
Can Tool-augmented Large Language Models
be Aware of Incomplete Conditions?

Anonymous ACL submission

Abstract001

Recent advancements in integrating large lan-002
guage models (LLMs) with tools have allowed003
the models to interact with real-world environ-004
ments. However, these tool-augmented LLMs005
often encounter incomplete scenarios when006
users provide partial information or the nec-007
essary tools are unavailable. Recognizing and008
managing such scenarios is crucial for LLMs009
to ensure their reliability, but this exploration010
remains understudied. This study examines011
whether LLMs can identify incomplete con-012
ditions and appropriately determine when to013
refrain from using tools. To this end, we ad-014
dress a dataset by manipulating instances from015
two datasets by removing necessary tools or016
essential information for tool invocation. Our017
experiments show that LLMs often struggle to018
identify the absence of information required to019
utilize specific tools and recognize the absence020
of appropriate tools. We further analyze model021
behaviors in different environments and com-022
pare their performance against humans. Our023
research can contribute to advancing reliable024
LLMs by addressing common scenarios during025
interactions between humans and LLMs.1026

1 Introduction027

Recently, there has been significant improvement028

in integrating large language models (LLMs) with029

tools (Li et al., 2023; Qin et al., 2023; Patil et al.,030

2023; Schick et al., 2024; Hao et al., 2024). These031

tool-augmented LLMs can perceive up-to-date in-032

formation, acquire real-world interaction capabili-033

ties, and perform complex tasks (Wang et al., 2024),034

enhancing user experiences across various applica-035

tions (Yang et al., 2023; Hong et al., 2023).036

Despite their capabilities, tool-augmented LLMs037

often face scenarios where users lack comprehen-038

sive knowledge about available tools or the nec-039

essary tools are absent. When LLM agents in-040

1Our code and dataset will be publicly available.

(I’m not sure which tool to use …)

Check balance for account #12345.

{"QueryStock", params:["stock_id", "user"]}

{"BalanceTransfer", params:["from", "to"]}

QueryBalance(account_id="N/A")

What is my current balance?

{"QueryBalance", params:["account_id"]}

{"BalanceTransfer", params:["from", "to"]}

Figure 1: An illustration of incomplete conditions for
tool invocation by tool-augmented LLMs.

