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Abstract

Data contamination refers to the leakage of evaluation data into model training data,1

breaking test validity. We identify an analogous issue—search-time contamination2

(STC), which occurs when the retrieval step of a search agent surfaces a source con-3

taining the test question (or a near-duplicate) alongside its answer, enabling agents4

to copy the answer. On three commonly used capability benchmarks—Humanity’s5

Last Exam (HLE), SimpleQA, and GPQA—we demonstrate that for approximately6

3% of questions, search-based agents directly find the datasets with ground truth7

labels on HuggingFace, with an up to 20% difference on HLE. After HuggingFace8

is blocked, we observe a drop in accuracy on the contaminated subset. We further9

show through search ablations that publicly accessible evaluation datasets on Hug-10

gingFace may not be the sole source of STC. To facilitate the auditing of evaluation11

results, we will publicly release the complete logs from our experiments.12

1 Introduction13

Data contamination refers to the presence of unwanted and inappropriate data that compromises the14

quality, integrity, or validity of a dataset. In the field of machine learning, it often includes the use15

of test data during the training time of a model. As a result, LLMs trained with leaked test data16

often overfit to the corresponding contaminated test set, but are shown to perform worse on other17

uncontaminated capability benchmarks in the same distribution. This phenomenon is exemplified in18

several recent works [20; 5; 3].19

In this work, we demonstrate that data contamination can occur at inference time when LLMs are20

given internet search access in AI products such as deep research agents [9; 2; 11]. Prior to recent21

benchmarks specifically designed for evaluating information retrieval capabilities [17; 14; 8; 1; 19; 6;22

4], search-based agents were typically evaluated using conventional capability benchmarks, including23

SimpleQA [16] and Humanity’s Last Exam (HLE) [12]. Because the correct labels to questions in24

these dataset are also uploaded to the internet, LLM agents may directly find both questions and25

answers from their retrieved web content such as from HuggingFace. We refer to this phenomenon as26

search-time contamination (STC):27

Definition 1 (Search-Time Contamination)

Search-Time Contamination (STC) occurs in evaluating search-based LLM agents when the
retrieval step contains clues about a question’s answer by virtue of being derived from the
evaluation set itself.

28

We demonstrate STC in search-based LLM agents on commonly used capability benchmarks, in-29

cluding HLE [12], SimpleQA [16], and GPQA [13] (Section 3). In Figure 1 (right), we show30

contamination where the agent acknowledges it directly finds the answer from on HuggingFace31

uploaded by a third-party user. After this discovery, the agent ignores its own calculation in favor of32
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Figure 1: (Left) Search-time contamination: models with search perform significantly better when
they retrieve an ungated third-party HuggingFace copy of Humanity’s Last Exam (HLE) [12] with
ground truth labels. Error bars are 95% confidence intervals. (Right) An example of STC with Sonar
Deep Research [11] comparing its answer to the ground truth answer from an ungated HLE upload,
ultimately choosing to go with the ground truth answer rather than its own incorrect answer. The
reasoning and answer is redacted to prevent further leakage.

the retrieved label. We find for three search-based agents, Perplexity Sonar Pro, Sonar Reasoning,33

and Sonar Deep Research on HLE, they will retrieve a related HuggingFace repository with ground34

truth labels for approximately 3% questions in HLE. In Figure 1 (left), we show the accuracy on the35

set of contaminated samples (red) is significantly higher than the set of uncontaminated ones (blue).36

We further propose a set of best practices to reduce STC in Appendix A.437

2 Background38

Search-based LLM Agents Enabling web search for LLMs has become a solution to effectively39

reduce hallucination and generate high-quality and well-grounded responses. Towards this end, Deep40

Research agents are a common and popular LLM product among model builders, eg. OpenAI [9],41

Google Deepmind [2] and Perplexity [11].42

Measuring Agent Capability To evaluate generations from a search-based LLM agent, offline43

capability benchmarks are repurposed. For example, when evaluated on Humanity’s Last Exam44

(HLE) [12], with the current state-of-the-art (SOTA) offline LLMs (no search/tools)1 score only45

