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Abstract

Link prediction is an important learning task for graph-structured data and is indispensable
to understanding graphs’ properties. Recent works focus on designing complicated graph
neural networks (GNNs) architectures to explore and capture various pairwise interactions
among graph nodes. Most GNNs are based on combining graph structural and node feature
information by iterative message-passing schemes. However, despite GNNs revolutionizing
the field of graph representation learning, some thorny questions are raised concerning
whether GNNs can simultaneously learn topological information, node-wise community
memberships, block-to-block connection probabilities, and provide statistically rigorous
uncertainty estimates. In this paper, we tackle these challenges and propose a novel stochastic
block model (SBM)-aware topological neural networks, called SBM-TNN, that uses SBMs
to infer the latent community structure of nodes from graph structures and uses persistent
homology to encode higher-order information. Furthermore, we theoretically study the
entrywise bound and asymptotic normality of the estimated edge probability matrix to
quantify the uncertainty in statistical inference of the edge probabilities. Our extensive
experiments for link prediction on both graphs and knowledge graphs show that SBM-TNN
achieves state-of-the-art performance over a set of popular baseline methods.

1 Introduction

Graph data are ubiquitous throughout the natural and social sciences, e.g., many real-world objects can
be represented by graphs, such as molecules, ecosystems, transportation systems, energy systems, citation
networks, and internet networks (Sen et al., 2008; Li et al., 2018; Xia et al., 2021; Chen et al., 2023a).
Tremendous advances in graph analysis have been achieved in recent years, especially in the field of geometric
deep learning (GDL) (Defferrard et al., 2016; Bronstein et al., 2017; Zhang et al., 2020). In particular,
graph neural networks (GNNs) have emerged as effective architectures for various prediction problems,
e.g., node classification (Kipf & Welling, 2017; Veličković et al., 2018a; Hamilton et al., 2017), community
detection (Chen et al., 2018; Shchur & Günnemann, 2019), and graph classification (Xu et al., 2018; Ying
et al., 2018). specifically, GNNs are neural network architectures designed to handle graph-structured data.
The fundamental idea behind GNNs involves treating the underlying graph as a computation graph and
leveraging neural network primitives to generate node embeddings. The key processes involve message passing,
propagating, and aggregating node features and graph structural information throughout the graph.
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In GNNs, the graph convolutional layer builds upon the observed graph adjacency matrix, also called the
connection matrix. The adjacency matrix can be viewed as a noisy version of an edge probability matrix
with additive noises. In practice, graphs often contain communities, and thus the probability of an edge
between any two nodes can depend on their group assignment, which is popularly modeled through the
stochastic block model (SBM) (Holland et al., 1983) or its variant the degree-corrected stochastic block
model (DCSBM) (Karrer & Newman, 2011). When a graph indeed has communities, we propose to use the
estimated edge probability matrix to replace the adjacency matrix for graph representation learning. We
estimate the edge probability matrix using the spectral clustering method (von Luxburg, 2007), which is
computationally fast. Compared to the adjacency matrix, which only has two values 0 and 1, the estimated
edge probability matrix contains the probability value of each edge, which can provide more information
about the relationship between nodes and better recover the graph structure. In addition, the estimated
probability matrix is proven to have asymptotic normality, which can be used for uncertainty quantification
and confidence interval estimation. By contrast, the adjacency matrix can not achieve this goal. We also
establish a uniform error bound for the estimated edge probability matrix in terms of the entrywise maximum
norm. These theoretical results are novel in the SBM literature. Furthermore, GNNs tend to majorly
focus on information propagation among nodes and thus the model capability is limited, i.e., almost fail in
learning topological and structural information. However, as recently shown by Wasserman (2018); Hensel
et al. (2021); Pun et al. (2022); Liang et al. (2025); Goel et al. (2025); Dixon et al. (2025), such topological
structures, e.g., connected components and holes might be an important step in graph knowledge discovery.
For instance, persistent homology (Edelsbrunner, 2013; Zomorodian & Carlsson, 2004) has been used to study
the topological information encoded in the graph (Zhao & Wang, 2019; Chen et al., 2021a;b; Li et al., 2025;
Coskunuzer et al., 2024; Chen et al., 2023a; Horn et al., 2021; Arafat et al., 2025). However, these ideas have
never been yet applied in conjunction with knowledge representation learning.

Aiming to solve the above challenges, we turn to the idea of combining learned community information from
using an SBM-based model and different types of topological features by using multiple descriptor functions
that can generate more expressive node embedding. The SBM is a powerful tool to learn from graph-structured
data, as it is designed to model graphs with clear community structures. In GNNs, these communities
represent groups of nodes having similar behaviors. By leveraging SBM in our topological neural networks
(TNNs), the model can simultaneously learn the latent communities and capture the topological structures to
enhance the performance in link prediction and node classification. Moreover, the community-based learning
from SBM enables our TNNs to capture local structures to improve prediction accuracy, when dealing with
sparse graphs with few connections, which in general is a great challenge for GNNs. SBM, on the other hand,
provides a probabilistic framework that can help the model infer relationships between sparse connections as
well as providing a better interpretability and understanding of the relationships between nodes. We use
the learned community information from SBM together with different types of topological features by using
multiple descriptor functions to generate more expressive latent node embedding. The primary contributions
of this work can be summarized as follows:

• We propose a Stochastic Block Model-Aware Topological Neural Networks (SBM-TNN), a novel
TNN-based model equipped with SBM concepts that captures topological structures, node features,
and structure of neighborhood relations. It is the first approach bringing the concepts of topological
signature representation learning and stochastic block models to graph learning.

• We further study the important problem, i.e., how to quantify the uncertainty for the estimated
edge probability matrix. To achieve this goal, we establish an entrywise error bound and asymptotic
normality of the estimated edge probability matrix that can be used to construct asymptotically valid
confidence intervals for the edge probabilities, and help quantify the accuracy and uncertainty of the
estimated edge probability matrix and provide theoretical guarantee for the follow up procedures of
the proposed SBM-TNN model.

• Extensive experiments on benchmark datasets clearly show that SBM-TNN delivers state-of-the-art
link prediction and knowledge graph completion tasks with a significant margin.
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2 Related Work

Graph Neural Networks. Recently, Graph Neural Network (GNN) has emerged as a primary tool for
node classification, link prediction, graph classification, and graph forecasting (Wu et al., 2020; Zhou et al.,
2020; Chen & Gel, 2023; Chen et al., 2022c; Zhao et al., 2023; Chen et al., 2022a; 2023b; 2024b;a; Chen &
Gel, 2025). Based on the spectral graph theory, Bruna et al. (2014) introduces a graph-based convolution in
the Fourier domain. However, the complexity of this model is very high since all Laplacian eigenvectors are
needed. To tackle this problem, ChebNet (Defferrard et al., 2016) integrates spectral graph convolution with
Chebyshev polynomials. Then, Graph Convolutional Networks (GCNs) (Kipf & Welling, 2017) simplifies
the graph convolution with a localized first-order approximation. SEAL (Zhang & Chen, 2018) extracts
local enclosing subgraphs around the target links and learns a function mapping the subgraph patterns to
link existence. Graph2Gauss (G2G) (Bojchevski & Günnemann, 2018) designs an unsupervised model that
handles inductive link prediction by using a deep encoder to embed each node as a Gaussian distribution.
Deep Generative Latent Feature Relational Model (DGLFRM) (Mehta et al., 2019) proposes an overlapping
stochastic blockmodel for community discovery tasks. In addition, the Hyperbolic Graph Convolutional
Neural Networks (HGCN) (Chami et al., 2019) leverages both the hyperbolic geometry and GCN framework
to learn node representations. Another interesting recent strategy is to use pairwise topological features to find
latent representations of the geometrical structure of graph using GCN (Yan et al., 2021). Moreover, Bi-Level
Attention Graph Neural Networks (BA-GNN) (Iyer et al., 2021) leverages both node-node and relation-relation
interactions (without meta paths) to capture more information about graph components. Mixed-Curvature
Multi-Relational Graph Neural Network (M2GNN) (Wang et al., 2021a) is designed to embed multi-relational
information in a mixed-curvature space for knowledge graph (KG) completion. Additionally, Dual-Geometric
Space Embedding Model (DGS) (Iyer et al., 2022) studies KG in complex non-Euclidean geometric space by
modeling different views via different geometric spaces. A common limitation is that they fail to accurately
capture correlated and rich topological properties of graphs and incorporate rich structure and topological
information both in local and global domains.

