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ABSTRACT

The performance of unsupervised methods such as clustering depends on the
choice of distance metric between features, or ground metric. Commonly, ground
metrics are decided with heuristics or learned via supervised algorithms. How-
ever, since many interesting datasets are unlabelled, unsupervised ground met-
ric learning approaches have been introduced. One promising option employs
Wasserstein singular vectors (WSVs), which emerge when computing optimal
transport distances between features and samples simultaneously. WSVs are ef-
fective, but can be prohibitively computationally expensive in some applications:
O(n2m2(n log(n) +m log(m)) for n samples and m features. In this work, we
propose to augment the WSV method by embedding samples and features on trees,
on which we compute the tree-Wasserstein distance (TWD). We demonstrate the-
oretically and empirically that the algorithm converges to a better approximation
of the standard WSV approach than the best known alternatives, and does so with
O(n3 + m3 + mn) complexity. In addition, we prove that the initial tree struc-
ture can be chosen flexibly, since tree geometry does not constrain the richness
of the approximation up to the number of edge weights. This proof suggests a
fast and recursive algorithm for computing the tree parameter basis set, which we
find crucial to realising the efficiency gains at scale. Finally, we employ the tree-
WSV algorithm to several single-cell RNA sequencing genomics datasets, demon-
strating its scalability and utility for unsupervised cell-type clustering problems.
These results poise unsupervised ground metric learning with TWD as a low-rank
approximation of WSV with the potential for widespread application.

1 INTRODUCTION

The geometry of data structures can help to solve unsupervised learning tasks. For example, cluster-
ing methods such as k-means compare groupings based on a distance between samples informed by
a distance on features. Inherently, the heuristic that one chooses for the distance matrix or function
determines the outcome of the algorithm. So, how should one choose or learn this distance?

k-means gives equal weighting to the distance between each pair of features. From an optimal
transport theory perspective, it could be argued that a more holistic sample distance is given by
the Wasserstein distance: the minimum cost using an optimal mapping between samples, weighted
by the cost, or ground metric, between their features. For example, samples might be documents,
and features words. Then the distance/cost between two documents is determined by the relative
expression of words in each, mappings between them, and the ground metric between words. Hence
the problem of learning sample distances is determined by the choice of the (feature) ground metric.

State-of-the-art methods usually employ heuristics for the ground metric, commonly Euclidean,
with embeddings for the features, e.g. word2vec for documents (Kusner et al., 2015) and gene2vec
in bioinformatics (for identifying cell type from gene expression; Zou et al. (2019); Du et al. (2019)).
However, embeddings are not always available, or may be difficult to learn. This arises, for instance,
when doing single-cell RNA sequencing on a new tissue for which marker genes are not known.

We are interested in unsupervised ways to learn the ground metric. We do so by augmenting an
iterative method by Huizing et al. (2022). By harnessing the geometrical properties inherent in
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optimising distances between samples, which are expressed as vectors of features, Huizing et al.
(2022) learn ground metrics via positive singular vectors, entirely unsupervised. Their algorithm
uses power iterations to first learn distances on samples (expressed in histograms over features) and
in turn learn distances on features (histograms over samples).

To illustrate the idea, consider the words “Sentosa” and “Singapore”, which one might expect to be
close in word-space. If the metric between documents in the corpus that contain both of these words
is close, we learn a smaller distance in the word dictionary between “Sentosa” and “Singapore”.
This in turn decreases the distance between documents containing these words. Such an approach
could be applied to gene expression (features) in cells (samples), V1 neuronal activity (features)
corresponding to representation of images (samples), and other unlabelled high-dimensional data.

While effective, Huizing et al. (2022)’s algorithm is expensive to run as it requires multiple pairwise
distance computations per iteration. Inspired by Yamada et al. (2022), we propose a method that
reduces the algorithmic complexity of each iteration by at least a quadratic factor by representing
the data on a tree and learning weights on tree edges, rather than the full pairwise distance matrix.
Additionally, we prove a lemma that suggests a powerful, fast recursive algorithm to compute the
set of basis vectors for the matrix of pairwise leaf paths on any tree. We provide source code at:
https://github.com/kiradust/tree-wsv/.

The unsupervised tree-Wasserstein method for finding ground metrics offers a geometric low-rank
approximation interpretation of the full unsupervised ground metric learning problem. We show
that it performs well on a toy dataset, and scales favourably to large 5000-10000 single-cell RNA-
sequencing datasets for cell type classification.

1.1 PREVIOUS AND RELATED WORK

In this section we introduce optimal transport distances, tree-Wasserstein distances, inverse optimal
transport and unsupervised ground metric learning.

Optimal transport: Optimal transport (OT) can be thought of as a “natural geometry” for probabil-
ity measures (Peyré & Cuturi, 2019). The classical OT problem – attributed to Monge (1781) – asks
how to find an optimal transport plan between two probability distributions subject to some cost.
This is not always guaranteed to have a solution, and has non-linear constraints, which makes find-
ing solutions difficult. For this reason, the modern OT usage hinges on a definition by Kantorovich
(1940), allowing probabilistic mappings.

Consider the empiric discrete OT problem. Let µ =
∑n

i aiδxi and ν =
∑n

j bjδxj be discrete
probability distributions (“histograms”, or normalised bin counts), with δxi the Dirac delta function
at position xi. Then the OT problem is to find optimal P satisfying:

W1,C(µ, ν) = min
P∈Rn×n

+

⟨P ,C⟩ = min
P∈Rn×n

+

∑
i

∑
j

Pi,jCi,j (1)

where P1n = a,P⊤1n = b and C ∈ Rn×n
+ is some cost function. W1,C(µ, ν) is known as the

(1)-Wasserstein distance. In this paper, we shall drop the 1 and assume thatWC is induced by the
pairwise distance matrix C as its ground metric.

For example, in document similarity, xi,xj are words (or embedding vectors) and a (resp. b) tells us
the frequency of words in a given document µ (resp. ν). Usually, C is assumed to be the Euclidean
distance between word embeddings, and thenWC(µ, ν) is the word mover’s distance (Kusner et al.,
2015). Here, we instead take the approach of learning C in an efficient manner, rather than utilising
pre-trained embeddings, for documents represented as bag-of-words.

