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ABSTRACT

Policy-based reinforcement learning currently plays an important role in improv-
ing LLMs on mathematical reasoning tasks. However, existing rollout-based re-
inforcement learning methods (GRPO, DAPO, GSPO, etc.) fail to explicitly con-
sider LLMs’ learning ability for samples of different difficulty levels, which is
contrary to the human cognitive process of mathematical reasoning tasks from
easy to difficult. Intuitively, we find that the variance of the rollout group’s re-
ward in Reinforcement Learning with Verifiable Rewards (RLVR) partly reflects
the difficulty of the current sample for LLMs. Samples that are too easy or too
difficult have a lower variance, while samples with moderate difficulty have a
higher variance. Based on this, we propose VCRL, a curriculum reinforcement
learning framework that dynamically controls the difficulty of training samples
based on the variance of group rewards. Experiments on five mathematical bench-
marks and two models reveal the advantages of VCRL over the current LLM RL
baselines. Code is available at https://anonymous.4open.science/r/
VCRL-BD7E.

1 INTRODUCTION

The new generation of large language models (LLMs) that use long Chain-of-Thoughts (CoTs) for
reasoning (Xu et al., 2025a) have achieved remarkable results in information extraction (Zhang et al.,
2025d; Jiang et al., 2024; 2025a), mathematics (Wang et al., 2025a), code (Yang et al., 2025b), and
agent (Gao et al., 2025; Zhang et al., 2025b) fields, including GPT-51, GPT-OSS (Agarwal et al.,
2025), DeepSeek-R1 (Guo et al., 2025), and Kimi k1.5 (Team et al., 2025). A notable feature
of this type of LLMs is the phenomenon called Test-Time Scaling (TTS) (Zhang et al., 2025c),
which generates long CoTs to scale performance. Reinforcement Learning with Verifiable Rewards
(RLVR) (Mroueh, 2025) has been proven to be an effective technique for achieving TTS in the
post-training process.

Recently, Reinforcement Learning (RL) methods have shown significantly better generalization per-
formance in improving LLM reasoning capabilities compared to traditional Supervised Fine-Tuning
(SFT) (Chu et al., 2025). SFT relies on high-quality, labeled data from human annotations or
stronger model distillation, while RL relies primarily on the model’s own exploration. Rollout-based
reinforcement learning methods represented by Group Relative Policy Optimization (GRPO) (Shao
et al., 2024) require the model to generate multiple trajectories for each training sample and learn
based on the rewards of the generated trajectories, which can continuously expand the boundaries
of LLMs’ capabilities through the continuous RL process with diverse training samples.

However, existing rollout-based RL methods do not consider how well the model’s current abilities
match the difficulty of training samples. In human learning, people usually start with easy tasks and
move to harder ones, an approach called Curriculum Learning (CL) (Wang et al., 2022; Soviany
et al., 2022). Rollout-based RL methods have the model explore rollouts generated by the training
samples, without considering if those samples are easy or hard. This does not help LLMs learn
efficiently from samples with different levels of difficulty. Also, the model’s skills change during
RL training, so the difficulty of training samples can vary for the model at different stages. Because
of this, pre-sorting training samples by fixed difficulty is not effective.

1https://openai.com/index/gpt-5-system-card

1

https://anonymous.4open.science/r/VCRL-BD7E
https://anonymous.4open.science/r/VCRL-BD7E
https://openai.com/index/gpt-5-system-card


054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2026

To address these limitations, we introduce a curriculum reinforcement learning framework called
VCRL. It dynamically adjusts the difficulty of training samples based on the variance of group
rewards. We find that the variance in rollout group rewards in RLVR partly reflects how hard a
sample is for LLMs. With RLVR’s current sparse reward system, samples that are too hard often
get only 0 rewards, leading to low variance; this also happens with samples that are too easy. When
samples are more uncertain, such as when half of the rollouts receive a reward of 1 and the other
half receive 0, the model is at a key learning point for that sample. VCRL uses Variance-based
Dynamic Sampling to select these samples for training, helping control the quality of the training
batch. Group variance also gives a way to measure sample difficulty for the current state of the
model. Therefore, VCRL uses Replay Learning with a memory bank to further boost training
efficiency.

Our contributions are as follows:

• We introduce VCRL, a curriculum reinforcement learning framework that adjusts the diffi-
culty of training samples based on the variance of group rewards. By focusing on samples
with high reward variance, VCRL selects those most valuable for current model training.

• Building on group variance, we further introduce Replay Learning with a memory bank
to control training stability and improve training efficiency. By updating and utilizing the
memory bank, VCRL ensures high variance of samples in the training batch, thus achieving
higher training value.

• We conduct extensive experiments on five benchmark datasets to justify VCRL’s advan-
tage on LLM’s efficient Test-Time Scaling over some SOTA RL methods. Our results
show consistent performance gains across different models, validating the effectiveness
and robustness of our VCRL.

2 PRELIMINARIES

In this section, we review the current policy-based reinforcement learning methods in LLM, espe-
cially the rollout-based like GRPO and some variants.

2.1 PROXIMAL POLICY OPTIMIZATION (PPO)

PPO (Schulman et al., 2017) limits the update of the current policy to the proximal region of the
old policy through the clipping mechanism. Specifically, give a dataset D, x is the query and y is
the response. For the policy model πθ parameterized by θ, the likelihood by the policy πθ is given
by πθ(y|x) =

∏|y|
t=1 πθ(yt|x, y<t), where |y| is the number of tokens in y. In RLVR, there is a

verifier r that can score a given query-response pair (x, y) and obtain a reward r(x, y) ∈ [0, 1]. PPO
optimizes the following objective for policy optimization to update the actor in the proximal region
of the old policy πθold :

JPPO(θ) = Ex∼D,y∼πθold (·|x)

 1

|y|

|y|∑
t=1

min
(
rt(θ)Ât, clip(rt(θ), 1− ϵ, 1 + ϵ)Ât

) , (1)

where the importance ratio of the token yt is given by rt(θ) =
πθ(yt|x,y<t)
πθold (yt|x,y<t)

, ϵ is the clipping range

of the importance ratio, and the advantage Ât of yt is estimated using a value model estimated by
Generalized Advantage Estimator (GAE) (Schulman et al., 2016).

