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Abstract

Joint Energy Models (JEMs), while drawing significant research attention, have not been
successfully scaled to real-world, high-resolution datasets. We present CLIP-JEM , a novel
approach extending JEMs to the multimodal vision-language domain using CLIP, integrating
both generative and discriminative objectives. For the generative one, we introduce an
image-text joint-energy function based on Cosine similarity in the CLIP space, training
CLIP to assign low energy to real image-caption pairs and high energy otherwise. For the
discriminative one, we employ contrastive adversarial loss, extending the adversarial training
objective to the multimodal domain. CLIP-JEM not only generates realistic images from
text but also achieves competitive results on the compositionality benchmark, outperforming
leading methods with fewer parameters. Additionally, we demonstrate the superior guidance
capability of CLIP-JEM by enhancing CLIP-based generative frameworks and converting
unconditional diffusion models to text-based ones. Lastly, we show that our model can serve
as a more robust evaluation metric for text-to-image generative tasks than CLIP.

1 Introduction
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Figure 1: CLIP-JEM gradients. Demonstration of
the meaningful input gradients of CLIP-JEM compared
to a “vanilla” CLIP model with respect to different
textual prompts.

Energy-based models (EBMs) (LeCun et al., 2006)
are a class of models that define a probability dis-
tribution over data points using an energy function,
where lower energy values correspond to higher prob-
abilities. These models are trained by adjusting the
learned function to minimize the energy of observed
data points and maximize the energy of synthetic
ones, effectively aligning the energy landscape with
the true data distribution. Joint Energy Models
(JEMs) (Grathwohl et al., 2019) extend EBMs by
utilizing a classifier’s logits to also model a joint en-
ergy function. JEMs are trained with both discrim-
inative and generative objectives, namely, aiming to
classify data points and to model the joint energy
function, respectively. However, both EBMs and
JEMs face significant scalability challenges. Their
training processes can be unstable and computa-
tionally intensive, restricting their applicability to
smaller datasets and making them unsuitable for
real-world, high-resolution image datasets.

Adversarial training (Goodfellow et al., 2015; Madry et al., 2018) is a technique designed to enhance models’
robustness against adversarial examples, which are small, imperceptible perturbations added to inputs to
mislead classifiers. By training models to correctly classify these adversarial examples, such training results
in perceptually aligned gradients (PAG) (Tsipras et al., 2019). PAG refers to the phenomenon where the
model’s input gradients1 are semantically meaningful and aligned with human perception, indicating that the

1This gradient is computed as the derivative of the chosen output logit w.r.t. the input image.
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features learned by the model are more human-aligned. Recently, the concept of PAG was extended to the
multimodal image-text domain with CLIPAG (Ganz & Elad, 2024), which applies adversarial training to the
visual part of CLIP (Radford et al., 2021). This approach enables text-based generation through pixel-space
optimization. However, while CLIPAG can produce good-looking images, the results are often non-realistic
and heavily reliant on multiview augmentation. The need for such augmentation suggests that the gradients
themselves are not sufficiently informative to generate realistic images from single views. These limitations
highlight the need for more advanced techniques to achieve realistic generation using CLIP models.

In this work, we propose CLIP-JEM, a novel approach that extends JEMs to the multimodal vision-language
domain using CLIP by combining it with adversarial training. This combination leverages the strengths
of both techniques to address their limitations: mitigating the scalability and stability issues of JEMs and
enabling high-resolution text-based generation while overcoming the non-realistic outputs typical of CLIPAG.
Inspired by unimodal JEMs, we fine-tune CLIP using two objectives: generative and discriminative. For the
generative objective, we introduce an image-text energy function based on Cosine similarity in the CLIP
space. We train CLIP to assign low-energy values to real image-text pairs and high values to others. More
specifically, inspired by EBMs, we utilize the model to draw text-based generated samples and train it to
assign these with high energy values. This is done by an iterative pixel-space optimization following the
model’s gradients, starting from a random sample. We formulate this as a contrastive loss to align with
CLIP. For the discriminative objective, we follow the path set by CLIPAG to define a contrastive adversarial
loss. By combining these two objectives, we train the visual encoder of CLIP, resulting in CLIP-JEM, a
model with semantically meaningful gradients (fig. 1) capable of generating realistic samples through simple
pixel-space optimization (fig. 2).

We establish the effectiveness of CLIP-JEM across three key domains: text-to-image generation, guidance
capabilities, and as an evaluation metric. First, CLIP-JEM enables in text-to-image generation through
pixel-space optimization, producing realistic images, significantly surpassing CLIPAG by more than 20 FID
points, without applying any augmentation. Despite its relatively small size, this model achieves results
competitive with much larger models on the challenging compositionality benchmark, CompBench (Huang
et al., 2023). Specifically, it surpasses Stable diffusion v2 (Rombach et al., 2022a) and methods tailored for
compositionality (Liu et al., 2023b; Feng et al., 2023). We attribute this to the discriminative nature of the
model, enabling it to better align with the provided prompts. Furthermore, CLIP-JEM significantly enhances
text-based guiding capabilities. To this end, we illustrate that incorporating CLIP-JEM for guidance converts
unconditional diffusion models (Dhariwal & Nichol, 2021; Ahn et al., 2024) into text-guided ones with just 25
diffusion steps. Additionally, replacing CLIP with CLIP-JEM in CLIP-based generative frameworks markedly
boosts their performance. Finally, CLIP-JEM proves its utility as an evaluation metric (a.k.a. CLIP-Score)
for text-based image editing. It shows robustness to adversarial examples and enhanced sensitivity to image
quality compared to the “vanilla” counterpart. This indicates that CLIP-JEM is a more reliable and precise
tool for assessing the quality and integrity of generated images. To summarize,

• We introduce CLIP-JEM, a novel approach extending Joint Energy Models to the vision-language domain
using CLIP.