25.4%2 with Grok 4 and 25.3% with GPT-5 [10], while Grok 4 Heavy [18] most recently reports46

50.7% as the SOTA performance for models with the web search enabled on this benchmark.47

Test Data Contamination In machine learning, model developers keep a held-out test set separate48

from the training dataset to evaluate the generalization of the model to unseen input – which we49

refer to the leakage of test set into the training process as data contamination, compromising test50

validity. GSM1k [20] empirically presents evidence of data contamination for a wide range of model51

families. A new avenue of contamination comes from search agents, where the retrieval step can52

surface a source that contains the test question (or a near-duplicate) alongside its answer, allowing the53

agents to copy rather than infer and/or reason. First, many evaluation datasets are hosted on online54

collaborative platforms (e.g., Huggingface and Github) and are publicly accessible. Second, due to55

the popularity of some datasets, third-party distribution can occur in other harder-to-detect sources56

such as personal blogs. In the following section, we demonstrate examples of STC in experiments.57

1Gemini 2.5 Deep Think (https://blog.google/products/gemini/gemini-2-5-deep-think/) re-
ported 34.8% on HLE but the API is not publicly available by the time this work is released (Aug 2025).

2Accessed in Aug, 2025 at https://www.lastexam.ai/
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Figure 2: Counterfactual accuracy difference between the subset of contaminated samples and
removing those sources by blocking HuggingFace. Error bars are 95% confidence intervals.

3 Experiments58

We show STC with respect to public datasets on HuggingFace3. While datasets can be gated on59

HuggingFace, but any public user who has access to a gated dataset can re-upload the data to make it60

visible to the public, intentionally or unintentionally. In Section 3.1, we measure the prevalence of61

STC on several popular benchmarks. In Section 3.2, we run ablation experiments with Perplexity62

search filters to further check for the contribution of Huggingface datasets to the overall performance63

of the agents, and new web pages published after the dataset release. Our experimental study allows64

us to broadly estimate bounds on the contribution of search and sources of contamination.65

3.1 Measuring Search-Time Contamination66

We evaluate search-based LLM agents under their default configurations, using the same prompts as67

their offline counterparts, on capability benchmarks.68

LLM Agents. In this work, we use Perplexity’s agents – Sonar Pro, Sonar Reasoning Pro, and69

Sonar Deep Research [11], as Perplexity API has the most comprehensive options, including link70

blacklisting, whitelisting, and date filters. We report our hyperparameters in Appendix A.7.71

Benchmarks. We demonstrate STC on Humanity’s Last Exam (HLE) [12], SimpleQA [16], and72

GPQA [13]. We report pass@1 accuracy. We report our judge implementations in Appendix A.8.73

Metric. We log all retrieved sources and perform a simple HuggingFace contamination check based74

on substring matching in URL. We mark an example as contaminated if any retrieved source is a75

HuggingFace copy of the respective benchmark item. The checker implementation uses substring76

match is included in Appendix A.9.77

STC Impact to Accuracy. In the agents’ reasoning logs, we observe instances where the model78

reasons to use the retrieved ground truth label over its own calculations or otherwise acknowledges79

the ground truth answer from the dataset as exemplified by Figure 1. More examples can be found in80

Appendix Figure 5.81

To understand the overall impact of this contamination, we calculate the accuracy of each agent on the82

subset of contaminated and uncontaminated samples. HLE results are shown in Figure 1, results for83

SimpleQA and GPQA are in Appendix Figure 4. On HLE, we find an accuracy difference of over 10%84

for Sonar Pro and 20% for Sonar Deep Research between uncontaminated and contaminated samples.85

On SimpleQA, Sonar Pro and Sonar Reasoning Pro have 100% accuracy ( 7 % gain compared to the86

3https://HuggingFace.co/
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Figure 3: Ablation experiments on search-based LLM agents to investigate impact of search and
search-time contamination.

uncontaminated set). On GPQA, we find retrieving a HuggingFace contaminated source does not87

improve the accuracy relative to uncontaminated sources.88

Validating STC With Counterfactual Examples. To determine whether the difference between89

contaminated and uncontaminated samples is actually due to the presence of dataset labels and not a90

confounder (such as the easiness of a question) we ran an experiment which blocked HuggingFace91

from being used as a source. On the same subset of questions which were originally contaminated92