PPO relies on the value model to evaluate the current state. Typically, the value model and the
trained model have similar structures and parameters, resulting in significant computational and
memory costs. Furthermore, the accuracy of the value model itself limits the effectiveness of the
PPO algorithm, especially for long response and sparse reward in complex tasks for LLM.

2.2 GROUP RELATIVE POLICY OPTIMIZATION (GRPO) AND VARIANTS

GRPO (Shao et al., 2024) calculates the relative advantages of each response within a group of re-
sponses generated by LLM to the same query, eliminating the need to the value model. Specifically,

2
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GRPO optimizes the following objective for policy optimization to update the actor within the group
of responses (we omit the KL regularization term for brevity):

JGRPO(θ) = Ex∼D,{yi}G
i=1∼πθold(·|x) 1

G

G∑
i=1

1

|yi|

|yi|∑
t=1

min
(
ri,t(θ)Âi,t, clip(ri,t(θ), 1− ϵ, 1 + ϵ)Âi,t

) , (2)

where G is the number of generated responses to the same query x, the importance ratio ri,t(θ) and
advantage Âi,t of token yi,t are given by

ri,t(θ) =
πθ(yi,t|x, yi,<t)

πθold(yi,t|x, yi,<t)
, Âi,t =

r(x, yi)−mean
(
{r(x, yi)}Gi=1

)
std

(
{r(x, yi)}Gi=1

) . (3)

Based on GRPO, Decoupled Clip and Dynamic sampling Policy Optimization (DAPO) (Yu et al.,
2025) removes the KL divergence regularization and introduces the clip-higher and dynamic sam-
pling with token-level loss, further improving the training stability and performance for LLMs.
Specifically, DAPO optimizes the following objective for policy optimization:

JDAPO(θ) = Ex∼D,{yi}G
i=1∼πθold(·|x) 1∑G

i=1 |yi|

G∑
i=1

|yi|∑
t=1

min
(
ri,t(θ)Âi,t, clip(ri,t(θ), 1− ϵlow, 1 + ϵhigh)Âi,t

) , (4)

s.t. 0 < |{yi|is equivalent(y∗, yi)}| < G,

where ϵlow and ϵhigh are the low and high clipping bound for the importance ratio respectively, and
y∗ is the correct answer.

Based GRPO, Group Sequence Policy Optimization (GSPO) (Zheng et al., 2025) uses sequence-
level importance ratio to replace the original token-level importance ratio to match the sentence-level
reward in the generation task and optimization objective, thus achieving remarkable improvements.
Specifically, GSPO optimizes the following objective for policy optimization:

JGSPO(θ) = Ex∼D,{yi}G
i=1∼πθold(·|x)

[
1

G

G∑
i=1

min
(
si(θ)Âi, clip(si(θ), 1− ϵ, 1 + ϵ)Âi

)]
, (5)

where the group-based advantage estimation and importance ratio are given by

Âi =
r(x, yi)−mean

(
{r(x, yi)}Gi=1

)
std

(
{r(x, yi)}Gi=1

) , si(θ) =

(
πθ(yi|x)
πθold(yi|x)

) 1
|yi|

. (6)

3 VARIANCE-BASED CURRICULUM REINFORCEMENT LEARNING

In this section, we introduce Variance-based Curriculum Reinforcement Learning (VCRL), shown
in Figure 1. First, we explain Variance-based Dynamic Sampling and how it helps identify the
difficulty and value of training samples. Next, we combine Replay Learning with a memory bank to
focus training on high-value samples, which improves RL training efficiency and stability.

3.1 VARIANCE-BASED DYNAMIC SAMPLING

As discussed above, existing rollout-based RL methods do not properly match model capabilities
with sample difficulty during training. This problem mainly shows up in two ways:

1. Dynamic Model Parameters: During training, gradient backpropagation is performed us-
ing the objective function calculated from the training samples. This updates the model pa-
rameters to improve its performance on current samples. Model parameters keep changing,
so the model may perform differently on the same samples at different stages of training.

3
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Figure 1: An illustration of the proposed VCRL method. For rollout-based RL training, VCRL first
calculates our proposed p for each query’s rollout results and filters queries based on their p. VCRL
then uses the existing memory bankM to update and add training samples. Finally, VCRL performs
the standard RL update for this training batch.

2. Unordered Sample Difficulty: For most training datasets and algorithms, the difficulty of
training samples is not considered. Some tasks, like search (Feng et al., 2025b; Hao et al.,
2025) and tool use (Shen, 2024; Lu et al., 2025), are hard to define by difficulty. Also,
sorting samples by difficulty requires a lot of data preprocessing. As a result, most datasets
include samples that are not ordered by difficulty.

Dynamic model parameters and unordered sample difficulty make it too expensive and hard to use
ordered training samples based on predefined difficulty. Samples that are hard for the model early
in training often become easier later. So, the indicator of training sample difficulty must be adjusted
dynamically as the model changes.

Multiple rollouts for the same query can help measure how hard a training sample is for the current
model. Formally, for a query x, if it is too easy for model πθ, then Ey∼πθ(·|x) [r(x, y)] ≈ 1. If
x is too hard, then Ey∼πθ(·|x) [r(x, y)] ≈ 0. Both easy and hard samples have low group reward
variance. So, we can use the variance of group rewards to pick samples that are better suited for
the current model. Samples with higher variance are neither too easy nor too hard, meaning the
difference between the probabilities of positive and negative outcomes is small.