• CLIP-JEM enables high-resolution text-to-image generation through pixel-space optimization, achieving
competitive results on a challenging compositionality benchmark.

• CLIP-JEM enhances text-based guidance capabilities, boosting CLIP-based generative frameworks and
converting unconditional diffusion models into text-guided ones.

• We demonstrate that CLIP-JEM can serve as an improved CLIP-Score evaluation metric for text-based
image editing.
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Figure 2: CLIP-JEM qualitative results. Images generated using CLIP-JEM with ConvNext-XXL.

2 Related Work

2.1 Energy-Based Models

EBMs (LeCun et al., 2006) define a probability distribution over data points using an energy function:

pθ(x) = exp(−Eθ(x))
Z(θ) , (1)

where Eθ(x) assigns scalar values to data points, and Z(θ) is a normalizing constant. Lower energy values
indicate higher probabilities. Training such a model with parameters θ involves minimizing the energy of
“positive” data points x+ ∼ p(x) and maximizing it for the “negative” samples x− ∼ pθ(x). The model
converges when it cannot distinguish between positive and negative samples. Sampling from pθ(·) is achieved
using Stochastic Gradient Langevin Dynamics (SGLD), starting from a canonical distribution and updating
iteratively, using a step-size α.

xi+1 = xi −
α

2
∂Eθ(xi)

∂xi
+ ϵ, ϵ ∼ N (0, αI). (2)

2.2 Joint-Energy Models

Recently, Grathwohl et al. (2019) observed that one can parameterized pθ(x, y) and pθ(x) using the logits of
a classifiers. Given a label y and an image x, the joint distribution can be expressed as

pθ(x, y) = exp(fθ(x)y)
Z(θ) , (3)

where fθ(x)y is the logit corresponding with the yth class label. Thus, the joint energy function is
Eθ(x, y) = −fθ(x)y. Marginalizing over y results in an unconditional distribution pθ(·). Training JEMs
involve with optimizing both a discriminative and a generative objectives. Despite having several merits
(e.g., generative capabilities and adversarial robustness), training such models often suffers from instability
and even divergence. Despite recent advancements, JEMs perform well for relatively small datasets (mainly
SVHN (Netzer et al., 2011), CIFAR (Krizhevsky et al., 2009) and CelebA (Liu et al., 2015)) but are not
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competitive when brought to real-world visual content (Yang et al., 2023; Zhu et al., 2021; Yang & Ji, 2021).
In this work, we aim to extend JEMs into the most challenging setup – text-to-image generation using a
CLIP-based model.

2.3 CLIP for Text-to-Image Generation

CLIP (Radford et al., 2021) is a vision-language model, pretrained to align a massive corpus of image-text
pairs. The outstanding performance of CLIP visual and textual encoders has propelled great advancements
in various fields. In Large Vision Language Modeling (Li et al., 2022; Zhu et al., 2023; Liu et al., 2023a; Li
et al., 2023; Ganz et al., 2023; 2024), CLIP vision encoder serves as the primary visual backbone, leading to
unprecedented performance. In text-to-image generation, two main lines of work harness CLIP: (i) Utilizing
CLIP image-text alignment to guide the visual results to be aligned with the textual description (Frans et al.,
2022; Crowson et al., 2022; Patashnik et al., 2021; Gal et al., 2022; Kwon & Ye, 2022; Vinker et al., 2022);
and (ii) Using CLIP’s text encoder to condition generative models (Kang et al., 2023a; Nichol et al., 2022;
Ramesh et al., 2022; Rombach et al., 2022b). Unlike these works, which utilize CLIP along with a generative
model, we aim to cast CLIP into an energy-based model, capable of performing text-to-image generation
without an additional generative model.

2.4 Perceptually Aligned Gradients

Adversarially robust models (Carlini & Wagner, 2017; Madry et al., 2018) are designed to withstand adversarial
attacks (Szegedy et al., 2014; Goodfellow et al., 2015), which are small, imperceptible perturbations aimed at
misleading classifiers. It has been observed that such models exhibit a phenomenon known as Perceptually
Aligned Gradients (PAG), which is absent in their non-robust counterparts. PAG refers to the model’s
input gradients being semantically meaningful and aligned with human perception, indicating that the
features learned are more aligned with human vision (Ilyas et al., 2019; Engstrom et al., 2019; Salman
et al., 2020). PAG has been harnessed for generative tasks, such as image generation and image-to-image
translation (Santurkar et al., 2019), thereby improving state-of-the-art image synthesis results (Ganz & Elad,
2022). PAG has also been explored for enhanced robust classification (Blau et al., 2023). Recently, the
study of PAG has been extended to the multimodal domain using CLIPAG (Ganz & Elad, 2024), which
applies adversarial training to the multimodal text-to-image domain using CLIP (Radford et al., 2021). This
approach enables text-based generation through pixel-space optimization. However, while CLIPAG can
produce good-looking images, the results are often non-realistic and heavily reliant on multiview augmentation.
The need for such augmentation suggests that the gradients themselves are not sufficiently informative to
generate realistic images from single views. These limitations highlight the need for more advanced techniques
for realistic text-to-image generation using CLIP models.