teract with users, they frequently encounter situa- 041

tions with missing tools or incomplete information 042

needed for tool usage. While significant advances 043

have been made in tool-augmented LLMs, exist- 044

ing research has primarily focused on complete 045

scenarios (Huang et al., 2023; Zhang et al., 2024b). 046

We investigate whether tool-augmented LLMs 047

can recognize incomplete conditions where no ap- 048

propriate tool is available or the provided informa- 049

tion is insufficient for tool utilization, as depicted 050

in Fig.1. We construct a dataset by manipulat- 051

ing instances from existing tool-augmented LLM 052

datasets (Qin et al., 2023; Li et al., 2023), with 053

human verification ensuring valid instances. 054

Our experimental results show varying perfor- 055

mance patterns across different types of incomplete 056

scenarios: while larger models generally demon- 057

strate strong performance in recognizing tool un- 058

availability, the performance gaps become more 059

pronounced when handling insufficient informa- 060

tion for tool usage, particularly in real-world ap- 061

plications. To better understand these capabili- 062

ties, we conduct comprehensive analyses, includ- 063

ing human evaluation and Chain-of-Thought (CoT) 064

prompting (Wei et al., 2022), few-shot learning 065

1

approaches, and API call feedback effects. Our066

findings show that while larger models approach067

or exceed human-level performance, the effective-068

ness of enhancement strategies varies across model069

sizes and tasks.070

Our contributions are: (1) We construct a dataset071

simulating incomplete conditions by manipulating072

tool-use datasets. (2) We evaluate LLMs’ ability073

to recognize impossible tool invocations, revealing074

their struggles with identifying missing informa-075

tion. (3) We provide comprehensive analyses of076

model behavior in incomplete scenarios.077

2 Related Work078

Recent research has explored the capability en-079

hancement of LLMs with external tools (Wang080

et al., 2024; Gu et al., 2024; Cai et al., 2024;081

Fan et al., 2024), ranging from basic retrieval sys-082

tems (Chen et al., 2017) and arithmetic operations083

(Schick et al., 2024) to complex programming lan-084

guages (Gou et al., 2024; Zhang et al., 2024a) and085

APIs (Xu et al., 2023; Yuan et al., 2024; Guo et al.,086

2024). Various benchmarks have been developed to087

evaluate LLMs’ tool usage capabilities, including088

tool selection timing (Huang et al., 2023), robust-089

ness to noisy descriptions (Ye et al., 2024b), error090

handling (Sun et al., 2024), and safety considera-091

tions (Ye et al., 2024a).092

Although some studies have examined the aware-093

ness of LLMs when the necessary tools are not094

provided, the existing work has significant limi-095

tations. Previous studies focused on limited tool096

scenarios (Ning et al., 2024; Yan et al., 2024), as-097

sumed perfect tool utilization plan is given (Huang098

et al., 2024), or overlooked situations with simi-099

lar but incorrect tools (Zhang et al., 2024b). Our100

work addresses these gaps by exploring more real-101

istic scenarios, including situations where incorrect102

but similar tools are provided or where users fail103

to supply the necessary information for tool invo-104

cation. Although research in question answering105

has explored handling irrelevant knowledge and106

ambiguous requests (Feng et al., 2020; Min et al.,107

2020; Kamath et al., 2020; Cole et al., 2023; Jeong108

et al., 2024), LLMs’ ability to recognize impracti-109

cal tool usage remains underexplored.110

3 How to Evaluate the Awareness of111

Tool-augmented LLMs112

To simulate incomplete scenarios where necessary113

tools are unavailable or users provide partial infor-114

mation, we manipulate instances from a test set of 115

two benchmarks: APIBank (Li et al., 2023) and 116

ToolBench (Qin et al., 2023). These datasets are 117

designed to evaluate how effectively LLMs can 118

respond to user requests using APIs.2 In their origi- 119

nal dataset, each instance has an available API that 120

can address the user’s request, with sufficient in- 121

formation provided to invoke the API. This section 122

describes our data source (§3.1), manipulation strat- 123

egy (§3.2), and human verification process (§3.3) 124

for creating reliable incomplete scenarios. 125

3.1 Data Source 126

We construct a new dataset by leveraging two ex- 127

isting datasets: APIBank (Li et al., 2023) and Tool- 128

Bench (Qin et al., 2023). APIBank consists of 73 129

APIs and 314 manually annotated multi-turn con- 130

versations. We select 450 instances from the test 131

split, excluding those that require a tool-retrieval 132

module. ToolBench is based on 16,000 real-world 133

APIs across 49 categories from RapidAPI Hub.3 134

We utilize 764 test instances as filtered by Guo et al. 135

(2024). These instances are used as the original 136

data for manipulation. 137

3.2 Simulating Incomplete Scenarios with 138

Instance Manipulation 139

We simulate two incomplete scenarios in which 140

LLMs cannot properly invoke tools by manipulat- 141

ing the original dataset instances: (1) replacing 142

relevant APIs with irrelevant ones, and (2) partially 143

removing user utterances. 144

Replacement of Relevant API We use a dense 145

retriever to replace the appropriate APIs with simi- 146

lar but irrelevant ones. This manipulation ensures 147

that the desired tool is unavailable, simulating a sce- 148

nario where LLMs must decide not to use any of the 149

provided tools. Specifically, the relevant APIs in 150

the original instance are replaced with other APIs 151

from separate API pools. To find semantically sim- 152

ilar APIs, we use the sentence encoder proposed 153

by Gao et al. (2021).4 We concatenate the name 154

and description of each API, convert this text into 155

a fixed-size vector, and then select one of the most 156

similar APIs by calculating cosine similarity be- 157

tween the relevant API and all available APIs in 158

the dataset. Examples of successful and failed in- 159

stances of this manipulation are in Fig. 4 to Fig. 7. 160

2We refer to Tool and API interchangeably.
3https://rapidapi.com/hub
4princeton-nlp/sup-simcse-roberta-large

2

https://rapidapi.com/hub
princeton-nlp/sup-simcse-roberta-large

API Replacement Utterance Removal
APIBank ToolBench APIBank ToolBench

Instances 423 477 304 406

Avg. Turns 6.18 1 5.18 1
Avg. APIs 2.13 5.13 2.05 5.51
Avg. Uttr. Words 17.66 52.38 18.87 51.15
Avg. API Length 434.39 713.35 443.38 747.53

Table 1: Dataset Statistics. The API Replacement and
Utterance Removal denote Relevant API Replacement
and Partial Removal of User Utterance, respectively.
Avg. API Length denotes the string length of each API.