In RLVR, for the binary reward distribution, the group variance for the query x is given by

Vary∼πθ(·|x)(r(x, y)) = Ey∼πθ(·|x)
[
(r(x, y)− Ey∼πθ(·|x) [r(x, y)])

2
]
. (7)

If there are k rollouts with a reward of 1, the unbiased estimator of the group variance can be written
as

σ2 =
1

G− 1

G∑
i=1

[
r(x, yi)−

1

G

G∑
i=1

r(x, yi)

]2

=
1

G− 1

G∑
i=1

[
r(x, yi)−

k

G

]2
=

k(G− k)

G(G− 1)
. (8)

4
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When k =
⌊
G
2

⌋
, the estimator achieves the maximum value:

σ2
max =

{ G
4(G−1) , G is even,
G+1
4G , G is odd.

(9)

Obviously, the group variance cannot exceed σ2
max in any case, so we can use the normalized group

variance p = σ2

σ2
max

to measure the value of the current query x for the model πθ. Training with
samples that have high p helps the model learn areas where it is less skilled, which improves the
model more effectively than using unordered samples. See Appendix Section B for more discussion.

3.2 REPLAY LEARNING

Based on the normalization value p discussed above, we can dynamically sample queries during
training using threshold rules. This helps ensure that each training sample has high value for the
model. For unordered training datasets, each sampled query can only obtain its p value after a long
rollout, so we use variance-based dynamic sampling. Calculating p for each training sample requires
significant computational resources and time, which can be expensive if used only for sampling.

To address this, we propose building a high-value memory bank using p and maintaining it with a
momentum update method. This lets us apply curriculum learning with data replay based on group
variance, as shown in Algorithm 1. Specifically, each time we sample from the training set D, we
get a query batch {xj}Bj=1, where B is the batch size. First, we get the corresponding response set
{yj,i}Gi=1 and reward set {r(xj , yj,i)}Gi=1, then calculate pj for each query xj . If pj ≥ κ, where
κ ∈ [0, 1] is a predefined threshold, we keep the query xj . Otherwise, we remove it from the batch
and perform variance-based dynamic sampling.

Suppose M queries are removed from a batch of B. To keep the batch size unchanged, we replace
the missing M queries by sampling queries from the memory bank M. The memory bank M is
implemented as a priority queue, where each entry is a query xj , and the priority P (xj) is updated
based on momentum and the number of steps since it was last accessed, β(xj):

P (xj)← αP (xj) + (1− α)β(xj), (10)

where α is the momentum constant and the P (xj) is initialized using pj .

The proposed VCRL based on GRPO optimizes the following objective for policy optimization:

JVCRL(θ) = Ex∼D∪M,{yi}G
i=1∼πθold(·|x) 1

G

G∑
i=1

I
(
pi =

σ2
i

σ2
max
≥ κ

)
|yi|

|yi|∑
t=1

min
(
ri,t(θ)Âi,t, clip(ri,t(θ), 1− ϵ, 1 + ϵ)Âi,t

) ,

(11)

where the calculation of pi and the memory bankM mechanism are as described above, and I(·)
is the indicator function. See Appendix Section C for a comparison of theoretical perspecitves on
GRPO and VCRL.

4 EXPERIMENTS

4.1 EXPERIMENTAL SETUP

Benchmarks. In this work, we focus specifically on mathematical reasoning tasks to evaluate our
VCRL algorithm. For mathematical reasoning tasks, we use AIME-20242, AIME-20253, MATH500
(Lightman et al., 2024), OlympiadBench (He et al., 2024), and AMC234. Among them, AIME-2024
and AIME-2025 are used as high-difficulty benchmarks to effectively evaluate the performance of
VCRL and other baseline RL methods in multiple difficulty levels.

2https://huggingface.co/datasets/Maxwell-Jia/AIME_2024
3https://huggingface.co/datasets/yentinglin/aime_2025
4https://huggingface.co/datasets/AI-MO/aimo-validation-amc
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Algorithm 1: VCRL: Variance-based Curriculum Reinforcement Learning
Require: Training Set D, Reward Verifier r, p-threshold κ, Policy Model πθ, Momentum Constant

α, Training Batch Size B, Rollout Group Size G
1: InitializeM← PriorityQueue()
2: while Training do
3: Sample {xj}Bj=1 ∼ D, M ← 0
4: for j = 1 to B do
5: Sample {yj,i}Gi=1 ∼ πθ(·|xj)
6: Calculate Reward {r(xj , yi,j)}Gi=1
7: Calculate pj for xj

8: if pj < κ then
9: Remove xj from Training Batch

10: M ←M + 1
11: end if
12: end for
13: Pop M queries fromM and add them to the Training Batch
14: for x ∈M do
15: β(x)← β(x) + 1
16: P (x)← αP (x) + (1− α)β(x)
17: end for
18: Apply RL update using the Augmented Training Batch B
19: for x ∈ B do
20: Calculate p for x
21: if p ≥ κ then
22: Push x intoM with priority P (x) = p and β(x) = 0
23: end if
24: end for
25: end while

Implementation Details. For training dataset, we use DAPO-Math-17K5 to improve training sta-
bility, which consists of 17K prompts, each paired with an interger as the answer. We implement
VCRL and conduct all experiments based on the verl (Sheng et al., 2025) framework. For hyper-
parameters, we utilize the AdamW (Loshchilov & Hutter, 2019) optimizer with a constant learning
rate of 1 × 10−6. For rollout, the prompt batch size is B = 128 and we sample G = 16 responses
for each prompt. For training, we train 500 steps to ensure convergence. The maximum number of
tokens for generation is set to 4,096 tokens. For evaluation on benchmarks, we repeat the evaluation
set for 16 times and report avg@16 for the stability of the results. The inference hyperparameters
of evaluation are set to temperature 0.6 and top-p 0.95. For VCRL, we set the variance threshold κ
to 0.3 in first 20 steps and 0.8 in remaining steps, and the momentum constant α is set to 0.9. We
implement VCRL based on GRPO’s RL update. For memory bank, we allow up to 2 replays for the
same sample to ensure the diversity of training sample. We conduct all experiments on a server with
8×NVIDIA H20-3e GPUs and an Intel® Xeon® Platinum 8575C CPU.