3 Method

In this work, we aim to extend Joint Energy Models to the challenging text-to-image generation setting using
a CLIP model. Our overall framework, illustrated in Figure 3, consists of two main objectives: a contrastive
energy loss and an adversarial loss. In section 3.1, we first define the joint image-text energy function,
forming a measure of the faithfulness and alignment of the given pair, and elaborate on its training procedure.
Next, in section 3.2, we detail the contrastive adversarial loss, extending CLIP’s loss to the adversarial case.
Lastly, in section 3.3, we describe the overall training procedure of CLIP-JEM, resulting in a multimodal
energy model capable of text-to-image generation.

3.1 Joint Image-Text Energy Via CLIP

We extend a pretrained CLIP to model the joint energy of image-text pairs. We denote its vision and
textual towers as f I

θ and fT
θ , respectively. Given these notations, we propose to utilize CLIP to formulate an

image-text joint distribution,

pθ(I, T) = exp(CosineSimilarity(f I
θ (I), fT

θ (T)))
Z(θ) , (4)
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where I and T are visual and textual inputs, CosineSimilarity is the well-known Cosine similarity measure
used by CLIP, and Z(θ) is an unknown normalizing factor. Thus, the induced joint image-text energy function
is Eθ(I, T) = −CosineSimilarity(f I

θ (I), fT
θ (T)), where a higher degree of image-text similarity results in lower

energy values and higher probability and vice-versa.
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Figure 3: CLIP-JEM method. Illustration of the
contrastive losses in our method and their effect on
enabling realistic text-based image synthesis via pixel-
space optimization.

Similar to energy-based model training, adapting
CLIP to form an energy measure requires both
“positive” and “negative” image-text pairs, denoted
as (I, T) and (̃I, T), respectively. As CLIP is a
contrastively-trained model, we utilize such pairs to
formulate a contrastive energy objective, illustrated
on the upper-left side of Figure 3. This rectangular
matrix contains the negative joint-energy values of
textual and visual inputs. Specifically, the upper part
contains the energy of the “positive” image inputs
and the lower one the “negatives”. Given this con-
trastive energy matrix, we train the model weights
of f I

θ (·) using the cross-entropy loss with the main
diagonal, marked in blue, as the ground-truth annota-
tions. Namely, the objective is to obtain high values
in this main diagonal (low energy, high probability)
and low values elsewhere. Focusing on a certain tex-
tual input Tk, minimizing the proposed contrastive
energy loss results in high Cosine similarity values
of the “positive” pair (Ik, Tk) and low ones for the
“negative” pair (̃Ik, Tk). This formulated loss has two
additional advantages: First, minimizing it results
in providing low Cosine similarities and hence high
energy and low probability for unmatching image-
text pairs (Ii, Tj) for i ̸= j, enhancing the model’s
discriminative ability. Second, it enables the utiliza-
tion of different realizations of negative samples per each text prompt, which we empirically find to stabilize
the training.

The remaining question is how to obtain the “negative” samples. Similar to the methodology in the JEM line
of work, we craft such samples in an iterative process based on the model’s gradients, starting from a simple
canonical distribution (e.g., a Unifrom distribution). Current JEM works utilize SGLD (Welling & Teh,
2011), which requires hundreds of iterations to obtain good samples. To mitigate the computation overhead
involved in generating such samples, such works utilize a replay buffer. This data structure stores thousands
of generated “negative” samples and updates them throughout the training process, enabling a relatively
small number of SGLD steps. However, in the image-text context, employing such a solution is not feasible,
as, unlike multiclass datasets such as CIFAR-10, which have a fixed amount of classes, the text-to-image
setting is open-vocabulary in nature with practically infinite number of possible captions. Thus, in our setting,
maintaining a replay buffer and updating its samples is not a practical solution, as the probability of having
the exact two captions in a dataset is very low, eliminating the usefulness of such a structure. To enable
fast “negative” sampling, we propose to avoid employing SGLD and utilize a momentum-based optimization
with an adaptive learning rate instead. In practice, we use AdamW optimizer (Loshchilov & Hutter, 2017) to
update the image in the iterative process, which enables drawing samples within a relatively small number of
steps. Overall, we first draw the initial sample from a canonical uniform distribution, Ĩt=0. Next, we compute
the Cosine similarity between the visual and textual encodings and calculate its input-gradients. Lastly, we
update the visual inputs accordingly and repeat the process for TJEM iterations. Notably, we calculate the
gradients on a slightly noisy version of the visual input, introducing randomness to the sampling mechanism.
In the supplementary materials, we discuss the connection of our sampling procedure to SGLD.
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3.2 Contrastive Adversarial Training

Similar to CLIPAG (Ganz & Elad, 2024), we extend adversarial training to the contrastive loss, forming a
contrastive adversarial loss. Given an input batch of image-text pairs, we perform a two-step procedure – (i)
crafting visual adversarial examples that maximizes the similarity w.r.t the matching texts; (ii) optimizing
the vision encoder’s weight to minimize the contrastive adversarial loss. The adversarial contrastive loss
matrix is illustrated on the lower-left side of Figure 3. In this matrix, the vertical green vector represents the
encodings of the adversarial visual inputs, while the horizontal pink vector represents the textual encodings.
This approach ensures that the model learns to be robust against adversarial perturbations and equips it
with semantically meaningful gradients (i.e., PAG), which enhance the iterative generation process.

