spatial misalignment, along with the corresponding performance drops.

Method	Standard mIoU	Perturbed mIoU	Performance Drop
Condenser $N=1$	44.14	42.36	-1.78
Condenser $N=16$	46.63	45.24	-1.39
PromptHub $N=1$	45.71	44.28	-1.43
PromptHub $N=16$	48.10	47.21	-0.89

486
 487 (viii) **Performance Evaluation under Different Noise Ratios.** We conducted a
 488 controlled study to evaluate whether injecting random noisy prompt pairs at inference
 489 degrades model performance. Specifically, we compared results across
 490 different noise injection ratios and against a setting without the aug-
 491 mentation described in Table 7. Our re-
 492 sults show that the augmentation stra-
 493 tegy is essential for robustness. With
 494 augmentation, the model maintains
 495 strong performance under noise levels
 496 ranging from 10% to 25% and only
 497 exhibits noticeable degradation when
 498 the noise level reaches 50% to 100%.
 499 Without augmentation, performance
 500 drops even at low noise levels and re-
 501 mains consistently worse across all
 502 noise ratios. These findings confirm the effectiveness of our data augmentation design.

503 Analyses of resources overhead, prediction and attention visualizations, hyperparameter, and data
 504 augment with correlations between regularization losses and performance, are provided in appendix.
 505

506 4.4 DISCUSSION: WHAT DOES PROMPTHUB LEARN?

507 In Figure 6, we present visualizations of Prompt-Self, as well as fusion samples reconstructed
 508 through the VQGAN decoder for $\text{CONDENSER}_{N=16}$ and $\text{PromptHub}_{N=16}$. Given that this visu-
 509 alization relies on reconstructed outputs, some bias may be inevitably introduced. We observe
 510 that in Prompt-Self, label prediction often tends to be highly similar to the retrieved prompt label,
 511 leading to poor performance when the retrieved label show little similarity to ground-truth answer.
 512 The fusion results of CONDENSER appear
 513 as noisy black-and-white patterns, which
 514 may be attributed to its model-agnostic
 515 feature matching and patch-wise attention that
 516 fail to generate smooth representations, of-
 517 fering only heuristic contributions to per-
 518 formance. *In contrast, the fused prompts pro-
 519 duced by PromptHub exhibit significantly
 520 better visual quality, with fused prompts
 521 showing high similarity to the query pairs*
 522 *and smooth textures, thereby confirming the advantages of the locality-aware design and offering a*
 523 *more reliable and trustworthy solution for prompt fusion in VICL.* Furthermore, we quantitatively
 524 compare the mIoU between fused prompt labels and query labels for CONDENSER and PromptHub,
 525 as shown in Table 8. $\text{PromptHub}_{N=16}$ achieves a 72% higher similarity to the ground truth compared
 526 with $\text{CONDENSER}_{N=16}$, demonstrating PromptHub produces higher-quality and more semantically
 527 coherent fused prompts. Although fused prompts may exhibit a gap from realistic images due to lack
 528 of fidelity constraints in decoding stage, our primary goal is to guide VICL inference rather than to
 529 generate photorealistic images.

530 5 CONCLUSIONS

531 In this work, we introduced PromptHub, a interpretability paradigm realizes the chain-wide en-
 532 hancements “*locality fusion–utilization–prediction*” for multi-prompt VICL. PromptHub balances
 533 spatial locality with global receptive fields, supervises the quality of fused samples, and enhances
 534 the backbone’s utilization on integrated prompts. Extensive experiments across diverse tasks and
 535 backbones demonstrate clear improvements over previous methods. Furthermore, PromptHub’s
 536 superior transferability, robustness and generalizability further highlight its potential for extensive
 537 implementation in diverse scenarios. We finally visualize the fused prompts, the results outperform
 538 patch-wise scheme and provide stronger interpretability for prompt fusion methods.
 539

Table 7: Comparison under different noise ratios for $\text{PromptHub}_{N=16}$ and its variant without augmentation.

Method	Noise Ratio	Seg. (mIoU \uparrow)				Mean
		Fold-0	Fold-1	Fold-2	Fold-3	
w/ aug	0%	46.68	53.08	46.15	46.52	48.10
w/ aug	10%	46.34	52.82	46.21	46.67	48.01
w/ aug	25%	46.23	52.90	45.94	46.25	47.83
w/ aug	50%	44.12	51.39	44.98	44.17	46.17
w/ aug	100%	42.26	49.67	42.92	41.45	44.08
w/o aug	0%	45.84	52.01	44.83	45.60	47.07
w/o aug	10%	45.16	51.43	44.24	44.03	46.22
w/o aug	25%	44.28	51.19	43.85	43.16	45.62
w/o aug	50%	43.27	50.57	43.00	41.86	44.68
w/o aug	100%	42.09	49.45	42.69	39.73	43.49

Table 8: Comparison the mIoU between the fused prompt labels and the query labels across methods to evaluate semantic alignment.