Baselines and Models. We mainly use GRPO (Shao et al., 2024), DAPO (Yu et al., 2025) and
GSPO (Zheng et al., 2025) as the baselines for our VCRL comparison. For Clip-Higher mechanism
in DAPO, we set the clipping parameter ϵlow to 0.2 and ϵhigh to 0.28, which is aligned with the DAPO
setting in the original paper. For GSPO, we set the clipping parameter ϵ to 0.0003. For models,
we use the Qwen3 (Yang et al., 2025a) series models for training, including Qwen3-4B-Base and
Qwen3-8B-Base.

4.2 MAIN RESULTS

We conduct a comprehensive evaluation of our proposed method, VCRL, against several strong
LLM RL baselines on a diverse suite of mathematical reasoning benchmarks. As detailed in Table
1, the experiments are performed on two models, Qwen3-4B-Base and Qwen3-8B-Base, to assess the

5https://huggingface.co/datasets/BytedTsinghua-SIA/DAPO-Math-17k
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Table 1: Main performance comparison of VCRL against other RL baselines on Qwen3 models.

Method AIME-2024 AIME-2025 MATH500 OlympiadBench AMC23 Avg.
Starting from Qwen3-4B-Base

Base Model 9.58 4.79 56.69 27.27 35.09 26.68
+ GRPO 15.63 12.92 80.78 45.39 54.07 41.76
+ DAPO 14.79 12.29 79.86 44.23 51.81 40.60
+ GSPO 14.58 10.42 79.90 44.38 51.13 40.08
+ VCRL 23.96 22.71 86.48 53.24 60.77 49.43

Starting from Qwen3-8B-Base
Base Model 10.83 10.00 68.75 34.10 41.11 32.96

+ GRPO 23.13 21.88 86.94 54.02 65.29 50.25
+ DAPO 22.08 20.42 87.14 53.52 64.01 49.43
+ GSPO 27.29 22.92 89.23 56.75 69.28 53.09
+ VCRL 34.38 27.08 91.99 60.21 75.15 57.76

scalability and generalizability of our method. The results unequivocally demonstrate the superiority
of VCRL. Across all five benchmarks and on both model sizes, VCRL consistently achieves state-of-
the-art performance, outperforming all baseline methods, including GRPO, DAPO, and GSPO. This
consistent dominance, indicated by the bolded scores, highlights the robustness and effectiveness of
our proposed methodology.

A deeper analysis reveals the substantial performance gains enabled by VCRL. For instance, on the
Qwen3-8B-Base model, VCRL achieves an average score of 57.76, a significant margin of over 4.67
points above the strongest baseline, GSPO (53.09), and a remarkable 24.8 points improvement over
the base model. This trend holds for the Qwen3-4B-Base model, where VCRL elevates the average
performance from 26.68 (Base Model) to 49.43, far surpassing the gains from other RL techniques.
Notably, the performance leap is particularly pronounced on highly challenging, competition-level
datasets such as AIME-2024 and AIME-2025, suggesting that VCRL is exceptionally proficient
at unlocking the complex, multi-step reasoning capabilities essential for advanced mathematical
problem-solving. These empirical findings strongly validate VCRL as a superior alignment strategy
for enhancing the mathematical reasoning prowess of LLMs.

4.3 PERFORMANCE TREND

During RL training, the LLM starts with low ability and steadily improves, showing an upward
trend on benchmark tests. To illustrate how VCRL compares to baseline methods during training,
we show how model performance changes with training steps on each benchmark, as seen in Figure
2 for Qwen3-4B-Base and Figure 3 for Qwen3-8B-Base.

For performance trend, the results clearly demonstrate that VCRL consistently and significantly
outperforms all other baseline methods across all benchmarks. In terms of the speed of performance
improvement, VCRL also has a considerable advantage. In the first 100 training steps, VCRL’s
performance increases quickly, with its curve staying above the other methods. This is likely due
to VCRL’s control of high-p training samples in the early stages of model training, which improves
training efficiency. Later in training, the performance of all methods generally converges, but VCRL
still achieves significantly better final results than the RL baselines. This demonstrates VCRL’s
strong competitiveness. More training dynamics are in Appendix Section A.

4.4 ABLATION STUDY

To verify the effectiveness of the two core components of our proposed VCRL, we conduct the
ablation study, as shown in Table 2. Starting from the Qwen3-4B-Base, our Naive GRPO base-
line improves the average score from 26.68 to 41.76. The integration of Variance-based Dynamic
Sampling further pushes this score to 44.73. Finally, the inclusion of Replay Learning achieves the
best performance of 49.43, showing the largest marginal gain. This consistent trend on the larger
Qwen3-8B-Base model robustly validates the positive impact of each component within our VCRL
framework.

7



378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2026

0 100 200 300 400 500
Training Steps

10

12

14

16

18

20

22

24

A
IM

E-
20

24

GRPO
DAPO
GSPO
VCRL

0 100 200 300 400 500
Training Steps

5.0

7.5

10.0

12.5

15.0

17.5

20.0

22.5

A
IM

E-
20

25

GRPO
DAPO
GSPO
VCRL

0 100 200 300 400 500
Training Steps

60

65

70

75

80

85

M
AT

H
50

0

GRPO
DAPO
GSPO
VCRL

0 100 200 300 400 500
Training Steps

30

35

40

45

50

55
O

ly
m

pa
id

B
en

ch
GRPO
DAPO
GSPO
VCRL

0 100 200 300 400 500
Training Steps

35

40

45

50

55

60

A
M

C
23

GRPO
DAPO
GSPO
VCRL

Figure 2: The performance curve of Qwen3-4B-Base on the five benchmarks using various RL
methods over training steps.
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Figure 3: The performance curve of Qwen3-8B-Base on the five benchmarks using various RL
methods over training steps.