3.3 Training Procedure

CLIP-JEM’s objective is the combination of contrastive adversarial and contrastive energy losses, and the
overall training protocol is described in the supplementary materials (algorithm 1). The goal of CLIP-JEM is
to obtain an image-text energy model capable of generating images based on textual descriptions. On the
right side of Figure 3, we illustrate this generation process (piece-wise linear arrow), starting from a random
sample from a canonical distribution (marked in gray). In this figure, any image-text pair is represented by
two values: CLIP score and perceptual quality. The former measures the alignment of the pair according to
our CLIP model, while the latter is a conceptual measure of the image’s visual quality. We aim to generate
samples with high CLIP scores (low energy) and good perceptual quality. We analyze the contribution of
both objectives to this goal. The contrastive energy loss prevents CLIP-JEM from assigning high CLIP scores
to low-quality images, as throughout the energy training, the model is trained to lower the CLIP scores of
“negative” samples and provide high scores to the “positive” ones, which have high perceptual quality. The
contrastive adversarial objective trains the model against adversarial inputs, namely, imperceptible visual
changes that significantly decrease the CLIP score (these samples reside in the bottom right corner of the
figure’s center part). Thus, this loss prevents CLIP-JEM from assigning low CLIP scores to high-quality
inputs. Overall, combining the two objectives eliminates the red modes in the upper-right panel of Figure 3,
preventing the iterative generation from drawing such samples. This, in return, leads to drawing samples
of the green mode, which are realistically looking images that align with their corresponding text. We
demonstrate the contribution of combining these two objectives in the appendix E.

4 Experiments

We train different variants of CLIP using Algorithm 1 – including ViT-B/32 and ConvNext in base, large,
and XXL configurations on the extensive image-caption DataComp dataset (Gadre et al., 2024) for 20, 000
steps. Throughout the training process, we keep the text encoder frozen and update solely the vision encoder.
Implementation and training details are provided in the supplementary materials. To analyze the performance
of CLIP-JEM, we first evaluate it in the text-to-image generation setting Section 4.1). Next, we demonstrate
its effectiveness as a guiding model (Section 4.2). Lastly, we show that CLIP-JEM can serve as an improved
evaluation metric compared to the “vanilla” CLIP, attributed to its robustness and awareness of perceptual
quality.

4.1 Text-To-Image Generation

Similar to the training procedure, we perform pixel-space optimization to generate samples. Given a target
prompt, we initialize the image as a random sample from a uniform distribution and perform 50 steps to
maximize the cosine similarity with respect to the text, using an AdamW optimizer with no momentum. We
evaluate the performance of CLIP-JEM in two main setups: image quality and compositionality.

Quality and Fidelity We use CLIP-JEM to generate 30, 000 samples from the MS-COCO dataset (Lin
et al., 2015) and report the results in FID2 and CLIPSIM using ViT-B/32 in Table 1. We compare CLIP-JEM

2We use the same evaluation codes with DM-GAN, which is available at https://github.com/MinfengZhu/DM-GAN
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Table 1: MS-COCO text-to-image generation results. Frechet Inception Distance (FID, lower is better)
and CLIPSIM (higher is better) results, along with model sizes. “ZS” indicates whether the model was
trained on MS-COCO.

Method #Params. ZS FID↓ CLIPSIM↑
Stack-GAN - ✗ 74.1 -
AttnGAN 230M ✗ 35.5 27.7
CogView 4,000M ✗ 27.1 33.2
DALL-E 12,000M ✓ 27.5 -
GLIDE 6,000M ✓ 12.2 -
LDM-KL-8 1,450M ✓ 23.3 -
LDM-KL-8-G 1,450M ✓ 12.6 -
LAFITE 226M ✓ 26.9 -
StyleGAN-T ∼1100M ✓ 13.9 -
NÜWA 870M ✓ 12.9 34.3
GigaGAN 1034M ✓ 9.1 -

CLIPAG†
L 200M ✓ 82.0 30.3

CLIPAGL 200M ✓ 47.6 33.4
CLIP-JEMViT 88M ✓ 68.3 34.5
CLIP-JEMB 88M ✓ 34.8 31.6
CLIP-JEML 200M ✓ 26.7 31.7
CLIP-JEMXXL 846M ✓ 23.4 33.5

to various GAN-based, diffusion-based, and autoregressive text-to-image models (see more details in the
supplementary materials). We report the number of parameters of the baselines and the size of the vision
encoder used for CLIP-JEM . As shown in Table 1, scaling up the model size significantly benefits our method,
substantially improving the FID scores. Specifically, in the XXL case, CLIP-JEM performs similarly to the
unguided Latent Diffusion Model (LDM-KL-8) and outperforms DALL-E and CogView despite being smaller.
Additionally, we train a CLIPAG baseline using the same training configuration and architecture to better
demonstrate the effectiveness of our image-text energy objective. We report the results of two variants of
CLIPAG using ConvNext Large – with and without multiview augmentations, denoted as CLIPAGL and
CLIPAGL†, respectively. As can be seen in CLIPAG results, the multiview augmentation pipeline is crucial
(improves the FID from 82.0 to 47.6), highlighting the unsatisfying quality of its gradients. Interestingly,
using the same model with CLIP-JEM leads to a much-improved FID score (26.7) without applying any
augmentation. This strongly indicates the effectiveness of introducing our contrastive energy loss and our
method’s improved capability of generating realistic samples. In the CLIPSIM metric, CLIPAGL leads to
a better result than CLIP-JEM . We attribute this to the fact that the multiview augmentations lead to
unrealistic images (which impair the FID) that highly align with the text (increasing the CLIPSIM). Overall,
these results indicate that CLIP-JEM achieves both of its goals – extending JEM training into text-to-image
generation and improving CLIPAG’s photorealism.