Method	Seg. (mIoU \uparrow)				Mean
	Fold-0	Fold-1	Fold-2	Fold-3	
Condenser $_{N=1}$	18.93	29.73	24.26	27.94	25.22
Condenser $_{N=16}$	14.27	24.56	18.85	20.56	19.56
PromptHub $_{N=1}$	21.25	37.61	35.01	29.79	30.92
PromptHub $_{N=16}$	25.22	43.22	36.07	30.41	33.73

540 REFERENCES
541

- 542 Jean-Baptiste Alayrac, Jeff Donahue, Pauline Luc, Antoine Miech, Iain Barr, Yana Hasson, Karel
543 Lenc, Arthur Mensch, Katherine Millican, Malcolm Reynolds, et al. Flamingo: a visual language
544 model for few-shot learning. *Advances in neural information processing systems*, 35:23716–23736,
545 2022.
- 546 Hyojin Bahng, Ali Jahanian, Swami Sankaranarayanan, and Phillip Isola. Exploring visual prompts
547 for adapting large-scale models. *arXiv preprint arXiv:2203.17274*, 2022.
- 548 Yutong Bai, Xinyang Geng, Karttikeya Mangalam, Amir Bar, Alan L Yuille, Trevor Darrell, Jitendra
549 Malik, and Alexei A Efros. Sequential modeling enables scalable learning for large vision models.
550 In *Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition*, pp.
551 22861–22872, 2024.
- 552 Amir Bar, Yossi Gandelsman, Trevor Darrell, Amir Globerson, and Alexei Efros. Visual prompting
553 via image inpainting. *Advances in Neural Information Processing Systems*, 35:25005–25017, 2022.
- 554 Tom Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared D Kaplan, Prafulla Dhariwal,
555 Arvind Neelakantan, Pranav Shyam, Girish Sastry, Amanda Askell, et al. Language models are
556 few-shot learners. *Advances in neural information processing systems*, 33:1877–1901, 2020.
- 557 Huiwen Chang, Han Zhang, Lu Jiang, Ce Liu, and William T Freeman. Maskgit: Masked generative
558 image transformer. In *Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern
559 Recognition*, pp. 11315–11325, 2022.
- 560 Damai Dai, Yutao Sun, Li Dong, Yaru Hao, Shuming Ma, Zhifang Sui, and Furu Wei. Why can
561 GPT learn in-context? language models secretly perform gradient descent as meta-optimizers.
562 In Anna Rogers, Jordan Boyd-Graber, and Naoaki Okazaki (eds.), *Findings of the Association
563 for Computational Linguistics: ACL 2023*, pp. 4005–4019, Toronto, Canada, July 2023.
564 Association for Computational Linguistics. doi: 10.18653/v1/2023.findings-acl.247. URL
565 <https://aclanthology.org/2023.findings-acl.247>.
- 566 Qingxiu Dong, Lei Li, Damai Dai, Ce Zheng, Jingyuan Ma, Rui Li, Heming Xia, Jingjing Xu,
567 Zhiyong Wu, Baobao Chang, et al. A survey on in-context learning. In *Proceedings of the 2024
568 Conference on Empirical Methods in Natural Language Processing*, pp. 1107–1128, 2024.
- 569 Mark Everingham, SM Ali Eslami, Luc Van Gool, Christopher KI Williams, John Winn, and Andrew
570 Zisserman. The pascal visual object classes challenge: A retrospective. *International journal of
571 computer vision*, 111:98–136, 2015.
- 572 Zhongbin Fang, Xiangtai Li, Xia Li, Joachim M Buhmann, Chen Change Loy, and Mengyuan Liu.
573 Explore in-context learning for 3d point cloud understanding. *Advances in Neural Information
574 Processing Systems*, 36, 2024.
- 575 Jun Gao, Ziqiang Cao, and Wenjie Li. Unifying demonstration selection and compression for
576 in-context learning. *arXiv preprint arXiv:2405.17062*, 2024.
- 577 Kaiming He, Xinlei Chen, Saining Xie, Yanghao Li, Piotr Dollár, and Ross Girshick. Masked
578 autoencoders are scalable vision learners. In *Proceedings of the IEEE/CVF conference on computer
579 vision and pattern recognition*, pp. 16000–16009, 2022.
- 580 Roei Hendel, Mor Geva, and Amir Globerson. In-context learning creates task vectors. *arXiv preprint
581 arXiv:2310.15916*, 2023.
- 582 Alberto Hojel, Yutong Bai, Trevor Darrell, Amir Globerson, and Amir Bar. Finding visual task
583 vectors. In *European Conference on Computer Vision*, pp. 257–273, 2024.
- 584 Edward J Hu, Yelong Shen, Phillip Wallis, Zeyuan Allen-Zhu, Yuanzhi Li, Shean Wang, Lu Wang,
585 and Weizhu Chen. Lora: Low-rank adaptation of large language models. *arXiv preprint
586 arXiv:2106.09685*, 2021.
- 587 Jincen Jiang, Qianyu Zhou, Yuhang Li, Xuequan Lu, Meili Wang, Lizhuang Ma, Jian Chang,
588 and Jian Jun Zhang. Dg-pic: Domain generalized point-in-context learning for point cloud
589 understanding. In *European Conference on Computer Vision*, pp. 455–474. Springer, 2024.