Partial Removal of User Utterance We partially161

remove user utterances in a conversation to mimic162

scenarios where (1) the request is unclear, making163

it impossible to use APIs, or (2) the request is clear164

but lacks necessary information for API invocation.165

This manipulation removes essential information166

from user utterances, rendering appropriate API167

invocation infeasible. We automate this process us-168

ing a proprietary LLM (i.e., GPT-4 (Achiam et al.,169

2023)) to generate naturally corrupted dialogues.170

The model is instructed to identify and remove crit-171

ical information required for tool invocation, and172

we enhance the quality of this process with reason-173

ing prompts and five manually designed few-shot174

samples. Sample instances are in Fig. 8 to Fig. 11.175

3.3 Data Verification176

To ensure the validity of our dataset, we manu-177

ally reviewed all instances to remove cases where178

user requests could still be handled by the provided179

APIs or where the manipulations resulted in unnat-180

ural conversations. Two authors holding bachelor’s181

degree or higher in Computer Science conducted182

this verification process, focusing on two key as-183

pects: (1) whether alternative or non-replaced APIs184

could still fulfill the user’s request in API Replace-185

ment cases, and (2) whether the remaining informa-186

tion was sufficient for API execution in Utterance187

Removal cases.5 Through active discussion and188

refinement of filtering criteria, we ensured that the189

final dataset includes only instances that genuinely190

represent incomplete scenarios.191

3.4 Dataset Statistics192

Our final dataset includes 727 instances from193

APIBank and 883 from ToolBench, totaling 1,610194

instances. Of these, 900 instances were generated195

by replacing relevant APIs, and 710 were created196

by removing parts of the user utterances. Table 1197

presents the overall dataset statistics.198

5Detailed dataset verification criteria are in Appendix A.2.

4 Experimental Setup 199

Task Formulation We set the task where LLMs 200

recognize incomplete conditions as a binary clas- 201

sification problem. We ask the LLM to determine 202

whether APIs can be invoked to fulfill user requests 203

based on conversations and available APIs. To as- 204

sess whether LLMs can recognize both complete 205

and incomplete conditions, we utilize the instances 206

of two datasets(APIBank and ToolBench) and cor- 207

responding manipulated samples. LLMs should 208

answer "Yes" or "No" for the original and manip- 209

ulated instances, respectively. We measure perfor- 210

mance using accuracy and F1 score, with "No" 211

designated as the positive class. 212

Models Following open-source and proprietary 213

LLMs are used for our experiments: Phi-3-small- 214

8k-instruct (Abdin et al., 2024), Mistral-Instruct- 215

v0.2 (7B) (Jiang et al., 2023), Llama-3.1-8B/80B- 216

Instruct (Dubey et al., 2024), Qwen2-7B-Instruct 217

(Yang et al., 2024), Claude-3-Haiku (Anthropic, 218

2024), GPT-3.5-Turbo (OpenAI, 2023a), and GPT- 219

4 (Achiam et al., 2023), GPT-4o-mini (Achiam 220

et al., 2023), and GPT-4o (Achiam et al., 2023).6 221

5 Results and Analysis 222

We present our key observations as follows. Fur- 223

ther analyses, such as the impact of tool invocation 224

feedback, are provided in Appendix B. 225

Model performance varies significantly across 226

manipulation types and datasets. Experimental 227

results in Table 2 show distinct performance pat- 228

terns. In API Replacement, GPT-4 variants and 229

Llama 3.1 70B achieve strong results (88.82% and 230

79.10% accuracy on APIBank). The performance 231

gap widens in the Utterance Removal type, espe- 232

cially in ToolBench, where smaller models show 233

significant degradation. Notably, extremely low 234

F1 scores in ToolBench stem from models’ predic- 235

tions concentrating on "Yes" responses, indicating 236

their tendency to overestimate tool applicability 237

and suggesting that Utterance Removal requires 238

more advanced language understanding. 239

Few-shot learning shows dataset-dependent ef- 240

fectiveness. The impact of few-shot learning varies 241

across datasets. While models generally perform 242

better with few-shot examples on APIBank, im- 243

provements are less pronounced in ToolBench. We 244

attribute this to the complexity of real-world tools, 245

6More implementation details are in Appendix A.1.

3

Phi-3
small

Mistral
7B

Llama3.1
8B

Llama3.1
70B

Qwen2
7B

Claude3
haiku

GPT-3.5
Turbo

GPT-4
GPT-4o

mini
GPT-4o

Relevant API Replacement

APIBank
Acc.

0-shot 61.60 69.38 76.06 79.10 68.77 68.89 67.92 87.85 88.82 86.03
4-shot 61.97 75.09 75.70 82.50 71.81 65.74 71.32 85.66 85.66 83.35

F1
0-shot 36.80 62.16 71.32 81.22 58.62 63.53 62.39 87.56 88.41 86.23
4-shot 38.51 69.81 74.81 83.33 63.41 47.58 65.80 84.99 85.99 82.90

ToolBench
Acc.