Compositionallity We compare CLIP-JEM with other generative models using T2I CompBench (Huang
et al., 2023), which evaluates open-world compositional text-to-image generation across attribute binding
(color, shape and texture), object relationship (spatial and non-spatial) and complex. Despite advances
in text-to-image generation, models still struggle to compose objects with different characteristics and
relationships into a coherent image. Following CompBench procedure, we generate 10 samples per prompt
and average the results on the validation sets of each category, using the same evaluation metrics as in the
original paper (B-VQA, UniDet, CLIP, and 3-in-1 for the attribute binding, spatial, non-spatial, and complex
categories). Section 4.1 reports CLIP-JEM ’s results compared to top-performing models, including an average
score across six categories. CLIP-JEM excels in attribute binding, associating attributes with corresponding
objects in generated images, and performs well in the non-spatial relationship category (e.g., “speak to” and
“look at”). However, it scores lower in the spatial relationship category due to CLIP’s known limitations in
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Table 2: T2I-CompBench results. CLIP-JEM performance on the text-to-image generation compositional-
ity benchmark.

Model Attribute Binding Object Relationship Complex AverageColor ↑ Shape ↑ Texture ↑ Spatial ↑ Non-spatial ↑
SD1.4 0.3765 0.3576 0.4156 0.1246 0.3079 0.3080 0.3150
SD2 0.5065 0.4221 0.4922 0.1342 0.3127 0.3386 0.3677
Composable (SD2) 0.4063 0.3299 0.3644 0.0800 0.2980 0.2898 0.2947
Structured (SD2) 0.4990 0.4218 0.4900 0.1386 0.3111 0.3355 0.3660
Attn-Exct (SD2) 0.6400 0.4517 0.5963 0.1455 0.3109 0.3401 0.4141

CL
IP

-J
EM

CLIP-JEMViT 0.5305 0.5159 0.5566 0.0262 0.3343 0.2900 0.3756
CLIP-JEMB 0.5799 0.5122 0.6154 0.0708 0.3145 0.2938 0.3978
CLIP-JEML 0.5715 0.5202 0.6072 0.0768 0.3152 0.3020 0.3988
CLIP-JEMXXL 0.5670 0.5021 0.6132 0.0841 0.3205 0.3129 0.4000

spatial compositionality (Yuksekgonul et al., 2022; Lewis et al., 2022). In the complex category, involving
multiple objects and attributes, CLIP-JEM performs well despite containing spatial relationships, due to its
strengths in attribute binding and non-spatial understanding. Overall, CLIP-JEM outperforms most baselines
in compositional generation, despite being smaller. Specifically, it surpasses methods deliberately designed to
tackle compositionality and rely on a much stronger generative model (Stable Diffusion v2). We attribute
this success to the generative and discriminative objectives combination, enabling effective alignment with
compositional prompts.

4.2 Text Guidance Using CLIP-JEM
A cow on the beach

Unconditional 

samples A cute corgi on a red 

sofa

A cosy living room with 

a fireplace

A barn surrounded by 

a green field

Text-conditioned samples

A golden bird
A cabin in the woods

A beach in Thailand

Figure 4: Diffusion guidance using CLIP-JEM.
Converting an unconditional diffusion model into a
text-based one with CLIP-JEM. In each row, we plot
the unconditional alongside the guidance results using
the same seed.

As shown in fig. 1, CLIP-JEM possesses semanti-
cally meaningful gradients with respect to a given
text. In this section, we demonstrate the guidance
capability of our method in two main settings: diffu-
sion guidance and improving CLIP-based generative
frameworks, utilizing a ConvNext Large model.

Diffusion guidance We utilize CLIP-JEM as a
guiding technique to transform unconditional diffu-
sion models trained on ImageNet (Dhariwal & Nichol,
2021; Ahn et al., 2024) into text-conditioned ones
using only 25 DDIM steps 25 (Song et al., 2020). In
each DDIM step t, we update the estimations for
the clean image x̂0 using the gradients of CLIP-JEM
(eq. (5)) and use it to compute xt−1 and continue
the reverse DDIM process.

x̂0 = x̂0 + s · ∇x̂0 CosineSimilarity(f I
θ (x̂0), fT

θ (T)) (5)

We provide qualitative results of text-based diffusion guidance in Figure 4, showcasing the capability of
CLIP-JEM to convert unconditional diffusion models to text-based ones, thereby enhancing their utility.

Improving CLIP-Based Generative Frameworks CLIP is widely used in text-to-image generation
frameworks to update the resulting image to better align with the target text in CLIP’s space. This is
typically done using the input gradients of the CLIP’s vision encoder with respect to the text (maximizing
the cosine similarity). However, these gradients tend to be semantically meaningless, as demonstrated in
Figure 1. To mitigate this, a multiview augmentation pipeline is often employed to acquire semantically
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(b) VQGAN+CLIP results

Figure 5: Improving CLIP-Based Generative Frameworks via CLIP-JEM. Qualitative results of
CLIP-JEM compared to CLIP using CLIPDraw and VQAGAN+CLIP in a zero-shot setting.