- 594 Yuxin Jiang, Yuchao Gu, Yiren Song, Ivor Tsang, and Mike Zheng Shou. Personalized vision via
 595 visual in-context learning. *arXiv preprint arXiv:2509.25172*, 2025.
- 596
- 597 Tsung-Yi Lin, Michael Maire, Serge Belongie, James Hays, Pietro Perona, Deva Ramanan, Piotr
 598 Dollár, and C Lawrence Zitnick. Microsoft coco: Common objects in context. In *Computer Vision–
 599 ECCV 2014: 13th European Conference, Zurich, Switzerland, September 6–12, 2014, Proceedings,
 600 Part V 13*, pp. 740–755. Springer, 2014.
- 601 Pengfei Liu, Weizhe Yuan, Jinlan Fu, Zhengbao Jiang, Hiroaki Hayashi, and Graham Neubig.
 602 Pre-train, prompt, and predict: A systematic survey of prompting methods in natural language
 603 processing. *ACM Computing Surveys*, 55(9):1–35, 2023.
- 604
- 605 Trevine Oorloff, Vishwanath Sindagi, Wele Gedara Chaminda Bandara, Ali Shafahi, Amin Ghiasi,
 606 Charan Prakash, and Reza Ardekani. Stable diffusion models are secretly good at visual in-context
 607 learning. *arXiv preprint arXiv:2508.09949*, 2025.
- 608 Yatian Pang, Wenxiao Wang, Francis EH Tay, Wei Liu, Yonghong Tian, and Li Yuan. Masked
 609 autoencoders for point cloud self-supervised learning. In *European conference on computer vision*,
 610 pp. 604–621. Springer, 2022.
- 611
- 612 Jonas Pfeiffer, Andreas Rücklé, Clifton Poth, Aishwarya Kamath, Ivan Vulić, Sebastian Ruder,
 613 Kyunghyun Cho, and Iryna Gurevych. Adapterhub: A framework for adapting transformers. *arXiv
 614 preprint arXiv:2007.07779*, 2020.
- 615
- 616 Olga Russakovsky, Jia Deng, Hao Su, Jonathan Krause, Sanjeev Satheesh, Sean Ma, Zhiheng Huang,
 617 Andrej Karpathy, Aditya Khosla, Michael Bernstein, et al. Imagenet large scale visual recognition
 618 challenge. *International journal of computer vision*, 115:211–252, 2015.
- 619
- 620 Amirreza Shaban, Shray Bansal, Zhen Liu, Irfan Essa, and Byron Boots. One-shot learning for
 621 semantic segmentation. *arXiv preprint arXiv:1709.03410*, 2017.
- 622
- 623 Weijia Shi, Julian Michael, Suchin Gururangan, and Luke Zettlemoyer. knn-prompt: Nearest neighbor
 624 zero-shot inference. *arXiv preprint arXiv:2205.13792*, 2022.
- 625
- 626 Seongjin Shin, Sang-Woo Lee, Hwijeon Ahn, Sungdong Kim, HyoungSeok Kim, Boseop Kim,
 627 Kyunghyun Cho, Gichang Lee, Woomyoung Park, Jung-Woo Ha, et al. On the effect of pretraining
 628 corpora on in-context learning by a large-scale language model. *arXiv preprint arXiv:2204.13509*,
 629 2022.
- 630
- 631 Yanpeng Sun, Qiang Chen, Jian Wang, Jingdong Wang, and Zechao Li. Exploring effective factors
 632 for improving visual in-context learning. *IEEE Transactions on Image Processing*, 2025.
- 633
- 634 Gemini Team, Rohan Anil, Sebastian Borgeaud, Yonghui Wu, Jean-Baptiste Alayrac, Jiahui Yu, Radu
 635 Soricut, Johan Schalkwyk, Andrew M Dai, Anja Hauth, et al. Gemini: a family of highly capable
 636 multimodal models. *arXiv preprint arXiv:2312.11805*, 2023.
- 637
- 638 Hugo Touvron, Thibaut Lavril, Gautier Izacard, Xavier Martinet, Marie-Anne Lachaux, Timothée
 639 Lacroix, Baptiste Rozière, Naman Goyal, Eric Hambro, Faisal Azhar, et al. Llama: Open and
 640 efficient foundation language models. *arXiv preprint arXiv:2302.13971*, 2023.
- 641
- 642 Johannes Von Oswald, Eyvind Niklasson, Ettore Randazzo, João Sacramento, Alexander Mordvintsev,
 643 Andrey Zhmoginov, and Max Vladymyrov. Transformers learn in-context by gradient descent. In
 644 *International Conference on Machine Learning*, pp. 35151–35174. PMLR, 2023.
- 645
- 646 Jinpeng Wang, Tianci Luo, Yaohua Zha, Yan Feng, Ruisheng Luo, Bin Chen, Tao Dai, Long Chen,
 647 Yaowei Wang, and Shu-Tao Xia. Embracing collaboration over competition: Condensing multiple
 648 prompts for visual in-context learning. In *Proceedings of the Computer Vision and Pattern
 649 Recognition Conference*, pp. 25156–25165, 2025.
- 650
- 651 Xinlong Wang, Wen Wang, Yue Cao, Chunhua Shen, and Tiejun Huang. Images speak in images: A
 652 generalist painter for in-context visual learning. In *Proceedings of the IEEE/CVF Conference on
 653 Computer Vision and Pattern Recognition*, pp. 6830–6839, 2023a.

