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Abstract

We study the generalization performance of unregularized gradient methods for sep-
arable linear classification. While previous work mostly deal with the binary case,
we focus on the multiclass setting with 𝑘 classes and establish novel population risk
bounds for Gradient Descent for loss functions that decay to zero. In this setting,
we show risk bounds that reveal that convergence rates are crucially influenced by
the geometry of the loss template, as formalized by Wang and Scott [24], rather
than of the loss function itself. Particularly, we establish risk upper bounds that
holds for any decay rate of the loss whose template is smooth with respect to
the 𝑝-norm. In the case of exponentially decaying losses, our results indicates a
contrast between the 𝑝 = ∞ case, where the risk exhibits a logarithmic dependence
on 𝑘 , and 𝑝 = 2 where the risk scales linearly with 𝑘 . To establish this separation
formally, we also prove a lower bound in the latter scenario, demonstrating that
the polynomial dependence on 𝑘 is unavoidable. Central to our analysis is a novel
bound on the Rademacher complexity of low-noise vector-valued linear predictors
with a loss template smooth w.r.t. general 𝑝-norms.

1 Introduction

The generalization properties of gradient-based learning methods, particularly in overparameterized
regimes, is a central topic of study in contemporary machine learning. A key question is how
unregularized gradient methods achieve good generalization despite their potential to overfit. Early
work by Soudry et al. [21] demonstrated that gradient descent (GD) applied to linearly separable
data with the logistic loss asymptotically converges to the max-margin solution. This result suggests
that gradient descent, when properly tuned, can avoid overfitting without explicit regularization.
Extensions of this result to other optimization algorithms and loss functions have further deepened
our understanding of this phenomenon in various scenarios [3, 4, 12, 13, 5].

A particularly interesting regime for these investigations is multi-class classification. In this setting,
Soudry et al. [21] achieved convergence to max-margin with the cross-entropy loss, and Lyu and
Li [8], Lyu et al. [9] extended the results to homogeneous models and two-layer networks. More
recently, Ravi et al. [15] generalized the implicit bias analysis to a broader class of exponentially
tailed loss functions using the PERM framework [24], thereby bridging the binary and multi-class
settings in this context.

Beyond these asymptotic results, recent work has focused on the generalization performance of
gradient-based methods in finite-time regimes. In the binary classification setting, several recent
works examined gradient-based methods applied to smooth loss functions that decay to zero at
infinity [20, 17, 19, 23]. These results show that strong generalization without explicit regularization,
even in finite time, can be achieved by gradient methods also beyond the regime of exponentially
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tailed loss functions. In terms of bounds, their results reveal that generalization performance is fully
characterized by the decay rate of the loss function.

Despite these advancements in understanding gradient methods in separable classification, finite-time
generalization in the multi-class setting remains rather poorly understood—even for exponentially
decaying loss functions, and particularly with regard to the dependence of risk bounds on the number
of classes. In particular, several fundamental questions remains open: does unregularized GD
generalize well also after finite number of iterations? Does the algorithm’s generalization ability
extend beyond the exponential decay setting? How do the properties of a loss function influence the
achievable test loss bounds? Additionally, does the sole dependence of generalization performance
on the decay rate of the loss function, as observed in the binary case, also extend to multi-class
classification? In fact, the first two questions were stated as open problems by Ravi et al. [15].

In this work, we address these questions by studying the finite-time generalization properties of
gradient descent when applied with a multi-class loss function ℓ : ℝ𝑘 × 𝑘 → ℝ. Our findings reveal
key distinctions from the binary classification case. Whereas in the binary regime risk bounds depend
solely on the decay rate of the loss function, we show that in the multi-class setting risk bounds
crucially depend on the geometry of the multi-class loss function, as determined by the norm with
respect to which it is smooth. This differs from the results of Ravi et al. [15], that suggest that all
exponentially tailed loss functions behave asymptotically similarly.

The class of functions that we consider is similar to the class considered by Wang and Scott [24], who
showed that in the setting of classification with 𝑘 classes, losses are characterized by their template:
a function ℓ̃ : ℝ𝑘−1 → ℝ that has a simpler form than the original loss function ℓ. For multi-class
classification losses with a template that is 𝛽-smooth with respect to the 𝐿𝑝 norm and decays to zero
at infinity, we establish the following upper bounds on the risk of the output of gradient descent
(when the step size is tuned optimally),

𝑂

(
𝛽𝑘2/𝑝𝜌−1 (𝜖/𝑘)2

𝛾2 min{𝑇, 𝑛}

)
, (1)

where 𝜌 : ℝ → ℝ represents the decay rate of the loss function, 𝑘 denotes the number of classes, 𝑇
is the number of gradient steps, 𝑛 is the sample size, and 𝛾 is the separation margin. These results
suggest that gradient descent can generalize well for a reasonable number of classes (𝑘 ≪ 𝑇, 𝑛). As
with the bounds in the binary case established in [19], the risk bounds depend on the decay rate of the
function, through the expression 𝜌−1 (𝜖/𝑘) (though here the decay function 𝜌−1 is evaluated at 𝜖/𝑘 ,
compared to 𝜖 in the binary case).

Next, noticing the fact that our upper bounds behave differently for templates that are smooth with
respect to the 𝐿𝑝-norm for sufficiently large 𝑝, and the case of 𝑝 = 2, giving better generalization
bounds in the former case, we establish this separation formally, by showing tight lower bounds for
any decay rate in the 𝐿2 regime. We also provide examples for this separation in popular loss classes.

In terms of techniques, our analysis requires some new technical tools. First, we derive a Rademacher
complexity bound for multi-class losses whose templates are smooth with respect to the 𝐿𝑝 norm
(2 ≤ 𝑝 ≤ ∞), in the low-noise regime. Next, we show that the choice of step-size of gradient descent
also depends on the geometry of the loss, achieving improved optimization performance as 𝑝 becomes
larger. Putting these technical pieces together, we obtain the aforementioned risk upper bounds. We
remark that this approach applies to essentially any gradient method that produces a model with low
norm and low optimization error, making it applicable beyond gradient descent.

1.1 Summary of Contributions

To summarize, our contributions are as follows:

• Our first main result (Theorem 1) establishes an upper bound for unregularized gradient descent
in separable multiclass classification for any loss function that decays to zero. Our bound
suggests that the dependence on the number of classes improves as 𝑝 increases.

• Our second main result (Theorem 3) shows a tight lower bound for losses with templates that
are smooth with respect to 𝐿2 and decays to zero. Our lower bound reveals a strict separation
between templates that are smooth with respect to the 𝐿𝑝-norm for sufficiently large 𝑝, and the
case of 𝑝 = 2, where a polynomial dependence on the number of classes is unavoidable.
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• As direct applications of our general bounds, we derive upper and lower bounds for templates
with several decay rates (see Section 5). For example, in the exponential rate case, our result
reveals that if the template is smooth with respect to the 𝐿∞ norm, the risk bounds align with
those of the binary case and depend only logarithmically on 𝑘; in contrast, for 𝑝 = 2 the rate
has an unavoidable linear dependence on the number of classes.

• Finally, as an additional technical contribution that underlies our analysis, we show a new upper
bound on the Rademacher complexity for multi-class classification losses in the low-noise
regime, where the loss template is smooth with respect to any 𝐿𝑝 norm with 𝑝 ≥ 2, refining
and extending the results in [7, 16]. In particular, our assumptions apply to the template rather
than the individual loss functions, which represents a new perspective (see Section 1.2 for
further discussion).

Put together, our results reveal that the geometry of the loss template plays a crucial role in the
generalization behavior of gradient descent. Prior work on separable classification showed that
for exponentially tailed losses, gradient descent implicitly converges toward max-margin solutions
[21, 15], and that in the particular case of binary classification with more general tails, generalization
depends primarily on the decay rate of the loss [17, 19]. In the more general multiclass setting, our
results indicate that this behavior is strongly influenced by the smoothness properties of the loss
template with respect to geometries. In particular, losses with similar decay rates can induce very
different generalization bounds, depending on their underlying geometry. This can serve to explain
why ℓ∞-smooth losses such as the cross-entropy scale more favorably with the number of classes as
compared to ℓ2-smooth losses.

1.2 Additional related work

Convergence rates for unregularized GD in separable classification. The risk of Gradient
Descent in separable classification has been extensively studied. Firstly, the asymptotic analysis in the
fundamental work of Soudry et al. [21] showed an upper bound of 1/log(𝑇) for the classification error
of gradient descent. Then, using a more refined analysis Shamir [20] established tight bounds on for
gradient descent applied to binary cross-entropy loss. Later, Schliserman and Koren [17], Telgarsky
[23], Schliserman and Koren [19] extended this analysis. Schliserman and Koren [17] showed
generalization bounds for gradient-based methods with constant step sizes in using an additional
self-boundedness assumption. Telgarsky [23] established a high-probability risk bound for 𝑇 ≤ 𝑛 for
batch Mirror Descent with a non-constant step size for linear models. Schliserman and Koren [19]
showed tight risk bounds for the binary case were given for any smooth loss decaying to zero. While
all of the aforementioned work (except Schliserman and Koren [17] that discussed the particular case
of the cross entropy loss), studied binary classification, in this work we address the multi-class setting
and establish risk bounds applicable to any classification loss with smooth template that decays to
zero, without any additional assumptions.

Lower bounds for unregularized GD in separable classification. There are several lower bounds
in the context of binary classification. Firstly, Ji and Telgarsky [4] presented a lower bound of
Ω(log(𝑛)/log(𝑇)) for the distance between the output of GD and a max margin solution with the
same norm. In other work, Shamir [20] proved a lower bound of Ω(1/𝛾2𝑇) for the empirical risk of
GD when applied to logistic loss. More recently, Schliserman and Koren [19] showed a tight lower
bounds for the risk of GD, that are valid for any decay rate of the loss function. In this work, we
establish the first lower bounds for unregularized GD when applied in the multi-class setting. Our
lower bound is valid for losses with a template with any decay rate that is smooth with respect to the
𝐿2 norm.

Vector-valued predictors (VVPs). Extensive research has been dedicated to understanding the
sample complexity of vector-valued predictors. For the non-smooth regime with bounded domain,
Maurer [11] established upper bounds scaling as 𝑂 (𝑘) for Lipschitz predictors with bounded Frobe-
nius norm. In addition, Lei et al. [6] and Zhang and Zhang [26] derived logarithmic bounds in 𝑘 for
ℓ∞-Lipschitz VVPs with arbitrary initialization. In another work, Magen and Shamir [10] studied
the role of initialization and established bounds independent of 𝑘 when the algorithm is initialized
at the origin. However, these bounds grow exponentially with the error 𝜖 , the Lipschitz constant
𝐿, and the radius of the initialization ball. For lower bounds, Magen and Shamir [10] established
a generalization lower bound of Ω(log 𝑘) for convex predictors, while Schliserman and Koren [18]
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improved this to match the upper bounds of Maurer [11] under the 𝐿2-Lipschitz condition for the
nonsmooth case. Unlike these previous studies, our work focuses on the smooth and unregularized
setting, where the effective norm of the iterates and the Lipschitz constant may be depend on 𝑘 ,
optionally introducing additional multiplicative factors in the bounds.

Fast rates for VVPs. There is a large body of work that achieves fast rates for VVPs. For example,
Reeve and Kaban [16] showed Rademacher complexity bounds that are logarithmic in 𝑘 for smooth
losses with respect to the 𝐿∞ norm with bounded domain, while Li et al. [7] provided rates linear in
𝑘 for 𝐿2-smooth losses. Another related work is the work of Wu et al. [25] that established fast rates
generalization bounds for SGD in strongly convex settings. Importantly, in this study, we show that
in multi-class classification, it suffices to assume the smoothness of the template of the loss function,
rather than the actual loss function, and demonstrate that this property characterizes the generalization
of gradient descent in this setting. In addition, we show Rademacher complexity bounds for the
general 𝐿𝑝 norm, recovering the bounds of Li et al. [7] and Reeve and Kaban [16] as special cases.

2 Problem Setup

We consider the following multi-class linear classification setting. Let D denote a distribution
over pairs (𝑥, 𝑦), where 𝑥 ∈ ℝ𝑑 is a 𝑑-dimensional feature vector, and 𝑦 ∈ [𝑘] is the class index
corresponding to 𝑥. We assume that the data is scaled such that ∥𝑥∥2 ≤ 1 with probability 1 with
respect to D. Our focus is on the separable linear classification setting with margin. Specifically,
denoting the Frobenius norm of a matrix𝑊 ∈ ℝ𝑘×𝑑 by ∥𝑊 ∥𝐹 and its 𝑗’th row by𝑊 𝑗 , we assume the
following separability assumption:
Assumption 1 (Separability). There exists a matrix𝑊∗ ∈ ℝ𝑘×𝑑 , with rows𝑊1

∗ , . . . ,𝑊
𝑘
∗ , such that

∥𝑊∗∥𝐹 ≤ 1 and, with probability 1 over (𝑥, 𝑦) ∼ D,

∀ 𝑗 ∈ [𝑘] \ {𝑦} : (𝑊 𝑦
∗ −𝑊 𝑗

∗ )⊤𝑥 ≥ 𝛾

Given a multi-class loss function ℓ : ℝ𝑘 × [𝑘] → ℝ+, the goal is to find a model 𝑊 ∈ ℝ𝑘×𝑑 that
minimizes the (population) risk, defined as the expected loss over the distribution D:

𝐿 (𝑊) = 𝔼(𝑥,𝑦)∼D [ℓ(𝑊𝑥, 𝑦)] .
For this, we use a dataset 𝑆 = {(𝑥1, 𝑦1), . . . , (𝑥𝑛, 𝑦𝑛)} of training examples drawn i.i.d. from D, and
optimize the empirical risk:

𝐿̂ (𝑊) = 1
𝑛

𝑛∑︁
𝑖=1

ℓ(𝑊𝑥𝑖 , 𝑦𝑖).

For convenience, we define the function ℓ𝑦 : ℝ𝑘 → ℝ as ℓ𝑦 = ℓ(·, 𝑦). In addition, for every vector
𝑣 ∈ ℝ𝑑 , we denote its 𝑗’th entry by 𝑣 [ 𝑗].

2.1 Loss Functions and Templates

Here we detail the class of loss functions that we consider. First, following [24], we define the
template of a multi-classification loss function.
Definition 1 (Multi-class loss template). Given a multi-class loss function ℓ : ℝ𝑘 × [𝑘] → ℝ+, we
say that ℓ̃ : ℝ𝑘−1 → ℝ is a template of ℓ, if for every class 𝑦 ∈ [𝑘], it holds that

ℓ( 𝑦̂, 𝑦) = ℓ̃(𝐷𝑦 𝑦̂),

where 𝐷𝑦 ∈ ℝ(𝑘−1)×𝑘 is the negative identity matrix when the 𝑦th row is omitted and the 𝑦𝑡ℎ column
is replaced by the vector that all of its entries are 1.