Computationally efficient OT: Solving the OT problem to compute WC via linear programming
has complexity O(n3 log n) (Peyré & Cuturi, 2019). Cuturi (2013) suggested using the celebrated
Sinkhorn’s algorithm, which speeds up the calculation through entropic-regularised OT to O(n2).
Sliced-Wasserstein distance (SWD), in whichWC is computed via projection to a one-dimensional
subspace, improves on this complexity to O(n log n) (Kolouri et al., 2016). SWD can be expressed
as a special case of a geometric embedding, tree-Wasserstein distance (TWD), when the tree struc-
ture comprises a root connected to leaves directly (Indyk & Thaper, 2003; Le et al., 2019). TWD
has linear complexity, and so is faster even than SWD (Le et al., 2019).
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Tree-Wasserstein distance (TWD): The tree-Wasserstein distance represents samples on a tree.
Consider a tree T with tree metric dT (the unique and shortest path between any two nodes on
T ). Let w ∈ RN−1

+ be the vector of weights between nodes and Z ∈ {0, 1}(N−1)×Nleaf the tree
parameter (where N is the number of nodes in the tree and Nleaf the number of leaves), defined by
Zi,j = 1 if the edge from a non-root node i is from a parent of leaf j or i = j, and 0 otherwise. Given
a tree metric dT on leaves x, y and transport plan π between measures µ, ν, the TWD can be written
as WT (µ, ν) = infπ∈U(µ,ν)

∫
X×Y dT (x,y)dπ(x,y), where U(µ, ν) = {π ∈ M1

+(X × Y) :

PX#π = µ, PY#π = ν} is the set of joint probability distributions with marginals µ on X and ν on
Y (Le et al., 2019; Yamada et al., 2022).

Furthermore, TWD takes on a closed analytical form and therefore can be computed in O(dim(w))
(Takezawa et al., 2021):

WT (µ, ν) = ||diag(w)Z(x− y)||1 (2)

TWD is a good empirical approximation of the usual 1-Wasserstein distance (Yamada et al., 2022).

The inverse OT problem and ground metric learning: Leveraging the geometric nature of the
Wasserstein/OT distance for unsupervised learning tasks relies on having a good idea of the ground
metric between features that is then “lifted” to the OT distance between samples. Heuristics for
ground metrics can be useful, especially with embeddings (Kusner et al., 2015; Du et al., 2019), but
we are interested in broader, principled ways to find ground metrics.

Inverse optimal transport provides one solution: given a transport plan P , find the distance matrix C.
For matching problems based on recommendation systems, for example the marriage dataset where
preferred pairings and the associated features (i.e. the transport plan) are known, inverse OT can
find the underlying distance between features. While in general this problem is under-constrained,
solutions exist given sufficient constraints on C (Paty & Cuturi, 2020; Li et al., 2019; Stuart &
Wolfram, 2019). However, inverse OT requires access to the full transport plan. In practice and for
high-dimensional features, such as gene-cell data, this is not feasible.

An alternative is to use partial information about distance or similarity to learn the ground metric, for
example with supervised or semi-supervised learning (Cuturi & Avis, 2014). A related but distinct
concept is the idea of supervised learning of sample Wasserstein distances (Huang et al., 2016) and
supervised TWD (Takezawa et al., 2021); here, the (feature) ground metric is still assumed to be
Euclidean, but information about distances is used to learn metrics between samples.

Unsupervised ground metric learning with Wasserstein singular vectors (WSVs): The fully un-
supervised approach differs in that neither feature nor sample ground metric is assumed. Unsuper-
vised techniques harness the relationship between the geometry of features (embedded in samples)
and the geometry of samples (embedded in features) (Paty & Cuturi, 2020; Huizing et al., 2022).

Consider some data matrix X ∈ Rn×m
+ . Let ai ∈ Rm

+ be a sample (normalised row such that
it sums to 1) of X , and bk ∈ Rn

+ be a feature (normalised column). These are just histograms
“embedding” a sample as a probability distribution over features, and vice versa. For example, the
ai (of which there are n) could be a histogram of words in a document, and the bk (m) documents
containing a given word. As another example, ai might represent cells (samples) as histograms over
gene expression, where bk are the genes (features) as histograms over cells that contain each gene.

Huizing et al. (2022) learn ground metric matrices A ∈ Rn×n
+ , B ∈ Rm×m

+ satisfying the fixed
point equations:

Ai,j =
1

λA
WB(ai,aj), Bk,l =

1

λB
WA(bk, bl), (3)

∀k, l ∈ {1, ..,m}, i, j ∈ {1, ..., n} and some (λA, λB) ∈ R2
+. Note that as opposed to Huizing et al.

(2022), we use A to denote the ground metric on the ai and B the ground metric on the bk. Power
iterations are used to compute the ground metric matrices via repeated application of a mapping Φ
that “lifts ground metrics to pairwise distances”:

ΦA(A)k,l := WA(bk, bl) + τ ||A||∞R(bk − bl),

where R is a norm regulariser and τ > 0. A symmetric definition holds for B. Then the
equivalent problem is to find Wasserstein singular vectors such that there exist (λA, λB) ∈
(R∗

+)
2 satisfying ΦB(B) = λAA,ΦA(A) = λBB (equal to (3) when τ = 0). Maximal singu-

lar vectors can be extracted with power iterations: At+1 = ΦB(Bt)
||ΦB(Bt)||∞ , Bt+1 = ΦA(At)

||ΦA(At)||∞ .
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The complexity of a single power iteration is O(n2m2(n log(n) + m log(m))), since it requires
computing m2 Wasserstein distances where each distance is O(n3 log(n)), then n2 Wasserstein
distances where each distance is O(m3 log(m)). Huizing et al. (2022) propose to reduce this com-
plexity via stochastic optimisation (which suffers from requiring far more iterations to converge) and
entropic regularisation, or “Sinkhorn singular vectors” (SSV), which improves the complexity to at
best O(n2m2). There are no other known reductions in complexity of this unsupervised method.
Tong et al. (2022) propose an efficient L1-embedding of the Wasserstein distance on graphs in the
unbalanced OT regime; however, the underlying ground metric is still assumed geodesic.

While our approach to improve complexity through embedding samples and features as leaves on
trees was inspired from the TWD literature, several authors have explored the relationship between
samples (rows) and features (columns) as distributions over the other in general (Ankenman, 2014;
Gavish & Coifman, 2012), including on graphs (Shahid et al., 2016) and in tree-embeddings (Anken-
man, 2014; Mishne et al., 2018; Yair et al., 2017). These methods do not learn the ground metric
in the same way as our proposal, but Mishne et al. (2018), Ankenman (2014) and Yair et al. (2017)
describe iterative metric-learning of the tree metric and tree construction, which is related.

1.2 CONTRIBUTIONS

We propose to improve on the WSV computational bottleneck by embedding the dataset in trees
and approximating WC with the TWD. We name our method Tree-WSV. Our findings position
Tree-WSV as a fast, low-rank approximation of the standard WSV approach. We show that:

• One can learn a complete set of strictly positive tree edge weights by solving a non-singular
system of linear equations (Algorithm 1), and hence solve for the entire Wasserstein dis-
tance matrix on features and samples, respectively.