- 648 Xinlong Wang, Xiaosong Zhang, Yue Cao, Wen Wang, Chunhua Shen, and Tiejun Huang. Seggp: 649 Segmenting everything in context. *arXiv preprint arXiv:2304.03284*, 2023b.
 650
- 651 Zhendong Wang, Yifan Jiang, Yadong Lu, Pengcheng He, Weizhu Chen, Zhangyang Wang, Mingyuan 652 Zhou, et al. In-context learning unlocked for diffusion models. *Advances in Neural Information 653 Processing Systems*, 36:8542–8562, 2023c.
- 654 Jason Wei, Yi Tay, Rishi Bommasani, Colin Raffel, Barret Zoph, Sebastian Borgeaud, Dani Yogatama, 655 Maarten Bosma, Denny Zhou, Donald Metzler, et al. Emergent abilities of large language models. 656 *Transactions on Machine Learning Research*, 2022.
- 657 Jerry Wei, Jason Wei, Yi Tay, Dustin Tran, Albert Webson, Yifeng Lu, Xinyun Chen, Hanxiao Liu, 658 Da Huang, Denny Zhou, et al. Larger language models do in-context learning differently. *arXiv 659 preprint arXiv:2303.03846*, 2023.
- 660 Chengming Xu, Chen Liu, Yikai Wang, and Yanwei Fu. Towards global optimal visual in-context 661 learning prompt selection. *arXiv preprint arXiv:2405.15279*, 2024.
- 663 Xu Yang, Yongliang Wu, Mingzhuo Yang, Haokun Chen, and Xin Geng. Exploring diverse in-context 664 configurations for image captioning. *Advances in Neural Information Processing Systems*, 36: 665 40924–40943, 2023.
- 667 Kang Min Yoo, Junyeob Kim, Hyuhng Joon Kim, Hyunsoo Cho, Hwiyeol Jo, Sang-Woo Lee, 668 Sang-goo Lee, and Taeuk Kim. Ground-truth labels matter: A deeper look into input-label 669 demonstrations. *arXiv preprint arXiv:2205.12685*, 2022.
- 670 Jiahao Zhang, Bowen Wang, Liangzhi Li, Yuta Nakashima, and Hajime Nagahara. Instruct me 671 more! random prompting for visual in-context learning. In *Proceedings of the IEEE/CVF Winter 672 Conference on Applications of Computer Vision*, pp. 2597–2606, 2024.
- 673 Jiahao Zhang, Bowen Wang, Hong Liu, Yuta Nakashima, and Hajime Nagahara. Panicl: Mitigating 674 over-reliance on single prompt in visual in-context learning. *arXiv preprint arXiv:2509.21926*, 675 2025.
- 677 Yuanhan Zhang, Kaiyang Zhou, and Ziwei Liu. What makes good examples for visual in-context 678 learning? *Advances in Neural Information Processing Systems*, 36, 2023.
- 679 Ce Zheng, Lei Li, Qingxiu Dong, Yuxuan Fan, Zhiyong Wu, Jingjing Xu, and Baobao Chang. Can 680 we edit factual knowledge by in-context learning? *arXiv preprint arXiv:2305.12740*, 2023.
- 682
 683
 684
 685
 686
 687
 688
 689
 690
 691
 692
 693
 694
 695
 696
 697
 698
 699
 700
 701

702 A SCOPE OF LLM USAGE

704 To remain compliant with responsible LLM usage protocols, we limited the scope of LLMs to improving
 705 readability and grammar. Every scientific contribution, including the conceptual development,
 706 experimental design, and analytical validation, was independently carried out and confirmed by the
 707 authors, and we retain complete responsibility.