Note that for every vector 𝑣 it holds that, 𝐷𝑦𝑣 = (𝑣 [𝑦] − 𝑣 [1], 𝑣 [𝑦] − 𝑣 [2], . . . , 𝑣 [𝑦] − 𝑣 [𝑘]), where
the zero entry, 𝑣 [𝑦] − 𝑣 [𝑦], is omitted.

The templates considered in this work are 𝛽-smooth with respect to 𝐿𝑝 norm for 𝑝 ≥ 2, as described
in the following definition.
Definition 2 (smoothness w.r.t. 𝐿𝑝). A differentiable function 𝑓 : ℝ𝑑 → ℝ is 𝛽-smooth function
w.r.t 𝐿𝑝 norm if ∥∇ 𝑓 (𝑣) − ∇ 𝑓 (𝑢)∥𝑞 ≤ 𝛽∥𝑣 − 𝑢∥ 𝑝 for all 𝑢, 𝑣 ∈ ℝ𝑑 , where 1

𝑞
+ 1

𝑝
= 1.
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The primary goal of this paper is to quantify how the risk bounds depend on properties of the template
ℓ̃, especially the rate at which it decays to zero as its input approaches infinity and the particular norm
𝐿𝑝 which it is smooth with respect to it. To formalize this, we use the following definition, following
[19]:

Definition 3 (Tail Function). A function 𝜌 : [0,∞) → ℝ is called a tail function if 𝜌:

(i) is nonnegative, 1-Lipschitz, and 𝛽-smooth convex;
(ii) is strictly decreasing and lim𝑢→∞ 𝜌(𝑢) = 0;

(iii) satisfies 𝜌(0) ≥ 1 and |𝜌′ (0) | ≥ 1
2 .

In addition, we can define the following class of templates,

Definition 4 (𝜌-Tailed Class). For a given tail function 𝜌, the class C̃𝛽,𝑝
𝜌 is defined as of all

nonnegative and convex functions ℓ̃ : ℝ𝑘−1 → ℝ such that:

(a) ℓ̃ is 𝛽-smooth with respect to the 𝐿𝑝 norm.
(b) lim𝑡→∞ ℓ̃(𝑡𝑢) = 0 for all 𝑢 ∈ (ℝ+)𝑘−1.
(c) ℓ̃(𝑢) ≤ ∑𝑘−1

𝑗=1 𝜌(𝑢[ 𝑗]) for all 𝑢 ∈ (ℝ+)𝑘−1.

Now, the actual class of functions we consider is the following class, which contains multi class
classification losses.

Definition 5 (𝜌-Tailed MCC Class). The class C𝛽,𝑝
𝜌 is defined as all loss functions ℓ : ℝ𝑘 × [𝑘] → ℝ

for which there exists ℓ̃ ∈ C̃𝛽,𝑝
𝜌 such that ℓ̃ is a template of ℓ.

The vast majority of loss functions used in multi-class classification are in C𝛽,𝑝
𝜌 for some tail function

𝜌, 𝑝 and 𝛽. In Section 5, we detail several applications of our bounds for popular multi-class
functions.

2.2 Unregularized Gradient Descent

In this work, we focus on standard Gradient Descent with a fixed step size 𝜂 > 0, applied to the
empirical risk 𝐿̂. The algorithm is initialized at𝑊1 = 0 and performs updates at each step 𝑡 = 1, . . . , 𝑇
as follows:

𝑊𝑡+1 = 𝑊𝑡 − 𝜂∇𝐿̂ (𝑊𝑡 ).
The algorithm outputs the final model𝑊𝑇 .

While our primary focus is on GD, the majority of our results can also be adapted to other gradient
methods.

3 Risk Bounds for GD on Multiclass Losses

In this section we establish our upper bound for the risk of GD, when the loss function ℓ is taken
from the class C𝛽,𝑝

𝜌 . The bound appears in the following theorem,

Theorem 1. Let 𝜌 be a tail function and let ℓ be any loss function from the class C𝛽,𝑝
𝜌 . Fix 𝑇 ,𝑛

and 𝛿 > 0. Then, with probability at least 1 − 𝛿 (over the random sample 𝑆 of size 𝑛), the output
of GD applied on 𝐿̂ with step size 𝜂 = 1/6𝑘2/𝑝𝛽 initialized at 𝑊1 = 0 has for any 𝜖 ≤ 1

2 such that
𝜂𝛾2𝑇 ≤ (𝜌−1 (𝜖/𝑘))2/𝜖 , for 𝑝 ∈ (2,∞), it holds that

𝐿 (𝑤𝑇 ) = 𝑂̃
(
𝛽𝑘2/𝑝𝜌−1 (𝜖/𝑘)2

𝛾2𝑇
+ 𝛽𝑘2/𝑝𝜌−1 (𝜖/𝑘)2

𝛾2𝑛

)
.

In addition, if 𝑝 = ∞,

𝐿 (𝑤𝑇 ) = 𝑂̃
(
𝛽𝜌−1 (𝜖/𝑘)2

𝛾2𝑇
+ 𝛽𝜌−1 (𝜖/𝑘)2

𝛾2𝑛

)
.

In the rest of the section we detail the main techniques which we use for proving Theorem 1.
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3.1 Bounds for the Rademacher Complexity of VVPs

Firstly, we explain our main technique, which is based on local Rademacher complexity of vector-
valued function classes. We first recall the definition of the Rademacher complexity (e.g., [1]).
Definition 6 (Rademacher complexity). Let Z be a measurable space and D be a distribution over Z.
Let F be a class of real-valued functions mapping from Z to F . Given a training set 𝑆 = {𝑧1, . . . , 𝑧𝑛}
of 𝑛 exmples that sampled i.i.d. from Z. The empirical Rademacher complexity of F is defined by

ℜ𝑆 (F ) = 𝔼𝜖

[
sup
𝑓 ∈F

1
𝑛

𝑛∑︁
𝑖=1

𝜖𝑖 𝑓 (𝑧𝑖)
]
,

where 𝜖1, . . . , 𝜖𝑛 are i.i.d. Rademacher random variables. In addition, the worst-case Rademacher
complexity is defined as ℜ̂𝑛 (F ) = sup𝑆∈Z𝑛 ℜ𝑆 (F ).

In particular, in our work, given a loss function ℓ ∈ C𝛽,𝑝
𝜌 , we are interested in bounding the worst

case Rademacher complexity of the class

L𝐵,𝑟

ℓ
=

{
(𝑥, 𝑦) ↦→ ℓ(𝑊𝑥, 𝑦) : 𝑊 ∈ 𝔹𝑘×𝑑

𝐵 , 𝐿̂ (𝑊) ≤ 𝑟
}
, (2)

where 𝔹𝑘×𝑑
𝐵

= {𝑊 ∈ ℝ𝑘×𝑑 | ∥𝑊 ∥𝐹 ≤ 𝐵}. We establish the following upper bound for the worst case
Rademacher complexity of L𝐵,𝑟

ℓ
,

Lemma 1. Let 𝜌 be a tail function and let ℓ ∈ C𝛽,𝑝
𝜌 . Given 𝐵, 𝑟 ≥ 0, let L𝐵,𝑟

ℓ
be as defined above.

Moreover, let 𝑀 be such that every 𝑓 ∈ L𝐵,𝑟

ℓ
is bounded by 𝑀 . Then, it holds that,

ℜ̂𝑛

(
L𝐵,𝑟

ℓ

)
= 𝑂̃

(√︁
𝛽𝑟𝑘

1
𝑝
𝐵 + 1
√
𝑛

)
.

For the proof of Lemma 1, we use the approach of Lei et al. [6], Reeve and Kaban [16], that given
a multi class classification training set 𝑆 = {(𝑥1, 𝑦1) . . . (𝑥𝑛, 𝑦𝑛), define a new training set with 𝑛𝑘
examples denoted as 𝑆 follows and is defined as follows

𝑆 = {𝜙 𝑗 (𝑥𝑖) | 𝑗 ∈ [𝑘], ∃𝑦𝑖 s.t (𝑥𝑖 , 𝑦𝑖) ∈ 𝑆},

where 𝜙 𝑗 (𝑥) ∈ ℝ𝑑×𝑘 is the matrix which its 𝑗 th column is 𝑥 and the rest of the columns are zero.
Then, it is possible to relate the covering number of L𝐵,𝑟

ℓ
, to the covering number of the following

class of linear predictors when applied on 𝑆,

H𝐵 = {𝑉 ↦→ ⟨𝑊,𝑉⟩ | 𝑊 ∈ 𝔹𝑘×𝑑
𝐵 , 𝑉 ∈ 𝑆}.

The full proof of Lemma 1 appears in Appendix A. Notably, in contrast to those works, which uses
the properties of the loss, we show that in the multi-class classification setting, it is sufficient to use
the properties of the template ℓ̃.

The next step of the proof is to use Lemma 1, to bound the difference between the empirical risk and
the population risk of a specific model in multi-class losses. Such a result appears in the following
theorem,

Theorem 2. Let 𝜌 be a tail function and let ℓ ∈ C𝛽,𝑝
𝜌 . Given 𝐵, 𝑟 ≥ 0, Let L𝐵,𝑟

ℓ
be as defined above.

Moreover, Let 𝑀 be such that every 𝑓 ∈ L𝐵,𝑟

ℓ
is bounded by 𝑀 . Then, for any 𝛿 > 0 we have, with

probability at least 1 − 𝛿 over a random sample of size 𝑛, for any𝑊 ∈ 𝔹𝑘×𝑑
𝐵

,

𝐿 (𝑊) = 𝑂̃
(
𝐿̂ (𝑊) + 𝛽𝑘

2
𝑝 (𝐵 + 1)2

𝑛
+ 𝑀
𝑛

)
.

3.2 Implications of Template Geometry on Optimization

Next, we discuss how the geometry of the template influences the optimization error of GD. The key
insight is that while the template ℓ̃ is 𝑂 (1)-smooth, this smoothness does not necessarily extend to
the loss function ℓ with respect to the model𝑊 . In fact, the latter is highly dependent on the geometry
of the template, as formalized in the following lemma (see proof in Appendix A):
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Lemma 2. Let ∥𝑥∥2 ≤ 1, 𝑦 ∈ [𝑘] and ℓ̃ ∈ C̃𝛽,𝑝
𝜌 for 𝑝 ≥ 2. Let ℓ(𝑥,𝑦) : ℝ𝑘×𝑑 → ℝ be ℓ(𝑥,𝑦) (𝑊) =

ℓ𝑦 (𝑊𝑥) = ℓ̃(𝐷𝑦𝑊𝑥) Then, for every𝑊,𝑊 ′ ∈ ℝ𝑘×𝑑 ,

∥∇ℓ(𝑥,𝑦) (𝑊) − ∇ℓ(𝑥,𝑦) (𝑊 ′)∥𝐹 ≤ 3𝛽𝑘
2
𝑝 ∥𝑊 −𝑊 ′∥𝐹 .

Since the optimal step size for GD on general 𝛽-smooth functions (with respect to𝑊) is approximately
𝜂 ≈ 1/𝛽, Lemma 2 shows that the optimal step size increases with 𝑝. Substituting this into the
convergence bound for the optimization error of GD leads to improved convergence rates as 𝑝 grows,
as formalized in the following lemma (see proof in Appendix A),

Lemma 3. Let 𝜌 be a tail function and let ℓ ∈ C𝛽,𝑝
𝜌 . Fix any 𝜖 > 0 and a point 𝑊∗

𝜖 ∈ ℝ𝑘×𝑑 such
that 𝐿̂ (𝑊∗

𝜖 ) ≤ 𝜖 . Then, the output of 𝑇-iterations GD, applied on 𝐿̂ with step size 𝜂 = 1/6𝑘2/𝑝𝛽
initialized at𝑊1 = 0 has,

𝐿̂ (𝑊𝑇 ) ≤
6𝑘

2
𝑝 𝛽



𝑊∗
𝜖



2

𝑇
+ 2𝜖 .

3.3 Proof of Theorem 1

We are now ready to prove Theorem 1. The proof proceeds by first showing that the iterates of GD
remain within a bounded region around the origin; this is established in Lemma 14 (see Appendix A).
Next, we combine the bound on the generalization gap bound from with the low-noise guarantee
implied by Lemma 3 to complete the argument for Theorem 1. The full proof is detailed below.
Proof of Theorem 1. First, let 𝑝 ∈ (2,∞). First, for 𝜖 such that 𝜂𝛾2𝑇 ≤ (𝜌−1 ( 𝜖

𝑘
))2/𝜖 , we get by

Lemma 14 and Lemma 12 (see Appendix A),

𝐵𝜖 := ∥𝑊𝑇 ∥ ≤ 2∥𝑊∗
𝜖 ∥𝐹 + 2

√︁
𝜂𝜖𝑇 ≤ 2

𝜌−1 ( 𝜖
𝑘
)

𝛾
+ 2

√︁
𝜂𝜖𝑇 ≤

4𝜌−1 ( 𝜖
𝑘
)

𝛾
.

For the same 𝜖 , by Lemmas 3 and 12,

𝑟 𝜖 := 𝐿̂ (𝑊𝑇 ) ≤


𝑊∗

𝜖



2

𝜂𝑇
+ 2𝜖 ≤ 3

𝜌−1 ( 𝜖
𝑘
)2

𝛾2𝜂𝑇
.

Now, we denote B𝜖 = {𝑊 ∈ ℝ𝑘×𝑑 ∥𝑊 ∥𝐹 ≤ 𝐵𝜖 }. Moreover, by Lemma 14 and Lemmas 12 to 14
(see Appendix A, we know that, with probability 1,

𝑀𝜖 = max
𝑊∈B𝜖

|ℓ(𝑊𝑥) | = max
𝑊∈B𝜖

ℓ̃(𝐷𝑦𝑊𝑥)

≤ 2ℓ𝑦 (𝑊∗
𝜖 𝑥) + 𝛽𝑘

2
𝑝 max
𝑊∈B𝜖

∥𝑊 −𝑊∗
𝜖 ∥2

𝐹

≤ 2ℓ𝑦 (𝑊∗
𝜖 𝑥) + 2𝛽𝑘

2
𝑝 max
𝑊∈B𝜖

∥𝑊 ∥2
𝐹 + 2𝛽𝑘

2
𝑝 ∥𝑊∗

𝜖 ∥2
𝐹

≤ 2𝜖 + 8𝛽𝑘
2
𝑝
𝜌−1 ( 𝜖

𝑘
)2

𝛾2 + 2𝛽𝑘
2
𝑝
𝜌−1 ( 𝜖

𝑘
)2

𝛾2

≤ 2𝜖 + 2
𝜌−1 ( 𝜖

𝑘
)2

𝜂𝛾2 +
𝜌−1 ( 𝜖

𝑘
)2

2𝜂𝛾2 ≤ 5
𝜌−1 ( 𝜖

𝑘
)2

𝜂𝛾2 .