meaningful gradients. Our method, on the other hand, inherently produces gradients that convey rich
semantic information. Consequently, using CLIP-JEM can eliminate the need for multiview augmentations,
thereby improving computational efficiency. To demonstrate this, we experiment with two such frameworks:
CLIPDraw (Frans et al., 2022) and VQGAN+CLIP (Crowson et al., 2022). CLIPDraw generates drawings
by optimizing the parameters of Bézier curves using CLIP, and VQGAN+CLIP updates the latent code of
a VQGAN to enable text-to-image generation. In both cases, we do not perform multiview augmentations
and report the results with augmentations in the supplementary materials. In Figure 5a, we present the
results of CLIPDraw on target texts from the original paper, along with CLIP’s top prediction for each
prompt. As shown, using CLIP-JEM leads to significantly better visual results, which are more aligned with
the text than those generated by the “vanilla” CLIP. The high percentages in the top predictions imply
that the images generated by CLIP have an adversarial nature, maximizing the score without performing
significant modifications. Next, we evaluate the effect of using our approach to guide VQGAN. To this end,
we prompted ChatGPT to provide artistic target texts, aligning with the original paper’s domain. As seen
in Figure 5b, removing the augmentation pipeline results in non-meaningful outputs, whereas CLIP-JEM
generates semantically meaningful images. These results strongly attest to the improved guidance capabilities
of CLIP-JEM.

4.3 CLIP-JEM as an Evaluation Metric

CLIP is often used to evaluate text-to-image generative tasks by measuring cosine similarity between textual
descriptions and images in its embedding space, known as CLIP-T. We compare CLIP-JEM with the standard
CLIP model, focusing on the ViT-B/32 commonly used for this purpose. Using TEdBench (Kawar et al.,
2023), we evaluate CLIP-T scores for various inputs, including outputs from a top-performing generative
model (Imagic), source images (“No Edit”), and “Noise” images. Results are shown in table 3 under “Vanilla”.
We also assess robustness under adversarial attacks with a low perturbation budget (ϵ = 2/255). These attacks
aim to increase scores for “bad” images and decrease scores for “good” ones. Our findings indicate that
CLIP is highly susceptible to adversarial attacks, resulting in higher CLIP-T scores for non-edited and noise
images than for Imagic outputs. In contrast, CLIP-JEM remains robust, maintaining higher scores for Imagic
outputs even under adversarial attacks.

We further analyze the effect of perceptual quality on CLIP-T scores by blending Imagic images (xImagic)
with uniform noise: λxImagic + (1− λ)u where u ∼ U [0, 1]. We plot CLIP-T scores for varying λ values in
Figure 6, normalizing scores to 1.0 at λ = 0. While the standard CLIP model prefers noisier versions up to
λ = 0.45, CLIP-JEM ’s scores decrease with increasing noise, indicating greater sensitivity to image quality,
attributed to the contrastive energy objective making the model to assign high energy to non-real images.
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Table 3: Robustness To Adversarial Perturba-
tion.

Input
images

CLIP CLIP-JEM
Vanilla Attack Vanilla Attack

Imagic 0.3031 0.2053 0.2016 0.1951
No Edit 0.2740 0.3547 0.1811 0.1866
Noise 0.2033 0.3037 0.0905 0.0959

Figure 6: Sensitivity to perceptual quality.

5 Discussion and Conclusion

In this work, we introduce CLIP-JEM, a novel approach that extends Joint Energy Models to the multimodal
domain using CLIP. Through extensive evaluations, CLIP-JEM demonstrates its ability to generate high-
quality, compositionally coherent images, achieving competitive results on the MS-COCO dataset and excelling
in the T2I CompBench benchmark. Moreover, CLIP-JEM showcases strong guiding capabilities, significantly
improving the performance of CLIP-based generative frameworks and converting unconditional diffusion
models to text-based ones. Additionally, CLIP-JEM proves to be a robust and perceptually aware evaluation
metric, maintaining high scores under adversarial attacks and showing greater sensitivity to image quality
than the standard CLIP model. We hope that the insights and findings presented in this paper will inspire
further exploration and advancements in multimodal JEM research.
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A Appendix

B Detailed background on energy-based models

Energy based models Energy-based models (EBMs) (LeCun et al., 2006) are a class of probabilistic
models that define a probability distribution over the data points via an energy function. Specifically, EBMs
utilize the fact that any probability density p(x) for x ∈ RD can be written as

pθ(x) = exp(−Eθ(x))
Z(θ) , (6)

where Eθ(·) is the energy function, which assigns scalar values to data points (Eθ : RD → R) and Z(θ) is a
normalizing constant. In EBMs, the probability of a given data point is determined by its energy, where
lower energy indicates a higher probability, as can be seen in Equation (6).

Training such a model involves learning the parameters θ of the energy function, typically modeled by a
neural network, to minimize the energy of observed “positive” data points, x+ ∼ p(x), while maximizing the
energy of “negative” samples, x− ∼ pθ(x), generated by the model during training. The training converges
when the model cannot detect whether a sample is “positive” or “negative”, attesting that pθ and p have a
similar distribution.

EBMs require sampling from pθ, both during training to acquire “negative” samples and during inference to
synthesize new images. In practice, drawing such samples is done via Stochastic Gradient Langevin Dynamics
(SGLD), initialized with x0 ∼ p0(x) from a canonical distribution (e.g. Uniform over the input domain), and
updated iteratively by

xi+1 = xi −
α

2
∂Eθ(xi)

∂xi
+ ϵ, ϵ ∼ N (0, αI), (7)

where α is the sampler’s step size.