• This system is determined by a pairwise leaf-to-leaf paths matrix whose rank is guaranteed
to be equal to the number of edges in any tree with root degree ≥ 3. This path matrix’s
basis set can be found via a recursive algorithm, allowing fast computation of edge weights.

• The Tree-WSV approach is a quadratic order more computationally efficient than WSV
and outperforms Sinkhorn entropy regularisation (SSV) in terms of accuracy on toy data.

• Tree-WSV, combined with meta-iterations, scales to single-cell RNA sequencing datasets
of size over 5000× 5000, on which it is also faster and at least as accurate as SSV.

2 UNSUPERVISED TREE-WASSERSTEIN GROUND METRIC LEARNING

2.1 TWD SINGULAR VECTORS APPROXIMATE STANDARD WASSERSTEIN SVS

Let A = {ai},B = {bk}, i ∈ {1, ..., n}, k ∈ {1, ...,m} be the set of normalised rows (samples)
and set of normalised columns (features) respectively of the data matrix X ∈ Rn×m

+ . We embed A
and B in respective trees TA and TB , such that {a1, ...,an} are the leaves of TA and {b1, ..., bm}
the leaves of TB , as illustrated in Fig. 1. Let Z(A) ∈ {0, 1}(N−1)×n, Z(B) ∈ {0, 1}(M−1)×m be
the tree parameters of each tree, where N and M are the number of nodes in TA and TB respectively.
Let wA ∈ RN−1

+ ,wB ∈ RM−1
+ be the vectors of edge weights. We can port the WSV equations (3)

to this tree setting:

Proposition 2.1. The WSV fixed point equations (3) can be expressed on the trees TA, TB as:

dTA
(ai,aj) =

1

λA
WTB

(ai,aj), dTB
(bk, bl) =

1

λB
WTA

(bk, bl),

where the singular vector update is to find wA (and symmetrically wB) such that ∀i, j,

λAwA
⊤
(
z
(A)
i + z

(A)
j − 2z

(A)
i ◦ z(A)

j

)
=

∣∣∣∣∣∣diag(wB)Z(B)(ai − aj)
∣∣∣∣∣∣
1
, (4)

where z
(A)
i is the ith column of Z(A), ◦ denotes element-wise product and (λA, λB) ∈ (R∗

+)
2.

Proof: Appendix A.
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rootA

◦

a1 a2

◦

a3 a4

rootB

◦

b1 b2

◦

b3 b4 b5

Figure 1: Tree embeddings for samples A as leaves in TA (left) and features B as leaves in TB
(right). The tree metric dTA

(a2,a3) is shown as the shortest path between these leaves in orange
on the left. Equivalently, we can use the relative expression of the features {b1, b2, b3, b4, b5} that
represent a2,a3 respectively (as shown in different hues of green on the right) to compute a TWD,
WTB

(a2,a3), in TB . We assume dTA
(a2,a3) is equal toWTB

(a2,a3) to learn a good embedding.

For intuition about Proposition 2.1, choose two samples ai,aj that are leaves in one of the trees;
TA (Fig. 1). The tree metric dTA

is the shortest path between these leaves with edges in TA. ai,aj

can also be expressed as histograms over features which are leaves on TB , i.e. ai =
∑m

k=1 c
(ai)
bk

bk,

where c(ai)
bk
≥ 0 is the relative expression of each bk in the histogram, so that

∑m
k=1 c

(ai)
bk

= 1. The
1-Wasserstein distanceWB(ai,aj) between the two samples uses some unknown cost matrix C so
thatWB(ai,aj) = minP

∑
k

∑
l Pk,lCk,l where P1n = ai and P⊤1n = aj . From Yamada et al.

(2022), WB(ai,aj) is approximated by the TWD between ai,aj on TB , which we can express
through summing proportions of dTB

between the leaves in TB: dTA
(a2,a3) =WTB

(a2,a3).

We can utilise Proposition 2.1 to learn low-rank approximations ofWTB
(ai,aj) andWTA

(bk, bl).
Let yi,j := zi

(A) + zj
(A) − 2zi

(A) ◦ zj (A) = XOR{z(A)
i , z

(A)
j } ∈ {0, 1}N−1 and concatenate

the yi,j into a tensor Y(A) ∈ {0, 1}(N−1)×n×n (i.e. all distinct nodes in the paths of all sets of
pairwise leaves). Let Y ′ ∈ {0, 1}(N−1)×n2

be the matrix created when the tensor Y is unravelled
along n× n leaf-pairs. Equation 4 for all i, j pairs then rewrites as a system of n2 linear equations:

λAwA
⊤Y ′ =WTB

, where WTB
=

{∣∣∣∣∣∣diag(wB)Z(B)(ai − aj)
∣∣∣∣∣∣
1
∀i, j

}
∈ Rn2

+ . (5)

A symmetric system of equations holds with the roles of wA,wB reversed.

2.2 NON-ZERO AND UNIQUE SOLUTIONS TO THE TREE WSV PROBLEM EXIST

Since Equation 5 is still a singular vector problem, it can be solved with power iterations. As in
Huizing et al. (2022), we can show that a solution to the singular vector problem exists:
Lemma 2.2. The singular value problem 5 has a solution (wA,wB).

Proof: Appendix B

While Lemma 2.2 states that a solution exists, convergence to that solution is not guaranteed. How-
ever, in practice we always observed convergence, with dynamics that were consistent with the
linear convergence rate reported in Huizing et al. (2022). We show empirical convergence for power
iterations on different dataset sizes in Appendix E, Figure 4.

Each iteration of the singular value problem involves solving a non-negative least squares (NNLS)
problem. In Theorem 2.4, contingent on Lemma 2.3, we show that as long as we restrict ourselves
to trees whose root node has degree greater than 2 (which we can do, since ClusterTree’s hyperpa-
rameters allow setting the number of children), NNLS finds unique, non-zero solutions to (5).
Lemma 2.3. Let the number of nodes in a tree be N , including the root and n leaves. Then there
can be at most one non-leaf node of degree 2. In addition, if such a node exists, it is the root and Y ′

has rank N − 2. Otherwise, every degree of the tree is at least 3, and Y ′ has rank N − 1.