Now, by Theorem 2, for any 𝛿 > 0 we have, with probability at least 1 − 𝛿 over a random sample
of size 𝑛, for any𝑊 ∈ 𝜖 , there exists a constant 𝐶 > 0 such that 𝐶 depends poly-logarithmically on
𝑘, 𝑛, 𝑀𝜖 , 𝛽,

1
𝛿

and

𝐿 (𝑊) ≤ 2𝐿̂ (𝑊) + 𝐶̃𝛽𝑘
2
𝑝
(𝐵𝜖 + 1)2

𝑛
+ 𝐶̃ 𝑀𝜖

𝑛

≤ 2𝐿̂ (𝑊) + 4𝐶̃𝛽𝑘
2
𝑝
𝐵2
𝜖

𝑛
+ 𝐶̃ 𝑀𝜖

𝑛

≤ 2𝐿̂ (𝑊) +
64𝐶̃𝛽𝑘

2
𝑝 𝜌−1 ( 𝜖

𝑘
)2

𝛾2𝑛
+

5𝐶̃𝜌−1 ( 𝜖
𝑘
)2

𝜂𝛾2𝑛
.
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For𝑊𝑇 by the choice of 𝜂, we get,

𝐿 (𝑊𝑇 ) ≤ 6
𝜌−1 ( 𝜖

𝑘
)2

𝛾2𝜂𝑇
+

64𝐶̃𝛽𝑘
2
𝑝 𝜌−1 ( 𝜖

𝑘
)2

𝛾2𝑛
+

5𝐶̃𝜌−1 ( 𝜖
𝑘
)2

𝜂𝛾2𝑛

≤
24𝛽𝑘

2
𝑝 𝜌−1 ( 𝜖

𝑘
)2

𝛾2𝑇
+

84𝐶̃𝛽𝑘
2
𝑝 𝜌−1 ( 𝜖

𝑘
)2

𝛾2𝑛
.

For 𝑝 = ∞, since any 𝛽- smooth function w.r.t 𝐿∞ is also 𝛽 smooth with respect to the 𝐿𝑘 norm, we
get that, since 𝑥1/𝑥 ≤ 𝑒 < 3 for any 𝑥 ∈ ℝ,

𝐿 (𝑊𝑇 ) ≤
24𝛽𝑘 2

𝑘 𝜌−1 ( 𝜖
𝑘
)2

𝛾2𝑇
+

84𝐶̃𝛽𝑘 2
𝑘 𝜌−1 ( 𝜖

𝑘
)2

𝛾2𝑛

≤
216𝛽𝜌−1 ( 𝜖

𝑘
)2

𝛾2𝑇
+

900𝐶̃𝛽𝜌−1 ( 𝜖
𝑘
)2

𝛾2𝑛
. □

4 Tightness in the Euclidean case

In this section, we show that the non-trivial dependence on 𝑘 given in Theorem 1 for 𝑝 = 2 is
unavoidable. We prove this by establishing the following lower bound:

Theorem 3. Let 𝑝 = 2 and 𝛾 ≤ 1
8 . For any tail function 𝜌, sample size 𝑛 ≥ 35 and any 𝑇 , there exist a

distribution D and a loss function ℓ ∈ C𝛽,𝑝
𝜌 , such that for 𝑇-steps GD over a sample 𝑆 = {(𝑥𝑖 , 𝑦𝑖)}𝑛𝑖=1

sampled i.i.d. from D, initialized at𝑊1 = 0 with stepsize 𝜂 = 1/6𝛽𝑘 , it holds that

𝔼[𝐿 (𝑤𝑇 )] = Ω

(
𝛽𝑘 (𝜌−1 ( 256𝜖

𝑘
)2

𝛾2𝑛
+
𝛽𝑘 (𝜌−1 ( 16𝜖

𝑘
)2

𝛾2𝑇

)
,

for any 𝜖 < 1
256 such that 𝜂𝛾2𝑇 ≥ 1

𝜖
(𝜌−1 (( 𝜖

𝑘
)))2.

For the proof of Theorem 3, we prove two lemmas. first show the following lemma, which provides a
tight lower bound for the case in which 𝑇 ≥ 𝑛,

Lemma 4. Let 𝛾 ≤ 1
8 and 𝜖 > 0 be such that

𝜌−1 ( 𝜖
𝑘 )2

𝜂𝛾2𝑇
≤ 𝜖 ≤ 1

256 . For any tail function 𝜌, sample

size 𝑛 ≥ 35 and any and 𝑇 , there exist a distribution D with margin 𝛾, a loss function ℓ ∈ C𝛽,𝑝
𝜌 for

𝑝 = 2 such that for GD over a sample 𝑆 = {𝑧𝑖}𝑛𝑖=1 sampled i.i.d. from D, initialized at𝑊1 = 0 with
step size 𝜂 ≤ 1

6𝛽𝑘 , it holds that

𝔼[𝐿 (𝑤𝑇 )] = Ω

(
𝛽𝑘𝜌−1 ( 256𝜖

𝑘
)2

𝛾2𝑛

)
,

Second, in the following lemma we give a tight lower bound for the case where 𝑇 ≤ 𝑛.

Lemma 5. Let 𝛾 ≤ 1
8 and 𝜖 > 0 be such that

𝜌−1 ( 𝜖
𝑘 )2

𝛾2𝜂𝑇
≤ 𝜖 ≤ 1

16 . For any tail function 𝜌, 𝑇 , there exist

a distribution D with margin 𝛾, a loss function ℓ ∈ C𝛽,𝑝
𝜌 such that for GD over a sample 𝑆 = {𝑧𝑖}𝑛𝑖=1

sampled i.i.d. from D, initialized at𝑊1 = 0 with step size 𝜂 ≤ 1
6𝛽𝑘 , it holds that

𝔼[𝐿 (𝑤𝑇 )] = Ω

(
𝜌−1 ( 16𝜖

𝑘
)2

𝜂𝛾2𝑇

)
,

Below, we provide a sketch of the proof for Lemmas 4 and 5. The full proofs and the derivation of
Theorem 3 can be found in Appendix B.

To construct a hard instance for the Euclidean case and prove Lemmas 4 and 5, our main observation
is that for a univariate loss function 𝜙 : ℝ → ℝ, the template ℓ̃ : ℝ𝑘−1 → ℝ, which applies 𝜙 to
each entry of its input and sums the results, satisfies ℓ̃ ∈ C̃𝛽,𝑝

𝜌 for 𝑝 = 2. This is established in the
following lemma (see proof in Appendix B):
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Lemma 6. Let ℓ̃ : ℝ𝑘−1 → ℝ such that there exists a function 𝜙 ∈ ℝ → ℝ and ℓ̃(𝑤) =∑𝑘−1
𝑗=1 𝜙(𝑤 [ 𝑗]). Then, if 𝜙 is nonnegative, convex, 𝛽-smooth and monotonically decreasing loss

function such that 𝜙(𝑢) ≤ 𝜌(𝑢) for all 𝑢 ≥ 0 and some function tail function 𝜌, it holds that ℓ̃ ∈ C̃𝛽,𝑝
𝜌

for 𝑝 = 2.

Next, to construct the hard instance, we design loss functions that represent the sum of 𝑘 hard binary
classification instances. Combining this with a construction similar to that of Schliserman and Koren
[19] for the latter case, we derive a multi-class classification lower bound for loss functions with
smooth templates with respect to 𝐿2.

5 Examples

In this section, we apply our general generalization bounds for gradient methods in the setting
of multi-class classification with several popular choices of loss function, demonstrating how the
geometry of the loss function affect the generalization properties of Gradient Descent.

5.1 Exponentially-tailed losses

First, we show a risk bound for Gradient Descent, when the decay rate of loss the loss is exponential,
i.e. when ℓ ∈ C𝛽,𝑝

𝜌 for 𝜌(𝑥) = 𝑒−𝑥 . We can apply Theorem 1 with 𝜖 = 1
𝑇

and get the following,

Corollary 4. Let ℓ ∈ C𝛽,𝑝
𝜌 for 𝜌(𝑥) = 𝑒−𝑥 . Then, the output of Gradient Descent on 𝐿̂ with step size

𝜂 = 1
6𝑘

2
𝑝

and𝑊1 = 0 satisfies

𝔼 [𝐿 (𝑊𝑇 )] = 𝑂
(
𝑘

2
𝑝

𝛾2𝑇
+ 𝑘

2
𝑝

𝛾2𝑛

)
.

A particular loss function in the class of losses with exponentially decaying template is the cross
entropy loss, i.e., for every 𝑦 ∈ [𝑘], ℓ𝑦 ( 𝑦̂) = log

(
1 + ∑

𝑗≠𝑦 exp( 𝑦̂[𝑦] − 𝑦̂[ 𝑗])
)
, whose template is

smooth with respect to the 𝐿∞ norm (see Lemma 22 in Appendix C). Next, we can derive an upper
bound for GD which is logarithmic in the number of classes. For this, we apply Theorem 1 with
𝜖 = 1

𝑇
and obtain the following result,

Corollary 5. If ℓ is the cross entropy loss function, the output of Gradient Descent on 𝐿̂ with step
size 𝜂 = 1

12 and𝑊1 = 0 satisfies

𝔼 [𝐿 (𝑊𝑇 )] = 𝑂
(

1
𝛾2𝑇

+ 1
𝛾2𝑛

)
.

This bound matches the upper bound of Schliserman and Koren [17] for Gradient Descent on the
cross entropy loss, and, up to logarithmic factors matches the bounds given in Schliserman and
Koren [19] for the case of setting of binary classification with smooth losses with exponential tail. In
contrast, using Theorem 3 with 𝜖 = log2 (𝑘𝑇 )

𝜂𝛾2𝑇
we get:

Corollary 6. There exists a function ℓ ∈ C𝛽,𝑝
𝜌 for 𝑝 = 2 and 𝜌(𝑥) = 𝑒−𝑥 such that the output of

Gradient Descent on 𝐿̂ with step size 𝜂 = 1
6𝑘 and𝑊1 = 0 holds,

𝔼 [𝐿 (𝑊𝑇 )] = Ω̃

(
𝑘

𝛾2𝑇
+ 𝑘

𝛾2𝑛

)
.

Combining Corollaries 5 and 6, we get a separation between exponentially tailed losses with templates
that are smooth w.r.t the 𝐿∞-norm—such as the cross-entropy loss, where the risk matches the binary
case up to logarithmic factors, and the 𝐿2-norm case, the upper bounds exhibit an unavoidable linear
dependence on the number of classes. This differ but not at odds with the results of [15], which
suggest that exponentially tailed losses exhibit similar asymptotic behavior.
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5.2 Polynomially-tailed losses

Now we show application of our generalization bound for Gradient Descent, when the decay rate
of loss the loss is polynomial, i.e., when ℓ ∈ C𝛽,𝑝

𝜌 for 𝜌(𝑥) = 𝑥−𝛼 for some 𝛼 > 0. For giving an
upper bound for polynomially tailed losses, we can apply Theorem 1 with for this class of functions

𝜖 = 𝑘
2

𝛼+2

(𝜂𝛾2𝑇 )
𝛼

2+𝛼
and get the following upper bound,

Corollary 7. Let ℓ ∈ C𝛽,𝑝
𝜌 for 𝜌(𝑥) = 𝑥−𝛼. Then, the output of Gradient Descent on 𝐿̂ with step size

𝜂 = 1
6𝑘

2
𝑝

and𝑊1 = 0 holds,

𝔼 [𝐿 (𝑊𝑇 )] = 𝑂 ©­« 𝑘
2

𝛼+2

(
1+ 𝛼

𝑝

)
(𝛾2𝑇)

𝛼
2+𝛼

+ 𝑘
2

𝛼+2

(
1+ 𝛼

𝑝

)
𝑇

2
2+𝛼

𝛾
2𝛼
𝛼+2 𝑛

ª®¬ .
6 Discussion and Limitations

In this work, we provide the first finite-time population risk bounds for gradient descent in linearly
separable multiclass classification. Our results show that the geometry of the loss, captured through
the ℓ𝑝-smoothness of its template, plays a central role in both convergence and generalization. In
contrast to prior views that emphasize the decay rate of the loss or the implicit bias of gradient
methods, our analysis reveals that smoothness geometry determines how generalization of gradient
descent depends on the number of classes across different multiclass regimes.

Our analysis assumes linear predictors and linearly separable data, which, while standard in theoretical
studies, limits direct applicability to nonlinear or noisy settings. As a result, our results should be
seen as a theoretical foundation that helps explain generalization in simpler settings, rather than a
direct description of deep learning in practice. Despite these assumptions, our insights may suggest
broader implications. The dependence of the bounds on ℓ𝑝-smoothness offers an explanation for the
empirical success of cross-entropy and other ℓ∞-smooth losses in large-scale or extreme classification,
where the number of classes is high.

Future work. Having established the first finite-time risk bounds for gradient descent in the multi-
class separable setting, several open directions remain. A natural next step is to extend our analysis
to nonlinear predictors and nonseparable data, and to examine empirically whether the geometric
separation between smoothness norms also arises in more complex regimes. An especially relevant
example is classifier-head fine-tuning in deep networks, where the data are typically nonseparable
and multi-labeled, in contrast to the single-label setting considered in this work. Another promising
direction is to further study the implicit bias of gradient methods for loss functions with general,
potentially non-exponential tail decay rates (e.g., polynomial tails), and investigate whether it im-
plies nontrivial multiclass risk bounds, similar to those established in this paper. This question is
particularly interesting given that, in the binary case, the implicit-bias characterization of the gradient
descent solutions leads to strictly suboptimal bounds as compared to the state-of-the-art [19] (see a
more elaborate discussion therein).
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A Proofs for Section 3

We begin by the following standard lemma for smooth functions (e.g. Srebro et al. [22]).
Lemma 7. Let 𝑓 : ℝ𝑑 → ℝ be a non-negative 𝛽-smooth loss function with respect to 𝐿𝑝 norm.
Then, we have for every 𝑤 ∈ ℝ𝑑 ,

∥∇ 𝑓 (𝑤)∥2
𝑞 ≤ 2𝛽 𝑓 (𝑤, 𝑧),

where 𝑞 is such that 1
𝑝
+ 1

𝑞
= 1.

Lemma 8. Let 𝑝 ∈ [1,∞]. Let 𝑓 : ℝ𝑘 → ℝ be a non-negative 𝛽-smooth function with respect to 𝐿𝑝

norm. Then, for every 𝑢, 𝑣 ∈ ℝ𝑘 , it holds that,

( 𝑓 (𝑢) − 𝑓 (𝑣))2 ≤ 6𝛽max{ 𝑓 (𝑢), 𝑓 (𝑣)}∥𝑢 − 𝑣∥2
𝑝 .