0-shot 54.84 60.11 69.45 72.64 67.36 68.57 64.29 72.31 77.69 76.48
4-shot 55.49 60.88 76.37 80.55 68.35 58.57 57.91 79.01 75.82 77.14

F1
0-shot 14.55 34.36 56.43 76.97 52.48 59.03 46.28 61.93 72.97 75.06
4-shot 17.52 35.04 70.34 80.49 60.44 27.36 25.34 77.02 69.36 76.89

Partial Removal of User Utterance

APIBank
Acc.

0-shot 51.95 52.63 52.63 77.42 57.39 62.65 56.20 89.47 77.25 88.29
4-shot 62.14 52.63 59.25 84.72 57.22 53.14 65.87 88.79 79.46 89.81

F1
0-shot 4.07 23.14 19.60 80.06 29.69 52.59 36.76 89.27 73.41 88.74
4-shot 38.23 20.51 46.90 85.98 29.21 9.80 55.43 88.70 79.10 90.07

ToolBench
Acc.

0-shot 49.94 50.19 50.19 71.54 51.10 53.17 49.42 57.05 57.57 74.51
4-shot 50.06 50.45 51.36 72.83 54.98 49.94 50.32 66.11 55.11 75.16

F1
0-shot 0.51 5.41 5.41 74.94 10.85 27.89 2.98 27.19 35.18 70.90
4-shot 1.03 4.49 14.93 70.25 33.59 1.02 2.04 55.74 25.05 73.33

Table 2: Performance evaluation results of LLM by manipulation type. The accuracy (Acc.) and F1 score (F1)
are used for evaluation metrics. Both the zero-shot and four-shot performance are presented. The highest and the
second-highest scores in each metric are highlighted in bold and underlined.

0

20

40

60

80

100
API Replacement (APIBank) API Replacement (ToolBench)

Phi-3-sm
all

Llama-3.1-8B

Llama-3.1-70B

Qwen2-7B

GPT-4o-mini
GPT-4o

0

20

40

60

80

100
Utterance Removal (APIBank)

Phi-3-sm
all

Llama-3.1-8B

Llama-3.1-70B

Qwen2-7B

GPT-4o-mini
GPT-4o

Utterance Removal (ToolBench)

Zero-shot CoT

Figure 2: F1-score comparison across different manip-
ulation types and datasets, showing the impact of CoT
prompting. Full results are in Table 11.

which require significant reasoning skills and in-246

volve diverse scenarios (Khot et al., 2022).247

Chain-of-Thought prompting benefits smaller248

models significantly. As shown in Fig. 2, CoT249

prompting enhances model performance, particu-250

larly for weak models. In APIBank’s Utterance Re-251

moval task, Phi-3 small’s F1 score increases from252

4.07% to 38.23% with CoT, suggesting that explicit253

reasoning steps facilitate a better understanding of254

API-instruction relationships.255

Human performance establishes a reliable256

benchmark. We conducted a human evaluation257

with nine participants analyzing 20 balanced in-258

stances each from 180 selected APIBank samples.259

Results in Table 3 show consistent human per-260

formance (81.11% accuracy) across manipulation261

API Utterance Overall
Acc. F1 Acc. F1 Acc. F1

Human 81.11 78.48 81.11 81.32 81.11 80.00

Table 3: Human analysis results. API and Utterance
denote API Replacement and Utterance Removal.