Proof: Appendix C

The proof of Lemma 2.3 suggests an efficient recursive algorithm that can also be used to find the
basis set U for Y ′, and is detailed in Appendix D.
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Algorithm 1 Unsupervised ground metric learning with trees (Tree-WSV)

Input: dataset X , size n×m
do once
A,B← {ai = X(i)

row/
∑

X(i)
row}, {bk = X

(k)
col/

∑
X

(k)
col}

Z(B),Z(A) ← ClusterTree(B),ClusterTree(A)
if n and m small (less than 500) then
Y(A),Y(B) ← tensor

{
yi,j = XOR{z(A)

i , z
(A)
j }, tensor

{
yk,l = XOR{z(B)

i , z
(B)
j }

}
U (A),U (B) ← basis sparse SVD

[
upper triangular(Y(A)))

]
,
[
upper triangular(Y(B)))

]
Zdiff

(Ak,l),Zdiff
(Bi,j) ← Z

(A)
U (bk − bl) ∀{bk, bl} ∈ BU , Z

(B)
U (ai − aj) ∀{ai,aj} ∈ AU

else
compute Us and Zdiffs with recursive basis set algorithm (Appendix D)

end if
initialise
wA,wB ← random vectors of length N − 1,M − 1, i.e. the number of edges in each tree
repeat

for t = 1 to num iterations do
WT (A),WT (B)←

{∣∣∣∣diag(wA)Zdiff
(Ak,l)

∣∣∣∣
1
,∀k, l

}
,
{∣∣∣∣diag(wB)Zdiff

(Bi,j)
∣∣∣∣
1
,∀i, j

}
WT (A)norm,WT (B)norm ←WT (A)/||WT (A)||∞,WT (B)/||WT (B)||∞
wA ← NNLS

[
wA

⊤U (A) =WT (B)norm
]

wB ← NNLS
[
wB

⊤U (B) =WT (A)norm
]

end for
until convergence: max(||wA −wA(previous)||1/n, ||wB −wB(previous)||1/m) < ϵ = 10−6

Theorem 2.4. Given any tree TA with leaves A = {a1, ...,an} the rows of a data matrix X ∈
Rn×m

+ such that the root node of TA has degree 3 or more, and a tree TB with leaves given by
B = {b1, ..., bm} the columns of X , there exists a unique non-negative solution for wA in (5).
Moreover, we can assume without loss of generality that the solution is strictly positive.

Proof: As the matrix Y ′ has rank N − 1, the solution wA to λAwA
⊤Y ′ = WTB

is equivalent to
the solution of λAwA

⊤Y ′
U = (WTB

)U , where U is a basis set of linearly independent columns of
Y ′. Y ′

U is an invertible (N − 1)× (N − 1) matrix. Therefore, the NNLS problem

argmin
wA

||λAwA
⊤Y ′

U − (WTB
)U ||22 s.t. wA ≥ 0

is a minimisation of a strictly convex function over a convex set, and has a unique solution (existence
also follows directly from the Rouché–Capelli Theorem). Further, as in Yamada et al. (2022), if wA

contains any zeros, these can be removed, which corresponds to merging nodes of the tree TA.

2.3 COMPUTATIONAL COMPLEXITY AND SPEED-UPS

Note that the sparse LASSO-based algorithm for learning w (“cTWD”) proposed in Yamada et al.
(2022) could also solve Equation 5. However, cTWD cannot be applied directly in our setting due
to its computational complexity: solving each TWD-LASSO problem is O(M3 + m2M2), which
is worse than the cubic complexity for NNLS (Efron et al., 2004), and cTWD requires computing
all n2 or m2 TWDs at each iteration. Further, memory consumption from storing the full Y ′ matrix
is quickly prohibitive.

Our Tree-WSV method suggests an efficient way of computing tree-Wasserstein singular vectors in
Algorithm 1. Each inner power iteration computes tree-Wasserstein distances in time complexity
O(n) rather than O(n3 log(n)) for the 1-Wasserstein distance. Further, in each iteration we do not
need to compute all m2 distances, but are capped to M < 2m − 1, the length of the weight vector
w (assuming no redundant nodes). There are a few additional speed-ups possible, detailed below.

First, note that we only need to construct trees once (without edge weights), using ClusterTree
with the number of children k set as k > 2 (Le et al. (2019)). Note that here, ClusterTree is a
modification of QuadTree (Samet (1984) and extended to higher dimensions via a grid construction
in Indyk & Thaper (2003)). Our method follows the implementation in Le et al. (2019) and Gonzalez
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(1985). ClusterTree implemented in this way has complexity O(nκ) where κ is the number of
leaf-clusters (in our case set automatically by the hyperparameter controlling the depth of the tree)
(Gonzalez, 1985). We compute Z(A),Z(B) once for each of A,B, and Z(A)(bk − bl) ∀k, l and
Z(B)(ai − aj) ∀i, j just once.

Similarly, we only learn the Y tensors once with the tree structure. In fact, we do not need to learn
the whole tensor: we just need a full-rank sub-matrix of Y ′ of rank N−1, from Theorem 2.4, which
we call U – the basis vector set for the matrix of all pairwise paths between leaves.

2.3.1 LEARNING THE BASIS VECTOR SET FOR ALL PAIRWISE LEAF-LEAF PATHS

There are two options to learn the basis set U . Since Y ′ is sparse, for small dataset sizes, one can
employ scipy sparse methods to find the basis set. Sparse QR decomposition or sparse singular
value decomposition (SVD) can be used; in practice sparse SVD performed slightly faster.

Because this operation requires computing a large tensor Y reshaped into a long rectangular matrix
of size (N − 1) × n2, the sparse method does not scale well with large n,m from a memory-
consumption point of view. In this case, we instead created a recursive algorithm as suggested
from the constructive proof of Lemma 2.3. This method directly computes a basis set from just the
(N − 1)×n (nodes by leaves) tree parameter matrix Z. Recursions are done on at most the number
of nodes less the number of leaves (N − n < n − 1 recursive loops); therefore, it is very fast and
resists stack overflow. Stochasticity can be added by allowing randomness in path assignments, but
since the result is still a basis set, this has minimal effect on finding the solution to the linear system
of equations. The full recursive function is detailed in Appendix D. In practice, both approaches
produced well-conditioned U basis set matrices (Section 3.2).

2.3.2 ITERATIVELY UPDATING THE WEIGHT VECTORS

At each iteration, we learn the vector wA satisfying equation 5, using the basis set U (A) of the
coefficient matrix Y ′:

λAwA
⊤U (A) =WTB

, where WTB
=

{∣∣∣∣∣∣diag(wB)Z
(B)
U (ai − aj)

∣∣∣∣∣∣
1
∀ai,aj ∈ AU

}
.

Here, U (A) ∈ R(N−1)×(N−1) is the basis vector set for Y ′ which corresponds with pairs of vectors
{ai,aj} ∈ AU , and Z

(B)
U is the sub-matrix of the Z matrix on these pairs {ai,aj} ∈ AU . We

then symmetrically learn wB , and iterate.