Stochastic Block Model. The SBM (Holland et al., 1983) is a probabilistic model to generate networks
with community structures, where nodes are partitioned into blocks and the probability of edges between
nodes depends on their block memberships. The past few decades have seen various methods for recovering
community memberships based on the observed network (Abbe, 2018). Spectral clustering stands out because
of its computational tractability. The statistical properties of spectral clustering under SBM or its variant
DCSBM have been widely studied. For example, the weak consistency of clustering, i.e., the proportion of
misclustered nodes converges to zero as the number of nodes increases, has been investigated by Rohe et al.
(2011); Lei & Rinaldo (2015); Joseph & Yu (2016), among others, and the strong consistency, namely, the
memberships can be perfectly recovered in large samples, has been established in Su et al. (2019). Moreover,
the minimax rate of the estimator for the edge probability matrix (i.e., the population counterpart of the
adjacency matrix in terms of matrix norms such as Frobenius or spectral norm has been provided (Gao et al.,
2015). However, how accurately the spectral clustering method can estimate each entry of the edge probability
matrix is unclear. We develop the entrywise bound for the estimated edge probability matrix, which is
essential to quantify the uncertainty in statistical inference for the population counterpart of the adjacency
matrix in SBMs and DCSBMs. In addition, we establish the asymptotic normality of the estimated edge
probability matrix, which turns out to be asymptotic efficient, under SBMs and DCSBMs, so we can construct
asymptotically entrywise confidence intervals for the probability matrix. The asymptotic Gaussian behavior
for the estimators of the block probability matrices (Tang et al., 2022) and the eigenvector matrix (Tang &
Priebe, 2018; Cape et al., 2019; Xie, 2024) have been studied under SBMs. However, the asymptotic behavior
of the estimator for the edge probability matrix under more general DCSBMs is undeveloped.

3 Stochastic Block Model-Aware Topological Neural Networks: Undirected Graph

3.1 Mixed-Up Undirected Graph Construction

To capture the topological information from the graph G and node features, we construct a mixed-up graph
GM = (AM, X) based on original input graph GO = (AO, X) and k-hop graph GK = (AK, X) (where AM,
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AO, and AK denote adjacency matrices of the mixed-up graph, original graph, and k-hop graph respectively).
X = [x⊤

1 , x⊤
2 , . . . , x⊤

N ] ∈ RN×d is the node feature matrix where N is the number of nodes, d is the number
of features, and xi denotes the node features of the node ui.

Original Graph Representation Learning. We adopt the Graph Convolutional Layer (GCL) to perform
message passing on the original graph GO = (AO, X) where AO denotes the adjacency matrix of the original
graph. It utilizes the original graph structure of GO with its node feature matrix X through the graph
convolution operation and a multi-layer perceptron (MLP). Specifically, the designed graph convolution
operation proceeds by multiplying the input of each layer with the τ -th power of the normalized adjacency
matrix. The τ -th power operator contains statistics from the τ -th step of a random walk on the graph (in this
study, we set τ to be 2), thus nodes can indirectly receive more information from farther nodes in the graph.
Combined with a multi-layer perceptron (MLP), the representation learned at the ℓ-th layer is given by:

Z(ℓ+1)
GO

= fMLP(σ(ÂO
τ
H

(ℓ)
GO

W (ℓ))), (1)

where ÂO = D̃
− 1

2
O ÃOD̃

1
2
O, ÃO = AO + I, and D̃ is the corresponding degree matrix of Ã, H

(0)
GO

= X, fMLP

is an MLP which has 2 layers with batch normalization, σ(·) is the non-linear activation function, W (ℓ) is a
trainable weight of ℓ-th layer.

K-Nearest Neighbor Graph Representation Learning. First, in order to capture graph structural
information of nodes in topology and feature spaces, we build a K-nearest neighbor (KNN) graph, i.e.,
GK = (AK, X). In our study, we first define the similarity matrix SK ∈ RN×N among N nodes and we
consider three different methods as follows: (i) Cosine Similarity: It uses the cosine value of the angle
between two vectors to measure the similarity, i.e., Suv = xu·xv

|xu||xv| ; (ii) Gaussian Kernel: It is based on
the idea of the heat equation, a partial differential equation that describes how heat propagates over time
t, which can be defined as follows Suv = exp(−||xu − xv||2/t); and (iii) Node Embedding Similarity: Let
H(ℓ+1) be the node embedding of (ℓ)-th layer of GNN. For any u, v ∈ V, we can calculate the similarity
score Suv between nodes u and v as (i) Cosine Similarity: Suv = H(ℓ+1)

u ·H(ℓ+1)
v

||H(ℓ+1)
u ||||H(ℓ+1)

v ||
or (ii) Gaussian Kernel:

Suv = exp (−||H(ℓ+1)
u − H

(ℓ+1)
v ||2/t) (where t is a free parameter). Then, the adjacency matrix AK can be

obtained by selecting top-K similar neighboring nodes of each node. Similarly, we can use Eq. 1 to learn the
(ℓ + 1)-th layer node embeddings of the above KNN graph, which is denoted by Z(ℓ+1)

GK
.

Mixup for Graph Construction. Here we adopt the node-level attention mechanism to learn the hidden
connectivity between nodes. Specifically, given a node pair (u, v), the importance coefficient between nodes u

and v can be formulated as (for the simplicity, we omit (ℓ + 1) for Z(ℓ+1)
GO

and Z(ℓ+1)
GK

):

eM
uv = WM[ZGO , ZGK ],

αeM
uv

= Softmax(eM
uv ) = exp(σ(W ′

MeM
uv ))∑

v′∈V exp(σ(W ′
MeM

uv′))
,

where [·, ·] represents the concatenation operation, WM and W ′
M are trainable parameters, σ(·) denotes the

LeakyReLU function with negative input slope as 0.1. After the above calculation, we can get the mixup
attention score αeM

uv
which represents the weight of the edge between nodes u and v.

3.2 Stochastic Block Models for Undirected Graph

We consider two classes of probabilistic models for generating undirected networks with communities. The
first is the SBM (Holland et al., 1983). The second is the DCSBM (Karrer & Newman, 2011). Suppose
the N nodes are assigned to K non-overlapping communities. The k-th community has Nk Nodes with∑K

k=1 Nk = N , and denote πk := Nk/N . Let gi ∈ {1, ..., K} be the community assignment (i.e., cluster) of
node i. Alternatively, the community assignments can be represented by a membership matrix Z ∈ {0, 1}N×K ,
where each row corresponds to a node and each column to a community. Specifically, Zik = 1 if and only
if gi = k, and Zij = 0 otherwise. Let B ∈ RK×K be the block probability matrix, where Bst specifies the
probability of an edge between nodes in communities s and t.
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Given B and Z, the SBM assume that each entry Aij(i < j) of A is generated independently by Aij ∼
Bernoulli(Bgigj ). In SBMs, the nodes within each community are stochastic equivalent. To incorporate the
node heterogeneity, the more general model DCSBM is considered as follows. Let θ = (θ1, ..., θN )⊺ ∈ RN be
the node propensity parameters and denote Θ = diag{θ1, ..., θN }, where each entry θi captures the individual
tendency or activity level of node i to form edges in the network. Given B, Z and Θ, the DCSBM assume
each entry Aij(i < j) of A is generated independently by Aij ∼ Bernoulli(θiθjBgigj

). It is then easy to see
that

P := ΘZBZ⊺Θ ∈ RN×N (2)

is the population counterpart of A. P is referred to as the edge probability matrix. Note that Θ and B are
only identifiable up to scaling. As a remedy, we use the following normalization rule∑

i,gi=k

θi = Nk, k = 1, ..., K.

With this normalization rule, the SBM is nested by the DCSBM by letting θi = 1 for i = 1, ..., N . To
estimate P , we should estimate Z, B and Θ, respectively. Before that, we first recall and introduce some
notation. Let d̂i =

∑N
j=1 Aij be the degree of node i and D = diag{d̂1, ..., d̂N }. The graph Laplacian is

defined as L = I + D−1/2AD−1/2. Note that this graph Laplacian matrix has the same eigenspaces as that
of D−1/2AD−1/2.