types, with F1 scores from 78.48% to 81.32%. This 262

provides a meaningful reference point for model 263

evaluation, with some larger models demonstrating 264

comparable or superior performance in handling 265

incomplete situations. More details on human eval- 266

uations are in Appendix A.3. 267

6 Conclusion 268

In this work, we investigate the capability of tool- 269

augmented LLMs to recognize incomplete condi- 270

tions. Specifically, we examine scenarios where 271

users only provide partial information or the re- 272

quired tools are inaccessible. Our experimental 273

results, based on carefully manipulated datasets, 274

reveal varying performance patterns across differ- 275

ent incomplete scenarios and model scales. While 276

larger models show promising results, the effec- 277

tiveness of enhancement strategies like few-shot 278

learning and Chain-of-Thought prompting varies 279

across different manipulation types and datasets. 280

These findings highlight the importance of consid- 281

ering diverse incomplete scenarios in developing 282

more reliable and safer tool-augmented LLMs for 283

real-world applications. 284

4

Limitations285

While we explore the ability of tool-augmented286

LLMs to abstain from tool usage in incomplete con-287

ditions, our study has several limitations. First, the288

data annotation process primarily relies on model-289

based annotations, although human verification is290

conducted. This approach might differ from actual291

cases where humans provide incomplete informa-292

tion regarding tool usage. Additionally, our focus293

is solely on API-based tools, which, although sig-294

nificant, do not encompass the full spectrum of295

tools such as plugins, robotic systems, and other296

interactive systems. Despite these limitations, our297

research underscores the importance of developing298

reliable tool-augmented LLMs, highlighting the299

need for further advancements in this area.300

References301

Marah Abdin, Jyoti Aneja, Hany Awadalla, Ahmed302
Awadallah, Ammar Ahmad Awan, Nguyen Bach,303
Amit Bahree, Arash Bakhtiari, Jianmin Bao, Harkirat304
Behl, et al. 2024. Phi-3 technical report: A highly ca-305
pable language model locally on your phone. arXiv306
preprint arXiv:2404.14219.307

Josh Achiam, Steven Adler, Sandhini Agarwal, Lama308
Ahmad, Ilge Akkaya, Florencia Leoni Aleman,309
Diogo Almeida, Janko Altenschmidt, Sam Altman,310
Shyamal Anadkat, et al. 2023. Gpt-4 technical report.311
arXiv preprint arXiv:2303.08774.312

AI Anthropic. 2024. The claude 3 model family: Opus,313
sonnet, haiku. Claude-3 Model Card.314

Tianle Cai, Xuezhi Wang, Tengyu Ma, Xinyun Chen,315
and Denny Zhou. 2024. Large language models as316
tool makers. Preprint, arXiv:2305.17126.317

Danqi Chen, Adam Fisch, Jason Weston, and Antoine318
Bordes. 2017. Reading Wikipedia to answer open-319
domain questions. In Proceedings of the 55th Annual320
Meeting of the Association for Computational Lin-321
guistics (Volume 1: Long Papers), pages 1870–1879,322
Vancouver, Canada. Association for Computational323
Linguistics.324

Jeremy Cole, Michael Zhang, Daniel Gillick, Julian325
Eisenschlos, Bhuwan Dhingra, and Jacob Eisenstein.326
2023. Selectively answering ambiguous questions.327
In Proceedings of the 2023 Conference on Empiri-328
cal Methods in Natural Language Processing, pages329
530–543, Singapore. Association for Computational330
Linguistics.331

Abhimanyu Dubey, Abhinav Jauhri, Abhinav Pandey,332
Abhishek Kadian, Ahmad Al-Dahle, Aiesha Letman,333
Akhil Mathur, Alan Schelten, Amy Yang, Angela334
Fan, et al. 2024. The llama 3 herd of models. arXiv335
preprint arXiv:2407.21783.336

Zhiting Fan, Ruizhe Chen, Ruiling Xu, and Zuozhu 337
Liu. 2024. BiasAlert: A plug-and-play tool for so- 338
cial bias detection in LLMs. In Proceedings of the 339
2024 Conference on Empirical Methods in Natural 340
Language Processing, pages 14778–14790, Miami, 341
Florida, USA. Association for Computational Lin- 342
guistics. 343

Yulan Feng, Shikib Mehri, Maxine Eskenazi, and 344
Tiancheng Zhao. 2020. “none of the above”: Mea- 345
sure uncertainty in dialog response retrieval. In Pro- 346
ceedings of the 58th Annual Meeting of the Asso- 347
ciation for Computational Linguistics, pages 2013– 348
2020, Online. Association for Computational Lin- 349
guistics. 350

Tianyu Gao, Xingcheng Yao, and Danqi Chen. 2021. 351
SimCSE: Simple contrastive learning of sentence em- 352
beddings. In Proceedings of the 2021 Conference 353
on Empirical Methods in Natural Language Process- 354
ing, pages 6894–6910, Online and Punta Cana, Do- 355
minican Republic. Association for Computational 356
Linguistics. 357

Zhibin Gou, Zhihong Shao, Yeyun Gong, Yelong Shen, 358
Yujiu Yang, Minlie Huang, Nan Duan, and Weizhu 359
Chen. 2024. Tora: A tool-integrated reasoning 360
agent for mathematical problem solving. Preprint, 361
arXiv:2309.17452. 362

Yu Gu, Yiheng Shu, Hao Yu, Xiao Liu, Yuxiao Dong, 363
Jie Tang, Jayanth Srinivasa, Hugo Latapie, and Yu Su. 364
2024. Middleware for LLMs: Tools are instrumen- 365
tal for language agents in complex environments. 366
In Proceedings of the 2024 Conference on Empir- 367
ical Methods in Natural Language Processing, pages 368
7646–7663, Miami, Florida, USA. Association for 369
Computational Linguistics. 370