Proof. Let 𝑞 ∈ [1,∞] be such that 1
𝑝
+ 1

𝑞
= 1. First, by the mean value theorem for any 𝑢, 𝑣 ∈ ℝ𝑘

there exists 𝑥 on the line between 𝑣 and 𝑢 such that

0 ≤ 𝑓 (𝑢) − 𝑓 (𝑣) = ⟨∇ 𝑓 (𝑥), 𝑢 − 𝑣⟩
By smoothness, we know that

∥∇ 𝑓 (𝑥) − ∇ 𝑓 (𝑣)∥𝑞 ≤ 𝛽∥𝑢 − 𝑣∥ 𝑝 .
As a result,

∥∇ 𝑓 (𝑥)∥𝑞 ≤ ∥∇ 𝑓 (𝑣)∥𝑞 + 𝛽∥𝑢 − 𝑣∥𝛼𝑝
Now, if ∥𝑢 − 𝑣∥ 𝑝 ≤ ∥∇ 𝑓 (𝑣) ∥𝑞

5𝛽 then ∥∇ 𝑓 (𝑥)∥𝑞 ≤ 6
5 ∥∇ 𝑓 (𝑣)∥𝑞 , by Cauchy-Schwartz inequality and

Lemma 7, we get

| 𝑓 (𝑢) − 𝑓 (𝑣) |2 = ⟨∇ 𝑓 (𝑥), 𝑢 − 𝑣⟩2

≤ ∥∇ 𝑓 (𝑥)∥2
𝑞 ∥𝑢 − 𝑣∥2

𝑝

≤ 36
25

∥∇ 𝑓 (𝑣)∥2
𝑞 ∥𝑢 − 𝑣∥2

𝑝

≤ 6𝛽 𝑓 (𝑣)∥𝑢 − 𝑣∥2
𝑝

≤ 6𝛽max{ 𝑓 (𝑢), 𝑓 (𝑣)}∥𝑢 − 𝑣∥2.

Otherwise, we know that ∥∇ 𝑓 (𝑥)∥𝑞 ≤ 6𝛽∥𝑢 − 𝑣∥ 𝑝 , and derive

( 𝑓 (𝑢) − 𝑓 (𝑣))2 = | 𝑓 (𝑢) − 𝑓 (𝑣) | |⟨∇ 𝑓 (𝑥), 𝑢 − 𝑣⟩
≤ | 𝑓 (𝑢) − 𝑓 (𝑣) |∥∇ 𝑓 (𝑥)∥𝑞 ∥𝑢 − 𝑣∥ 𝑝
≤ 6𝛽 | 𝑓 (𝑢) − 𝑓 (𝑣) |∥𝑢 − 𝑣∥2

𝑝

≤ 6𝛽max{ 𝑓 (𝑢), 𝑓 (𝑣)}∥𝑢 − 𝑣∥2
𝑝 .

□

Now, for every class F defined on a space Z, 𝑝 ∈ [1,∞], 𝜖 > 0 and training set 𝑆 = {𝑧1, . . . , 𝑧𝑛} ∈
Z𝑛, we denote by N𝑝 (F , 𝜖 , 𝑛) the 𝐿𝑝-covering number of F , i.e., the size of a minimal cover C𝜖

such that ∀ 𝑓 ∈ F , ∃ 𝑓𝜖 ∈ C𝜖 s.t. ∥ 𝑓 (𝑆) − 𝑓𝜖 (𝑆) | |𝑝 ≤ 𝜖 , where for every 𝑓 ∈ F , 𝑓 : Z𝑛 → ℝ𝑛 is the
function that for every set 𝑆 = {𝑧1, . . . , 𝑧𝑛}, the 𝑖th entry of 𝑓 (𝑆) is 𝑓 (𝑧𝑖).
Lemma 9 ([22, 14, 6]). Let F be a class of real-valued functions defined on a space Z̃ and
𝑆′ := {𝑧1, . . . , 𝑧𝑛} ∈ Z̃𝑛 of cardinality 𝑛.

1. If functions in F take values in [−𝐵, 𝐵], then for any 𝜖 > 0 with fat𝜖 (F ) < 𝑛 we have

logN∞ (𝜖, F , 𝑆′) ≤ fat𝜖 (𝐹) log
2𝑒𝐵𝑛
𝜖

.

2. For any 𝜖 > 2ℜ̂𝑛 (F ), we have fat𝜖 (F ) < 16𝑛
𝜖 2 ℜ̂𝑛 (F )2.
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3. Let 𝑀 = sup 𝑓 . The Rademacher complexity ℜ𝑆′ (F ) satisfies

ℜ𝑆′ (F ) ≤ inf
𝜉>0

(
4𝜉 + 24

√
𝑛

∫ 𝑀

𝜉

√︁
log 𝑁2 (𝜖, F , 𝑆′)𝑑𝜖

)
.

Lemma 10. Let𝑊 ∈ ℝ𝑘×𝑑 , 𝑥 ∈ ℝ𝑑 , 𝑗 ∈ [𝑘]. Then, for 𝜙 𝑗 (𝑥) defined in Theorem 1 it holds that,

⟨𝑊, 𝜙 𝑗 (𝑥)⟩ = ⟨𝑊 𝑗 , 𝑥⟩,
where𝑊 𝑗 is the 𝑗 th row of𝑊 .
Proof. By the definition of 𝜙 𝑗 (𝑥), it holds that,

⟨𝑊, 𝜙 𝑗 (𝑥)⟩ =
∑︁
𝑖, 𝑗

𝑊 𝑗 [𝑖]𝜙 𝑗 (𝑥) 𝑗 [𝑖]

=
∑︁
𝑖

𝑊 𝑗 [𝑖]𝑥 [𝑖]

= ⟨𝑊 𝑗 , 𝑥⟩
□

Lemma 11. (Proposition 7 in [6]) Let H𝐵 as defined above. Then, it holds that,

ℜ̂𝑛𝑘 (H𝐵) ≤
𝐵

√
𝑛𝑘

Now we can prove Lemma 1 and Theorem 2.
Proof of Lemma 1. First, notice that for every 𝑦 ∈ [𝑘] and 𝑣 ∈ ℝ𝑘 , for every 𝑗 ≠ 𝑦, the 𝑗 th index of
𝐷𝑦𝑣 is 𝑣 [𝑦] − 𝑣 [ 𝑗], we obtain that, ∥𝐷𝑦𝑣∥∞ ≤ 2∥𝑣∥∞.

Then, by Lemma 8 and the properties of ℓ̃ we have,

1
𝑛

𝑛∑︁
𝑖=1

(ℓ𝑦𝑖 (𝑊𝑥𝑖) − ℓ𝑦𝑖 (𝑊 ′𝑥𝑖))2 =
1
𝑛

𝑛∑︁
𝑖=1

(ℓ̃(𝐷𝑦𝑖𝑊𝑥𝑖) − ℓ̃(𝐷𝑦𝑖𝑊
′𝑥𝑖))2

≤ 6𝛽
𝑛

𝑛∑︁
𝑖=1

(
ℓ̃(𝐷𝑦𝑖𝑊𝑥𝑖) + ℓ̃(𝐷𝑦𝑖𝑊

′𝑥𝑖)
)
∥𝐷𝑦𝑖𝑊𝑥𝑖 − 𝐷𝑦𝑖𝑊

′𝑥𝑖 ∥2
𝑝

≤ 6𝛽
𝑛

(
𝑛∑︁
𝑖=1

(
ℓ𝑦𝑖 (𝑊𝑥𝑖) + ℓ𝑦𝑖 (𝑊 ′𝑥𝑖)

)) (
max
𝑖

∥𝐷𝑦𝑖𝑊𝑥𝑖 − 𝐷𝑦𝑖𝑊
′𝑥𝑖 ∥2

𝑝

)
≤ 12𝛽𝑟𝑘

2
𝑝 max

𝑖
|𝐷𝑦𝑖𝑊

𝑗𝑥𝑖 − 𝐷𝑦𝑖𝑊
′ 𝑗𝑥𝑖 |2∞

≤ 24𝛽𝑟𝑘
2
𝑝 max

𝑖
|𝑊 𝑗𝑥𝑖 −𝑊 ′ 𝑗𝑥𝑖 |2∞

≤ 24𝛽𝑟𝑘
2
𝑝 max

𝑖, 𝑗
|𝑊 𝑗𝑥𝑖 −𝑊 ′ 𝑗𝑥𝑖 |2

and get by Lemma 10√√√(
1
𝑛

𝑛∑︁
𝑖=1

(ℓ𝑦𝑖 (𝑊𝑥𝑖) − ℓ𝑦𝑖 (𝑊 ′𝑥𝑖))2

)
≤

√︁
24𝛽𝑟𝑘

1
𝑝 max

𝑖, 𝑗
|𝑤 𝑗𝑥𝑖 − 𝑤′

𝑗𝑥𝑖 | =
√︁

24𝛽𝑟𝑘
1
𝑝 max

𝑖, 𝑗
|⟨𝑊 −𝑊 ′, 𝜙 𝑗 (𝑥𝑖) |

We derive that

N2

(
L𝐵,𝑟

ℓ
, 𝜖 , 𝑆

)
≤ N∞

(
{𝑊 ∈ H𝐵 | 𝐿̂ (𝑊) ≤ 𝑟} , 𝜖√︁

24𝛽𝑟𝑘
1
𝑝

, 𝑆

)
≤ N∞

(
H𝐵,

𝜖√︁
24𝛽𝑟𝑘

1
𝑝

, 𝑆

)
.

Now by Lemma 9, for every training set 𝑆 it holds that

ℜ𝑆

(
L𝐵,𝑟

ℓ

)
≤ inf

𝜉>0

(
4𝜉 + 24

√
𝑛

∫ 𝑀

𝜉

√︃
logN2 (𝜖,L𝐵,𝑟

ℓ
, 𝑆)𝑑𝜖

)
14



≤ inf
𝜉>0

©­«4𝜉 + 24
√
𝑛

∫ 𝑀

𝜉

√︄
logN∞ ( 𝜖√︁

24𝛽𝑟𝑘
1
𝑝

,H𝐵, 𝑆)𝑑𝜖
ª®¬

≤ inf
𝜉≥

√
24𝛽𝑟𝑘

1
𝑝 ℜ̂𝑛𝑘 (H𝐵 )

©­­«4𝜉 + 24
√
𝑛

∫ 𝑀

𝜉

√︄
300𝑛𝑘 (24𝛽𝑟)𝑘

2
𝑝

𝜖2 ℜ̂𝑛𝑘 (H𝐵)2 log
2𝑒𝑀𝑛𝑘

√︁
24𝛽𝑟𝑘

1
𝑝

𝜖
𝑑𝜖

ª®®¬
≤ inf

𝜉≥
√

24𝛽𝑟𝑘
1
𝑝 ℜ̂𝑛𝑘 (H𝐵 )

©­­«4𝜉 + 300
√︁

24𝛽𝑟𝑘
2+𝑝
2𝑝 ℜ̂𝑛𝑘 (H𝐵)

√√
log

2𝑒𝑀𝑛𝑘
√︁

24𝛽𝑟𝑘
1
𝑝

𝜉

∫ 𝑀

𝜉

1
𝜖
𝑑𝜖

ª®®¬
≤ inf

𝜉≥
√

24𝛽𝑟𝑘
1
𝑝 ℜ̂𝑛𝑘 (H𝐵 )

©­­«4𝜉 + 300
√︁

24𝛽𝑟𝑘
2+𝑝
2𝑝 ℜ̂𝑛𝑘 (H𝐵)

√√
log

2𝑒𝑀𝑛𝑘
√︁

24𝛽𝑟𝑘
1
𝑝

𝜉
log

𝑀

𝜉

ª®®¬
≤ 4

√︁
24𝛽𝑟𝑘

1
𝑝

1
√
𝑛
+ 4

√︁
24𝛽𝑟𝑘

1
𝑝 ℜ̂𝑛𝑘 (H𝐵) +

300
√︁

24𝛽𝑟𝑘
2+𝑝
2𝑝 ℜ̂𝑛𝑘 (H𝐵)

√︄
log

√
𝑛3𝑘22𝑒𝑀
𝐿

ℜ̂𝑛𝑘 (H𝐵) log
𝑀
√
𝑛√︁

24𝛽𝑟𝑘
1
𝑝

(𝜉 = max
{√︁

24𝛽𝑟𝑘
1
𝑝 ℜ̂𝑛𝑘 (H𝐵) ,

√︁
24𝛽𝑟𝑘

1
𝑝 1√

𝑛

}
)

≤ 𝐶0
√︁
𝛽𝑟𝑘

1
𝑝

1
√
𝑛
+ 𝐶1

√︁
𝛽𝑟𝑘

2+𝑝
2𝑝 ℜ̂𝑛𝑘 (H𝐵)

≤ 𝐶0
√︁
𝛽𝑟𝑘

1
𝑝

1
√
𝑛
+ 𝐶1

√︁
𝛽𝑟𝑘

1
𝑝
𝐵
√
𝑛

(Lemma 11)

≤ (𝐶0 + 𝐶1)
√︁
𝛽𝑟𝑘

1
𝑝
𝐵 + 1
√
𝑛

□

Proof of Theorem 2. By the displayed equation prior to the last one in the proof of the theorem
Theorem 6.1 of [2] we have that if 𝜓𝑛 is any sub-root function that satisfies for all 𝑟 > 0, ℜ̂𝑛

(
L𝐵,𝑟

ℓ

)
≤

𝜓𝑛 (𝑟) then, for any 𝛿 > 0, with probability at least 1 − 𝛿, for any𝑊 ∈ 𝔹𝑘×𝑑
𝐵

,

𝐿 (𝑊) ≤ 𝐿̂ (𝑊)+45𝑟∗𝑛+
√︁
𝐿 (𝑊)

©­­­«
√︁

8𝑟∗𝑛 +

√√
4𝑀 (log

(
1
𝛿

)
+ 6 log log 𝑛)

𝑛

ª®®®¬+
20𝑀 (log

(
1
𝛿

)
+ 6 log log 𝑛)

𝑛

(3)
where 𝑟∗𝑛 is the largest solution to equation 𝜓𝑛 (𝑟) = 𝑟. Now by Lemma 1 there exists a constant
𝐶 > 0 such that 𝐶 depends polylogarithmically on 𝑘, 𝑛, 𝑀, 𝛽 such that for 𝜓𝑛 (𝑟) = 𝐶