709 B FUTURE WORKS AND LIMITATIONS

711 B.1 WHITE-BOX DEPENDENCY

713 Like CONDENSER, PromptHub requires access to the backbone’s parameters and gradients to train
 714 the fusion module, even though the backbone itself is frozen. This design has been instrumental in
 715 ensuring the framework’s success and robustness in its current applications. But this makes scaling
 716 to very large models or closed-source models challenging, as full gradients may be inaccessible
 717 or too costly. While this enables superior performance, extending prompt fusion to black-box or
 718 gradient-free settings is a key direction for future work.

719 B.2 EXTENDING APPLICABILITY TO LINGUISTIC AND MULTI-MODAL DOMAINS

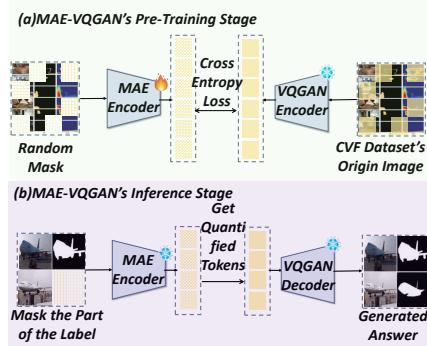
721 PromptHub is designed for VICL tasks with constrained inputs, utilizing positional correspondences
 722 between query and label image patches for locality-enhanced prompt fusion. Building on its success
 723 in the visual domain, future work will expand its scope to multi-modal scenarios by exploring
 724 generalized mechanisms that effectively align visual and linguistic modalities, enabling broader
 725 applicability and integration.

727 C PRELIMINARY: MAE-VQGAN

729 As described in Figure 8, MAE-VQGAN (Bar
 730 et al., 2022), comprising the MAE (He et al.,
 731 2022) and VQGAN components, serves as a
 732 backbone for VICL through an in-painting
 733 approach. Given an example and query for the
 734 current task, MAE-VQGAN is treated as a ver-
 735 satile model capable of solving several image-
 736 to-image tasks.

737 During the pre-training phase, the model is
 738 trained on a dataset CVF, where each image
 739 is constructed from multiple sub-images, pro-
 740 ceeding the masked reconstruction task. This
 741 process fine-tune the MAE encoder to align the
 742 distances with its the VQGAN’s codebook space.
 743 In the inference phase, a in-context sample is fed
 744 into the MAE encoder, and the corresponding
 745 content from the VQGAN’s codebook space is
 746 obtained, which is then passed to the VQGAN
 747 decoder for generating the output.

748 We utilizes the pre-trained parameters of MAE-
 749 VQGAN, freezing its parameters throughout the
 750 entire process.



751 Figure 8: Introduction to MAE-VQGAN (Bar
 752 et al., 2022): (a) In the pre-training stage, MAE
 753 (He et al., 2022) is trained to enhance its inference
 754 capability through a masked reconstruction task on
 755 CVF dataset. (b) In the inference stage, the prompt
 pair is placed above, with the query positioned
 below, and both are fed into the model for generative
 processing.

756 **D INFERENCE TIME AND GPU OVERHEAD**
757

759 As shown in Table 9, we compare the inference
760 time and GPU usage of PromptHub with other
761 baselines. The time for retrieving prompt pair
762 is not included in the inference time. All meth-
763 ods that require only prompt pair retrieval are
764 categorized under the MAE-VQGAN class. It
765 can be observed that the time overhead of our
766 approach increases only modestly compared to
767 other methods, with GPU usage growing at ap-
768 proximately 30MB per prompt pair. Therefore,
769 PromptHub is resource-efficient. This further
770 confirms the lightweight nature of the plug-in
771 PromptHub based on prompt fusion, which in-
772 curs only minimal additional computational and
773 GPU overhead. The study underscores the practical feasibility of deploying this approach in real-
774 world scenarios, offering an effective and resource-efficient solution.