Joint energy models Recently, Grathwohl et al. (2019) observed that one can utilize a classifier to model
an energy function and train it accordingly. Given a classifier fθ which maps inputs into K values, known as
logits (fθ : RD → RK), one can parameterize a conditional distribution using the Softmax function:

pθ(y|x) = exp(fθ(x)y)∑
y′ exp(fθ(x)y′) , (8)

where fθ(x)y is the logit corresponding with the yth class label. The key observation is that one can construct
expressions for pθ(x, y) and pθ(x) using the classifier’s logits. The joint distribution of a data point x and a
label y is given via

pθ(x, y) = exp(fθ(x)y)
Z(θ) , (9)

where Z(θ) =
∫

x exp(fθ(x)y)dx is an intractable normalizing factor. Accordingly, we can define a joint energy
function Eθ(x, y) = −fθ(x)y. Using marginalization over y, we can obtain the unconditional distribution,

pθ(x) =
∑

y

pθ(x, y) =
∑

y exp(fθ(x)y)
Z(θ) . (10)

Thus, in the unconditional case, the energy function is given as Eθ(x) = − log
∑

y exp(fθ(x)y).

With this interpretation, one can train a joint model for both discriminative and generative modeling,
optimizing both classification and EBM objectives. Such models lead to good classification capabilities,
showcasing impressive adversarial robustness while being able to generate new data samples. Nevertheless,
training such models often suffers from instability and even divergence, making it applicable mainly for small
datasets but not for real-world ones.
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Arch. BS disc. BS gen. #Steps LR WD Sched. Warmup Adv. ϵ Tadv TJEM γ α1 α2

ViT-B/32 256 32

20K

2 × 10−5

1 × 10−4 Cosine 200 3.0 5 50 0.1 1.5 0.025ConvNext-B 128 32 2 × 10−5

ConvNext-L 128 16 2 × 10−5

ConvNext-XXL 32 8 2 × 10−6

Table 4: Implementation details. We provide the training hyperparameters of CLIP-JEM for the different
architectures (BS disc. and gen. stands for the discriminative and generative batch sizes, respectively).

Arch. Time [Sec.] Memory [M]

ViT-B/32 1.4 2787
ConvNext-B 2.6 3009
ConvNext-L 2.4 4523
ConvNext-XXL 4.5 11837

Table 5: Sampling time and memory. The time per-sample in seconds and memory consumption of the
different considered models.

C Implementation details

Training hyperparameters We implement our method upon the OpenClip codebase3. We consider the
following model architectures from the model zoo – convnext_xxlarge, convnext_large_d, convnext_base_w
and ViT-B-32 with the following pretrained weights, respectively – laion2b_s34b_b82k_augreg_soup,
laion2b_s26b_b102k_augreg, laion2b_s13b_b82k_augreg and openai. In table 4, we report the training
hyperparameters for CLIP-JEM . We use these hyperparameters to train the different architectures on
DataComp. During training, in the generation process of the “negative” samples we employ a momentum of
0.9 to the AdamW optimizer. However, throughout the inference phase, we do not utilize momentum at all.
We aim to make our code and pretrained models publicly available upon acceptance.

Experimental settings To measure the quality and fidelity of the generated images of our method, we
compare it to strong baselines using MS-COCO dataset (table 1). Specifically, we compare CLIP-JEM to text-
to-image generative models of different types: (i) GAN-based – Stack-GAN (Zhang et al., 2017), AttnGAN (Xu
et al., 2017), LAFITE (Zhou et al., 2022), StyleGAN-T (Sauer et al., 2023), and GigaGAN (Kang et al., 2023b)
(ii) Diffusion-based – GLIDE (Nichol et al., 2022), and LDM (Rombach et al., 2022c), and Autoregressive ones
– DALL-E (Ramesh et al., 2021), CogView (Ding et al., 2021), and NÜWA (Wu et al., 2021). Our reported
results and model sizes originate from the respective papers. The CLIPAG baseline results were obtained by
us, by removing the contrastive energy loss term, using the same architecture and hyperparameters. As for
the CompBench results (section 4.1), we report the one from the benchmark’s paper.

As for the improving CLIP-based generative frameworks experiments, we use an ADM-based model (Dhariwal
& Nichol, 2021) with perturbed-attention guidance (Ahn et al., 2024) which strongly improves the unconditional
generation as our baseline for diffusion guidance.

Sampling time and memory We train 4 different architectures of CLIP-JEM. As different model size
and structure affects the runtime complexity, we report the time of our generation process using a batch size
of 1 using an Nvidia A40 GPU in table 5. As expected, increasing the model size leads to more memory
consumption and increases the time per sample. However, the ConvNext-B generation time is slightly larger
than the ConvNext-L. This is due to the fact the we utilize the wide variant of the ConvNext-B, which is not
available in ConvNext-L.

3https://github.com/mlfoundations/open_clip
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Algorithm 1 CLIP-JEM Training. Given CLIP image and text encoders f I
θ (·) and fT

θ (·), image-text
dataset D, adversarial budget ϵ, adversarial and energy step-sizes α1, α2, energy loss coefficient γ, and number
of adversarial and generation iterations Tadv, TJEM:
while not converged do

Sample (I, T) from dataset D
/* Contrastive adversarial loss */
δ0 ← 0 for t from 0 to Tadv do

δt+1 = Πϵ(δt + α1 ∗ ClipLoss(f I
θ (I + δt), fT

θ (T)))
end
Iadv = I + δTadv

Ladv = ClipLoss(f I
θ (Iadv), fT

θ (T))
/* Contrastive energy loss */
Sample initial “negative” sample Ĩ.
Optimizer← AdamW(params = Ĩ, lr = α2)
for t from 0 to TJEM do
LJEM = ClipLoss(f I