From Theorem 2.4, a solution exists, and it can be found with a linear systems solver such as non-
negative least squares (NNLS). NNLS is efficient, with cubic complexity on the size of wA (i.e.
O(N3) and O(M3) for wA,wB respectively). Each compute of a pairwise TWD is linear in the
length of the vectors (m or n for ai, bk respectively), and there are N − 1 or M − 1 of these
to compute. This gives overall complexity per power iteration: O

(
N3 +mN +M3 + nM

)
<

O
(
n3 +m3 +mn

)
, using N < 2n − 1,M < 2m − 1. This is at least a quadratic order faster

thanO(n2m2(n log(n)+m log(m))), the complexity for a WSV power iteration, and if n ≈ m, an
order faster than O

(
2n2m2

)
, the complexity for a SSV power iteration.

Overall, we achieve a significant theoretical gain in time complexity. Computationally efficient
unsupervised ground metric learning with TWD (Tree-WSV) is summarised in Algorithm 1.

3 EXPERIMENTAL RESULTS ON TOY DATASET

We demonstrate the improved speed and accuracy of our method as compared to SSV on a synthetic
dataset X ∈ Rn×m, n = 80,m = 60, modified from prior work (Huizing et al., 2022). On various
synthetic dataset sizes and ratios, we observed empiric convergence of power iterations (Appendix
E) and confirmed that both the SVD and recursive basis set approaches are well-conditioned.

3.1 DATASET CONSTRUCTION AND EXPERIMENTAL METHODS

The dataset uses various translations of a unimodal periodic function on a 1D torus (with boundary
conditions), such that Xik = exp

(
−
(
i
n −

k
m

)2
/σ2

)
. On X , the underlying (and learned) ground
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Figure 2: Comparison of (A) mean time complexity and (B) mean Hilbert distance between learned
and WSV ground metric matrices recovered by different algorithms (lower is better). Tree-WSV
algorithms are specified by their hyperparameter on the minimum number of children per node in
the tree; all trees have maximum depth 5. Standard error of the mean is shown with black bars.

metrics look like
∣∣ sin( i

n −
j
n )

∣∣ (and symmetrically for m). We ran experiments 3 times for 100
iterations each on a CPU with different methods, using a translation of the periodic function, to
which we added a 50% translation of the torus with half the magnitude. We set σ = 0.01. Thus
Xik ∝ exp

(
−
(
i
n −

k
m

)2
/σ2

)
+0.5

(
−
(
i
n −

k
m + 0.5

)2
/σ2

)
. In order to control against potential

gains from tree construction based on preferred data ordering, we randomly permuted the dataset
rows and columns before each experiment. We compare performance via computation time and the
Hilbert metric between the learned cost and that recovered by the standard WSV algorithm (Fig. 2).

3.2 RESULTS

All tree-based methods were faster than both standard WSV and entropic-regularised WSV by 2-3
orders of magnitude (3-children trees took ∼1% of the time of the standard WSV, for example),
as predicted by our theoretical time complexity calculations (Fig. 2 A). Interestingly, the tree-based
methods had lower Hilbert distance error when compared to entropic WSV (Fig. 2 B). Tree methods
were noted to converge in a similar amount of time (less than 10 iterations) to the standard WSV.

As expected from Lemma 2.3, the trees initialised with 10 children had lower U -ranks than both 2-
and 3-trees, and 3-trees had lower ranks than 2-trees. In general, trees with fewer children per node
(higher rank) computed distance matrices slower, but produced more accurate results (Fig. 2). One
exception follows directly from Lemma 2.3: 2-trees have rank N − 2 while 3-trees are rank N − 1,
so the learned edge weight vector w is not guaranteed to be unique/optimal. As a result, the 2-trees
performed worse in terms of accuracy than the 3-trees (Fig. 2 B).

We found that the basis set matrices U were well-conditioned for both the SVD and recursive ap-
proaches. For the SVD approach, the condition numbers were within 1 ± 10−15 on dataset sizes
80x60, 100x200 and 500x500. For the recursive algorithm, the condition numbers were higher,
1000-3000 for random sample sizes between 1000 and 2000. Based on numerical precision, these
higher condition numbers should not affect the accuracy of w to within 2 orders of magnitude.

4 EXPERIMENTAL RESULTS ON LARGE GENOMICS DATASETS

Single-cell RNA sequencing (scRNA-seq) is a powerful biotechnology method that measures gene
expression in individual cells (Tang et al., 2009). scRNA-seq data can be used to determine cell types
through clustering, useful for many applications. Clustering reliability across methods is limited by
the choice of parameters and uncertainty in the number of clusters (Krzak et al., 2019). Traditional
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Figure 3: UMAP embeddings based on the learned tree-singular vectors for cells, and coloured by
provided annotation: (A) PBMCs (Wolf et al., 2018); (B) Lung tissue (Sikkema et al., 2023); (C)
Mouse V1 neural tissue, by broad types (Tasic et al., 2018); and (D) GABAergic neurons in the
same mouse V1 neural tissue set as C, by subtype (Tasic et al., 2018).

methods assume a Euclidean metric on PCA embeddings, or use neural network model embeddings
(Stuart et al., 2019; Wolf et al., 2018; Gayoso et al., 2022).

More recently, the gene mover distance has been used (Bellazzi et al., 2021; Du et al., 2019). Huizing
et al. (2022) showed that Sinkhorn singular vectors can achieve state-of-the-art clustering scores on
a small scRNA-seq dataset. We illustrate the potential utility of Tree-WSV by using it on the same
dataset and achieving similar performance, as well as employing it on other datasets with improved
performance. Finally, we showcase Tree-WSV on a large dataset prohibitive to the standard WSV
approach.

4.1 CELL-TYPE CLUSTERING USING GENOMICS DATA

We first compare performance on the “PBMC 3k” dataset from 10x Genomics (Wolf et al., 2018),
which consists of 2043 peripheral blood mononuclear cells with 6 broad types and 1030 genes. We
also ran Tree-WSV on “Neurons V1”, a dataset of scRNA-seq neuronal visual area 1 (V1) cells in
mice by Tasic et al. (2018), consisting of 1468 cells with 7 broad types and 1000 genes, and a subset
of the “Human Lung Cell Atlas (HLCA)” scRNA-seq consortium dataset of human respiratory tissue
(Sikkema et al., 2023), consisting of 7000 cells with 4 broad types and 3923 genes. Details on
preprocessing, annotation and experimental set-up are identical to Huizing et al. (2022) for PBMC
and similar in the other cases, and provided in Appendix F. Experiments were run on a NVIDIA
A100 Tensor Core GPU with JAX (Bradbury et al., 2018).

The average silhouette width (ASW) metric was used to compare performance on the clustering task.
ASW measures how close each data point is to its own cluster compared to other clusters, using an
input distance metric. Scores range between -1 and 1, with 1 being better.