775 **E ANALYSIS OF HYPERPARAMETER**
776777 **E.1 ANALYSIS OF HYPERPARAMETER σ**
778

779 The hyperparameter σ influences the neighbor-
780 hood range selected by PromptHub. When
781 $\sigma \rightarrow 0$, the selected neighborhood consists
782 solely of the content of the current (h, w) to-
783 ken. As $\sigma \rightarrow \infty$, the selected neighborhood
784 encompasses global information, equivalent to
785 the standard cross-attention. As shown in Fig-
786 ure 9, extremely large or small values of σ result
787 in either insufficient emphasis on local informa-
788 tion or neglect of global information. Moreover,
789 the optimal σ value varies across tasks. For high-
790 level and low-level tasks, $\sigma = 0.5$ and $\sigma = 2.5$
791 are both reasonable choices, respectively.

792 **E.2 ANALYSIS OF HYPERPARAMETER λ, γ**
793

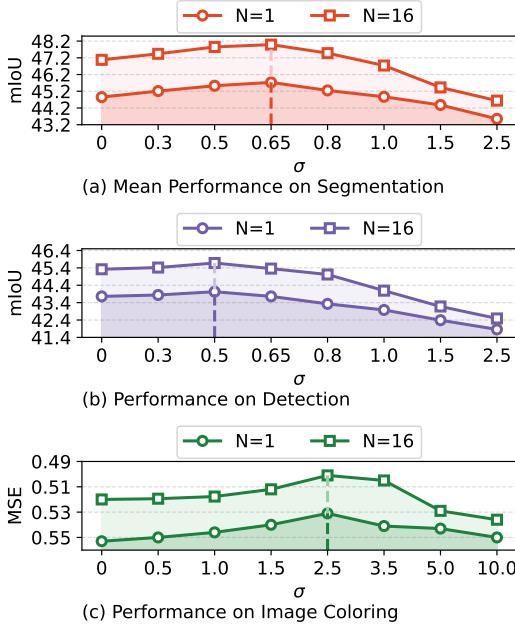
794 As shown in Figure 10, the results indicate a
795 relative sensitivity to the hyperparameter. Ex-
796 cessively large values diminish the weight of
797 label prediction loss, while overly small values
798 render the model less effective. Setting $\lambda = 0.4$
799 and $\gamma = 0.2$ provides a favorable balance.

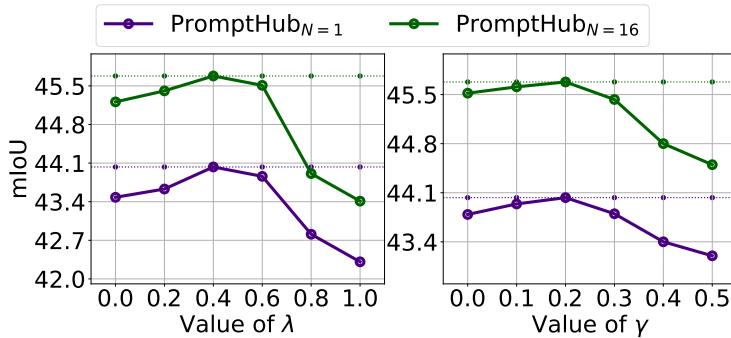
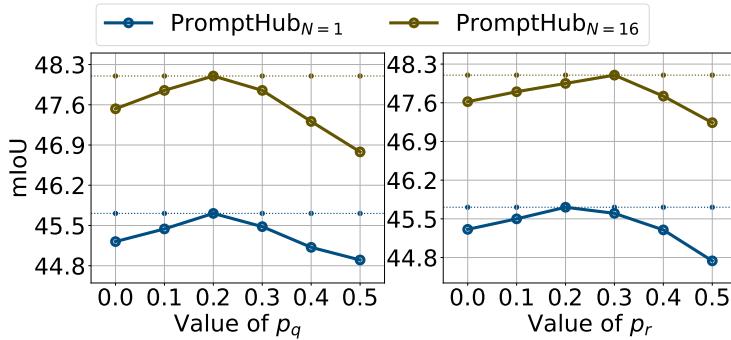
800 **E.3 ANALYSIS OF HYPERPARAMETER p_r, p_q**
801

802 As illustration in Figure 11, balanced p_q and p_r are crucial. Excessive p_q , where most training
803 examples are queries, makes the fusion operation too easy, which may lead to low generalization
804 at test time. Conversely, excessive p_r introduces too much noise, increasing learning difficulty and
805 making model training harder, often resulting in reduced performance. Very small ratios offer little
806 regularization. Our ablations show that intermediate values yield the best balance, with suitable
807 ranges of $p_r \in [0.1, 0.3]$ and $p_q \in [0.1, 0.4]$.