Under SBMs, we estimate Z using the standard spectral clustering on the graph Laplacian matrix L. That is,
conducting k-means on the top-K eigenvectors of L. The estimator is denoted by Ẑ. WLOG, we assume that
Ẑ has been orthogonally transformed to align with Z. We estimate B by the following B̂ = (B̂ql)1≤q≤l≤K ,

B̂ql,q ̸=l :=
∑

ĝi=q,ĝj=l Aij

N̂qN̂l

and B̂qq :=
∑

ĝi=q,ĝj=q Aij

N̂q(N̂q − 1)
.

Thereby, we obtain P̂ := ẐB̂Ẑ⊺. Under the DCSBMs, we estimate Z using the spherical spectral clustering
on the graph Laplacian matrix L. That is, conducting k-means on the L2-row-normalized top-K eigenvectors
of L. With a light abuse of notation, the estimator is also denoted by Ẑ. We estimate B by B̂ = (B̂ql)1≤q,l≤K ,

B̂ql :=
∑

1≤i ̸=j≤N AijẐiqẐjl∑
1≤i ̸=j≤N ẐiqẐjl

=
∑

ĝi=q,ĝj=l Aij

N̂qN̂l

.

We estimate θi by θ̂i defined as

θ̂i =
N̂ĝi

∑
j Aij∑

ĝl=ĝi

∑N
j=1 Alj

,

where N̂ĝi
is the number of nodes in the estimated community ĝi. We also denote Θ̂ = diag(θ̂). Finally, we

obtain P̂ := Θ̂ẐB̂Ẑ⊺Θ̂. The detailed derivations of the estimators can be found in the Appendix.

3.3 Multi-View Topological Graph Neural Networks for Undirected Graph

Multi-View Topological Convolutional Layer. To capture the underlying topological features of the
subgraph Gu of each node u, we employ K filtration functions: fi : V 7→ R for i = {1, . . . , K }. Each
filtration function fi gradually reveals one specific topological structure at different levels of connectivity, e.g.,
degree centrality score, betweenness centrality score, closeness centrality score, and other node centrality
measurements. With each filtration function fi, we construct a set of Q persistence images of resolution
P × P using tools in persistent homology analysis. Combining Q persistence images of resolution P × P
from K different filtration functions, we construct a multi-view topological representation, i.e., the set of
persistence images (PIs) [PI1, PI2, . . . , PIK ] with the dimension K × Q × P × P . We design a multi-view
topological convolutional layer fMV-GCL to (i) jointly extract and learn the latent topological features and (ii)
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leverage and preserve the multi-modal structure. Firstly, hidden representations of the set of PIs are achieved
through a combination of a CNN-based model and global pooling, which can be defined as

Zu,T = ξPOOL(fCNN([PI1, PI2, . . . , PIK ])), (3)

where fCNN is a CNN-based neural network, ξPOOL is a pooling layer that preserves the information of the
input in a fixed-size representation (in general, we consider either global average pooling or global max
pooling). In Eq. equation 3, we first apply a CNN-based model to learn the latent feature of PIs, and then
employ a global pooling layer over the latent feature and obtain an image-level feature.

Graph Convolutional Layer. Our third representation learning module is the Graph Convolutional Layer
(GCL). It utilizes the graph structure of GM with its node feature matrix X through the graph convolution
operation and a multi-layer perceptron (MLP). The representation learned at the ℓ-th layer is given by

Z(ℓ+1)
G = fMLP([σ(AMH

(ℓ)
M W

(ℓ)
M ), σ(P̂ H

(ℓ)
SBMW

(ℓ)
SBM)]),

where H
(0)
M = H

(0)
SBM = X, fMLP is an MLP which has 2 layers with batch normalization, σ(·) is the non-linear

activation function, W
(ℓ)
M and W

(ℓ)
SBM are trainable weight matrices of ℓ-th layer. Then, we obtain the final

embedding Z by combining embeddings from the above modules, i.e., Z = [ZT , ZG ], where [·, ·] denotes the
concatenation operation and ZG represents the final output of the graph convolutional layer.

4 Stochastic Block Model-Aware Topological Neural Networks: Knowledge Graph

A knowledge graph (KG) is defined as a directed graph that stores structured information about real-world
entities and relations. Let G = {V, R, L} be an instance of a KG, where V, R, and L denote the entity (i.e.,
node), relation, and edge sets respectively. Each edge e ∈ L is presented as a triple (h, r, t) ∈ V × R × V,
describing that there is a relationship r ∈ R from head entity h to tail entity t. In order to apply the stochastic
co-block model (which is introduced in Section 4.1) to classify nodes into K clusters, we first transform the
KG into a directed graph and then generate community information based on the graph’s adjacency matrix
instead of the knowledge graph by using SBM method. Note that, for the KG, we incorporate its information
into the model and we don’t have an additional assumption for KG. The overall architecture of SBM-TNN is
as shown in Figure 1.

4.1 Stochastic Co-Block Models for Directed Graph

Similar to the undirected networks, we consider two classes of probabilistic models for generating directed
networks with co-clusters, namely, row clusters (communities) and column clusters (communities). The first
is the stochastic co-block model (ScBM), and the second is the degree-corrected stochastic co-block model
(DCScBM) (Rohe et al., 2016).

Different from SBMs and DCSBMs, the models for directed networks incorporate two kinds of clusters.
Suppose the N nodes are assigned to Ky non-overlapping row clusters and Kz non-overlapping column
clusters. WLOG, suppose Ky ≤ Kz. The kyth (resp. kzth) row (resp. column) cluster has Ny

k (resp.
Nz

k ) nodes with
∑Ky

k=1 Ny
k = N (resp.

∑Kz

k=1 Nz
k = N), and denote πy

k := Ny
k /N (resp. πz

k := Nz
k /N).

Let gy
i ∈ {1, ..., Ky} (resp. gz

i ∈ {1, ..., Kz}) be the row (resp. column) community assignment of node i.
Following the same logic as undirected networks, let Y ∈ {0, 1}N×Ky and Z ∈ {0, 1}N×Kz denote the row
and column membership matrices, respectively. Let B ∈ RKy×Kz be the block probability matrix.

Given B, Y and Z, the ScBM assume that each entry Aij(i ̸= j) of A is generated independently by
Aij ∼ Bernoulli(Bgy

i
gz

j
). In ScBMs, the nodes in a common row (resp. column) cluster are stochastically

equivalent senders (resp. receivers) in the sense that they send (resp. receive) out an edge to a third node
with equal probabilities. To incorporate the node heterogeneity in sending and receiving edges, the more
general model DCScBM is considered as follows. Let θy = (θy

1 , ..., θy
N )⊺ ∈ RN and θz = (θz

1 , ..., θz
N )⊺ ∈ RN

be the node propensity parameters in sending and receiving edges, respectively. Denote Θy = diag(θy) and
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Θz = diag(θz). Given B, Y , Z, Θy and Θz, the DCScBM assumes each entry Aij(i ̸= j) of A is generated
independently by Aij ∼ Bernoulli(θy

i θz
j Bgy

i
gz

j
). Then, under the DCScBM, it is easy to see

P := ΘyY BZ⊺Θz ∈ RN×N (4)

is the population adjacency matrix of A, referred to as the edge probability matrix later. To ensure
identifiability, we use the following normalization rule∑

i,gy
i

=ky

θy
i = Ny

k , ky = 1, ..., Ky,

∑
i,gz

i
=kz

θz
i = Nz

k , kz = 1, ..., Kz.
(5)

The ScBM is nested by the DCScBM by letting θy
i = 1 and θz

i = 1 for i = 1, ..., N . To estimate P ,
we introduce some notation now. Let d̂y

i =
∑N

j=1 Aij (resp. d̂z
i =

∑N
j=1 Aji) be the out-degree (resp.

in-degree) of node i and Dy = diag{d̂y
1, ..., d̂y

N } (resp. Dz = diag{d̂z
1, ..., d̂z

N }). Define the graph Laplacian by
L = I + (Dy)−1/2A(Dz)−1/2. Under ScBMs, we compute the SVD of L and then conduct the k-means on
the top-Ky left (resp. top-Kz right) singular vectors of L, to obtain Ky row (resp. Kz column) clusters,
denoted by Ŷ (resp. Ẑ). WLOG, we assume that Ŷ (Ẑ) has been orthogonally transformed to align with Y
(resp. Z). Similar to the undirected set-up, we estimate B by the following B̂ = (B̂ql)1≤q≤Ky,1≤l≤Kz ,