Zhicheng Guo, Sijie Cheng, Hao Wang, Shihao Liang, 371
Yujia Qin, Peng Li, Zhiyuan Liu, Maosong Sun, and 372
Yang Liu. 2024. Stabletoolbench: Towards stable 373
large-scale benchmarking on tool learning of large 374
language models. arXiv preprint arXiv:2403.07714. 375

Shibo Hao, Tianyang Liu, Zhen Wang, and Zhiting Hu. 376
2024. Toolkengpt: Augmenting frozen language 377
models with massive tools via tool embeddings. Ad- 378
vances in neural information processing systems, 36. 379

Sirui Hong, Mingchen Zhuge, Jonathan Chen, Xiawu 380
Zheng, Yuheng Cheng, Ceyao Zhang, Jinlin Wang, 381
Zili Wang, Steven Ka Shing Yau, Zijuan Lin, Liyang 382
Zhou, Chenyu Ran, Lingfeng Xiao, Chenglin Wu, 383
and Jürgen Schmidhuber. 2023. Metagpt: Meta pro- 384
gramming for a multi-agent collaborative framework. 385
Preprint, arXiv:2308.00352. 386

Shijue Huang, Wanjun Zhong, Jianqiao Lu, Qi Zhu, Ji- 387
ahui Gao, Weiwen Liu, Yutai Hou, Xingshan Zeng, 388
Yasheng Wang, Lifeng Shang, Xin Jiang, Ruifeng 389
Xu, and Qun Liu. 2024. Planning, creation, usage: 390
Benchmarking LLMs for comprehensive tool utiliza- 391
tion in real-world complex scenarios. In Findings of 392
the Association for Computational Linguistics ACL 393

5

https://arxiv.org/abs/2305.17126
https://arxiv.org/abs/2305.17126
https://arxiv.org/abs/2305.17126
https://doi.org/10.18653/v1/P17-1171
https://doi.org/10.18653/v1/P17-1171
https://doi.org/10.18653/v1/P17-1171
https://doi.org/10.18653/v1/2023.emnlp-main.35
https://doi.org/10.18653/v1/2024.emnlp-main.820
https://doi.org/10.18653/v1/2024.emnlp-main.820
https://doi.org/10.18653/v1/2024.emnlp-main.820
https://doi.org/10.18653/v1/2020.acl-main.182
https://doi.org/10.18653/v1/2020.acl-main.182
https://doi.org/10.18653/v1/2020.acl-main.182
https://doi.org/10.18653/v1/2021.emnlp-main.552
https://doi.org/10.18653/v1/2021.emnlp-main.552
https://doi.org/10.18653/v1/2021.emnlp-main.552
https://arxiv.org/abs/2309.17452
https://arxiv.org/abs/2309.17452
https://arxiv.org/abs/2309.17452
https://doi.org/10.18653/v1/2024.emnlp-main.436
https://doi.org/10.18653/v1/2024.emnlp-main.436
https://doi.org/10.18653/v1/2024.emnlp-main.436
https://arxiv.org/abs/2308.00352
https://arxiv.org/abs/2308.00352
https://arxiv.org/abs/2308.00352
https://aclanthology.org/2024.findings-acl.259
https://aclanthology.org/2024.findings-acl.259
https://aclanthology.org/2024.findings-acl.259
https://aclanthology.org/2024.findings-acl.259
https://aclanthology.org/2024.findings-acl.259

2024, pages 4363–4400, Bangkok, Thailand and vir-394
tual meeting. Association for Computational Linguis-395
tics.396

Yue Huang, Jiawen Shi, Yuan Li, Chenrui Fan, Siyuan397
Wu, Qihui Zhang, Yixin Liu, Pan Zhou, Yao Wan,398
Neil Zhenqiang Gong, et al. 2023. Metatool bench-399
mark: Deciding whether to use tools and which to use.400
In The Twelfth International Conference on Learning401
Representations.402

Soyeong Jeong, Jinheon Baek, Sukmin Cho, Sung Ju403
Hwang, and Jong C Park. 2024. Adaptive-rag: Learn-404
ing to adapt retrieval-augmented large language mod-405
els through question complexity. arXiv preprint406
arXiv:2403.14403.407

Albert Q Jiang, Alexandre Sablayrolles, Arthur Men-408
sch, Chris Bamford, Devendra Singh Chaplot, Diego409
de las Casas, Florian Bressand, Gianna Lengyel, Guil-410
laume Lample, Lucile Saulnier, et al. 2023. Mistral411
7b. arXiv preprint arXiv:2310.06825.412