√
𝛽𝑟𝑘

1
𝑝 𝐵+1√

𝑛
,

ℜ̂𝑛

(
L𝐵,𝑟

ℓ

)
satisfies the property that for all 𝑟 > 0. Thus, for 𝑟∗𝑛 = 𝐶2𝛽𝑘

2
𝑝

(𝐵+1)2

𝑛
(3) holds. Now by

the fact that for any non-negative 𝐴, 𝐵, 𝐶,

𝐴 ≤ 𝐵 + 𝐶
√
𝐴⇒ 𝐴 ≤ 𝐵 + 𝐶2 +

√
𝐵𝐶

we get

𝐿 (𝑊) ≤ 𝐿̂ (𝑊) + 106𝐶2𝛽𝑘
2
𝑝
(𝐵 + 1)2

𝑛
+ 48𝑀

𝑛

(
log 1

𝛿
+ log log 𝑛

)
+√︄

𝐿̂ (𝑊)
(
8𝐶2𝛽𝑘

2
𝑝
(𝐵 + 1)2

𝑛
+ 4𝑀

𝑛

(
log 1

𝛿
+ log log 𝑛

))
≤ 3

2
𝐿̂ (𝑊) + 110𝐶2𝛽𝑘

2
𝑝
(𝐵 + 1)2

𝑛
+ 50𝑀

𝑛

(
log 1

𝛿
+ log log 𝑛

)
(
√
𝑥𝑦 ≤ 1

2𝑥 +
1
2 𝑦)
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≤ 2𝐿̂ (ℎ) + 110
(
log 1

𝛿
+ log log 𝑛

)
𝐶2

(
𝛽𝑘

2
𝑝
(𝐵 + 1)2

𝑛
+ 𝑀
𝑛

)
. (

√
𝑥𝑦 ≤ 1

2𝑥 +
1
2 𝑦)

The theorem holds with a factor of 𝐶̃ = 110
(
log 1

𝛿
+ log log 𝑛

)
𝐶2. □

Proof of Lemma 2. First, similarly to Lemma 4.2 in [15], note that the expression for the gradient of
ℓ(𝑥,𝑦) w.r.t to𝑊 is ∇𝑊ℓ(𝑥,𝑦) (𝑊) = 𝑥∇ℓ̃(𝐷𝑦𝑊𝑥)𝑇𝐷𝑦 . Let 𝑞 be such that 1

𝑝
+ 1

𝑞
= 1. Then, it holds

that

∥∇ℓ(𝑥,𝑦) (𝑊) − ∇ℓ(𝑥,𝑦) (𝑊 ′)∥2
𝐹 = ∥𝑥(∇ℓ̃(𝐷𝑦𝑊𝑥) − ∇ℓ̃(𝐷𝑦𝑊

′𝑥)𝑇 )𝐷𝑦 ∥2
𝐹

= 𝑇𝑟

(
𝑥(∇ℓ̃(𝐷𝑦𝑊𝑥) − ∇ℓ̃(𝐷𝑦𝑊

′𝑥))𝑇𝐷𝑦𝐷
𝑇
𝑦 (∇ℓ̃(𝐷𝑦𝑊𝑥) − ∇ℓ̃(𝐷𝑦𝑊

′𝑥))𝑥𝑇
)

= 𝑇𝑟

(
𝑥𝑇𝑥(∇ℓ̃(𝐷𝑦𝑊𝑥) − ∇ℓ̃(𝐷𝑦𝑊

′𝑥))𝑇𝐷𝑦𝐷
𝑇
𝑦 (∇ℓ̃(𝐷𝑦𝑊𝑥) − ∇ℓ̃(𝐷𝑦𝑊

′𝑥))
)

= 𝑇𝑟

(
(∇ℓ̃(𝐷𝑦𝑊𝑥) − ∇ℓ̃(𝐷𝑦𝑊

′𝑥))𝑇𝐷𝑦𝐷
𝑇
𝑦 (∇ℓ̃(𝐷𝑦𝑊𝑥) − ∇ℓ̃(𝐷𝑦𝑊

′𝑥))
)

(∥𝑥∥ = 𝑥𝑇𝑥 ≤ 1)

= ∥𝐷𝑇
𝑦 (∇ℓ̃(𝐷𝑦𝑊𝑥) − ∇ℓ̃(𝐷𝑦𝑊

′𝑥))∥2
2

≤ ∥𝐷𝑇
𝑦 ∥2

𝑞,2∥∇ℓ̃(𝐷𝑦𝑊𝑥) − ∇ℓ̃(𝐷𝑦𝑊
′𝑥)∥2

𝑞

≤ 𝛽2∥𝐷𝑇
𝑦 ∥2

𝑞,2∥𝐷𝑦𝑊𝑥 − 𝐷𝑦𝑊
′𝑥∥2

𝑝 ,

where for every matrix 𝐴, ∥𝐴∥𝑞,2 is sup∥𝑣 ∥𝑞=1 ∥𝐴𝑣∥2. Now, by the expression for 𝐷𝑦 it holds that,
the 𝑦th row of 𝐷𝑇

𝑦 is the vector with all entries as 1 and the rest of the rows with index 𝑗 th row is a
negative standard basis vector, we get that

∥𝐷𝑇
𝑦 ∥2

𝑞,2 = sup
∥𝑣 ∥𝑞=1

∥𝐷𝑇
𝑦 𝑣∥2

2

≤ sup
∥𝑣 ∥𝑞=1

∥𝑣∥2
1 + ∥𝑣2∥2

2

≤ 2

(
sup

∥𝑣 ∥𝑞=1
∥𝑣∥1

)2

≤ 2𝑘2(1− 1
𝑞
)

≤ 2𝑘
2
𝑝 .

Moreover, since, for every 𝑦 ∈ [𝑘] and 𝑣 ∈ ℝ𝑘 , for every 𝑗 ≠ 𝑦, the 𝑗 th index of 𝐷𝑦𝑣 is 𝑣 [𝑦] − 𝑣 [ 𝑗],
we obtain that, ∥𝐷𝑦𝑣∥∞ ≤ 2∥𝑣∥∞., and First, notice that for every 𝑦 ∈ [𝑘] and 𝑣 ∈ ℝ𝑘 , it holds that,

∥𝐷𝑦𝑣∥ 𝑝 ≤ 𝑘
1
𝑝 ∥𝐷𝑦𝑣∥∞

≤ 2𝑘
1
𝑝 ∥𝑣∥∞

≤ 2𝑘
1
𝑝 ∥𝑣∥ 𝑝 .

Then, we conclude that

∥∇ℓ(𝑥,𝑦) (𝑊) − ∇ℓ(𝑥,𝑦) (𝑊 ′)∥2
𝐹 ≤ 𝛽∥𝐷𝑇

𝑦 ∥2
𝑞,2∥𝐷𝑦𝑊𝑥 − 𝐷𝑦𝑊

′𝑥∥2
𝑝

≤ 8𝛽2𝑘
4
𝑝 ∥𝑊𝑥 −𝑊 ′𝑥∥2

𝑝

≤ 8𝛽2𝑘
4
𝑝 ∥𝑊𝑥 −𝑊 ′𝑥∥2

2

≤ 8𝛽2𝑘
4
𝑝 ∥𝑊 −𝑊 ′∥2

𝐹

The lemma follows by taking a square root of both sides. □

Lemma 12. Let 𝜌 be a tail function and let ℓ ∈ C𝛽,𝑝
𝜌 . Fix any 0 < 𝜖 < 1

2 . The, there exists a model

𝑊∗
𝜖 ∈ ℝ𝑘×𝑑 such that ∥𝑊∗

𝜖 ∥𝐹 ≤ 𝜌−1 ( 𝜖
𝑘
)

𝛾
and 𝐿̂ (𝑊∗

𝜖 ) ≤ 𝜖 .
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Proof. By separability, there exists a model 𝑊∗ such that ∥𝑊∗∥𝐹 ≤ 1 and such that for every
𝑗 ∈ [𝑘] \ {𝑦𝑖}, it holds that (𝑊 𝑦𝑖

∗ −𝑊 𝑗
∗ )⊤𝑥𝑖 ≥ 𝛾 for every (𝑥𝑖 , 𝑦𝑖) in the training set 𝑆.

Now, let𝑊1
𝑖
, . . . ,𝑊 𝑘−1

𝑖
∈ 𝑅𝑘 be the rows of 𝐷𝑦𝑖𝑊∗. Note that the seperability condition is equivalent

to the fact that𝑊 𝑗

𝑖
· 𝑥𝑖 ≥ 𝛾 for any 𝑗 ∈ [𝑘 − 1]. Then, for𝑊∗

𝜖 =
𝜌−1 ( 𝜖

𝑘
)

𝛾
𝑊∗ and every (𝑥𝑖 , 𝑦𝑖) ∈ 𝑆,

ℓ𝑦𝑖 (𝑊∗
𝜖 𝑥𝑖) = ℓ̃(𝐷𝑦𝑖𝑊

∗
𝜖 𝑥𝑖)

= ℓ̃

(
𝜌−1 ( 𝜖

𝑘
)

𝛾
𝐷𝑦𝑖𝑊∗𝑥𝑖

)
≤

𝑘−1∑︁
𝑗=1

𝜌

(
𝜌−1 ( 𝜖

𝑘
)

𝛾
·𝑊 𝑗

𝑖
𝑥𝑖

)
≤

𝑘−1∑︁
𝑗=1

𝜌

(
𝜌−1 ( 𝜖

𝑘
)
)

≤ 𝜖 .
□

Lemma 13. Let 𝑦 ∈ 𝑘 and ℓ ∈ C𝛽,𝑝
𝜌 for 𝑝 ≥ 2. For every𝑊,𝑊 ′ ∈ ℝ𝑘×𝑑 such that ∥𝑊 −𝑊 ′∥𝐹 ≤ 𝑅

and 𝑥 ∈ ℝ𝑑 with ∥𝑥∥2 ≤ 1, it holds that,

ℓ̃(𝐷𝑦𝑊𝑥) ≤ 2ℓ̃(𝐷𝑦𝑊
′𝑥) + 2𝛽𝑘

2
𝑝 𝑅2.

Proof of Lemma 13. Let𝑊,𝑊 ′ ∈ ℝ𝑘×𝑑 such that ∥𝑊 −𝑊 ′∥𝐹 ≤ 𝑅 and 𝑥 ∈ ℝ𝑑 . Moreover, Let 𝑞 be
such that 1

𝑝
+ 1

𝑞
= 1. First, notice that for every 𝑦 ∈ [𝑘] and 𝑣 ∈ ℝ𝑘 , it holds that, ∥𝐷𝑦𝑣∥∞ ≤ 2∥𝑣∥∞.

Then, by smoothness w.r.t 𝐿𝑝 and Lemma 7 it holds that

ℓ̃(𝐷𝑦𝑊𝑥) ≤ ℓ̃(𝐷𝑦𝑊
′𝑥) + ∇ℓ̃(𝐷𝑦𝑊

′𝑥) · (𝐷𝑦𝑊𝑥 − 𝐷𝑦𝑊
′𝑥) + 𝛽

2
∥𝐷𝑦𝑊𝑥 − 𝐷𝑦𝑊

′𝑥∥2
𝑝

≤ ℓ̃(𝐷𝑦𝑊
′𝑥) + 1

2𝛽
∥∇ℓ̃(𝐷𝑦𝑊

′𝑥)∥2
𝑞 + 𝛽

2
∥𝑊𝑥 − 𝐷𝑦𝑊

′𝑥∥2
𝑝 + 𝛽

2
∥𝐷𝑦𝑊𝑥 − 𝐷𝑦𝑊

′𝑥∥2
𝑝

≤ 2ℓ̃(𝐷𝑦𝑊
′𝑥) + 𝛽∥𝐷𝑦𝑊

′𝑥 − 𝐷𝑦𝑊𝑥∥2
𝑝

≤ 2ℓ̃(𝐷𝑦𝑊
′𝑥) + 𝛽𝑘

2
𝑝 ∥𝐷𝑦𝑊

′𝑥 − 𝐷𝑦𝑊𝑥∥2
∞

≤ 2ℓ̃(𝐷𝑦𝑊
′𝑥) + 2𝛽𝑘

2
𝑝 ∥𝑊 ′𝑥 −𝑊𝑥∥2

∞

≤ 2ℓ̃(𝐷𝑦𝑊
′𝑥) + 2𝛽𝑘

2
𝑝 𝑅2,

where the second inequality follows by the fact that for every 𝛾 ≥ 0 and 𝑥, 𝑦 ∈ ℝ𝑘 , it holds that
𝑥𝑦 ≤ 1

2𝛾 𝑥
2 + 𝛾

2 𝑦
2. □

Lemma 14. Fix any 𝜖 > 0 and a point 𝑊∗
𝜖 ∈ ℝ𝑘×𝑑 such that 𝐿̂ (𝑊∗

𝜖 ) ≤ 𝜖 . Then, the output of
𝑇-iterations GD, applied on 𝐿̂ with step size 𝜂 ≤ 1/6𝑘

2
𝑝 𝛽 initialized at𝑊1 = 0 has,

∥𝑊𝑇 −𝑊∗
𝜖 ∥𝐹 ≤ ∥𝑊∗

𝜖 ∥𝐹 + 2
√︁
𝜂𝜖𝑇,

∥𝑊𝑇 ∥𝐹 ≤ 2∥𝑊∗
𝜖 ∥𝐹 + 2

√︁
𝜂𝜖𝑇.

Proof. Let 𝛽 = 3𝑘
2
𝑝 𝛽. First, by Lemma 2, 𝐿̂ is 𝛽-smooth with respect to𝑊 and Lemma 7, we know

that ∥∇𝐿̂ (𝑊)∥2 ≤ 2𝛽𝐿̂ (𝑊) for any𝑊 . Therefore, by using 𝜂 ≤ 1/𝛽, for every 𝜖 ,

∥𝑊𝑡+1 −𝑊∗
𝜖 ∥2

𝐹 = ∥𝑊𝑡 − 𝜂∇𝐿̂ (𝑊𝑡 ) −𝑊∗
𝜖 ∥2

𝐹

= ∥𝑤𝑡 − 𝑤∗
𝜖 ∥2

𝐹 − 2𝜂⟨𝑊𝑡 −𝑊∗
𝜖 ,∇𝐿̂ (𝑊𝑡 )⟩ + 𝜂2∥∇𝐿̂ (𝑊𝑡 )∥2

𝐹

≤ ∥𝑊𝑡 −𝑊∗
𝜖 ∥2

𝐹 + 2𝜂𝐿̂ (𝑊∗
𝜖 ) − 2𝜂𝐿̂ (𝑊𝑡 ) + 2𝛽𝜂2 𝐿̂ (𝑊𝑡 )

≤ ∥𝑊𝑡 −𝑊∗
𝜖 ∥2

𝐹 + 2𝜂𝐿̂ (𝑊∗
𝜖 )

≤ ∥𝑊𝑡 −𝑊∗
𝜖 ∥2

𝐹 + 2𝜂𝜖 .
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By summing until time 𝑇 ,

∥𝑊𝑇 −𝑊∗
𝜖 ∥2

𝐹 ≤ ∥𝑊1 −𝑊∗
𝜖 ∥2

𝐹 + 2𝑇𝜂𝜖 = ∥𝑊∗
𝜖 ∥2

𝐹 + 2𝜂𝜖𝑇.
The lemma follows by taking a square root and using triangle inequality. □

Proof of Lemma 3. Let 𝛽 = 3𝑘
2
𝑝 𝛽. First, by Lemma 2, 𝐿̂ is 𝛽-smooth with respect to 𝑊 , thus, for

every 𝑡 and 𝜂 ≤ 1/𝛽,

𝐿̂ (𝑊𝑡+1) ≤ 𝐿̂ (𝑊𝑡 ) + ∇𝐿̂ (𝑊𝑡 ) · (𝑊𝑡+1 −𝑊𝑡 ) +
𝛽

2
∥𝑊𝑡+1 −𝑊𝑡 ∥2

𝐹

= 𝐿̂ (𝑊𝑡 ) − 𝜂∥∇𝐿̂ (𝑊𝑡 )∥2 + 𝜂
2𝛽

2
∥∇𝐿̂ (𝑊𝑡 )∥2

𝐹

≤ 𝐿̂ (𝑊𝑡 ) −
𝜂

2
∥∇𝐿̂ (𝑊𝑡 )∥2

𝐹

≤ 𝐿̂ (𝑊𝑡 ).
Hence,

𝐿̂ (𝑊𝑇 ) ≤
1
𝑇

𝑇∑︁
𝑡=1

𝐿̂ (𝑊𝑡 ). (4)

Moreover, from standard regret bounds for gradient updates, for any𝑊 ∈ ℝ𝑘×𝑑 ,

1
𝑇

𝑇∑︁
𝑡=1

[𝐿̂ (𝑊𝑡 ) − 𝐿̂ (𝑊)] ≤
∥𝑊1∥2

𝐹

2𝜂𝑇
+ 𝜂

2𝑇

𝑇∑︁
𝑡=1




∇𝐿̂ (𝑤𝑡 )



2

𝐹
.