(Table 1), blocking HuggingFace significantly reduces the accuracy (Figure 2), confirming our93

hypothesis that HuggingFace contamination indeed does affect outcomes. This also reveals the effect94

of contamination on Deep Research on GPQA, which is not seen in aggregate plots.95

3.2 Ablation Experiments With Search Filters96

STC can occur unintentionally and is difficult to detect, especially when agents return a large volume97

of web content. Furthermore, HuggingFace may not be the only source of contamination. To better98

estimate how STC may affect search-based agent evaluations, apply the several interventions in99

Figure 3, which we detail in Appendix A.6:100

The effect of search By comparing Default to No Search, we bound the contribution of retrieval101

itself and reveal how much performance persists without external evidence. Across benchmarks, the102

Default setting substantially outperforms No Search on HLE and SimpleQA, indicating that retrieval103

is a major driver of accuracy on these two tasks. The gap is large for Sonar Deep Research, whose104

scores roughly triple on HLE and more than double on SimpleQA with retrieval. GPQA accuracy is105

remarkably unchanged, this suggests that most GPQA questions can be correctly solved by LLMs106

without accessing online search.107

Source-specific Ablations (HF vs. the rest of the web). Blocking HuggingFace (Blocked HF)108

reduces performance relative to Default on HLE and SimpleQA, but the drops are modest and109

far smaller than the Default–No Search gaps. As is shown in Table 1, HuggingFace-based STC110

represents only a small portion across benchmarks, hence a relatively small overall drop by blocking111

HuggingFace domains is expected. This observation implies that while HF contributes to the gains, a112

large share of useful evidence resides on non-HF domains (e.g., papers, blogs, mirrors).113

Time ablation (Date Cutoff). The Date Cutoff filter removes sources after a benchmark’s release;114

results remain well above No Search and Only HF, confirming that substantial pre-release information115

exists on the web. However, when compared to Default, scores are consistently lower on HLE116

and SimpleQA with particularly visible reductions for Sonar Deep Research on HLE. If the date117

filter implemented by Perplexity manages to create a complete indexing of the subset of webpages118

published prior to benchmark release, this indicates that post-release webpages (e.g. duplications,119

commentary, dataset examples, etc.) contribute meaningfully to accuracy (and perhaps STC) under120

the Default search setting. Nevertheless, on GPQA, date filtering has negligible impact, reinforcing121

that this dataset needs minimal to no online contents to solve its questions.122
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A Appendix179

A.1 SimpleQA and GPQA STC Results180

Figure 4: Left: Sonar Pro and Sonar Reasoning Pro models achieve 100% accuracy when they retrieve
a leaked instance of the dataset, although the result is not statistically significant due to the saturation
of the dataset in this setting and the small number of contaminated samples. Right: Results on GPQA,
showing no improvement from retrieving search-contaminated compared to uncontaminated samples.

A.2 Examples of STC181

Figure 5: Examples of STC when search-based LLM agents access ungated datasets on HuggingFace
to direct extract answers for a benchmark question.

6

https://x.ai/news/grok-4
https://api.semanticscholar.org/CorpusID:278788862
https://api.semanticscholar.org/CorpusID:278788862
https://api.semanticscholar.org/CorpusID:278788862


A.3 Limitations & Future Work182

We present this work as a preliminary finding of search-time contamination to bring attention to183

the issue. The main limitation of our work is that the simple, hard-coded URL detector does not184

capture the full extent of search-time contamination outside of the narrow range of HuggingFace185

sources named in a particular manner. Accordingly, an interesting avenue of future work is to use186

browser agents to audit every source retrieved to check for deeper contamination. It would also be187

interesting to explore if models know they are being evaluated (situational awareness [7]), cheating on188

the evaluation, or even encourage models to cheat (or encourage them to not cheat) on the evaluation,189

and whether this affects their ability to retrieve contaminated sources. Finally, we note a number of190

takedowns/gating of a number of the third-party HuggingFace uploads have already occurred, which191

may impact the future reproducibility of this study.192

A.4 Best Practices193

Capability Benchmarks Do Not Evaluate Search Capability. Current capability benchmarks194

are often created through a workflow involving human annotators. While humans may use web195

browsers or other online tools to locate or help derive the correct answers, the resulting questions196

are not meant to evaluate a model’s capability of conducting web search. The reasons are three-197

fold. First, as the training set of modern LLMs can be as large as all the existing tokens on the198