4.2 RESULTS USING TREE-WSV META-ITERATIONS

We noted that silhouette scores for one iteration of the Tree-WSV algorithm – while quick to run –
were low across datasets (0.07, 0.15 and 0.05 respectively). This is because the initial tree structure is
calculated via ClusterTree, which uses Euclidean distances on the input to cluster nodes based on the
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Table 1: Comparison of ASW for metrics computed and runtime for scRNA-seq datasets for WSV
as compared to tree-based WSV. Euclidean metric for baseline. ∗ indicates method did not converge.

Dataset (size) PBMC (2k) Neurons V1 (1k) Lung (7k)

Metric/method ASW Runtime ASW Runtime ASW Runtime

Euclidean 0.073 N/A 0.200 N/A 0.046 N/A
Entropic WSV (SSV) 0.348 110 min 0.256 70 min ∗ > 12 hours
Tree-WSV (ours - 4 iters) 0.299 8 min 0.436 7 min 0.104 27 min
Tree-WSV (ours - best) 0.313 72 min 0.602 32 min 0.457 71 min

incremental furthest search algorithm, resulting in low-depth initial trees. To account for this, we re-
ran the Tree-TWD unsupervised ground metric algorithm using the ground metric outputs from the
previous run as the distance metric for the initial tree construction. This approach increased the depth
of the trees constructed, resulting in improved silhouette scores, but is still entirely unsupervised.
Results at 4 iterations and best (max 15 iterations) are summarised in Table 1.

The ASW metrics are comparable in performance to Huizing et al. (2022)’s Sinkhorn singular vec-
tors approach and better than other alternatives for the PBMC dataset, as presented in Table 1 and
Appendix G, with Euclidean distance as a baseline. However, the Tree-WSV method vastly out-
performs SSV on a similar task for a dataset of labelled neural cells (Tasic et al., 2018) and in the
HLCA data (Sikkema et al., 2023). Further, our method has considerably lower runtime. Indeed, on
the large HLCA dataset (7000 cells) SSV had not converged after 12 hours. Tree-WSV however can
be run on matrices of over 10000 samples/features.

We visualise and validate the cell-type clusters via a 2-component UMAP projection in Figure 3.
The clusters for the PBMC dataset are qualitatively similar to those of Huizing et al. (2022) (Fig. 3
A). Importantly, clusters are visually separable from each other.

Intriguingly, in some cases additional sub-clusters are visible further than the initial annotation
would suggest: for example, for GABAergic neurons in the Tasic et al. (2018) neuron dataset (Fig.
3 C). This likely indicates a subsequent level of detail in the data: the GABAergic sub-type can
have further sub-divisions, notably parvalbumin, somatostatin, VIP and other interneurons (Tasic
et al., 2018). These clusters reveal themselves coarsely when we label by them in Figure 3 D. Since
Tree-WSV is agnostic to the number of clusters in the data, it is not surprising that more detail can
be revealed. This advantageous deeper level of complexity should be investigated further.

Finally, while we did not find that ASW scores had converged after 15 meta-iterations, w vector
solutions in the inner power-iteration loop tended to always converge within 10 iterations. Stochas-
ticity inherent from choosing the basis set U , as well as the distance used to decide on the initial
tree-structure clustering, could both be factors in the meta-algorithm. These are interesting avenues
of future theoretical understanding and development that might improve the method.

5 CONCLUSIONS AND PERSPECTIVES

We present Tree-WSV, a new, computationally efficient approach to learning ground metrics in an
unsupervised manner by harnessing the tree-Wasserstein distance as an approximation of the 1-
Wasserstein distance. The results on toy and real-world data are fast and scale to larger datasets than
previously possible, with favourable results. Furthermore, we provide a new geometric underpinning
of the restrictions needed for tree structures to flexibly represent data in low-rank approximations.
Our method suggests a fast and recursive algorithm to construct basis sets for pairwise paths in
trees which could have wide-spread applicability. While promising, there is a need for further large-
scale testing and development of the Tree-WSV algorithm for other use cases, including neuronal
activity data. Lastly, understanding theoretical underpinnings of convergence, the role of metrics
in designing the initial cluster tree, and stochasticity in the basis set construction could be fruitful
avenues for future work.
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A PROOF OF PROPOSITION 2.1

From Yamada et al. (2022) and Le et al. (2019), given a tree T and two probability measures sup-
ported on T , the TWD computed using T is the 1-Wasserstein distance on the tree metric dT . For
any two measures, there also exists a tree such that it can approximate the 1-Wasserstein distance
between the measures; however, since this is only proved for two measures, combining many mea-
sures (samples) as we do in this work is not guaranteed to represent the Wasserstein distance (or
indeed any distance) without distortion. In this proof, we seek to show that we can construct a
TWD-version of the Wasserstein singular vector problem, but we do not comment on how well this
approximates the 1-Wasserstein distance theoretically.

Following Yamada et al. (2022), define a tree parameter-based vector for every ai, aj as y
(A)
i,j :=

z
(A)
i + z

(A)
j − 2z

(A)
i ◦ z(A)

j with z
(A)
i , z

(A)
j ∈ Z(A), that is ∈ {0, 1}N−1 (equivalently we will

write this as XOR{z(A)
i , z

(A)
j }), which is known from the tree structure. The tree metric (distance

between any two leaves on TA) is then given by:

dTA
(ai,aj) = wA

⊤y
(A)
i,j . (6)

Note that any vector bk is just a distribution over leaves (ai) in TA and vice versa. Using the
distribution over the ai with the ground metric on the matrix/tree TA, we can derive tree Wasserstein
distances between any bk, bl. Since TWD admits the closed form in equation 2 (Yamada et al.,
2022),WTA

(bk, bl) = ||diag(w(A))Z
(A)(bk − bl)||1.

Now, let us assume that instead of learning the ground metric for the full distance matrix, we want
to learn a tree metric dTA

(ai,aj) (6). The equivalent claim as in Huizing et al. (2022) is that we
achieve the fixed points in Proposition 2.1. More formally, as before, we would like:

λAwA
⊤Y(A) = ΦB(wB), λBwB

⊤Y(B) = ΦA(wA)

with λA, λB , τ ∈ R+, where ΦA(wA)i,j = WTA
(ai,aj) + τ ||A||∞R(ai − aj), and Y is the

tensor composed of the n2 (or m2) yi,j vectors. In this case, the Φs map ground costs to Wasserstein
distance matrices.

Let zA
k,l := Z(A)(bk − bl). Since wA ∈ RN−1

+ is positive, and letting | · | denote element-wise
absolute value,

WTA
(bk, bl) = ||diag(wA)z

(A)
k,l ||1

=

M∑
s=1

(wA)s|(z(A)
k,l )s|

= wA
⊤|z(A)

k,l |
So from (2) and Proposition 2.1:

λAwA
⊤y

(A)
i,j = wB

⊤|z(B)
i,j |, λBwB

⊤y
(B)
k,l = wA

⊤|z(A)
k,l | (7)

∀k, l ∈ {1, ..,m}, i, j ∈ {1, .., n}.
In full, the singular vector update becomes to find wA such that ∀i, j

λAwA
⊤
(
z
(A)
i + z

(A)
j − 2z

(A)
i · z(A)

j

)
=

∣∣∣∣∣∣diag(wB)Z(B)(ai − aj)
∣∣∣∣∣∣
1

(8)

(and symmetrically for the wB iteration).