5 RELATED WORK

Recent work on using RL methods with LLMs has greatly improved their ability to handle complex
tasks. DeepSeek-R1 (Guo et al., 2025) introduces a zero RL training framework, which directly
trains the base LLM using a simple rule-based reward model. Many RL methods have built on this
idea to further boost LLM performance.

Some approaches use novel RL mechanisms to make training more efficient and stable. DAPO
(Yu et al., 2025) analyzes GRPO’s training and applies four main techniques to improve RL ef-
ficiency. Dr. GRPO (Liu et al., 2025b) removes the output length and standard deviation terms
from GRPO’s relative advantage, which increases token efficiency without hurting reasoning per-
formance. SimpleRL-Zoo (Zeng et al., 2025) runs experiments on different base models and sizes to
map out behavioral patterns and suggest future improvements. LUFFY (Yan et al., 2025) enhances
RLVR with off-policy reasoning traces, helping to balance imitation and exploration by combin-
ing off-policy demonstrations with on-policy rollouts. VAPO (Yue et al., 2025) introduces the first
value-model-based RL training framework built on PPO, with seven new techniques to improve
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Table 2: Ablation study of the key components of our proposed method VCRL. Starting from a Naive
GRPO baseline, we incrementally add Variance-based Dynamic Sampling and Replay Learning.
The results on both Qwen3-4B-Base and Qwen3-8B-Base models show that each component con-
tributes positively to the final performance, validating their effectiveness.

Model Avg.
Qwen3-4B-Base 26.68
w/ Naive GRPO 41.76
w/ Variance-based Dynamic Sampling 44.73
w/ Replay Learning 49.43
Qwen3-8B-Base 32.96
w/ Naive GRPO 50.25
w/ Variance-based Dynamic Sampling 52.67
w/ Replay Learning 57.76

training stability and performance. Yeo et al. (2025) investigates how RL helps models create longer
reasoning chains, showing which factors matter most for extended CoT reasoning. PVPO (Feng
et al., 2025c) presents an efficient reinforcement learning method enhanced by an advantage refer-
ence anchor and data pre-sampling.

Other work explores curriculum learning in LLM training for better results. Hammoud et al. (2025)
improve GRPO with a reward function that balances task correctness (via verifier feedback), length
efficiency, and formatting (using structural tags), leading to higher accuracy and better token effi-
ciency. Feng et al. (2025a) propose a self-adaptive curriculum that picks fine-tuning examples based
on difficulty scores predicted by pre-trained models. Shen et al. (2025) introduce TTI (Test-Time
Interaction), an online RL method that adapts rollout lengths using a curriculum approach. Parashar
et al. (2025) provide convergence guarantees for easy-to-hard training within an approximate pol-
icy iteration framework. RAGEN (Wang et al., 2025c) introduces uncertainty-based filtering to
maintain high training efficiency based on active learning (Settles, 2009). PODS (Xu et al., 2025b)
generates numerous rollouts in parallel but updating only on informative subset. Curr-ReFT (Deng
et al., 2025) explores the Out-of-Distribution generalization on small-scale Vision Language Mod-
els based on the curriculum learning framework. Xi et al. (2024) introduce a novel method that
employs only outcome supervision to achieve the benefits of process supervision for large language
models with a step-wise curriculum. More recently, several studies have focused on difficulty-based
filtering and distribution priors. ADCL (Zhang et al., 2025a) employs adaptive difficulty curriculum
via periodic data reordering, while other approaches (Chen et al., 2025; Wang et al., 2025b) rely on
self-evolving schedules or distribution-level priors which often require preset difficulty hierarchies.
Regarding data efficiency, Bae et al. (2025) propose ODF with a pass-based selection strategy simi-
lar to DAPO, and Tzannetos et al. (2023) explore the theoretical foundations of proximal curriculum.
Distinct from these methods, our VCRL operates dynamically by filtering based on group variance
within the current batch and utilizes replay learning to enhance efficiency, without assuming future
data streams or requiring strict difficulty distribution priors.

RLVR (Mroueh, 2025) is a promising method for boosting reasoning in LLMs, especially in areas
like math and programming (Jiang et al., 2025b). Gandhi et al. (2025) show that reasoning behav-
iors—not just correct answers—drive RL performance gains. Li et al. (2025) find that the structure
of long chains of thought is key for learning, while the details of each reasoning step matter less.
Vassoyan et al. (2025) identify critical tokens in CoTs, which are decision points where models often
make mistakes, and suggest increasing exploration around these tokens by changing the KL penalty.
Lin et al. (2024) also find tokens that lead to errors and show that changing them can shift model
behavior.

6 CONCLUSION

In this paper, we propose VCRL, a curriculum reinforcement learning framework that dynamically
controls the difficulty of training samples based on the variance of group rewards. By introducing
Dynamic Variance Sampling, VCRL can filter out samples in the training batch that are moderately
difficult for the current training model and remove samples that are too difficult or too easy, thereby
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improving training efficiency. By introducing Replay Learning, VCRL uses a memory bank to
maintain the high-p samples in the training batch, further improving training stability. By carefully
controlling the difficulty of training samples, VCRL achieves state-of-the-art results on five math
benchmarks compared to LLM RL baselines. Further analysis of training dynamics and ablation
study also confirm VCRL’s effectiveness.
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Figure 4: The metric curves of reward score, response length, and entropy of VCRL over GRPO
based on Qwen3-4B-Base and Qwen3-8B-Base, which show the dynamics of RL training and serve
as essential monitoring indicators to identify potential issues.
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A TRAINING DYNAMICS

Compared to GRPO, VCRL introduces two main techniques to improve training efficiency. To
further understand their effects, we show the training dynamics shown in Figure 4, including reward
score, response length, and entropy. For the reward score curve, in order to simultaneously measure
their stability in training dynamics, we use moving average and rolling standard deviation with a
window size of 20 for visualization.