By Lemma 7,

1
𝑇

𝑇∑︁
𝑡=1

[𝐿̂ (𝑊𝑡 ) − 𝐿̂ (𝑊)] ≤
∥𝑊 ∥2

𝐹

2𝜂𝑇
+ 𝜂𝛽
𝑇

𝑇∑︁
𝑡=1

𝐿̂ (𝑊𝑡 ).

Using 𝜂 ≤ 1/2𝛽 gives

1
𝑇

𝑇∑︁
𝑡=1

𝐿̂ (𝑊𝑡 ) ≤
∥𝑊 ∥2

𝐹

𝜂𝑇
+ 2𝐿̂ (𝑊).

For𝑊 = 𝑊∗
𝜖 we get by Eq. (4),

𝐿̂ (𝑊𝑇 ) ≤
1
𝑇

𝑇∑︁
𝑡=1

𝐿̂ (𝑊𝑡 ) ≤


𝑊∗

𝜖



2
𝐹

𝜂𝑇
+ 2𝐿̂ (𝑊∗

𝜖 ) ≤


𝑊∗

𝜖



2
𝐹

𝜂𝑇
+ 2𝜖 .

When 𝜂 = 1
6𝛽𝑘

2
𝑝

, we get the lemma. □

B Proofs for Section 4

Proof of Lemma 6. The non-negativity and convexity is implied directly by the fact that ℓ̃ is a sum of
non-negative convex functions. Moreover, for every 𝑢 ∈ (ℝ+)𝑘 ,

ℓ̃(𝑢) =
𝑘−1∑︁
𝑗=1

𝜙(𝑢[ 𝑗]) ≤
𝑘−1∑︁
𝑗=1

𝜌(𝑢[ 𝑗]).

and, since 𝜌 decays to zero at infinity

lim
𝑡→∞

ℓ̃(𝑡𝑢) = lim
𝑡→∞

∑︁
𝑗

𝜙(𝑡𝑢[ 𝑗]) ≤ lim
𝑡→∞

∑︁
𝑗

𝜌(𝑡𝑢[ 𝑗]) =
∑︁
𝑗

lim
𝑡→∞

𝜌(𝑡𝑢[ 𝑗]) = 0.

It is left to prove the smoothness of ℓ̃. For every, 𝑢, 𝑣 ∈ ℝ𝑘−1, it holds that

∥∇ℓ̃(𝑢) − ∇ℓ̃(𝑣)∥2
2 =

𝑘−1∑︁
𝑖=1

(𝜙′ (𝑢[𝑖]) − 𝜙′ (𝑣 [𝑖]))2
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≤ 𝛽2
𝑘−1∑︁
𝑖=1

(𝑢[𝑖] − 𝑣 [𝑖])2

= 𝛽2∥𝑢 − 𝑣∥2.

□

Now we turn to prove lemmas that we use in the proof of Theorem 3 We begin with probabilistic
claims that similar to Schliserman and Koren [19].
Lemma 15. Let D be the distribution defined in Eq. (5). Let 𝑆 ∼ D𝑛 be a sample of size 𝑛, and let
(𝑥′, 𝑦′) ∼ D be a validation example. Moreover, assume 𝑛 ≥ 35 and let 𝛿2 be the fraction of (𝑥2, 1)
in 𝑆. We define the following event,

𝐴 = {(𝑥3, 1) ∉ 𝑆} ∩ {𝑥′ = 𝑥3} ∩ {𝛿2 ∈ [ 1
32 ,

1
8 ]}.

Then,

Pr(𝐴) ≥ 1
120𝑒𝑛

.

Proof. The proof follows directly from Lemma 16 and Lemma 17.

We define the following events:

𝐴1 = {𝑥3 ∉ 𝑆} ∩ {𝑥′ = 𝑥3}, 𝐴2 = {𝛿2 ∈ [ 1
32 ,

1
8 ]}.

By Lemma 16, we have

Pr(𝐴1) ≥
1

2𝑒𝑛
.

By Lemma 17, we further have

Pr(𝐴2 | 𝐴1) ≥
1
60
.

Combining these results, we get

Pr(𝐴) ≥ Pr(𝐴1) · Pr(𝐴2 | 𝐴1) ≥
1

120𝑒𝑛
.

□

Lemma 16. Let D be the distribution defined in Eq. (5). Let 𝑆 ∼ D𝑛 be a sample of size 𝑛, and let
(𝑥′, 𝑦′) ∼ D be a validation example. Let 𝐴1 be the following event,

𝐴1 = {(𝑥3, 1) ∉ 𝑆} ∩ {(𝑥′, 𝑦′) = (𝑥3, 1)}.
Then,

Pr(𝐴1) ≥
1

2𝑒𝑛
.

Proof. First, observe that, since 𝑦 is deterministic,

Pr(𝐴1) = Pr(𝑥′ = 𝑥3) · Pr((𝑥3, 1) ∉ 𝑆 | 𝑥′ = 𝑥3).

We know that
Pr(𝑥′ = 𝑥3) =

1
𝑛
.

Furthermore,

Pr((𝑥3, 1) ∉ 𝑆 | 𝑥′ = 𝑥3) = Pr((𝑥3, 1) ∉ 𝑆) =
(
1 − 1

𝑛

)𝑛
≥ 1
𝑒

(
1 − 1

𝑛

)
≥ 1

2𝑒
.

Combining these, we obtain

Pr(𝐴1) ≥
1

2𝑒𝑛
.

□

19



Lemma 17. Let D be the distribution defined in Eq. (5). Assume 𝑛 ≥ 35 and let 𝛿2 denote the
fraction of (𝑥2, 1) in 𝑆. We define the following events:

𝐴1 = {𝑥3 ∉ 𝑆} ∩ {𝑥′ = 𝑥3}, 𝐴2 = {𝛿2 ∈ [ 1
32 ,

1
8 ]}.

Then,

Pr(𝐴2 | 𝐴1) = Pr
(
𝛿2 ∈

[ 1
32 ,

1
8
]
| 𝐴1

)
≥ 1

60
.

Proof. For every 𝑥𝑖 ∈ 𝑆, let 𝑝′
𝑖
= Pr(𝑥𝑖 = 𝑥2 | 𝐴1). Since 𝑥𝑖 and 𝑥 𝑗 are independent for 𝑖 ≠ 𝑗 , it

follows that 𝑝′
𝑖
= 𝑝′

𝑗
for all 𝑖 ≠ 𝑗 . Using independence, we have:

𝑝′𝑖 = Pr(𝑥𝑖 = 𝑥2 | 𝑥3 ∉ 𝑆) = Pr(𝑥𝑖 = 𝑥2 | 𝑥𝑖 ≠ 𝑥3).

This simplifies to

𝑝′𝑖 =
Pr(𝑥𝑖 = 𝑥2)
Pr(𝑥𝑖 ≠ 𝑥3)

=
1

1 − 1
𝑛

Pr(𝑥𝑖 = 𝑥2) =
5
64
.

The expected value of 𝛿2 given 𝐴1 is

𝔼[𝛿2 | 𝐴1] =
1
𝑛

𝑛∑︁
𝑖=1

Pr(𝑥𝑖 = 𝑥2 | 𝐴1) =
1
𝑛

𝑛∑︁
𝑖=1

𝑝′𝑖 =
5
64
.

The variance is

Var(𝛿2 | 𝐴1) = Var

(
1
𝑛

𝑛∑︁
𝑖=1

1{𝑥𝑖=𝑥2 } | 𝐴1

)
=

1
𝑛2

𝑛∑︁
𝑖=1

Var(1{𝑥𝑖=𝑥2 } | 𝐴1) =
5 · 59
642𝑛

.

Using Chebyshev’s inequality, for 𝑛 ≥ 35, we have

Pr(𝐴2 | 𝐴1) = Pr
(
𝛿2 ∈

[ 1
32 ,

1
8
]
| 𝐴1

)
= Pr

(��𝛿2 − 5
64

�� ≤ 3
64 | 𝐴1

)
.

Thus,

Pr(𝐴2 | 𝐴1) = 1 − Pr
(��𝛿2 − 5

64
�� ≥ 3

64 | 𝐴1

)
≥ 1 − 642

9
Var(𝛿2 | 𝐴1).

Substituting the variance, we get

Pr(𝐴2 | 𝐴1) ≥ 1 − 5 · 59
9𝑛

.

For 𝑛 ≥ 35, this simplifies to

Pr(𝐴2 | 𝐴1) ≥ 1 − 5 · 59
315

≥ 1
60
.

□

Lemma 18. Let 𝜌 be a tail function. and 𝜙 : ℝ → ℝ be the following function

𝜙(𝑥) =
{
𝜌(𝑥) 𝑥 ≥ 0;
𝜌(0) + 𝜌′ (0)𝑥 + 𝛽

2 𝑥
2 𝑥 < 0.

Next, we define the following loss function for every 𝑦 ,

ℓ𝑦 ( 𝑦̂) =
∑︁

𝑗∈[𝑘 ]\{𝑦}
𝜙( 𝑦̂[𝑦] − 𝑦̂[ 𝑗]).

Then, ℓ ∈ C𝛽,𝑝
𝜌 .

20



Proof. First, for ℓ̃( 𝑦̂) =
∑𝑘−1

𝑗=1 𝜙( 𝑦̂ 𝑗 ), ℓ𝑦 ( 𝑦̂) = ℓ̃(𝐷𝑦 𝑦̂). Then, it is left to prove that ℓ̃ ∈ C̃𝛽,𝑝
𝜌 .

By Lemma 6, it is sufficient to prove that 𝜙 is nonnegative, convex, 𝛽-smooth and monotonically
decreasing loss functions such that 𝜙(𝑢) ≤ 𝜌(𝑢) for all 𝑢 ≥ 0.

Second, 𝜙 is non negative: for 𝑥 ≥ 0 by the non negativity of 𝜌 and for 𝑥 < 0 by the fact that
𝜌′ (0) ≤ 0. Moreover, 𝜙 is convex. We need to prove that every 𝑥 < 𝑦, 𝜙′ (𝑥) ≤ 𝜙′ (𝑦) For 𝑥, 𝑦 < 0,
we get it by the convexity of 𝜌. For 𝑥, 𝑦 > 0, we get it by the fact 𝜙 there is a sum of convex function
and linear function. For 𝑥 < 0 < 𝑦, by the convexity of 𝜌,

𝜙′ (𝑥) = 𝜌′ (0) + 𝛽𝑥 ≤ 𝜌′ (0) ≤ 𝜌′ (𝑦).

In addition, 𝜙 is 𝛽-smooth. We need to prove that every 𝑥 < 𝑦, 𝜙′ (𝑦) − 𝜙′ (𝑥) ≤ 𝛽(𝑦 − 𝑥) For 𝑥, 𝑦 ≥ 0,
we get it by the smoothness of 𝜌. For 𝑥, 𝑦 ≤ 0, we get it by the fact that 𝜙 is a sum of 𝛽-smooth
function and a linear function. For 𝑥 ≤ 0 ≤ 𝑦, by the smoothness of 𝜌,

𝜙′ (𝑦) − 𝜙′ (𝑥) = 𝜌′ (𝑦) − 𝜌′ (0) − 𝛽𝑥 ≤ 𝛽(𝑦 − 𝑥).

Finally, 𝜙 is strictly monotonically decreasing. We need to prove that every 𝑥 < 𝑦, 𝜙(𝑦) > 𝜙(𝑥). For
𝑥, 𝑦 > 0, we get it by the monotonicity of 𝜌. For 𝑥 < 𝑦 < 0,

𝜙(𝑦) = 𝜌(0) + 𝜌′ (0)𝑦 + 𝛽

2
𝑦2 ≤ 𝜌(0) + 𝜌′ (0)𝑥 + 𝛽

2
𝑥2 = 𝜙(𝑥).

For 𝑥 < 0 < 𝑦,

𝜙(𝑦) = 𝜌(𝑦) ≤ 𝜌(0) ≤ 𝜌(0) + 𝜌′ (0)𝑥 + 𝛽

2
𝑥2 = 𝜙(𝑥).

□

Lemma 19. Let 𝜙 : ℝ → ℝ a univariate funcation. For every 𝑥 ∈ ℝ𝑑 , 𝑦 ∈ [𝑘] and let ℓ𝑥,𝑦 be the
following loss function

ℓ𝑥,𝑦 (𝑊) =
∑︁

𝑗∈[𝑘 ]\{𝑦}
𝜙(⟨𝑊 𝑦 −𝑊 𝑗 , 𝑥⟩),

where for every 𝑗 ,𝑊 𝑗 is the 𝑗 th row of𝑊 . Moreover, let𝑊𝑡 the iterate of GD with step size 𝜂 > 0,
initialized on𝑊1 = 0. Then, for every 𝑡 ≥ 1, it holds that𝑊 𝑗

𝑡 = 𝑊2
𝑡 for any 𝑗 ≠ 1.