Amita Kamath, Robin Jia, and Percy Liang. 2020. Se-413
lective question answering under domain shift. In414
Proceedings of the 58th Annual Meeting of the Asso-415
ciation for Computational Linguistics, pages 5684–416
5696, Online. Association for Computational Lin-417
guistics.418

Tushar Khot, Harsh Trivedi, Matthew Finlayson, Yao419
Fu, Kyle Richardson, Peter Clark, and Ashish Sab-420
harwal. 2022. Decomposed prompting: A modular421
approach for solving complex tasks. In The Eleventh422
International Conference on Learning Representa-423
tions.424

Minghao Li, Yingxiu Zhao, Bowen Yu, Feifan Song,425
Hangyu Li, Haiyang Yu, Zhoujun Li, Fei Huang,426
and Yongbin Li. 2023. API-bank: A comprehensive427
benchmark for tool-augmented LLMs. In Proceed-428
ings of the 2023 Conference on Empirical Methods429
in Natural Language Processing, pages 3102–3116,430
Singapore. Association for Computational Linguis-431
tics.432

Sewon Min, Julian Michael, Hannaneh Hajishirzi, and433
Luke Zettlemoyer. 2020. AmbigQA: Answering am-434
biguous open-domain questions. In Proceedings of435
the 2020 Conference on Empirical Methods in Nat-436
ural Language Processing (EMNLP), pages 5783–437
5797, Online. Association for Computational Lin-438
guistics.439

Kangyun Ning, Yisong Su, Xueqiang Lv, Yuanzhe440
Zhang, Jian Liu, Kang Liu, and Jinan Xu. 2024.441
Wtu-eval: A whether-or-not tool usage evaluation442
benchmark for large language models. Preprint,443
arXiv:2407.12823.444

OpenAI. 2023a. Chatgpt: A large language model devel-445
oped by openai. https://www.openai.com/446
chatgpt. Accessed: 2024-06-16.447

OpenAI. 2023b. Prompt engineering. https:448
//platform.openai.com/docs/guides/449
prompt-engineering. Accessed: 2024-06-16.450

Shishir G Patil, Tianjun Zhang, Xin Wang, and 451
Joseph E Gonzalez. 2023. Gorilla: Large language 452
model connected with massive apis. arXiv preprint 453
arXiv:2305.15334. 454

Yujia Qin, Shihao Liang, Yining Ye, Kunlun Zhu, Lan 455
Yan, Yaxi Lu, Yankai Lin, Xin Cong, Xiangru Tang, 456
Bill Qian, et al. 2023. Toolllm: Facilitating large 457
language models to master 16000+ real-world apis. 458
arXiv preprint arXiv:2307.16789. 459

Timo Schick, Jane Dwivedi-Yu, Roberto Dessì, Roberta 460
Raileanu, Maria Lomeli, Eric Hambro, Luke Zettle- 461
moyer, Nicola Cancedda, and Thomas Scialom. 2024. 462
Toolformer: Language models can teach themselves 463
to use tools. Advances in Neural Information Pro- 464
cessing Systems, 36. 465

Jimin Sun, So Yeon Min, Yingshan Chang, and Yonatan 466
Bisk. 2024. Tools fail: Detecting silent errors in 467
faulty tools. In Proceedings of the 2024 Conference 468
on Empirical Methods in Natural Language Process- 469
ing, pages 14272–14289, Miami, Florida, USA. As- 470
sociation for Computational Linguistics. 471

Hugo Touvron, Louis Martin, Kevin Stone, Peter Al- 472
bert, Amjad Almahairi, Yasmine Babaei, Nikolay 473
Bashlykov, Soumya Batra, Prajjwal Bhargava, Shruti 474
Bhosale, et al. 2023. Llama 2: Open founda- 475
tion and fine-tuned chat models. arXiv preprint 476
arXiv:2307.09288. 477

Zhiruo Wang, Zhoujun Cheng, Hao Zhu, Daniel Fried, 478
and Graham Neubig. 2024. What are tools anyway? 479
a survey from the language model perspective. arXiv 480
preprint arXiv:2403.15452. 481

Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten 482
Bosma, Fei Xia, Ed Chi, Quoc V Le, Denny Zhou, 483
et al. 2022. Chain-of-thought prompting elicits rea- 484
soning in large language models. Advances in neural 485
information processing systems, 35:24824–24837. 486