B̂ql :=
∑

1≤i ̸=j≤N AijŶiqẐjl∑
1≤i ̸=j≤N ŶiqẐjl

=

∑
ĝy

i
=q,ĝz

j
=l Aij

N̂y
q N̂z

l

,

where N̂y
q (resp. N̂z

l ) denotes the number of nodes in the estimated row cluster q (resp. column cluster l).
Thereby, we obtain P̂ := Ŷ B̂Ẑ⊺. Under the DCScBMs, we estimate Z by applying the spherical spectral
clustering to the graph Laplacian matrix L. That is, we obtain the top-Ky row and column singular vectors
by computing the SVD of L, and then conduct k-means on the L2-row-normalized left and right singular
vectors to obtain the Ky row clusters and Kz column clusters, respectively. With a light abuse of notation,
the estimators are denoted by Ŷ and Ẑ. Following the same logic as in DCSBM, we obtain the estimators
B̂ = (B̂ql), Θ̂y = diag(θ̂y) and Θ̂z = diag(θ̂z) as follows.

B̂ql :=

∑
ĝy

i
=q,ĝz

j
=l Aij

N̂y
q N̂z

l

, θ̂y
i =

N̂ĝy
i

∑
j Aij∑

ĝy
l

=ĝy
i

∑N
j=1 Alj

,

θ̂z
j =

N̂ĝz
j

∑
i Aij∑

ĝz
l

=ĝz
j

∑N
i=1 Ail

,

where N̂y
ĝi

is the number of nodes in the estimated row cluster ĝy
i and N̂z

ĝj
is the number of nodes in the

estimated column cluster ĝz
j . With these estimators at hand, we obtain P̂ := Θ̂yŶ B̂Ẑ⊺Θ̂z.

4.2 Attention-Based Topological Neural Networks for Knowledge Graph

In this section, we propose a novel attention-based topological neural network (A-TNN) to combine the
community information and topological signatures learned from ScBM for entity representation learning.

Z
(ℓ+1)
h = σ(

∑
(r,t)∈Nh

α
(ℓ)
h,r,tX̃

(ℓ)
h,r,t),

X̃
(ℓ)
h,r,t = WKG1 [X(ℓ)

h , X
(ℓ)
t , X

(ℓ)
Ck

, Xtopo
h , Xr],

α
(ℓ)
h,r,t =

exp(σ(W (ℓ)
KG2

X̃
(ℓ)
h,r,t))∑

(r,t′)∈Nh
exp(σ(W (ℓ)

KG2
X̃

(ℓ)
h,r,t))

,

(6)
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where X
(ℓ)
h , X

(ℓ)
t , and X

(ℓ)
r denote embeddings of head entity h, tail entity t, and relation r respectively,

WKG1 and WKG2 denote the linear transformation matrices, X
(ℓ)
Ck

, Nh denotes the set of neighboring tuples
(r, t) for entity h, X

(ℓ)
k =

∑
h∈Ck

X
(ℓ)
h which aggregates node embeddings from the community Ck (i.e.,

results from Section 4.1), and Xtopo
h = fMV-GCL(Gh) (where Gh denotes the subgraph of the node h).

5 Theoretical Guarantees

To establish the statistical property of P̂ , we need the following assumptions. In order to provide the results
uniformly and reduce redundancy, we use the notations in the more general ScBMs and DCScBMs. The
SBMs and DCSBMs can be regarded as the special case of ScBMs and DCScBMs.
Assumption 5.1. Suppose Ky and Kz are both fixed and both the row and column clusters satisfies that
for any ky ∈ {1, ..., Ky}, cN/Ky ≤ Ny

k ≤ CN/Ky for some constants 0 ≤ c ≤ C; for any kz ∈ {1, ..., Kz},
c′N/Kz ≤ Nz

k ≤ C ′N/Kz for some constants 0 ≤ c′ ≤ C ′.
Assumption 5.2. Suppose the edge probability matrix B ∈ [0, 1]Ky×Kz (Ky ≤ Kz) is of rank Kz. The
entries of B are of the same magnitude ρN with NρN ≥ c log N .
Assumption 5.3. Define σKy be the Kyth singular value of L = (Dy)−1/2P (Dz)−1/2, where Dy =
diag{dy

1, ..., dy
N } with dy

i =
∑N

j=1 Pij, and Dz = diag{dz
1, ..., dz

N } with dz
i =

∑N
j=1 Pji. Suppose

lim infN |σy
K | > 0.

Assumption 5.4. Define θ
y = maxi θy

i and θy = mini θy
i . Suppose c ≤ lim infN θy ≤ lim supN θ

y ≤ C for
some constants 0 ≤ c ≤ C. Similarly, define θ

z = maxi θz
i and θz = mini θz

i . Suppose c′ ≤ lim infN θz ≤
lim supN θ

z ≤ C ′ for some constants 0 ≤ c′ ≤ C ′.

Assumption 5.5. Define H = (Y ⊺ΘyY )1/2BL(Z⊺ΘzZ)1/2 ∈ RKy×Kz with BL := O
−1/2
B BP

−1/2
B , where

OB is a Ky × Ky diagonal matrix with [OB]ss =
∑

t Bstn
z
t and PB is a Kz × Kz diagonal matrix with

[PB ]tt =
∑

s Bstn
y
s . Suppose there exits gap between any two columns of H such that mini̸=j ∥H·i −H·j∥2 ≥ ξ

for some constant ξ > 0.

Assumptions 5.1-5.4 are generally required for undirected network models SBMs and DCSBMs. For directed
network models ScBMs and DCScBMs, we need additional Assumption 5.5. Assumption 5.1 requires that
the number of nodes in each cluster is not too small, which ensures the strong consistency of the spectral
method, namely, each node is correctly clustered. For notational simplicity, we fix the number of communities,
although the framework can naturally be extended to accommodate varying numbers of communities as in
Su et al. (2019). Assumption 5.2 requires that the network is not too sparse. This condition is the minimal
requirement for strong consistency of SBM (Abbe et al., 2015; Su et al., 2019; Ma et al., 2021). Assumption
5.3 implies that the singular value of the population Laplacian matrix is lower bounded by a constant. For an
SBM with cross-block probability being r, and within-block probability being r + p, then σK = p/(Kr + p) is
a constant provided that r and p are of the same order. Assumption 5.4 requires that the node propensity
parameters are upper and lower bounded. The upper bound is mild as the node propensity parameters
are normalized to satisfy (5). The lower bound can be relaxed to n−α for some positive constant α with a
sacrifice of the simplicity of other conditions (Su et al., 2019). This assumption is only needed when networks
follow DCSBMs and DCScBMs. Assumption 5.5 is required to ensure that there exists a gap between two
rows of the population right singular vectors when the two nodes are in different column clusters. This is a
remedy assumption for the invalidity of the full column rank under directed network models.
Lemma 5.6 (Strong consistency). Suppose Assumptions 5.1-5.5 hold. Then for large enough N , it holds for
both ScBMs and DCScBMs that

sup
1≤i≤N

1{ĝy
i ̸= gy

i } = 0 and sup
1≤i≤N

1{ĝz
i ̸= gz

i } = 0 a.s. (7)

and

sup
1≤q≤Ky,1≤l≤Kz

|B̂ql − Bql| = Oa.s.(
√

ρ log N

N
). (8)
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For DCScBMs, it also holds that

sup
1≤i≤N

|θ̂y
i − θy

i | = Oa.s.(
log N

Nρ
)

sup
1≤i≤N

|θ̂z
i − θz

i | = Oa.s.(
log N

Nρ
).