Proof. We prove by induction on 𝑡. For 𝑡 = 0, since𝑊1 = 0, the lemma trivially holds. Now, assuming
𝑊

𝑗
𝑡 = 𝑊2

𝑡 , it holds that for every 𝑗 ≠ 1, and for every possible example 𝑥 that the 𝑗 th row of the
gradient is 𝜙′ (⟨𝑊1 −𝑊 𝑗 , 𝑥⟩)𝑥 Then, we conclude that,

𝑊
𝑗

𝑡+1 = 𝑊
𝑗
𝑡 + 𝜂 1

𝑛

𝑛∑︁
𝑖=1

𝜙′ (⟨𝑊1
𝑡 −𝑊 𝑗

𝑡 , 𝑥𝑖⟩)𝑥𝑖 = 𝑊2
𝑡 + 𝜂 1

𝑛

𝑛∑︁
𝑖=1

𝜙′ (⟨𝑊1
𝑡 −𝑊2

𝑡 , 𝑥𝑖⟩)𝑥𝑖 = 𝑊2
𝑡+1.

□

Proof of Lemma 4. Let 𝛾 ≤ 1
8 . We define the following distribution D:

D =


(𝑥1, 𝑦1) := ((1, 0, 0), 1) w.p. 59

64 (1 − 1
𝑛
);

(𝑥2, 𝑦2) := ((− 1
2 , 3𝛾, 0), 1) w.p. 5

64 (1 − 1
𝑛
);

(𝑥3, 𝑦3) := ((0,− 1
8 , 4𝛾 +

1
4 ), 1) w.p. 1

𝑛
,

(5)

and the following function 𝜙 : ℝ → ℝ:

𝜙(𝑥) =
{
𝜌(𝑥) 𝑥 ≥ 0;
𝜌(0) + 𝜌′ (0)𝑥 + 𝛽

2 𝑥
2 𝑥 < 0.

Then, we define the following loss function for every sample (𝑥, 𝑦),

ℓ𝑦 ( 𝑦̂) =
∑︁

𝑗∈[𝑘 ]\{𝑦}
𝜙( 𝑦̂[𝑦] − 𝑦̂[ 𝑗]) (6)

First, we show that the distribution is separable. Since 𝑦 = 1 with probability 1 for the matrix 𝑊∗

where its first row is 𝑊1
∗ = (𝛾, 1

2 ,
1
4 ) and for any other 𝑗 th row 𝑊

𝑗
∗ = 0, it holds for any 𝑗 ≠ 1 that
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(𝑊1
∗ −𝑊 𝑗

∗ )𝑥𝑖 = 𝑊1
∗ 𝑥𝑖 ≥ 𝛾 for every 𝑖 ∈ {1, 2, 3}. Moreover, Lemma 18 in Appendix B shows that

indeed ℓ ∈ C𝛽,𝑝
𝜌 .

Next, let 𝑆 be a sample of 𝑛 i.i.d. examples from D and let (𝑥′, 𝑦′) ∼ D be a validation example
independent from 𝑆. We denote by 𝛿2 ∈ [0, 1] the fraction of appearances of (𝑥2, 1) in the sample 𝑆,
and by 𝐴1, 𝐴2 the following events;

𝐴1 = {𝑥′ = 𝑥3 ∧ (𝑥3, 1) ∉ 𝑆}, 𝐴2 = 𝛿2 ∈
[ 1

32 ,
1
8
]
.

In Lemma 15 (in Appendix B), we show that

Pr(𝐴1 ∩ 𝐴2) ≥
1

120𝑒𝑛
. (7)

Then by Lemma 3 and the choice of 𝜖 ,

𝐿̂ (𝑊𝑇 ) ≤
𝜌−1 (

𝜖
𝑘

)2

𝜂𝑇
+ 2𝜖 ≤ 4𝜖 . (8)

Now, for every 𝑗 ≠ 1, 𝑡 ∈ [𝑇], we denote,𝑈 𝑗
𝑡 = 𝑊1

𝑡 −𝑊 𝑗
𝑡 . For the rest of the proof, we condition on

the event 𝐴1 ∩ 𝐴2.

First, we show that for every 𝑗 ≠ 1 it hold that 𝑈 𝑗
𝑡 · 𝑥2 ≥ 0. Indeed, if it were not the case, by

Lemma 19, then𝑈2
𝑡 · 𝑥2 ≥ 0 and it implies that 𝜙(𝑈2

𝑡 · 𝑥2) > 𝜌(0); together with Eq. (8) we obtain,

1
64

> 4𝜖 ≥ 𝐿̂ (𝑊𝑇 )

≥ 𝛿2 (𝑘 − 1)𝜙(𝑈2
𝑡 · 𝑥2) ≥

𝐾 − 1
32

𝜌(0) ≥ 1
32
𝜌(0).

which is a contradiction to 𝜌(0) ≥ 1. Moreover, it holds for every 𝑗 ≠ 1 that𝑈 𝑗

𝑇
[1] ≥ 0. Again, we

show this by contradiction for 𝑗 = 2 and it follows for any 𝑗 ≠ 1 by Lemma 19. Conditioned on 𝐴2,
we have 𝛿1 >

7
8 . Then, if𝑈 𝑗

𝑇
[1] < 0, 𝜙(𝑈2

𝑇
· 𝑥1) > 𝜌(0), and

1
64

> 4𝜖 ≥ 𝐿̂ (𝑊𝑇 ) ≥ 𝛿1 (𝐾 − 1)𝜙(𝑈2
𝑇 · 𝑥1) >

7
8
𝜌(0).

which is another contradiction to the fact tat 𝜌(0) ≥ 1. In addition, we notice that 𝑥3 is the only
possible example whose third entry is non zero. Given the event 𝐴1, we know that 𝑥3 is not in 𝑆.
Equivalently, for every (𝑥, 𝑦) ∈ 𝑆, 𝑥 [3] = 0. As a result, since 𝑊 𝑗

1 [3] = 0 for every 𝑗 , it can be
proved by induction that for every 𝑡 ≥ 1, it holds for 𝑗 ≠ 1 that

𝑊
𝑗

𝑡+1 [3] = 𝑊
𝑗
𝑡 + 𝜂 1

𝑛

𝑛∑︁
𝑖=1

𝜙′ (⟨𝑊1
𝑡 −𝑊 𝑗

𝑡 , 𝑥𝑖⟩)𝑥𝑖 [3] = 0.

For 𝑗 = 1, it holds that,

𝑊
𝑗

𝑡+1 [3] = 𝑊
𝑗
𝑡 − 1

𝑛

𝑛∑︁
𝑖=1

∑︁
𝑗≠1

𝜙′ (⟨𝑊1
𝑡 −𝑊 𝑗

𝑡 𝑥𝑖⟩)𝑥𝑖 [3] = 0.

Then, we get that for every 𝑗 ≠ 1, it holds that,

𝑈
𝑗

𝑇
· 𝑥3 = −1

8
𝑈

𝑗

𝑇
(2). (9)

Then, since we showed that𝑈 𝑗

𝑇
· 𝑥2 ≥ 0 for every 𝑗 , ℓ(𝑊𝑇 · 𝑥2) =

∑
𝑗≠1 𝜌(𝑈

𝑗

𝑇
· 𝑥2), and conditioned

on 𝐴2, we have

32𝐿̂ (𝑤𝑇 )) ≥ ℓ(𝑊𝑇 · 𝑥2) =
∑︁
𝑗≠1

𝜌(𝑈 𝑗

𝑇
· 𝑥2)

= (𝐾 − 1)𝜌(𝑈2
𝑇 · 𝑥2) ≥

1
2
𝑘𝜌(𝑈2

𝑇 · 𝑥2),
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which implies for every 𝑗 ≠ 1 that,

𝑈
𝑗

𝑇
· 𝑥2 = 𝑈2

𝑇 · 𝑥2 ≥ 𝜌−1 ( 64
𝑘
𝐿̂ (𝑊𝑇 )). (10)

Therefore, by combining Eq. (10) with the fact that𝑈 𝑗

𝑇
[1] ≥ 0,

3𝛾𝑈 𝑗

𝑇
[2] ≥ 𝑈 𝑗

𝑇
· 𝑥2 ≥ 𝜌−1 ( 64

𝑘
𝐿̂ (𝑊𝑇 )).

This implies for every 𝑗 ≠ 1,𝑈 𝑗

𝑇
[2] ≥ 1

3𝛾 𝜌
−1 ( 64

𝑘
𝐿̂ (𝑊𝑇 )). By Eq. (9),

𝑈
𝑗

𝑇
· 𝑥3 = −1

8
𝑈

𝑗

𝑇
[2] ≤ − 1

24𝛾
𝜌−1 ( 64

𝑘
𝐿̂ (𝑊𝑇 )).

We conclude see that for every 𝜖 such that 𝜖 ≥ (𝜌−1 ( 𝜖
𝑘
) )2

𝛾2𝑇𝜂
, 𝐿̂ (𝑤𝑇 )) ≤ 4𝜖 , and

ℓ(𝑊𝑇𝑥3) =
∑︁
𝑗≠1

𝜙(𝑈 𝑗

𝑇
· 𝑥3)2 =

∑︁
𝑗≠1

𝜌(𝑈 𝑗

𝑇
· 𝑥3)2

≥ 𝑘

2
𝛽

2
(𝑈 𝑗

𝑇
· 𝑥3)2 ≥ 𝑘

2
𝛽

2

(
1

24𝛾
𝜌−1 ( 64

𝑘
𝐿̂ (𝑤𝑇 ))

)2

≥ 𝛽𝑘

3000𝛾2 𝜌
−1 ( 256𝜖

𝑘
)
2
,

where in the final inequality we again used Eq. (8). Then the lemma follows using Eq. (7) and the
law of total expectation,

𝔼[𝐿 (𝑊𝑇 )] ≥ 𝔼[ℓ1 (𝑤𝑇 · 𝑥3) | 𝐴1 ∩ 𝐴2] Pr(𝐴1 ∩ 𝐴2). □

Lemma 20. Let 𝜌 be a tail function. and 𝜙 : ℝ → ℝ be the following function

𝜙(𝑥) =
{
𝜌(𝑥) if 𝑥 ≥ 0;
𝜌′ (0)𝑥 + 𝜌(0) otherwise.

Next, we define the following loss function for every 𝑦 ∈ [𝑘] ,

ℓ𝑦 ( 𝑦̂) =
∑︁

𝑗∈[𝑘 ]\{𝑦}
𝜙( 𝑦̂[𝑦] − 𝑦̂[ 𝑗]).

Then, ℓ ∈ C𝛽,𝑝
𝜌 .

Proof. For ℓ̃( 𝑦̂) = ∑𝑘−1
𝑗=1 𝜙( 𝑦̂ 𝑗 ), ℓ𝑦 ( 𝑦̂) = ℓ̃(𝐷𝑦 𝑦̂). Then, it is left to prove that ℓ̃ ∈ C̃𝛽,𝑝

𝜌 . By Lemma 6,
it is sufficient to prove that 𝜙 is nonnegative, convex, 𝛽-smooth and monotonically decreasing loss
functions such that 𝜙(𝑢) ≤ 𝜌(𝑢) for all 𝑢 ≥ 0.

First, 𝜙 is non negative: for 𝑥 ≥ 0 by the non negativity of 𝜌 and for 𝑥 < 0 by the fact that 𝜌′ (0) ≤ 0.
Moreover, 𝜙 is convex. We need to prove that every 𝑥 < 𝑦, 𝜙′ (𝑥) ≤ 𝜙′ (𝑦) For 𝑥, 𝑦 < 0, we get it by
the convexity of 𝜌. For 𝑥, 𝑦 > 0, we get it by the linearity of 𝜙. For 𝑥 < 0 < 𝑦, by the convexity of 𝜌,

𝜙′ (𝑥) = 𝜌′ (0) ≤ 𝜌′ (𝑦) = 𝜙′ (𝑦).
In addition, 𝜙 is 𝛽-smooth. We need to prove that every 𝑥 < 𝑦, 𝜙′ (𝑦) − 𝜙′ (𝑥) ≤ 𝛽(𝑦 − 𝑥) For 𝑥, 𝑦 ≥ 0,
we get it by the smoothness of 𝜌. For 𝑥, 𝑦 ≤ 0, we get it by the linearity of 𝜙. For 𝑥 ≤ 0 ≤ 𝑦, by the
smoothness of 𝜌,

𝜙′ (𝑦) − 𝜙′ (𝑥) = 𝜌′ (𝑦) − 𝜌′ (0) ≤ 𝛽𝑦 ≤ 𝛽(𝑦 − 𝑥).
Finally, 𝜙 is strictly monotonically decreasing. We need to prove that every 𝑥 < 𝑦, 𝜙(𝑦) > 𝜙(𝑥). For
𝑥, 𝑦 > 0, we get it by the monotonicity of 𝜌. For 𝑥 < 𝑦 < 0,

𝜙(𝑦) = 𝜌(0) + 𝜌′ (0)𝑦 ≤ 𝜌(0) + 𝜌′ (0)𝑥 = 𝜙(𝑥).
For 𝑥 < 0 < 𝑦,

ℓ(𝑦) = 𝜌(𝑦) ≤ 𝜌(0) ≤ 𝜌(0) + 𝜌′ (0)𝑥 = ℓ(𝑥).
□
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Proof of Lemma 5. Let 𝛾 ≤ 1
8 and 𝜖 ≤ 1

16 . We consider the following distribution;

D =

{
(𝑥1, 𝑦1) := ((1, 0), 1) with prob. 1 − 𝑝;
(𝑥2, 𝑦2) := ((− 1

2 , 3𝛾), 1) with prob. 𝑝,

where 𝑝 =
𝜌−1 ( 16𝜖

𝑘
)

72𝛾2𝑇𝑘𝜂
. Note that by the condition of the theorem, 𝑝 ≤ 𝜖 ≤ 1

16 . Since 𝑦 = 1 with

probability 1 for the matrix𝑊∗ where its first row is𝑊1
∗ = (𝛾, 1

2 ,
1
4 ) and for any other 𝑗 th row𝑊

𝑗
∗ = 0,

it holds for any 𝑗 ≠ 1 that ⟨𝑊1
∗ −𝑊 𝑗

∗ , 𝑥𝑖⟩ = ⟨𝑊∗1, 𝑥𝑖⟩ ≥ 𝛾 for every 𝑖 ∈ {1, 2}. In addition, we
consider the following univariate function,

𝜙(𝑥) =
{
𝜌(𝑥) if 𝑥 ≥ 0;
𝜌′ (0)𝑥 + 𝜌(0) otherwise.

and the loss function such that for every 𝑦 ∈ [𝑘],

ℓ𝑦 ( 𝑦̂) =
∑︁

𝑗∈[𝑘 ]\{𝑦}
𝜙( 𝑦̂[𝑦] − 𝑦̂[ 𝑗]).