Internet, the dataset curation process often involves creating new questions, or extrapolating and199

generalizing from existing ones to evaluate the model’s capability to answer unseen questions through200

reasoning. Second, complex and difficult questions in more recent capability benchmarks do not201

necessarily require up-to-date knowledge that did not exist at benchmark creation time or hard-to-202

retrieve information hidden on the Internet. For example, SimpleQA acknowledges that all questions203

are solvable with knowledge existing before December 31, 2023 [16]. Third, there is no metric or204

rubric in current capability benchmarks that measure the capability of an LLM agent in searching,205

learning, and using retrieved information for problem-solving. Thus, hillclimbing only capability206

benchmarks might be a suboptimal way for improving the capability of search-based LLM agents.207

Constructing capability benchmarks with dynamic (e.g. time-varying answers) groudtruth labels is a208

follow-up research direction. We caution against the use of offline capability benchmarks as proxies209

for online model capability.210

Towards Trustworthy Search-Time Evaluation. There is a set of existing interventions which211

can be applied in evaluations, but we stress their impact to stop STC is limited:212

• Canary strings: Canary strings are used in datasets for model builders to detect and213

exclude from their training data, to avoid contamination. This is standard practice following214

work such as BIG-Bench [15]. However, they only work when everyone who distributes215

a dataset publicly also includes it, which as we observed in this study is not the case for216

many HuggingFace copies, even when the original dataset includes them (we even observed217

third-parties slicing out the dataset-embedded canary string in HLE and GPQA).218

• Dataset gating: Benchmarks such as HLE and GPQA are already gated on HuggingFace,219

but as agents become more capable they may be able to bypass simple gating or encryption.220

Furthermore, this does not defend against ungated third-party distribution, which is the221

cause of the contamination we observe in this paper.222

• Single stage filtering: Simply filtering out some set of URLs is not sufficient to address223

contamination fully. Our analysis hints at factors beyond HuggingFace that could also lead224

to contamination. We recommend a multi-stage filtering model ("Swiss cheese model") to225

reduce contamination from multiple angles.226

To enhance trustworthiness and mitigate STC in evaluating search-based agents, we propose the227

following recommendations:228

• Multiple search filters. Implementing a comprehensive set of filters — similar to those229

used by the Perplexity API — can effectively control source sites during search operations,230

proactively preventing STC before it occurs.231

• Internal auditing. We recommend establishing a multi-layered internal auditing system232

to detect STC incidents. Essential components include: (1) keyword filtering to identify233
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major public websites that contain no relevant information for the problem-solving task (e.g.,234

Huggingface model repositories); and (2) substring matching to detect exact questions from235

evaluation datasets within retrieved content. Additionally, LLM-based and human auditors236

can monitor agent trajectories to identify potential misuse of online information.237

• Transparency in reporting. We advocate for responsible disclosure of evaluation setups,238

including detailed documentation of filter implementations and STC auditing processes.239

This transparency should encompass mitigation methodologies and their corresponding240

post-mitigation results. For open-source agents, releasing complete trajectories enables241

community-driven STC detection and reporting. For proprietary agents, providing trajectory242

abstracts can promote transparency and trustworthiness while preserving implementation243

security.244

A.5 Contamination Rates245

A breakdown of the number of contaminated samples for each benchmark. Around 3.3% of HLE246

samples show contamination across all three agents, with remarkably consistent rates (3.36-3.44%).247