B PROOF OF LEMMA 2.2

The proof proceeds identically to the proof of Theorem 2.3 in Huizing et al. (2022). As in Algorithm
1, the singular value updates satisfy

wA
⊤U (A) =

WTB

||WTB
||∞

,

wB
⊤U (B) =

WTA

||WTA
||∞

.
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The left-hand sides of these equations are the ground metrics, corresponding to A and B in Huizing
et al. (2022). The matrices U (A), U (B) are invertible by construction, and so the existence of a
fixed point (wA

⊤U (A),wB
⊤U (B)) to the left-hand sides equations above implies the existence of

a corresponding fixed point for the weight vectors (wA,wB).

As the right-hand sides are L∞-normalised and non-negative, the ground metrics (i.e. left-hand
sides) must have all components in the closed interval [0, 1]. Hence, reshaping the left-hand sides
from n2 (resp. m2)-dimensional vectors to n×n (resp. m×m) distance matrices, the mapping that
updates the ground metrics is a continuous mapping that maps the compact convex set

{(C,D) ∈ ([0, 1]n×n × [0, 1]m×m) : Ci,i = 0 ∀i, Dk,k = 0 ∀k}

to itself. By Brouwer’s fixed point theorem, this mapping must have a fixed point.

C PROOF OF LEMMA 2.3

As preliminaries, we assert that N > Nleaf = m, and Z ∈ {0, 1}(N−1)×ℓ has rank m. Note
that Y ∈ {0, 1}(N−1)×ℓ×ℓ is strictly a tensor, but in practice we only care for the reshaped matrix
Y ′ ∈ {0, 1}(N−1)×ℓ2 .

Assume that trees cannot have redundant nodes (i.e. nodes with exactly 1 child, not including
themselves), and let every tree have root node r and leaf nodes 1, ..., ℓ, which we also use to index
the associated positions along vectors z and y.

Note that at most one inner (non-leaf) node can have degree less than 3, and it must be the root. In
this case, the root has degree 2. Otherwise all inner nodes are of degree ≥ 3.

Some bounds for N in terms of ℓ can be derived from the observation that rank is upper-bounded by
the number of pairs that two distinct leaves can make, noting yi,j = yj,i and yi,i = 0. For ℓ ≥ 4,

l2 >
ℓ(ℓ− 1)

2
≥ 2ℓ− 2 ≥ N − 1 ≥ ℓ. (9)

Replacing N − 1 for N − 2 we get bounds for ℓ ≥ 2. 2ℓ − 2 ≥ N − 1 in (9) is derived from the
upper bound on the number of nodes in the maximal spanning tree, a binary tree.

We prove by induction on the number of tree nodes that the rank of Y ′ is N−1 for any tree structure
in which all nodes have degree ≥ 3, and N − 2 otherwise, for any ℓ ≥ 2.

N − 2 base case, N = 3: The tree can only be a root connected to two leaves. There is only one
y-vector, between the two leaves. So the rank is N − 2 = 1.

N−1 base case, N = 4: r connects to each of the three 3 leaves. In general for N = ℓ+1, ℓ ≥ 3, we
can show the rank is N−1 = ℓ. Without loss of generality, choose a leaf i and consider yi,j ,∀j ̸= i.
Since every zj is 0 everywhere except for positions indexed by node i and root r, where it is 1, yi,j

is 1 at i, j and 0 otherwise. Therefore the set of ℓ − 1 vectors Si = {yi,j , i ̸= j,∀j} is linearly
independent. Additionally, we can choose any two distinct nodes j, k where j ̸= k ̸= i, and
S = {yj,k ∪ Si} must also be a linearly independent set. This follows because yj,k is 1 at nodes
j, k and 0 otherwise; and no linear combination of yi,k,yi,j (with i = 1 for both vectors, which
should be cancelled) can reproduce yj,k.

Can we add any more vectors from Y to S such that the set is still linearly independent? No. To
show this, assume that there exists some yg,h /∈ span(S). Trivially, g ̸= h ̸= i and {g, h} ≠ {j, k},
so yg,h is 0 everywhere except at the g, h positions. But note that we can write yg,h using vectors
in S:

yg,h = yi,g + yi,h −
(
yi,j + yi,k − yj,k︸ ︷︷ ︸

=2 at i; 0 otherwise

)
(10)

So our assumption was incorrect and Y ∈ span(S). Therefore rank(Y ) = ℓ = N − 1.

Induction hypothesis, N ≤ m: Assume that the rank of any tree structure with parameter N ≤
m,m ∈ N, has rank N − 1 = m − 1 if all inner nodes are degree 3 or more, and N − 2 = m − 2
otherwise. We call this a m-tree.
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Inductive step, N = m + 1 ≥ 4: We define a set of “adjacent” leaf nodes A to be the set of all
leaves connected to the same parent node ρ where ρ has no non-leaf children.

Note first that we can construct any valid [m + 1]-tree structure from some previous valid m-tree:
for any [m+ 1]-tree, consider a complete set of adjacent leaf nodes of depth at least 2 from r – that
is, all the leaves connected to the same non-root node ρ (if depth is less than 2, we get the extended
base case). These leaves have common ancestry, and their z-parameters differ only at the indices of
the leaves themselves. Since n > 1, there must exist at least one node ρ that is neither r nor a leaf.
Collapse the ρ-sub-tree by removing ρ and reconnecting its leaves to the immediate parent node of
ρ. Then the new tree is an m-tree (we have lost one node), as claimed.

Every tree must have at least one such set A, and it must have at least 2 elements. We consider the
smallest A-sub-tree and the L/A-sub-tree consisting of the rest of the tree, in two cases.

Case 1, |A| ≥ 3: From the base case, the rank of the A-sub-tree up to the parent node ρ is |A|.
Now consider the sub-tree consisting of all the other leaves in the tree, L/A, up until ρ, where the
two sub-trees connect. Imagine ρ is a leaf (ignore its children A). Then the L/A-sub-tree has tree
parameter NL/A = m + 1 − A,≤ m, so by the inductive hypothesis it has rank N − 1 − A or
N − 2−A, depending on the degree of r.