758 **Table 9: Comparison of the inference time and
759 GPU overhead between PromptHub and baselines.**

Method	Inference Time (ms/query)	GPU Cost (MB/query)
MAE-VQGAN	51.26	416.14
InMeMo	54.28	497.50
Prompt-SelF _{N=16}	984.62	441.75
CONDENSER _{N=1}	59.17	565.42
CONDENSER _{N=16}	66.61	1021.86
PromptHub _{N=1}	63.14	569.88
PromptHub _{N=16}	70.40	1032.50

795 **Figure 9: Evaluation of PromptHub's performance
796 on three tasks across varying values of σ .**

Figure 10: Impact of hyperparameter λ and γ .Figure 11: Impact of hyperparameter p_r and p_q .

F ANALYSIS OF DATA AUG AND ITS IMPACT ON \mathcal{L}_s AND \mathcal{L}_u

To further substantiate the role of the two regularization losses and the benefit of data augmentation, we conduct a joint examination of data augmentation with sample-wise correlations between \mathcal{L}_s , \mathcal{L}_u , and inference quality, as shown in Figure 12. Specifically, we apply an exponential transformation to \mathcal{L}_s and observe that both regularization losses exhibit an inverse relationship with VICL prediction accuracy. Moreover, the incorporation of data augmentation strengthens these correlations while reducing the number of outliers, well aligned with the intended design rationale.

G EXPERIMENTAL ANALYSIS OF QUERY-CONDITIONAL SIGMA

We design a straightforward query-conditioned sigma mechanism to investigate the impact of adaptive σ for the same task. Specifically, we average the embedding dimension of the query [batchsize, patch-number, embeddim], apply a linear layer, and use a sigmoid activation to constrain the sigma value within (0,1). We report its performance on segmentation and detection tasks.

Table 10: Comparison of results between query-conditioned sigma and hyperparameter sigma.

Method	Fold-0	Fold-1	Fold-2	Fold-3	Mean	Det
PromptHub _{N=1} (query-adaptive sigma)	43.79	51.93	44.56	43.18	45.86	44.25
PromptHub _{N=16} (query-adaptive sigma)	46.44	52.97	45.66	46.89	47.99	45.41
PromptHub _{N=1} (hyperparameter sigma)	44.03	51.79	43.74	43.26	45.71	44.27
PromptHub _{N=16} (hyperparameter sigma)	46.68	53.08	46.15	46.52	48.10	46.02

As shown in Table 10, employing a simple learnable σ within the same task yields limited improvements. This suggests that more sophisticated spatially varying priors are required, which we leave for future exploration.

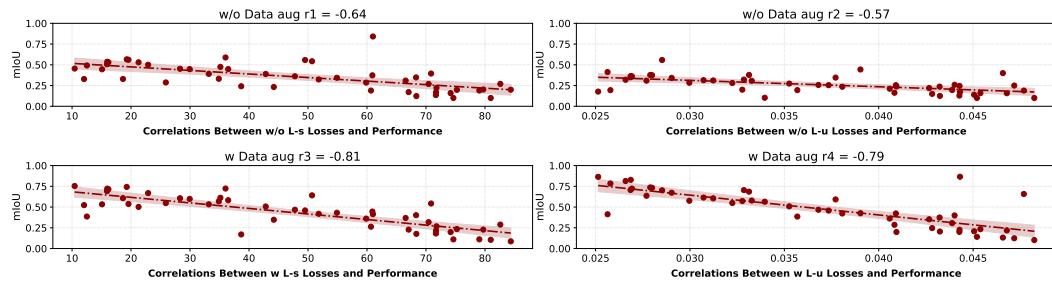
Figure 12: Joint examination of data aug with sample-wise correlations between \mathcal{L}_s , \mathcal{L}_u , and mIoU.

Table 11: Results of Multi-Objective Segmentation Experiments.

Method	Fold-0	Fold-1	Fold-2	Fold-3	Mean
SupPR	26.85	32.73	33.48	28.40	30.37
InMeMo	28.13	38.31	37.94	33.08	34.37
PromptHub _{N=16}	38.56	46.54	45.34	39.23	42.41

H EXPLORING COMPLEX CHALLENGES IN MULTI-OBJECTIVE SEGMENTATION

We further report the numerical results on multi-object segmentation, using a subset filtered by annotations. As shown in Table 11, on the complex task of multi-object segmentation, our PromptHub model achieves an average mIoU that surpasses the strongest competitor, InMeMo, by approximately 23.4%. This demonstrates that our approach maintains strong transferability in challenging tasks and exhibits robust generalization capability.

I MORE VISUALIZATION

I.1 VISUALIZATION OF VICL ANSWER VIA PROMPTHUB

As illustrated in Figure 13, PromptHub consistently outperforms prior baselines across all three tasks. In particular, the segmentation and colorization results demonstrate that the predictions generated by PromptHub exhibit smoother textures, which further substantiates the advantages of the locality-aware paradigm. Moreover, the ability of PromptHub to strengthen multi-prompt VICL highlights its potential to drive more comprehensive progress in this domain.