SimpleQA exhibits the lowest contamination levels, with all agents showing rates below 1.2%,248

suggesting this dataset may be less susceptible to STC. GPQA demonstrates more variability, ranging249

from 1.90% (Sonar Reasoning Pro) to 4.15% (Sonar Deep Research). These results suggest that250

contamination rates are both dataset-dependent and influenced by the specific search and reasoning251

strategies employed by different agents.252

HuggingFace Contamination Detection Results
Dataset & Agent Contaminated Not Contaminated API Failure Contam. Rate

HLE Dataset
Sonar Pro 84 2,416 0 3.36
Sonar Reasoning Pro 86 2,411 3 3.44
Sonar Deep Research 80 2,299 121 3.36

SimpleQA Dataset
Sonar Pro 52 4,274 0 1.20
Sonar Reasoning Pro 48 4,278 0 1.11
Sonar Deep Research 43 4,283 0 0.99

GPQA Dataset
Sonar Pro 42 1,750 0 2.34
Sonar Reasoning Pro 34 1,758 0 1.90
Sonar Deep Research 74 1,707 11 4.15

Table 1: HuggingFace contamination detection across three evaluation datasets. Numbers represent
sample counts where contamination was detected using hard-coded substring matching.

A.6 Ablations253

• Default (no intervention). Identical to the setup in Section 3.1.254

• No Search. Permitted search domains are set to the empty set, forcing the agent to reason255

without online resources to elicit its offline performance.256

• Blocked HF. Any domain matching huggingface.co is excluded from search results. STC257

cannot occur via HuggingFace, but it may still arise from other sites that contain similar258

question–answer pairs (e.g., research papers describing dataset examples).259

• Only HF. Only domains matching huggingface.co are permitted in search results. The260

agent must rely on its internal knowledge and reasoning, plus information available from261

Hugging Face datasets.262
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• Date Cutoff. We restrict search using Perplexity’s date filter4 to one day before the respective263

benchmark’s release date, assuming that no post-release knowledge should be required to264

solve the benchmark questions.265

A.7 Model Hyperparameters266

We use Sonar Pro, Sonar Reasoning Pro, and Sonar Deep Research agents via the public267

API5. We pass the following hyper-parameters: temperature=0.2 (default), top_p=0.9 (default),268

search_context_size=’high’. Model output is set to a maximum of 32,000 tokens to allow the269

evaluations to finish in a reasonable time span. API timeout is set to 1 hour with 5 tries, at which270

point failures are marked as an API failure.271

A.8 Judge Implementations272

• HLE Judge: Implementation from github.com/centerforaisafety/hle. Judge used is o3-mini-273

2025-01-31 with temperature=1.0, max_completion_tokens=4096.274

• SimpleQA Judge: Implementation from github.com/openai/simple-evals. Judge used is275

gpt-4.1-2025-04-14 with temperature=0.5, max_completion_tokens=2048.276

• GPQA Judge: Implementation from github.com/openai/simple-evals. No LLM judge is277

used. GPQA is evaluated over the entire set with 4 repetitions to lower the variance following278

standard practice (eg., OpenAI SimpleEvals6).279

A.9 Substring Checker280

Python Code: HuggingFace Contamination Checker

1 def check_hf_contamination(sources: list[str], substrings: list[
str]) -> Union[bool , str]:

2 """
3 Checks whether any of the URLs corresponding to a single

sample is HuggingFace contaminated.
4

5 Args:
6 sources: Sources corresponding to a single sample.
7 substrings: Substrings which count as contamination when

present in the URL.
8

9 Returns:
10 The first source of contamination , False if no HF

contamination is detected.
11 """
12 for source in sources:
13 if ’huggingface ’ in source and any(substring in source for

substring in substrings):
14 return source
15 return False
16

17 # Contamination substring definitions
18 HLE_SUBSTRINGS = [’hle’]
19 SIMPLEQA_SUBSTRINGS = [’simpleqa ’, ’simple_qa ’, ’simple -qa’]
20 GPQA_SUBSTRINGS = [’gpqa’]

281

4https://docs.perplexity.ai/guides/date-range-filter-guide. This filter relies on metadata
available for the pages they index. Pages with missing metadata may not be filtered, so results can be incomplete
for content published both before and after the target date.

5Accessed between May 15, 2025 and June 15, 2025.
6https://github.com/openai/simple-evals
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