(9)

Remark 1. Lemma 5.6 also holds for SBMs and DCSBMs with the notation slightly changed and without
the requirement of Assumption 5.5. The strong consistency results are critical for deriving the error bound
and asymptotic normality of P̂ . equation 7 and equation 9 can be implied by Corollary III.1 and Theorem
III.6 in Su et al. Su et al. (2019).
Theorem 5.7 (Error bound). Suppose Assumptions 5.1-5.5 hold. Then for large enough N , it holds for
ScBMs that

sup
1≤i,j≤N

|P̂ij − Pij | = Oa.s.(
√

ρ log N

N
), (10)

and for DCScBMs that

sup
1≤i,j≤N

|P̂ij − Pij | = Oa.s.(
log N

N
). (11)

Remark 2. For SBMs and DCSBMs, equation 10 and equation 22 hold without Assumption 5.5. Most of
the current literature on SBM and its variants study the high probability spectral norm bound of A from
P Gao et al. (2015); Lei & Rinaldo (2015). Our results are novel in that we provide the uniform entrywise
bound of P̂ from P which holds almost surely. The less tightness of DCSBMs and DCScBMs comes from the
estimation of the node propensity parameters.
Theorem 5.8 (Asymptotic normality). Suppose Assumptions 5.1-5.5 hold. Then for ScBMs, (12) holds with
c0 = 1, θy

i = θz
j = 1 and E = 0. For DCScBMs, (12) holds with c0 = 1 and Eij = Oa.s.(log N/N) (where

1 ≤ i, j ≤ N).

N(P̂ − P + E)ij → N(0, c0 · (θ
y
i )2 ·

Bg
y
i

gz
j

(1 − Bg
y
i

gz
j

)

πg
y
i

πgz
j

· (θ
z
j )2), (12)

Remark 3. (12) also holds for SBMs and DCSBMs without Assumption 5.5 and with the same order of
E and notation slightly modified except that c0 = 2 when gi = gj and c0 = 1 when gi ̸= gj. For SBMs, the
estimator P̂ is asymptotic efficient (Bickel et al., 2013). For DCSBMs and DCScBMs, the bias Eij and
Fij come from the estimation of θ. Note that for denser networks, namely, ρ = Ω(log N/N), the bias is
dominated by the signal Pij. To the best of our knowledge, this is the first result to show the asymptotic
normality of an estimator against the edge probability matrix P .

6 Experiments

Datasets and Baselines. We experiment on 2 types of networks for link prediction (i) citation networks:
Cora-ML, Citeseer, and PubMed (Sen et al., 2008) and (ii) graphs related to Amazon shopping records:
Photo and Computers (Shchur et al., 2018). For link prediction tasks, we compare against 10 state-of-the-
art (SOA) baselines, including (i) Graph convolution network (GCN) (Kipf & Welling, 2017); (ii) Graph
Attention Networks (GAT) (Veličković et al., 2018b); (iii) Hyperbolic Graph Convolutional Neural Networks
(HGCN) (Chami et al., 2019); (iv) Position-aware Graph Neural Networks (P-GNN) (You et al., 2019); (v)
SEAL (Zhang & Chen, 2018); (vi) Block Simplicial Complex Neural Networks (BScNets) (Chen et al., 2022b);
(vii) Topological Loop-Counting Graph Neural Network (TLC-GNN) (Yan et al., 2021). For knowledge graph
completion tasks, we conduct experiments on 3 well-known KG datasets including (i) FB15k-237 (Toutanova
et al., 2015; Toutanova & Chen, 2015), WN18RR Dettmers et al. (2018), and NELL-995 (Xiong et al., 2017),
and use the following popular models as baselines: (i) CompGCN (Vashishth et al., 2019); (ii) Relational
Graph Convolutional Network (RGCN) (Schlichtkrull et al., 2018); (iii) KBGAT (Nathani et al., 2019);
(iv) Atrous Convolution and Residual Embedding (AcrE) (Ren et al., 2020); (v) ReInceptionE (Xie et al.,
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Table 1: AUC-ROC score on different link prediction benchmarks.
Model Cora-ML Citeseer PubMed Photo Computers
GCN Kipf & Welling (2017) 90.5±0.2 82.6±1.9 89.6±3.7 91.8±0.0 87.8±0.0
GAT Veličković et al. (2018b) 72.8±0.2 74.8±1.5 80.3±0.0 92.9±0.3 86.4±0.0
HGCN Chami et al. (2019) 93.8±0.1 96.6±0.1 96.3±0.0 95.4±0.0 93.6±0.0
P-GNN You et al. (2019) 74.1±2.4 73.9±2.6 79.6±0.5 90.9±0.7 88.3±1.0
SEAL Zhang & Chen (2018) 91.3±5.7 89.8±2.3 92.4±1.2 97.8±1.3 96.8±1.5
BScNets Chen et al. (2022b) 94.9±0.7 95.5±0.5 97.6±0.1 96.6±0.3 97.0±0.3
TLC-GNN Yan et al. (2021) 94.9±0.4 95.1±0.7 97.0±0.1 98.2±0.1 97.9±0.1
SBM-TNN (ours) 96.2±0.2 97.1±0.3 98.2±0.1 98.8±0.2 99.0±0.2

2020); (vi) Semantic Evidence aware Graph Neural Network (SE-GNN) (Li et al., 2022); and (vii) Neural
Bellman-Ford Network (NBFNet) (Zhu et al., 2021).

Experiment Settings. We implement our proposed SBM-TNN with Pytorch framework on two NVIDIA
RTX A5000 GPUs with 24 GiB RAM. Following Chami et al. (2019), for graph link prediction tasks, we
randomly split edges into 85%/5%/10% for training, validation, and testing, and we evaluate link prediction
using the ROC-AUC score on the test set. For KG completion tasks, we follow the settings in previous
works (Vashishth et al., 2019; Schlichtkrull et al., 2018), i.e., triplets in these datasets are randomly split into
training, validation, and test sets respectively, and we evaluate the KG completion performance by using
Mean Reciprocal Rank (MRR) and Hits@N (here we consider N ∈ {1, 3, 10}). Code and data are publicly
available at https://github.com/yuzhouguangc/SBM-TNN. For further details on the experiment settings,
please refer to Appendix.

Experiment Results. The link prediction and KG completion results are summarized in Tables 1 and 2.
From Table 1, the results indicate that our SBM-TNN consistently achieves the best performance on all
datasets. More specifically, we find that (i) Compared to the spectral-based GNN (i.e., GCN), our SBM-TNN
yields up to 12.8% relative improvements for all 5 datasets; (ii) Compared to the spatial-based GNNs (i.e.,
GAT, P-GNN, and SEAL), SBM-TNN improves upon the runner-up by a margin of 5.4%, 8.1%, 6.3%, 1.0%,
and 2.3% on datasets Cora-ML, Citeseer, PubMed, Photo and Computers; (iii) SBM-TNN outperforms the
hyperbolic-based NNs, i.e., HGCN with a statistically significant margin; (iv) SBM-TNN further improves
topology-based GNN (i.e., BScNets and TLC-GNN) with a significant margin on all 5 datasets. We also
compare with two additional sate-of-the-art baselines, i.e., NCNC (Wang et al., 2024) and LPFormer (Shomer
et al., 2024) on Cora-ML and Citeseer datasets with MRR, and we observe that our SBM-TNN achieves
average improvements of 23.1% and 3.3% over NCNC and LPFormer respectively (further details can be found
in the Appendix). Additionally, Table 2 shows the performance of SBM-TNN and baseline methods on 3 KG
datasets. From Table 2, we observe that SBM-TNN surpasses the baselines in terms of the MRR, Hits@1,
Hits@3, and Hits@10 on all datasets. Furthermore, we have conducted an additional comparison with the
GNNs + NBFNet on ogbl-wikikg2 data (Hu et al., 2020). The test MRR of SBM-TNN and GNNs + NBFNet
are 0.7121±0.0009 and 0.7086±0.0028, i.e., our SBM-TNN is significantly better than this state-of-the-art
method. Overall, the results show that SBM-TNN can accurately capture and learn the key structural and
local topological information, and achieve highly promising performance in both link prediction and KG
completion tasks.