• Reward Score during training is closely linked to training stability and performance, as
shown in Figure 4a and Figure 4b. For both VCRL and GRPO, the reward score rises
quickly in the early stages and then slowly improves. For Qwen3-4B-Base, before about
270 training steps, VCRL’s reward score is much higher than GRPO’s. For Qwen3-8B-
Base, the reward score of VCRl is significantly higher than that of GRPO throughput the
training process. Once the reward score stabilizes, VCRL shows much smaller fluctuations
than GRPO, as seen in the shaded areas. This highlights VCRL’s advantage in training
stability.

• Response Length relates to how much the model can explore, as shown in Figure 4c and
Figure 4d. Longer responses help the model develop more complex reasoning during train-
ing and boost performance. In the first 100 steps, VCRL and GRPO both show a rapid
increase in response length, then level off and fluctuate. VCRL’s response length grows
much faster early on, especially in first 50 steps, due to the training of high-p samples. Af-
ter stabilizing, VCRL maintains noticeably longer responses, giving the model more room
to explore and optimize its performance.

• Entropy shows how uncertain the model is in its generation ability, as seen in Figure 4e
and Figure 4f. For efficient training, entropy should stay at a reasonable level. If entropy is
too low, the model becomes too deterministic and loses its ability to explore. For GRPO,
entropy quickly drops below 0.1 within 50 steps and stays very low. In contrast, VCRL
keeps entropy at a reasonable level throughout training, which encourages the model to
keep exploring.

B VARIANCE AS A DIFFICULTY METRIC
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Figure 5: The curve showing how p = σ2

σ2
max

changes with the number of successful rollouts k based
on group size G = 16.

Compared with generation entropy, it is more reasonable to use group variance to measure the diffi-
culty of the current sample for the current training model in VCRL or GRPO. Group reward variance
is grounded in its unique ability to identify samples at the cusp of the model’s current capabilities.

For a binary reward system (correct/incorrect), variance exhibits a non-monotonic, U-shaped rela-
tionship with sample difficulty, as shown in Figure 5. Low variance occurs at two extremes. If a
sample is too easy, the model consistently succeeds (e.g., all 16 rollouts get a reward of 1), leading
to near-zero variance. If a sample is too hard, the model consistently fails (all rewards are 0), also
leading to near-zero variance. Peaks when the model’s success rate is approximately 50% (e.g., 8
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rollouts succeed and 8 fail). This indicates maximum uncertainty and signifies that the sample is at
the precise frontier of the model’s ability.

While related to uncertainty, policy generation entropy measures the diversity of the model’s actions
(tokens). High entropy could mean the model is exploring, but it does not directly map to task-level
success. A model could be highly uncertain (high entropy) while generating non-sensical responses
that all lead to a reward of 0. Variance, on the other hand, is directly related to the final outcome of
the task (the reward), making it a more direct measure of the difficulty relevant to learning. By using
a single indicator of group variance, it is possible to filter samples with high uncertainty results,
while this task is difficult to accomplish based on the generation entropy.

C POLICY GRADIENT REDUCTION

According to Equation 2 and Equation 11, we give the following theorem:

Theorem 1. For policy gradient algorithm GRPO and VCRL, from the policy gradient norm
perspective, the training of VCRL is more stable than that of GRPO in the expectation, that is,
EVCRL [∥∇θ log πθ∥] ≤ EGRPO [∥∇θ log πθ∥].

Proof. We first give the gradient form of the GRPO objective function (clipping is omitted for
brevity) with Policy Gradient Theorem (Sutton & Barto, 1998):

∇θJGRPO(θ) = ∇θEx∼D,{yi}G
i=1∼πθold(·|x)

 1

G

G∑
i=1

1

|yi|

|yi|∑
t=1

ri,t(θ)Âi,t


= Ex∼D,{yi}G

i=1∼πθold(·|x)

 1

G

G∑
i=1

1

|yi|

|yi|∑
t=1

ri,t(θ)Âi,t∇θ log πθ(yi,t|x, yi,<t)

 ,

(12)

where ri,t(θ) =
πθ(yi,t|x,yi,<t)
πθold (yi,t|x,yi,<t)

is the importance sampling ratio.

We can also derive the gradient of the VCRL objective as follows:

∇θJVCRL(θ) = ∇θEx∼D∪M,{yi}G
i=1∼πθold(·|x)

 1

G

G∑
i=1

I
(
pi =

σ2
i

σ2
max
≥ κ

)
|yi|

|yi|∑
t=1

ri,t(θ)Âi,t


= Ex∼D∪M,{yi}G

i=1∼πθold(·|x) 1

G

G∑
i=1

I
(
pi =

σ2
i

σ2
max
≥ κ

)
|yi|

|yi|∑
t=1

ri,t(θ)Âi,t∇θ log πθ(yi,t|x, yi,<t)

 . (13)

To align the gradients of the two, we use importance sampling to rewrite the gradient of VCRL to
remove the term of memory bankM:

∇θJVCRL(θ) = Ex∼D,{yi}G
i=1∼πθold(·|x) 1

G

G∑
i=1

1

|yi|

|yi|∑
t=1

ri,t(θ)Âi,t
P(x ∈ D ∪M)

P(x ∈ D)
I(pi ≥ κ)∇θ log πθ(yi,t|x, yi,<t)

 .

(14)

Note that the blue part in the Equation 14 is the key to affecting the contribution of the policy
gradient term to the overall gradient.
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Figure 6: The training dynamics of objective gradient norm ∥∇θJ (θ)∥ of VCRL over GRPO based
on Qwen3-4B-Base and Qwen3-8B-Base.