First, by Lemma 20 we get that ℓ ∈ C𝛽,𝑝
𝜌 . Next, let 𝑆 be a sample of 𝑛 i.i.d. examples from D. We

denote by 𝛿2 ∈ [0, 1] the fraction of appearances of (𝑥2, 1) in the sample 𝑆, and by 𝐴1 the event that
𝛿2 ≤ 2𝑝. By Markov’s inequality, we know that Pr(𝐴1) ≥ 1

2 . Moreover, by Lemma 3 and the choice
of 𝜖 ,

𝐿̂ (𝑊𝑇 ) ≤ 2𝜖 + 2𝜌−1 (𝜖)2

𝛾2𝜂𝑇
≤ 4𝜖 . (11)

By Lemma 19 we notice that all of the rows of 𝑊𝑇 except the first row are equal. Then, defining
𝑈

𝑗

𝑇
= 𝑊1

𝑇
−𝑊 𝐽

𝑇
, we get that for every 𝑗 ≠ 1 it holds that 𝑈 𝑗

𝑇
= 𝑈2

𝑇
Now, we turn to assume that 𝐴1

holds. We know that

𝛿2 ≤ 2𝑝 ≤ 𝜌−1 (8𝜖)
36𝛾2𝑇𝜂

≤ 𝜖 < 1
8
, (12)

thus, conditioned on 𝐴1 and by Eq. (11),

4𝜖 ≥ 𝐿̂ (𝑊𝑇 ) > (1 − 𝛿2)ℓ(𝑊𝑇𝑥1) = (1 − 𝛿2)
∑︁
𝑗≠1

𝜙(𝑈 𝑗

𝑇
𝑥1) ≥

1
2
(𝑘 − 1)𝜙(𝑈2

𝑇 [1]). (13)

Then, if𝑈2
𝑇
[1] < 0, we get that

4𝜖 >
𝑘 − 1

2
𝜙(𝑈2

𝑇 [1]) >
1
2
𝜙(0) = 1

2
𝜌(0) ≥ 1

2

which is a contradiction to our assumption that 𝜖 ≤ 1
16 . Then𝑈2

𝑇
(1) ≥ 0 and by Eq. (13), we get that

16𝜖
𝑘

≥ 𝜙(𝑈2
𝑇
[1]) = 𝜌(𝑈2

𝑇
[1]). This implies that

𝜙(𝑈2
𝑇 [1]) ≥ 𝜌−1 ( 16𝜖

𝑘
). (14)

Now, by the fact that 𝜌′ (0) ≤ 1 and 𝜌 is 1-Lipschitz, it follows that 𝜙 is 1-Lipschitz. Thus, by the
GD update rule, it holds for every 𝑗 ≠ 1, that,

𝑊
𝑗

𝑡+1 [2] = 𝑊
𝑗
𝑡 [2] + 3𝜂 · 𝛾𝛿2𝜙

′ (⟨𝑊1
𝑡 −𝑊 𝑗

𝑡 , 𝑥2⟩),

and for 𝑗 = 1

𝑊1
𝑡+1 [2] = 𝑊

1
𝑡 [2] − 3𝜂 · 𝛾𝛿2

∑︁
𝑗≠1

𝜙′ (⟨𝑊1
𝑡 −𝑊 𝑗

𝑡 , 𝑥2⟩).

We get that for any 𝑗 ≠ 1,

𝑈
𝑗

𝑇
[2] ≤ 3𝑘𝛾𝛿2𝜂𝑇. (15)
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As a result, by Eqs. (12), (14) and (15) we now obtain that

𝑈
𝑗

𝑇
· 𝑥2 ≤ 9𝑘𝛾2𝛿2𝑇𝜂 −

1
2
𝜌−1 ( 16𝜖

𝑘
)

≤ 9𝑘𝛾2𝑇𝜂
𝜌−1 ( 16𝜖

𝑘
)

36𝛾2𝑇𝜂𝑘
− 1

2
𝜌−1 ( 16𝜖

𝑘
)

= −1
4
𝜌−1 ( 16𝜖

𝑘
).

By the fact that ∀𝑥 < 0 : 𝜙(𝑥) ≥ −𝑥, this implies that in the event 𝐴1 it holds that:

𝜙(𝑈 𝑗

𝑇
· 𝑥2) ≥ −𝑈 𝑗

𝑇
· 𝑥2 ≥ 1

4
𝜌−1 ( 16𝜖

𝑘
), (16)

and,

ℓ1 (𝑊𝑇𝑥2) =
∑︁
𝑗≠1

𝜙(𝑈 𝑗

𝑇
· 𝑥2) ≥

𝑘

8
𝜌−1 ( 16𝜖

𝑘
)

Finally, for a new validation example (𝑥′, 𝑦′) ∼ D (independent from the sample 𝑆), 𝑦′ = 1, and

Pr({𝑥′ = 𝑥2} ∩ 𝐴1) = Pr(𝑥′ = 𝑥2 | 𝐴1) Pr(𝐴1) ≥
1
2
𝑃(𝑥′ = 𝑥2) =

1
2
𝑝 ≥

𝜌−1 ( 16𝜖
𝑘
)

144𝛾2𝑇𝜂𝑘
, (17)

To conclude, from Eqs. (16) and (17) we have

𝔼𝐿 (𝑊𝑇 ) ≥ 𝔼[ℓ1 (𝑊𝑇𝑥2) | {𝑥′ = 𝑥2} ∩ 𝐴1] Pr({𝑥′ = 𝑥2} ∩ 𝐴1)

≥
𝜌−1 ( 16𝜖

𝑘
)

144𝛾2𝑇𝜂𝑘
· 𝑘

8
𝜌−1

(
16𝜖
𝑘

)
≥
𝜌−1 ( 16𝜖

𝑘
)2

5000𝛾2𝑇𝜂
.

□

Proof of Theorem 3. By Lemma 4, there exists a constant 𝐶1 such that 𝔼𝐿 (𝑊𝑇 ) ≥ 𝐶1
𝛽𝑘𝜌−1 ( 256𝜖

𝑘
)2

𝛾2𝑛
. By

Lemma 5, there exists a constant 𝐶2 such that 𝔼𝐿 (𝑊𝑇 ) ≥ 𝐶2
𝜌−1 ( 16𝜖

𝑘
)2

𝜂𝛾2𝑇
. If (𝜌−1 ( 16𝜖

𝑘
)2

𝛾2𝑇𝜂
≥ 𝛽𝑘 (𝜌−1 256𝜖

𝑘
)2

𝛾2𝑛
,

the theorem follows from Lemma 5 with 𝜂 = 1
6𝛽𝑘 ; otherwise, it follows from Lemma 4. □

C Proofs for Section 5

Lemma 21. Let 𝛼 > 0. If for every 𝑦, ℓ𝑦 ( 𝑦̂) = 1
𝛼

log
(
1 + ∑

𝑗≠𝑦 exp(𝛼( 𝑦̂𝑦 − 𝑦̂ 𝑗 ))
)
. Then, ℓ ∈ C𝛽,𝑝

𝜌

for 𝜌(𝑥) = 1
𝛼
𝑒−𝛼𝑥 , 𝛽 = 𝛼2 and 𝑝 = ∞.

Proof of Lemma 21. Here we notate the 𝑗 th entry of every vector 𝑤 by 𝑤 𝑗 .

First, for ℓ̃( 𝑦̂) = 1
𝛼

log
(
1 + ∑𝑘−1

𝑗=1 exp(𝛼𝑦̂ 𝑗 )
)
, ℓ𝑦 ( 𝑦̂) = ℓ̃(𝐷𝑦 𝑦̂). Now, 𝑥 ≥ log(1 + 𝑥) ≥ 0 for every 𝑥,

it follows ℓ̃ non-negative and,

ℓ̃( 𝑦̂) = 1
𝛼

log ©­«1 +
𝑘−1∑︁
𝑗=1

exp(𝛼𝑦̂ 𝑗 )
ª®¬ ≤

𝑘−1∑︁
𝑖=1

1
𝛼

exp(𝛼𝑦̂ 𝑗 ).

0 ≤ lim
𝑡→∞

ℓ̃(𝑡𝑢) ≤ 𝑙𝑖𝑚𝑡→∞

𝑘∑︁
𝑖=1

1
𝛼

exp(𝛼𝑡𝑦̂ 𝑗 ) = 0

For the convexity of ℓ̃, let 𝑢, 𝑣 ∈ ℝ𝑘−1 and 𝜆 ∈ (0, 1). If𝑢̃, 𝑣̃ are the vectors on ℝ𝑘 whose the 𝑘 − 1
first entries are 𝑢, 𝑣, respectively and last entry is 0. It holds that,

ℓ̃(𝜆𝑢 + (1 − 𝜆)𝑣) = 1
𝛼

log ©­«1 +
𝑘−1∑︁
𝑗=1
𝑒𝜆𝛼𝑢 𝑗+(1−𝜆)𝛼𝑣 𝑗 ª®¬
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=
1
𝛼

log ©­«
𝑘∑︁
𝑗=1
𝑒𝜆𝛼𝑢̃ 𝑗 𝑒 (1−𝜆)𝛼𝑣̃ 𝑗

ª®¬
≤ 1
𝛼

log
©­­«
©­«

𝑘∑︁
𝑗=1
𝑒𝛼𝑢̃ 𝑗

ª®¬
𝜆

· ©­«
𝑘∑︁
𝑗=1
𝑒𝛼𝑣̃ 𝑗

ª®¬
1−𝜆ª®®¬ (holder inequality for 𝑝 = 1

𝜆
, 𝑞 = 1

1−𝜆 )

=
1
𝛼
𝜆 log ©­«

𝑘∑︁
𝑗=1
𝑒𝛼𝑢̃ 𝑗

ª®¬ + 1
𝛼
(1 − 𝜆) ©­«

𝑘∑︁
𝑗=1
𝑒𝛼𝑣̃ 𝑗

ª®¬
=

1
𝛼
𝜆 log ©­«1 +

𝑘−1∑︁
𝑗=1
𝑒𝛼𝑢 𝑗

ª®¬ + 1
𝛼
(1 − 𝜆) log ©­«1 +

𝑘−1∑︁
𝑗=1
𝑒𝛼𝑣 𝑗

ª®¬
= 𝜆(ℓ̃(𝑢) + (1 − 𝜆)ℓ̃(𝑣),

as required. For the smoothness, for every 𝑢 ∈ ℝ𝑘−1 the partial derivatives of ℓ̃ are

𝜕ℓ̃

𝜕𝑢 𝑗

(𝑢) = 1
𝛼

𝛼𝑒𝛼𝑢 𝑗

1 + ∑𝑘−1
𝑗=1 𝑒

𝛼𝑢 𝑗

=
𝑒𝛼𝑢 𝑗

1 + ∑𝑘−1
𝑗=1 𝑒

𝛼𝑢 𝑗

𝜕ℓ̃

𝜕𝑢 𝑗𝜕𝑢𝑟
(𝑢) =


−𝛼𝑒

𝛼𝑢𝑗 𝑒𝛼𝑢𝑟(
1+∑𝑘−1

𝑗=1 𝑒
𝛼𝑢𝑗

)2 𝑗 ≠ 𝑟

−𝛼𝑒
𝛼𝑢𝑗 𝑒

𝛼𝑢𝑗(
1+∑𝑘−1

𝑗=1 𝑒
𝛼𝑢𝑗

)2 + 𝛼𝑒
𝛼𝑢𝑗

1+∑𝑘−1
𝑗=1 𝑒

𝛼𝑢𝑗
𝑗 = 𝑟

Then, if we denote by 𝑤 the vector that its 𝑗 th entry is 𝑤 𝑗 =
𝛼𝑒

𝛼𝑢𝑗

1+∑𝑘−1
𝑗=1 𝑒

𝛼𝑢𝑗
, it holds that ∇2ℓ̃(𝑤) =

𝑑𝑖𝑎𝑔(𝑤) − 𝑤𝑤𝑇 . Now, let 𝑣 ∈ ℝ𝑘−1. For 𝐿∞ smoothness it is sufficient to prove that 𝑣𝑇∇2ℓ̃(𝑢)𝑣 ≤
𝛼2∥𝑣∥2

∞.

𝑣𝑇∇2ℓ̃(𝑢)𝑣 = 𝑣𝑇 (𝑑𝑖𝑎𝑔(𝑤) − 𝑤𝑤𝑇 )𝑣
= 𝑣𝑇𝑑𝑖𝑎𝑔(𝑤)𝑣 − (𝑤𝑇𝑣)2

≤ 𝑣𝑇𝑑𝑖𝑎𝑔(𝑤)𝑣

≤
𝑘−1∑︁
𝑗=1
𝑤 𝑗𝑣

2
𝑗

≤ ∥𝑣∥2
∞𝛼

𝑘−1∑︁
𝑖=1

𝑤𝑖

≤ 𝛼2∥𝑣∥2
∞.

□

Lemma 22. If ℓ is the cross entropy loss function, ℓ ∈ C𝛽,𝑝
𝜌 for 𝜌(𝑥) = 𝑒−𝑥 , 𝛽 = 1 and 𝑝 = ∞.

Proof of Lemma 22. The proof is implied directly from Lemma 21 with 𝛼 = 1. □
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NeurIPS Paper Checklist
1. Claims

Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?
Answer: [Yes]
Justification: The claims presented in the abstract and introduction accurately reflect the
paper’s contributions—specifically, the risk upper bounds (including the novel Rademacher
complexity bound that leverages the template’s properties), the lower bound for the Euclidean
case, and the applications to widely-used loss functions.
Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: Our work is theoretical and focuses on the setting where the loss function is
convex and smooth, and the data is separable. The assumptions underlying our analysis are
clearly outlined in Section 2.
Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs

27



Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?
Answer: [Yes]
Justification: The assumptions for all our theorems are detailed in Section 2 and explicitly
stated within each theorem. The proofs provided are both correct and complete.
Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?
Answer: [NA]
Justification: The paper does not include experiments.
Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.
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5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer: [NA]

Justification: The paper does not include experiments requiring code.

Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental setting/details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [NA]

Justification: The paper does not include experiments.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.

7. Experiment statistical significance
Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [NA]

Justification: The paper does not include experiments.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).
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• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments compute resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?
Answer: [NA]
Justification: The paper does not include experiments.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code of ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?
Answer: [Yes]
Justification: The paper is theoretical and conforms with the NeurIPS Code of Ethics.
Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).
10. Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?
Answer: [NA]
Justification: The paper is theoretical and has no societal impact.
Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.
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• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]

Justification: The paper is theoretical and poses no such risks.

Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [NA]

Justification: The paper does not use existing assets.

Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the

package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.
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• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?
Answer: [NA]
Justification: The paper does not release new assets.
Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and research with human subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?
Answer: [NA]
Justification: The paper is theoretical and does not involve crowdsourcing nor research with
human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional review board (IRB) approvals or equivalent for research with human
subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer: [NA]
Justification: The paper is theoretical and does not involve crowdsourcing nor research with
human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.
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16. Declaration of LLM usage
Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.
Answer: [NA]
Justification: This research does not involve LLMs as any important, original, or non-
standard components.
Guidelines:

• The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

• Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.
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