I.2 VISUALIZATION OF ATTENTION MAP

As shown in Figure 14, we visualize the attention map for prompt fusion with $N = 2$, demonstrating that PromptHub effectively focuses on regions corresponding to the query image. The attention score for the current patch is computed as the normalized result of its attention score from all query patches.

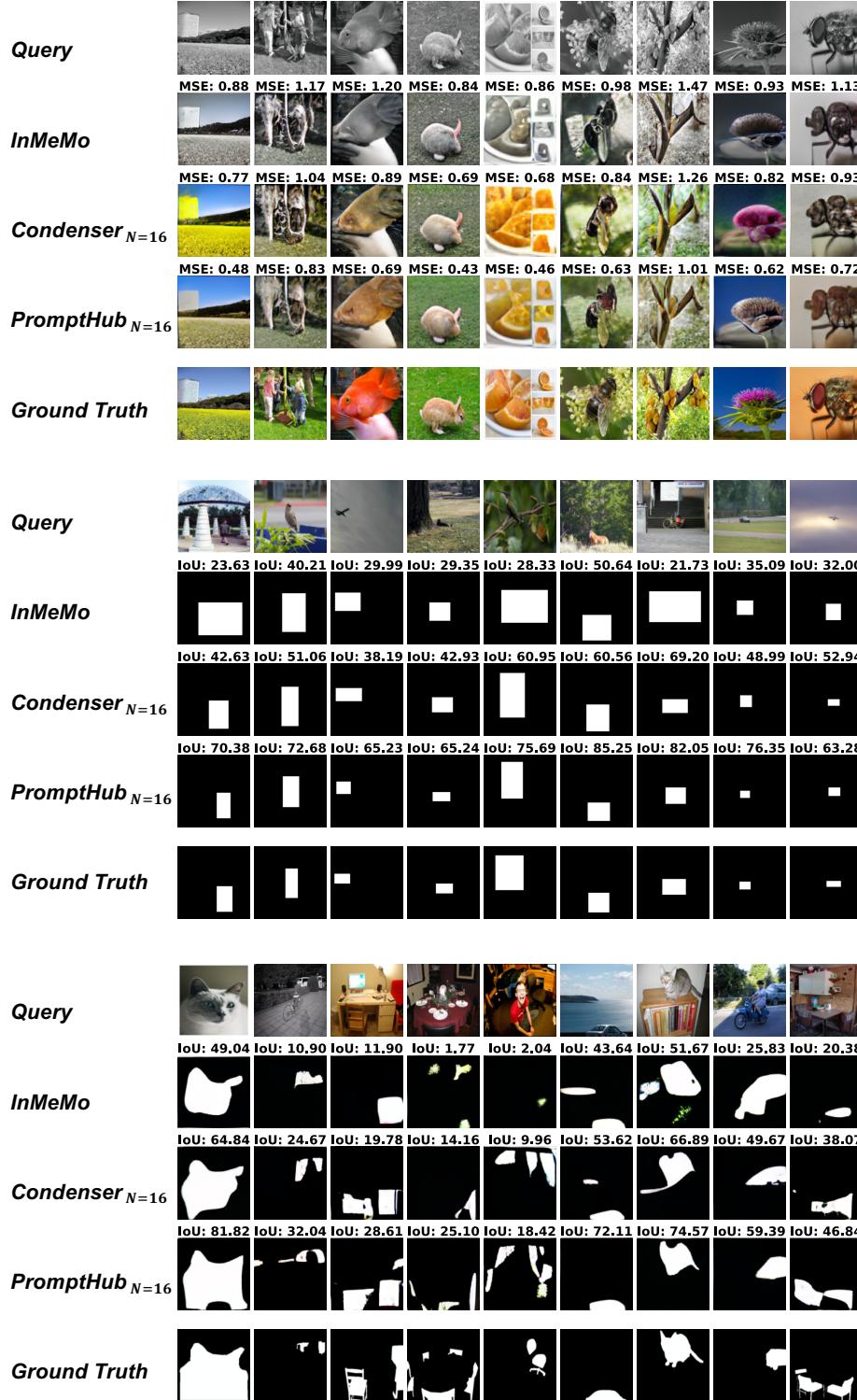


Figure 13: Comparative visualization of our method against the existing state-of-the-art method for Foreground Segmentation and Single-Object Detection and Colorization tasks.

972
973
974
975
976
977
978
979
980
981

Figure 14: Visualization of attention map for $N = 2$.