We simplify the policy gradient terms in Equation 12 and Equation 14 into the following form for
comparison:

EGRPO [∥∇θ log πθ∥] = Ex∼D,{yi}G
i=1∼πθold(·|x)

[∥∇θ log πθ(yi,t|x, yi,<t)∥] , (15)

EVCRL [∥∇θ log πθ∥] = Ex∼D,{yi}G
i=1∼πθold(·|x)[∥∥∥∥P(x ∈ D ∪M)

P(x ∈ D)
I(pi ≥ κ)∇θ log πθ(yi,t|x, yi,<t)

∥∥∥∥] . (16)

For the training sample x, the sampling of the event x ∈ D is uniform, so P(x ∈ D) = 1
|D| . And

according to the nature of sampling probability, we can get P(x ∈ D ∪M) ≤ P(x ∈ D). Based on
the value range of the indicator function, we can also get I(pi ≥ κ) ≤ 1. Using the homogeneity of
the norm and above results:∥∥∥∥P(x ∈ D ∪M)

P(x ∈ D)
I(pi ≥ κ)∇θ log πθ(yi,t|x, yi,<t)

∥∥∥∥
=

P(x ∈ D ∪M)

P(x ∈ D)
I(pi ≥ κ) ∥∇θ log πθ(yi,t|x, yi,<t)∥

≤ I(pi ≥ κ) ∥∇θ log πθ(yi,t|x, yi,<t)∥
≤ ∥∇θ log πθ(yi,t|x, yi,<t)∥ ,

which completes the proof.

Theorem 1 provides a theoretical guarantee for the training stability of VCRL compared to GRPO.
To further illustrate the training stability of VCRL from the perspective of gradient norm, we show
the training dynamics as shown in the Figure 6.

Figure 6 provides an empirical validation of our proposed VCRL’s stability by visualizing the norm
of the objective function’s gradient, ∥∇θJ (θ)∥, over the training steps. We compare VCRL against
the GRPO baseline on two model scales: Qwen3-4B-Base and Qwen3-8B-Base. The empirical
results unequivocally demonstrate the superiority of VCRL in maintaining a well-behaved opti-
mization trajectory. Specifically, VCRL’s gradient norm remains consistently confined to a lower
and narrower band, indicating that the policy updates are more measured and stable. Furthermore,
the VCRL curve is notably smoother, with significantly fewer and less pronounced transient spikes
compared to the GRPO baseline. The frequent, high-magnitude oscillations observed in GRPO’s
gradient norm are indicative of a more challenging optimization landscape, which can lead to inef-
ficient and unstable training. We posit that the demonstrably smaller and more stable gradient norm
engendered by VCRL is an important contributor to its enhanced training efficiency and robust per-
formance.
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Table 3: Performance comparison on mathematical reasoning benchmarks using Qwen2.5-7B.

Method AIME-2024 AIME-2025 MATH500 AMC23 Avg.
Base Model 16.67 16.67 69.40 32.50 33.81
+ GRPO 26.67 16.67 72.40 45.00 40.19
+ ADCL 33.33 30.00 76.20 55.00 48.63
+ ADCL & EGSR 36.67 33.33 81.80 55.00 51.70
+ VCRL (Ours) 35.83 32.71 79.73 61.22 52.37

D BASELINE COMPARISON

To further demonstrate the competitiveness of our proposed method VCRL, we provide a supple-
mentary comparison with recent curriculum reinforcement learning methods, specifically focusing
on ADCL (Zhang et al., 2025a). ADCL is a difficulty-based curriculum method that employs peri-
odic data reordering.

To ensure a fair comparison, we align our experimental settings strictly with the configurations
reported in ADCL. We utilize the Qwen2.5-7B model as the base policy model. During training, we
sample 8 rollouts for each query, with a global batch size of 1,024, a fixed learning rate of 1×10−6, a
maximum response length of 4,096, and a temperature parameter of 0.7. We evaluated performance
across our four challenging mathematical benchmarks: AIME-2024, AIME-2025, MATH500, and
AMC23.

As shown in Table 3, VCRL achieves the highest average performance (52.37), surpassing both
the standard ADCL (48.63) and its enhanced version ADCL & EGSR (51.70). Notably, VCRL
demonstrates a significant advantage on the AMC23 benchmark, outperforming ADCL by over 6
points. Beyond numerical improvements, VCRL offers distinct methodological advantages. ADCL
relies on difficulty-based reordering of the training data (e.g., reordering every 100 training steps)
and operates under the assumption of a known future data stream. In contrast, VCRL is inherently
more flexible and dynamic. It does not require pre-processing or assumptions about the global
data distribution. Instead, VCRL performs filtering based on the group variance within the current
training batch. This allows VCRL to adaptively select high-value samples without the computational
overhead of periodic global reordering or the need for pre-computed difficulty metrics.

E CODE BENCHMARK RESULTS

To validate the effectiveness of VCRL on tasks outside of mathematical reasoning, we also conduct
experiments on code generation tasks. Specifically, we conduct code-based RL training based on
the ProRL-1.5B-v2 (Liu et al., 2025a) to broaden the generalization of VCRL in terms of model
selection. Throughout the model evaluation, we allow the model to execute Python code based on
the Sandbox Fusion6 environment. We allow the model to generate and execute code to assist in
completing tasks, building upon the benchmarks of AIME-2024 and AIME-2025. We also use the
LiveCodeBench (Jain et al., 2025), for a total of three benchmarks to comprehensively evaluate the
performance of the training methods in code generation. The quantitative results are summarized in
Table 4. VCRL achieves state-of-the-art performance across all benchmarks with an average score
of 42.98, significantly outperforming the base model (30.99) and surpassing the strongest baseline,
GSPO (40.86). Notably, on LiveCodeBench, VCRL reaches 35.20, confirming that our VCRL
effectively generalizes to code generation tasks.