Table 2: KGC results (%) with different scoring functions.
FB15k-237 WN18RR NELL-995

MRR Hits@1 Hits@3 Hits@10 MRR Hits@1 Hits@3 Hits@10 MRR Hits@1 Hits@3 Hits@10
CompGCN Vashishth et al. (2019) 35.5±0.1 26.4±0.1 39.0±0.2 53.6±0.3 47.2±0.2 43.7±0.3 48.5±0.3 54.0±0.0 38.1±0.4 30.4±0.5 42.2±0.3 52.9±0.1
RGCN Schlichtkrull et al. (2018) 29.6±0.3 19.1±0.5 34.0±0.2 50.1±0.2 43.0±0.2 38.6±0.3 45.0±0.1 50.8±0.3 27.8±0.2 19.9±0.2 31.4±0.0 43.0±0.3
KBGAT Nathani et al. (2019) 35.0±0.3 26.0±0.3 38.5±0.3 53.1±0.3 46.4±0.2 42.6±0.2 47.9±0.3 53.9±0.2 37.4±0.6 29.7±0.7 41.4±0.8 52.0±0.4
AcrE Ren et al. (2020) 35.8±0.3 26.6±0.2 39.3±0.3 54.5±0.2 45.9±0.2 42.2±0.3 47.3±0.2 53.2±0.1 - - - -
ReInceptionE Xie et al. (2020) 34.9±0.2 - - 52.8±0.2 48.3±0.3 - - 58.2±0.3 - - - -
SE-GNN Li et al. (2022) 36.1±0.3 23.4±0.2 37.0±0.3 51.5±0.2 48.4±0.4 43.6±0.2 47.9±0.2 57.2±0.3 39.3±0.5 30.2±0.3 43.0±0.2 52.8±0.3
GNNs + NBFNet Zhu et al. (2021) 41.5±0.1 32.1±0.1 45.6±0.4 59.9±0.3 55.1±0.1 49.7±0.1 57.2±0.3 66.6±0.3 40.5±0.3 32.7±0.2 44.9±0.3 55.0±0.4
SBM-TNN (ours) 36.9±0.2 27.3±0.3 40.8±0.2 55.6±0.1 49.1±0.2 44.1±0.2 48.9±0.1 59.3±0.2 41.7±0.2 34.7±0.2 45.2±0.1 55.2±0.1
SBM-TNN + NBFNet (ours) 41.9±0.1 33.0±0.1 47.1±0.2 60.1±0.2 55.5±0.1 49.9±0.1 59.2±0.1 67.0±0.0 42.0±0.1 34.9±0.2 45.5±0.3 55.9±0.1
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Table 3: Link prediction (AUC-ROC) of SBM-TNN with different τ .
Dataset τ = 1 τ = 2 τ = 3 τ = 4
Cora-ML 93.7±0.8 96.2±0.2 95.4±0.3 93.2±0.9
Citeseer 94.9±0.8 97.0±0.3 97.1±0.3 95.1±0.6
PubMed 97.9±0.3 98.2±0.2 98.7±0.6 95.5±0.7

Table 4: Performance comparison for link prediction (AUC-ROC) between P and P̂ .
Architecture Cora-ML Citeseer PubMed
SBM-TNN (P ) 95.3±0.3 95.0±0.5 96.3±0.3
SBM-TNN (P̂ ) 96.2±0.2 97.1±0.3 98.2±0.1

Sensitivity Analysis To evaluate the link prediction performance of SBM-TNN with different τ , we conduct
experiments on the Cora-ML, Citeseer, and PubMed datasets. As shown in Table 3, we observe that our
approach achieves optimal performance under a specific power of the normalized adjacency matrix. In
addition, we have run additional experiments on Cora-ML and Citeseer. As shown in Table 4, SBM-TNN with
estimated P̂ outperforms SBM-TNN with actual P . In particular, the average relative gain of SBM-TNN
with estimated P̂ over SBM-TNN with actual P is 1.58%.

Ablation Study We have also conducted ablation studies to explore the importance of different components,
and considered two ablated variants, i.e., (i) SBM-GNN represents that replacing TNN by a graph neural
network (GNN), and (ii) TNN represents that SBM-TNN without adding SBM method, (i.e., we do not
incorporate community-level information into the model architecture). From Table 5, we observe that our
SBM-TNN always outperforms both the GNN model equipped with SBM (i.e., SBM-GNN) and TNN model
on Cora-ML and Citeseer data. That is, when ablating the components (i.e., SBM and TNN), the ROC AUC
score of SBM-TNN drops significantly. Our results indicate that community and topological information
consistently boost the performance of link prediction.

Computational Complexity The topological complexity of the standard persistent homology (PH) matrix
reduction algorithm runs in time at most O(Q3), where Q is the number of simplices in a filtration. For
0-dimensional PH, it can be computed efficiently using disjoint sets with complexity O(Qα−1(Q)), where
α−1(·) is the inverse Ackermann function. In our study, for graph representation learning, we only consider
dimension 0 (connected components) and dimension 1 (cycles) due to the fact that we cannot observe enough
higher-order (sub)structures in target datasets. If we consider high-dimensional topological features, the
time complexity will grow large with the worst-case complexity O(md) for d-dimensional topological features
(where m denotes the number of edges).

7 Conclusion

We propose a new Stochastic Block Model-Aware Topological Neural Networks (SBM-TNN) method for
both link prediction and knowledge graph completion tasks. By leveraging the topological information
and estimated probability matrix with communities from different network topologies, SBM-TNN achieves
state-of-the-art results on all datasets and the experimental evaluation confirms that SBM-TNN is accurate,
flexible, and scalable. We also provide a theoretical guarantee for statistical inference based on the estimated

Table 5: Ablation studies.
Architecture Cora-ML Citeseer PubMed
SBM-TNN 96.2±0.2 97.1±0.3 98.2±0.1
SBM-GNN 90.7±0.3 83.7±0.4 93.7±0.2
TNN 93.2±0.5 96.0±0.5 95.3±0.6
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edge probabilities. Interesting future directions include extending how the SBM-TNN can be used for
non-attributed, overlapping, dynamic network community detection, high-quality synthetic graph generation.
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A Derivation of Estimators under Undirected Network Models

Under the SBMs, to estimate B, we note that for 1 ≤ q < l ≤ K,

Bql :=
∑

1≤i̸=j≤N PijZiqZjl∑
1≤i ̸=j≤N ZiqZjl

=
∑

gi=q,gj=l Pij

NqNl
and Bqq :=

∑
gi=q,gj=q Pij

Nq(Nq − 1) .
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Thus, it is reasonable to estimate B by the following B̂ = (B̂ql)1≤q≤l≤K ,

B̂ql,q ̸=l :=
∑

ĝi=q,ĝj=l Aij

N̂qN̂l

and B̂qq :=
∑

ĝi=q,ĝj=q Aij

N̂q(N̂q − 1)
.

Under the DCSBMs, to estimate B, we note that∑
gi=q,gj=l

Pij =
∑
gi=q

θi

∑
gj=l

θjBql = NqNlBql,

Hence, we can estimate B by B̂ = (B̂ql)1≤q,l≤K ,

B̂ql :=
∑

1≤i ̸=j≤N AijẐiqẐjl∑
1≤i ̸=j≤N ẐiqẐjl

=
∑

ĝi=q,ĝj=l Aij

N̂qN̂l

.

To estimate θ, we note that

∑
j

Pij = θi

∑
k

∑
gj=k

θjBgigj = θi

∑
k

NkBgik = θi

∑
gl=gi

N∑
j=1

Plj/Ngi ,

where we used Bgik =
∑

gl=gi,gj=k Plj/(Ngi
Nk). Hence, we estimate θi by θ̂i defined as

θ̂i =
N̂ĝi

∑
j Aij∑

ĝl=ĝi

∑N
j=1 Alj

,

where N̂ĝi
is the number of nodes in the estimated community ĝi. We also denote Θ̂ = diag(θ̂).

B Proofs and Lemmas

For simplicity, we provide the proofs for the undirected network models SBMs and DCSBMs. In most cases,
the proofs for the directed network models follow similarly. We highlight the differences if any.