How do we join the sub-trees? Let links including ρ now extend to some (the same) new leaf in
{A}, say ai. The union of the yi,j making up each sub-tree’s basis set is linearly independent. To
see this, note that the only yi,j that have a 1 at position ρ were those ending at ρ the leaf on {L/A}.
So to express any ylk,ai , a link via ρ is needed, that is the rank is lower-bounded by N−1 or N−2,
respectively.

We cannot add any more ys: since the sub-trees are saturated by assumption, any addition y should
also be a link, but any link can be expressed via an existing link through ρ and combinations of the
sub-tree basis sets (following the argument for the extended base case N > 3, since we know that
each sub-tree has more than 3 nodes). Therefore rank([m+1]-tree) = N − 1 or N − 2 based on the
sub-tree, as required.

Case 2, |A| = 2: In this case, the L/A-sub-tree has rank N − 3 or N − 4 and the A-sub-tree
has internal rank 1 since there is just one pair of leaves to make ya1,a2 . Without loss of generality,
assume the ρ links extend to a1, with {yℓi,a1} for some (not necessarily single) i, necessarily
linearly independent of ya1,a2 . The total rank is then N − 2 or N − 3.

In the 2-case, we can also create another ylj ,a2 , where j can either be the same as i or different.

How do we know that ylj ,a2 is not in the span of the two sub-tree’s y vectors? Assume it is in
the span. ylj ,a2 has 1s at ρ. The only other ys which shares this property are from yli,a1 . So, if
ylj ,a2 could be written using already chosen ys, its decomposition must include yli,a1 . But since
a1 is known to be zero in ya2,lj , but is non-zero in the path containing yli,a1 , [a1] = 1 (where
[aj ] = 1 refers to the component of yli,a1 corresponding to aj) should be “removed” through linear
combinations with other ys; however, there is just one y involving a1, which is ya1,a2 . So we must
subtract ya1,a2 , resulting in a value of −1 at [a2]. But we require [a2] to be 1: there is no linear
combination that allows both [ρ] and [a2] to be 1.

So we must be able to add one link, and so here, too, the rank is N − 1 or N − 2 in total (trivially
any further ys must be links and so would be in the span).
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D RECURSIVE ALGORITHM FOR TREE BASIS CALCULATION

Algorithm 2 Tree basis set recursion

basis tree
INPUTS : path matrix, U basis – initially a tree parameter/parent matrix, rank – initially 0
N,L← shape of path matrix{nodes, leaves} (U has shape N ×N )
if N == 3 (base case: 2 leaves and 1 root) then
U [rank]← path of the 2 leaves (perform XOR on 2 path matrix columns), rank← 1

else
smallest-parent← argminrow index

∑
rows U [L :], size←

∑
U [smallest-parent]

smallest-parent’s-leaves← non-zero indices of smallest-parent row
if size == 2 (2 adjacent leaves) then
U [rank]← path of smallest-parent’s-leaves (perform XOR on 2 path matrix columns)
U [rank+1]← path of 1 smallest-parent’s-leaf & a leaf /∈ {smallest-parent’s-leaves}
rank+ = 2

else
U [rank]← path of smallest-parent’s-leaves 0,size− 1
rank+ = 1
for i = 0 to size− 2 do
U [rank + i]← path of smallest-parent’s-leavesi, i+ 1

end for
rank+ = n− 1

end if
for i in smallest-parent’s-leaves[1 :] do

path matrix column at smallest-parent’s-leaves index i ← 0 (i.e. discount all leaves but
one for the next recursion – can be made stochastic)

end for
U , rank← basis tree(path matrix,U , rank)

end if
return U , rank

E EMPIRICAL CONVERGENCE

Figure 4: Empirical convergence (Hilbert metric) observed for different toy torus dataset sizes across
power iterations. The smaller dimension is shown in blue: (A) 60 x 80 (with SVD basis set calcula-
tion); (B) 100 x 200 (with SVD basis set calculation); (C) 1500 x 300 (with Algorithm D basis set
calculation).

F DETAILS ON GENOMICS DATA PREPROCESSING AND EXPERIMENTS

F.1 DATA PREPROCESSING

All single-cell RNA sequencing data was processed using standard protocols, including CPM-
normalisation, log1p-transformation, and selection of genes based on highest variability. Canonical
markers were added according to source.
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PBMC3K data was recovered using Scanpy (Wolf et al., 2018). Preprocessing procedure/code was
provided on request from Huizing et al. (2022) and included cell type annotation using Azimuth
marker genes (Hao et al., 2021), sampling only annotations for which confidence was over 90%.
The results of SSV on this dataset were identical to that reported previously (Huizing et al., 2022).

Neural cell data and labels from Tasic et al. (2018) were recovered from the NCBI GEO repository,
Series GSE71585 (Clough et al., 2024) and annotated using the Allen Brain Map (Lein et al., 2007)
and CZ CELLxGENE (Abdulla et al., 2023).

The Human Lung Cell Atlas (HLCA) was recovered, and annotated, from CZ CELLxGENE (Ab-
dulla et al., 2023), and originally published by Sikkema et al. (2023). Because taking a subset might
disrupt the original annotation, low-gene-count cells and cells with labelling entropy score less than
0.1 were removed.

F.2 ALGORITHM PARAMETERS

Genomics experiments using Tree-WSV were run for 20 iterations of the internal linear system of
equations singular vector loop (finding w) and 15 meta-iterations of the entire algorithm (starting
with constructing new trees based on the 2 previous weight matrices, through to computing 2 new
TWD-based distance matrices). A JAX random seed of 0 was used. The ASW and total runtime after
the 4th meta-iteration and the best score overall (usually the 12-15th meta-iteration) were reported.

Genomics experiments using SSV were run for 15 iterations of the singular vectors loop with τ =
0.001, ϵ = 0.1; these follow the settings and replicate the results in Huizing et al. (2022).

F.3 COMPUTATIONAL RESOURCES

Computations on CPU were done using a Apple M2 MacBook Air M2 with 16 GB RAM. GPU
computations were performed on on an NVIDIA A100 node with 16 GB requested memory.

G COMPARISON TO OTHER METHODS FOR IMPROVING CELL-TYPE
CLUSTERING

We reproduce the table from Huizing et al. (2022) showing other methods that can be used to cluster
cell-type data from scRNA-seq experiments as compared to ours on the PBMC dataset.

Table 2: Comparison of average silhouette width (ASW) for distance metrics computed and runtime
in the PBMC dataset.

Dataset (size) PBMC (2k)

Metric/method ASW Runtime

PCA / ℓ2 0.238
Kernel PCA / ℓ2 0.241
scVI embedding / ℓ2 0.168
Sinkhorn 0.003
Gene Mover Distance 0.066
Euclidean 0.073
Entropic WSV (SSV) 0.348 110 min
Tree-WSV (ours - 4 iters) 0.299 8 min
Tree-WSV (ours - best) 0.313 72 min
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