θ (Ĩ + βn), fT
θ (T))

/* n ∼ N (0, I), β is a small scalar */
Calculate ∂LJEM/∂Ĩ and perform an optimizer step

end
LJEM = ClipLoss(f I

θ (Concat(I, Ĩ)), fT
θ (T))

/* Update the vision encoder */
L = Ladv + γ ∗ LJEM
Calculate ∂L/∂θ and update CLIP image encoder f I

θ (·)
end

D Training protocol

In algorithm 1, we detail to overall training procedure of CLIP-JEM. First, we draw image-text batches from
dataset D and apply Tadv iterations to obtain the adversarial visual inpputs Iadv which we use to calculate
the adversarial loss Ladv. Next, we perform an iterative pixel-space optimization to obtain “negative” samples
Ĩ. Specifically, this is done using TJEM iterations using AdamW optimizer. We form our joint energy based
loss using the “positive” and “negative” samples. Lastly, we combine these two terms to formulate our overall
objective, which we use to update the vision encoder weights. We repeat this process until convergence.

E Ablation study

Architecture In table 1, we report the results of both ViT-B-32 and ConvNext base using CLIP-JEM.
Notably, despite the two architectures share a similar capacity, the ConvNext FID score is significantly better
(by 33.5 points). We hypothesize that this stems from the improved prior that CNN-based architectures
serves. Additionally, generated images from ViT contain grid artifact from the patch processing mechanism.
Thus, we mainly focus on ConvNext-based models.

Objectives contribution To highlight the importance of combining the adversarial and energy contrastive
losses, we train the same model for 1, 000 iterations using (i) contrastive energy loss; (ii) contrastive adversarial
loss; and (iii) contrastive energy loss + contrastive adversarial loss. We plot the results of 16 text prompts
from MS-COCO for the resulting models in fig. 7. The results indicate that using only the contrastive energy
loss does not produce meaningful outputs. In contrast, employing solely the contrastive adversarial loss results
in meaningful but unrealistic content. Remarkably, combining the two objectives (CLIP-JEM’s approach)
leverages the strengths of both CLIPAG and JEMs, yielding superior outcomes.
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Figure 7: Objectives ablation study. CLIP-JEM employs a two objectives: Contrastive Adversarial
Loss and a Contrastive Energy Loss. In this figure we ablate the effect of each objective, highlighting the
importance of each objective. We plot 16 images based on different textual prompts from MS-COCO after
500 training steps.

F Connection to Stochastic Gradient Langevin Dynamics

SGLD enables sampling from a distribution p(x) given its score function ∇x log p(x). The stochasticity in
this algorithm is important, as applying a simple gradient method would result in sampling the distribution
peaks rather than truly sampling the distribution. The iterative update of SGLD in its discrete form is as
follows:

xt+1 = xt + α

2∇xt
log p(xt) + ϵ,

where α is the step size and ϵ ∼ N (0, αI) is a Gaussian noise. From eq. (6), the above equation can be also
written in terms of energy,

xt+1 = xt −
α

2∇xt
Eθ(xt) + ϵ,

and in the joint energy case, the update rule becomes

xt+1 = xt −
α

2∇xt
Eθ(xt, y) + ϵ.

Note that in our algorithm we add a small Gaussian perturbation to the input, prior to the calculation of the
gradient (algorithm 1). This introduces a similar, yet different, stochasticity in our approach, compared with
SGLD. To better understand this, we expand the following Taylor series:

∇xEθ(x + ϵ, y) ≈ ∇xEθ(x, y) +∇2
xEθ(x, y)T ϵ

+O(∥ϵ∥2
2).

As our noise is of small variance, the higher order term can be neglected,

∇xEθ(x + ϵ, y) ≈ ∇xEθ(x, y) +∇2
xEθ(x, y)T ϵ,

making it similar to the SGLD noisy update step, as the term ∇2
xEθ(x, y)T ϵ is a linear transformation of

the Gaussian noise, resulting in a colored version of a Gaussian distribution, governed by the Hessian of the
energy function.

We demonstrate the randomness introduced by this mechanism using our sampling process in fig. 8. Unlike
to SGLD, we utilize an AdamW optimizer for the update step for the generated sample. Thus, we do not
use the raw gradient as in SGLD since our optimizer has an adaptive learning rate mechanism. This results
in a different effective step size per iteration (α in SGLD). AdamW also enables momentum term, which
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Figure 8: Stochasticity demonstration of CLIP-JEM sampling.

introduces bias to the gradients. During CLIP-JEM training, we utilize the momentum as it significantly
stabilizes the training. However, at inference time, we do not employ momentum, resulting in an unbiased
version of the gradients.

G Additional results

We provide additional qualitative results for both improving CLIP-based generative frameworks and text-
to-image generation. For the former, we provide the results using the same prompts with augmentations
(figs. 10 and 11). As can be seen, seamlessly replacing CLIP with CLIP-JEM leads to improved results with
and without augmentations. Notably, CLIP-JEM results without augmentations are comparable to the ones
of CLIP with augmentation, offering a substantial reduce of computational overhead. For the latter, we
provide more generated image (fig. 9) and demonstrate the stochasticity of CLIP-JEM(fig. 8).
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Figure 9: Additional qualitative results. Samples generated by CLIP-JEM using ConvNext XXL.
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Figure 10: CLIPDraw results. We provide the results of CLIP and CLIP-JEM with and without
augmentations.
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Figure 11: VQGAN+CLIP results. We provide the results of CLIP and CLIP-JEM with and without
augmentations.
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