B.1 Proof of Lemma 5.6

Proof. First, we consider the strong consistency of community detection. Under the undirected network
model SBM, the strong consistency of Ẑ follows from the Corollary II.1 in Su et al. (2019) and Assumptions
5.1 - 5.3. Under the undirected network model DCSBM, the strong consistency of Ẑ follows from Corollary
III.1 in Su et al. (2019), where they considered the regularized DCSBMs with regularization parameter τ .
In our set-up, τ = 0. Assumptions 5.1 - 5.4 imply that Assumptions 11-13 in Su et al. (2019) are satisfied.
Hence the result follows. Under the directed network model ScBM, the strong consistency of Ŷ is similarly
derived as that under the SBM. The strong consistency of Ẑ mainly depends on the success of Theorem II.1
in Su et al. (2019). In particular, Assumption 5.5 (with the notation simplified to the ScBMs) implies that
the rows of the population singular vectors V = (vi) ∈ Rn×Kz satisfies that

n1/2∥vi − vj∥2 ≥ C > 0

for gz
i ̸= gz

j and some constant C > 0 (see details in Theorem 2.1 in the first version of Su et al. (2019)).
Hence, Theorem II.1 in Su et al. (2019) holds and the strong consistency of Ẑ follows from Corollary II.1
in Su et al. (2019). Under the directed network model DCScBM, the strong consistency of Ŷ is similarly
derived as that under the DCSBM. The strong consistency of Ẑ mainly depends on the success of Theorem
III.4 in Su et al. (2019). In particular, Assumption 5.5 implies that L2 normalized rows of the population
singular vectors V = (vi) ∈ Rn×Kz satisfies that

∥ vi

∥vi∥2
− vj

∥vj∥2
∥2 ≥ C ′ > 0
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for gz
i ̸= gz

j and some constant C ′ > 0 Rohe et al. (2016). Hence, Theorem III.4 in Su et al. (2019) holds and
the strong consistency of Ẑ follows from Corollary III.1 in Su et al. (2019).

The strong consistency of θ̂ (resp. θ̂y and θ̂z) under DCSBMs (resp. DCScBMs) follows from Theorem
III.6 in Su et al. (2019). Actually, the strong consistency of Ẑ (resp. Ŷ and Ẑ) and Assumption 5.4 implies
Assumption 15 in Su et al. (2019). And the result follows by noting that the minimal average degree in our
set-up is O(Nρ).

Now we proceed to show the strong consistency of B̂. The proof holds for both undirected and directed
network models. For simplicity, we use the notation under undirected network models. For an ϵN to be
selected, we have

P

(
sup

1≤q<l≤K
|B̂ql − Bql| ≥ ϵN i.o.

)

≤ P

(
sup

1≤q<l≤K
|B̂ql − Bql| ≥ ϵN i.o., sup

1≤i≤N
1{ĝi ̸= gi} = 0

)
+ P

(
sup

1≤i≤N
1{ĝi ̸= gi} > 0 i.o.

)

≤ P

 sup
1≤q<l≤K

|
∑

gi=q,gj=l

( Aij

NqNl
− Pij

NqNl
)| ≥ ϵN i.o.

 , (13)

where the last inequality follows from the strong consistency of ĝi’s. To make the RHS of equation 13 zero, it
suffices to show that

∞∑
K=1

∑
1≤q<l≤K

P

|
∑

gi=q,gj=l

( Aij

NqNl
− Pij

NqNl
))| ≥ ϵN

 < ∞ (14)

for some ϵN . To this end, we use the Bernstein inequality. Define X(ij) = Aij−Pij

NqNl
, we have E(X(ij)) = 0,

|X(ij)| ≤ 1
NqNl

and∑
gi=q,gj=l

E[(X(ij))2] =
∑

gi=q,gj=l

E[ (Aij − Pij)2

N2
q N2

l

] =
∑

gi=q,gj=l

Pij(1 − Pij)
N2

q N2
l

= Bql(1 − Bql)
NqNl

.

Then by the Bernstein equality, we have

P(|
∑

gi=q,gj=l

X(ij)| ≥ ϵN ) ≤ exp

−
1
2 ϵ2

N
Bql(1−Bql)

NqNl
+ ϵN

3NqNl

 .

Choosing ϵN = C maxql

√
Bql(1−Bql)

NqNl
·
√

log N = O(
√

ρ log N

N ), it is easy to see that

Bql(1 − Bql) ≍ ρ ≳

√
ρ log N

N
≍ ϵN ,

where the inequality follows from Assumption 5.2. We thus have

P(|
∑

gi=q,gj=l

X(ij)| ≥ ϵN ) ≤ N−α

for some constant α > 0. As a result, equation 14 is met because of fixed K. Finally, we obtain the strong
consistency of B̂ that

sup
1≤q<l≤K

|B̂ql − Bql| = Oa.s.(
√

ρ log N

N
).

The proof for q = l goes similarly by noting that we can represent B̂qq − Bqq as the following summation of
independent terms,

B̂qq − Bqq =
∑

gi=q,gj=q,i<j

Aij − Pij

Nq(Nq − 1)/2 .
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Hence we omit it.

B.2 Proof of Theorem 5.8

Proof. We first provide the proof for the more general model DCSBMs, and then present the results for SBMs
as a special case.

It is easy to see that

P̂ − P = Θ̂ẐB̂Ẑ⊺Θ̂ − P = (Θ̂ − Θ)ẐB̂Ẑ⊺Θ̂ + ΘẐB̂Ẑ⊺(Θ̂ − Θ) + ΘẐB̂Ẑ⊺(Θ) − P

:= I + II + III − P . (15)

Now we proceed to bound I. We have by Lemma 5.6 that

sup
i

|θ̂i − θi| = Oa.s.(log N/(Nρ)),

and thus
sup

i
θ̂i ≤ sup

i
|θ̂i − θi| + sup

i
θi = Oa.s.(1)

by noting Assumption 5.4. By Eqs. 8 and 9 in Lemma 5.6, We can easily have

sup
ĝi,ĝj

B̂ĝiĝj
=a.s. sup

gi,gj

B̂gigj
≤ sup

gi,gj

|B̂gigj
− Bgigj

| + sup
gi,gj

Bgigj

= Oa.s.(
√

ρ log N

N
) + Oa.s.(ρ) = Oa.s.(ρ),

where the last equality is implied by Assumption 5.2. As a result,

sup
1≤i,j≤N

|(I)ij | = sup
1≤i,j≤N

|(diag(θ̂ − θ)ẐB̂Ẑ⊺diag(θ̂))ij |

= sup
1≤i,j≤N

|(θ̂i − θi)B̂ĝiĝj
θ̂j | = Oa.s.(log N/N). (16)

Similarly, we can show that
sup

1≤i,j≤N
|(II)ij | = Oa.s.(log N/N). (17)

It remains to bound III − P . Noting

ΘẐB̂Ẑ⊺Θ − P = Θ(ẐB̂Ẑ⊺ − ZBZ⊺)Θ (18)

and the boundness of θ by Assumption 5.4, we only need to bound ẐB̂Ẑ⊺ − ZBZ⊺. It is easy to observe
that

ẐB̂Ẑ⊺ − ZBZ⊺ = (Ẑ − Z)BẐ⊺ + ZB(Ẑ − Z)⊺ + Ẑ(B̂ − B)Ẑ⊺

:= E1 + E2 + E3.

For E3, we further have

E3 = Ẑ(B̂ − B)Ẑ⊺

= Z(B̂ − B)Z⊺ + (Ẑ − Z)(B̂ − B)Ẑ⊺ + Z(B̂ − B)(Ẑ − Z)⊺.

Combining the above two facts, we obtain

ẐB̂Ẑ⊺ − ZBZ⊺ = Z(B̂ − B)Z⊺ + R, (19)

where

R :=(Ẑ − Z)BẐ⊺ + ZB(Ẑ − Z)⊺ + (Ẑ − Z)(B̂ − B)Ẑ⊺ + Z(B̂ − B)(Ẑ − Z)⊺.
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By the strong consistency of Ẑ,
Ẑ − Z = 0, a.s., (20)

and thus R =a.s. 0. It remains to bound Z(B̂ − B)Z⊺. Noting

(Z(B̂ − B)Z⊺)ij = (B̂ − B)gigj

and equation 8 in Lemma 5.6, we have

supi,j |Z(B̂ − B)Z⊺)|ij = Oa.s.(
√

ρ log N

N
).

As a result, we have

sup
1≤i,j≤N

|(III − P )ij | = Oa.s.(
√

ρ log N

N
). (21)

Combining equation 16, equation 17 with equation 21, we have for DCSBMs that

sup
1≤i,j≤N

|P̂ij − Pij | = Oa.s.(
log N

N
). (22)

While for SBMs, the error terms I and II are exactly zero. Hence,

sup
1≤i,j≤N

|P̂ij − Pij | = Oa.s.(
√

ρ log N

N
).

The proofs for the directed network models ScBMs and DCScBMs go similarly provided that Assumption 5.5
is additionally required for Lemma 5.6.