F SENSITIVITY ANALYSIS

To better illustrate how the hyperparameters in VCRL affect model performance, we present the
results of the sensitivity analysis experiments shown in the Table 5 and 6. Specifically, Table 5
shows the sensitivity analysis of the threshold parameter κ in variance-based dynamic sampling

6https://bytedance.github.io/SandboxFusion
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Table 4: Performance comparison on code generation benchmarks using ProRL-1.5B-v2.

Method AIME-2024 w Code AIME-2025 w Code LiveCodeBench Avg.
Base Model 40.00 27.50 25.48 30.99
+ GRPO 50.62 33.95 31.11 38.56
+ DAPO 52.50 34.17 30.79 39.15
+ GSPO 53.13 36.88 32.58 40.86
+ VCRL 54.79 38.96 35.20 42.98

Table 5: Sensitivity analysis based on the threshold parameter κ in variance-based dynamic sampling
in VCRL using Qwen3-8B-Base.

VCRL κ AIME-2024 AIME-2025 MATH500 OlympiadBench AMC23 Avg.
0.4 30.42 26.88 92.00 60.55 68.98 55.77
0.6 25.00 23.12 90.71 57.55 64.91 52.26
0.7 30.42 27.29 92.78 61.94 69.73 56.43
0.8 34.38 27.08 91.99 60.21 75.15 57.76
0.9 32.08 26.25 92.68 60.92 71.69 56.72
0.95 28.75 26.25 92.36 60.73 70.41 55.70

of VCRL, and Table 6 shows the sensitivity analysis of the rollout group size G in VCRL. Both
experiments are conducted based on Qwen3-8B-Base.

Table 5 illustrates the impact of the variance-based dynamic sampling threshold κ on VCRL perfor-
mance. The results exhibit a clear trend where neither excessively small nor large values of κ yield
optimal outcomes. Specifically, when κ is set to a low value, the average performance will decrease,
which may be due to overly lenient sampling, retaining too many samples that may not be of use.
Conversely, setting κ too high also leads to a performance decline, as the mechanism may sample
out too many samples with high variance. The best overall performance is achieved at κ = 0.8,
which strikes an optimal balance, delivering the highest average score of 57.76 and demonstrating
robust performance across diverse benchmarks, particularly on AMC23.

Table 6 presents the impact of the rollout group size G in VCRL. In contrast to the threshold param-
eter κ, we observe a positive correlation between the rollout group size G and model performance.
Increasing G consistently leads to better results across all benchmarks in average. Specifically, en-
larging the group size from 4 to 16 yields a substantial performance boost, raising the average score
from 44.17 to 57.76. This significant improvement indicates that a sufficient number of rollouts is
essential for VCRL to accurately estimate the group variance, thereby ensuring the reliability of the
variance-based dynamic sampling. While the best average performance (59.25) is achieved at the
largest setting (G = 32), the marginal gains begin to diminish after G = 16 (improving by only
1.49 despite doubling the computational cost). This suggests that G = 16 already provides a robust
estimation for effective learning, balancing performance with computational efficiency.

G COMPUTATION COST ANALYSIS

In VCRL, we introduce two key components: variance-based dynamic sampling and replay learn-
ing. In replay learning, we use a memory bank M to maintain and supplement high-p training
samples to improve training efficiency, but this also introduces potential additional computational
cost. To compare the computational cost of VCRL with other benchmark methods in terms of actual
computation time, we list the specific GPU computation times for the Qwen3-8B-Base experiments
in Table 1, as shown in Table 7.

As shown in Table 7, the introduction of the replay learning in VCRL incurs a computational over-
head, increasing the total training time for Qwen3-8B-Base from 90.72 hours (GRPO) to 112.01
hours—an increase of approximately 23.47%. However, a direct comparison of training steps does
not fully account for this time difference. To evaluate performance under a fixed computational
budget, we align the methods based on wall-clock time: approximately 380 steps of VCRL training
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Table 6: Sensitivity analysis based on the rollout group size G in VCRL using Qwen3-8B-Base.

VCRL G AIME-2024 AIME-2025 MATH500 OlympiadBench AMC23 Avg.
4 18.95 17.29 82.71 47.75 54.14 44.17
8 23.54 18.75 85.21 49.49 58.06 47.01

12 28.54 26.67 87.77 55.48 65.06 52.70
16 34.38 27.08 91.99 60.21 75.15 57.76
24 34.38 27.50 93.74 60.90 77.86 58.88
32 35.83 29.79 93.46 60.88 76.28 59.25

Table 7: Comparison of training time using Qwen3-8B-Base. We report the total wall-clock time (in
hours) required for the training process.

Method Training Time (hours)
GRPO 90.72
DAPO 48.68
GSPO 89.53
VCRL 112.01

correspond to 500 steps of GRPO training. Referring to the training trajectories in Figure 3, we ob-
serve that even at this earlier stage (380 steps), VCRL remains highly competitive and outperforms
GRPO trained for the full 500 steps. This demonstrates that although VCRL has a higher per-step
cost, it achieves greater sample efficiency and utilizes the computational budget more effectively.

Table 8 details the changes in the effective batch size after variance-based dynamic sampling
throughout the training process. In the early stages (e.g., steps 0–50), the mean batch size is rela-
tively small (48–56), indicating that the variance-based sampling mechanism is actively removing a
significant portion of samples to mitigate instability. As the policy optimizes and training stabilizes,
the effective batch size progressively increases, reaching 128 in the final stages (steps 451–500).
This trend demonstrates that as the training matures, the dynamic sampling mechanism effectively
fades out, allowing the model to utilize the full batch of data when the variance-based selection is
no longer necessary.

Table 8: Evolution of the effective mean batch size after variance-based dynamic sampling across
training steps in VCRL for Qwen3-8B-Base.

Step Interval Mean Batch Size
0–20 48

21–50 56
51–100 64
101–150 64
151–200 80
201–250 96
251–300 104
301–350 112
351–400 120
451–500 128
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