B.3 Proof of Theorem 5.8

Proof. Recall equation 15, we can decompose P̂ − P by I + II + III − P . For DCSBMs, we have shown
in the proof of Theorem 5.7 that sup|(I)ij | = Oa.s.(log N/N) and sup|(II)ij | = Oa.s.(log N/N). For SBMs,
I = II = 0.

We now show the asymptotic normality of III − P , for which by equation 18, equation 19 and equation 20,
we only need to show the asymptotic normality of Z(B̂ − B)Z⊺. Note that

(Z(B̂ − B)Z⊺)ij = (B̂ − B)gigj
= B̂ql − Bql

provided that gi = q and gj = l. By strong consistency of Ẑ, we have ĝi =a.s. gi and N̂q =a.s. Nq for all
i ∈ [N ] and q ∈ [K]. So for q ̸= l,

B̂ql − Bql =
∑

gi=q,gj=l

Aij − Pij

NqNl
.

We use he Lindeberg-Feller Central Limit Theorem to derive the limit distribution of B̂ql − Bql. First, note
that

s2
N := Var(

∑
gi=q,gj=l

Aij − Pij

NqNl
) =

∑
gi=q,gj=l

Var( Aij

NqNl
)

=
∑

gi=q,gj=l

Pij(1 − Pij)/(N2
q N2

l ) = Bql(1 − Bql)/(NqNl)

We only need to show

1
s2

N

∑
gi=q,gj=l

E{(Aij − Pij

NqNl
))2I(|Aij − Pij

NqNl
)| ≥ ϵsN )} → 0
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for every ϵ > 0, which holds sufficiently if | Aij−Pij

NqNl
)| ≤ ϵsN . Indeed,

|Aij − Pij

NqNl
)| ≲ 1

N2 ≲
ρ1/2

N
≍ ϵ
√

Bql(1 − Bql)/NqNl.

Therefore, by central limit theorem, we can obtain in SBMs that

N(B̂ql − Bql) → N(0,
Bql(1 − Bql)

πqπl
)

for q ̸= l. When q = l, considering the dependency of Aij and Aji, we consider the following halved term

B̂qq − Bqq =
∑

gi=q,gj=q,i<j

Aij − Pij

Nq(Nq − 1)/2 . (23)

Similarly, we can derive
N(B̂qq − Bqq) → N(0,

2Bqq(1 − Bqq)
π2

q

).

For DCSBMs, we thus have that

N(P̂ − P + E)ij → N(0, θ2
i ·

Bgigj
(1 − Bgigj

)
πgi

πgj

· θ2
j )

with Eij = Oa.s.(log N/N) and gi ̸= gj , and

N(P̂ − P + F )ij → N(0, 2θ2
i · Bgigi

(1 − Bgigi
)

π2
gi

· θ2
j )

with Fij = Oa.s.(log N/N) and gi = gj .

The proofs for the directed network models ScBMs and DCScBMs are similar except that when gy
i = gz

j , the
directed networks do not involve dependency of pairs Aij and Aji like in (23), hence the constant 2 in the
asymptotic variances are replaced by 1.

B.4 Auxiliary lemmas

Lemma B.1 (Bernstein inequality). Let X1, . . . , XN be independent zero-mean random variables. Suppose
that |Xi| ≤ M almost surely, for all i. Then, for all positive t,

P

(
N∑

i=1
Xi ≥ t

)
≤ exp

(
−

1
2 t2∑N

i=1 E [X2
i ] + 1

3 Mt

)
.

C Notes, Notations, and Flowchart

The notations are summarized in Table 6.

D Additional Experiment Settings

For all 5 datasets (i.e., Cora-ML, Citeseer, PubMed, Photo, and Computers), SBM-TNN is trained by the
Adam optimizer with the Cross Entropy Loss function. Additionally, all baseline methods are initialized with
the parameters suggested in their respective works, we carefully tune the parameters during training to ensure
that the baseline model achieves optimal performance. Here we treat the resulting topological features in
dimension 0 (connected components) and 1 (cycles) (i.e., Q = 2). For link prediction, we perform an extensive
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Table 6: A summary of the notes and notations.
Notation Definition

Notations for undirected network models:
N Number of communities

gi ∈ {1, ..., K} Community assignment of node i
Nk Number of nodes within the k-th community

πk := Nk/N Proportion of nodes in the k-th community
Z ∈ {0, 1}N×K Membership matrix

B ∈ RK×K Block probability matrix
θ ∈ RN Node propensity vector

Θ = diag{θ1, ..., θN } Node propensity matrix
P := ΘZBZ⊺Θ ∈ RN×N Edge probability matrix

di =
∑N

j=1 Pij Population degree of node i

D = diag{d1, ..., dN } Population degree matrix
ρ Network sparsity

A ∈ {0, 1}N×N Symmetric Adjacency matrix
d̂i =

∑N
j=1 Aij Degree of node i

D = diag{d̂1, ..., d̂N } Degree matrix
L = I + D−1/2AD−1/2 Graph Laplacian

Notations for directed network models:
N Number of nodes

Ky(Kz) Number of row (column) clusters
gy

i ∈ {1, ..., Ky}(gz
i ∈ {1, ..., Kz}) Row (column) cluster assignment of node i

Ny
k (Nz

k ) Number of nodes in the kyth (kzth) row (column) cluster
πy

k := Ny
k /N(πz

k := Nz
k /N) Proportion of nodes in the kyth (kzth) row (column) cluster

Y ∈ {0, 1}N×Ky (Z ∈ {0, 1}N×Kz ) Row (Column) membership matrix
B ∈ RKy×Kz (Ky ≤ Kz) Block probability matrix

θy ∈ RN (θz ∈ RN ) Node propensity vector for sending (receiving) edges
Θy = diag{θy

i }(Θz = diag{θz
i }) Node propensity matrix for sending (receiving) edges

P := ΘyY BZ⊺Θz ∈ RN×N Edge probability matrix
dy

i =
∑N

j=1 Pij(dz
i =

∑N
j=1 Pji) Population out-degree (in-degree) of node i

Dy = diag{dy
1, ..., dy

N }(Dz = diag{dz
1, ..., dz

N }) Population out-degree (in-degree) matrix
ρ Network sparsity

A ∈ {0, 1}N×N Asymmetric adjacency matrix
d̂y

i =
∑N

j=1 Aij(d̂z
i =

∑N
j=1 Aji) Out-degree (in-degree) of node i

Dy = diag{d̂y
1, ..., d̂y

N }(Dz = diag{d̂z
1, ..., d̂z

N }) Out-degree (In-degree) matrix
L = I + (Dy)−1/2A(Dz)−1/2 Graph Laplacian

grid search for learning rate among {0.001, 0.005, 0.008, 0.01, 0.1}, the dropout rate among {0.1, 0.2, . . . , 0.9},
the number of hidden units among ∈ {8, 16, 32, 64, 128}, and the model is trained for 5,000 epochs with early
stopping applied when the metric (i.e., validation loss) starts to drop. For KG completion, we set the batch
size to be 512 and the model is trained for 500 epochs, and we perform an extensive grid search for learning
rate among {0.00001, 0.001, 0.01, 0.1}.

E Additional Experiments

To better illustrate the benefits of involving community-level and topological information for link prediction
tasks, we incorporate the SBM-TNN framework into ROLAND architecture You et al. (2022) for dynamic
link prediction (in mean reciprocal rank (MRR)) on Bitcoin-OTC data. As shown in Table 7, we found that
ROLAND + SBM-TNN achieves 17.80% performance gain over the ROLAND.
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Figure 1: The overall architecture of SBM-TNN.

Table 7: Performance comparison on Bitcoin-OTC.
Method Mean Reciprocal Rank (MRR)
ROLAND 0.2203 ± 0.0167
ROLAND + SBM-TNN (ours) 0.2595±0.0246

We have also conducted additional experiments for link prediction by comparing with the Edge-featured
Graph Attention Network (EGAT) model Wang et al. (2021b). From the below table, we observe that
SBM-TNN always achieves the highest AUC-ROC score with average relative gain of 3.78%.

Table 8: Performance comparison on link prediction.
Method Cora-ML Citeseer PubMed
EGAT 92.3 ± 0.6 93.8 ± 1.0 94.8 ± 0.3
SBM-TNN (ours) 96.2±0.2 97.1±0.3 98.2±0.1
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