Thomas Wolf, Lysandre Debut, Victor Sanh, Julien 487
Chaumond, Clement Delangue, Anthony Moi, Pier- 488
ric Cistac, Tim Rault, Rémi Louf, Morgan Funtowicz, 489
Joe Davison, Sam Shleifer, Patrick von Platen, Clara 490
Ma, Yacine Jernite, Julien Plu, Canwen Xu, Teven Le 491
Scao, Sylvain Gugger, Mariama Drame, Quentin 492
Lhoest, and Alexander M. Rush. 2020. Transform- 493
ers: State-of-the-art natural language processing. In 494
Proceedings of the 2020 Conference on Empirical 495
Methods in Natural Language Processing: System 496
Demonstrations, pages 38–45, Online. Association 497
for Computational Linguistics. 498

Qiantong Xu, Fenglu Hong, Bo Li, Changran Hu, 499
Zhengyu Chen, and Jian Zhang. 2023. On the tool 500
manipulation capability of open-source large lan- 501
guage models. arXiv preprint arXiv:2305.16504. 502

Fanjia Yan, Huanzhi Mao, Charlie Cheng-Jie Ji, 503
Tianjun Zhang, Shishir G. Patil, Ion Stoica, and 504
Joseph E. Gonzalez. 2024. Berkeley function 505
calling leaderboard. https://gorilla. 506
cs.berkeley.edu/blogs/8_berkeley_ 507
function_calling_leaderboard.html. 508

6

https://doi.org/10.18653/v1/2020.acl-main.503
https://doi.org/10.18653/v1/2020.acl-main.503
https://doi.org/10.18653/v1/2020.acl-main.503
https://doi.org/10.18653/v1/2023.emnlp-main.187
https://doi.org/10.18653/v1/2023.emnlp-main.187
https://doi.org/10.18653/v1/2023.emnlp-main.187
https://doi.org/10.18653/v1/2020.emnlp-main.466
https://doi.org/10.18653/v1/2020.emnlp-main.466
https://doi.org/10.18653/v1/2020.emnlp-main.466
https://arxiv.org/abs/2407.12823
https://arxiv.org/abs/2407.12823
https://arxiv.org/abs/2407.12823
https://www.openai.com/chatgpt
https://www.openai.com/chatgpt
https://www.openai.com/chatgpt
https://platform.openai.com/docs/guides/prompt-engineering
https://platform.openai.com/docs/guides/prompt-engineering
https://platform.openai.com/docs/guides/prompt-engineering
https://platform.openai.com/docs/guides/prompt-engineering
https://platform.openai.com/docs/guides/prompt-engineering
https://doi.org/10.18653/v1/2024.emnlp-main.790
https://doi.org/10.18653/v1/2024.emnlp-main.790
https://doi.org/10.18653/v1/2024.emnlp-main.790
https://www.aclweb.org/anthology/2020.emnlp-demos.6
https://www.aclweb.org/anthology/2020.emnlp-demos.6
https://www.aclweb.org/anthology/2020.emnlp-demos.6
https://gorilla.cs.berkeley.edu/blogs/8_berkeley_function_calling_leaderboard.html
https://gorilla.cs.berkeley.edu/blogs/8_berkeley_function_calling_leaderboard.html
https://gorilla.cs.berkeley.edu/blogs/8_berkeley_function_calling_leaderboard.html
https://gorilla.cs.berkeley.edu/blogs/8_berkeley_function_calling_leaderboard.html
https://gorilla.cs.berkeley.edu/blogs/8_berkeley_function_calling_leaderboard.html

An Yang, Baosong Yang, Binyuan Hui, Bo Zheng,509
Bowen Yu, Chang Zhou, Chengpeng Li, Chengyuan510
Li, Dayiheng Liu, Fei Huang, et al. 2024. Qwen2511
technical report. arXiv preprint arXiv:2407.10671.512

Hui Yang, Sifu Yue, and Yunzhong He. 2023. Auto-gpt513
for online decision making: Benchmarks and addi-514
tional opinions. arXiv preprint arXiv:2306.02224.515

Shunyu Yao, Jeffrey Zhao, Dian Yu, Nan Du, Izhak516
Shafran, Karthik R Narasimhan, and Yuan Cao. 2023.517
React: Synergizing reasoning and acting in language518
models. In The Eleventh International Conference519
on Learning Representations.520

Junjie Ye, Sixian Li, Guanyu Li, Caishuang Huang,521
Songyang Gao, Yilong Wu, Qi Zhang, Tao Gui, and522
Xuanjing Huang. 2024a. ToolSword: Unveiling523
safety issues of large language models in tool learn-524
ing across three stages. In Proceedings of the 62nd525
Annual Meeting of the Association for Computational526
Linguistics (Volume 1: Long Papers), pages 2181–527
2211, Bangkok, Thailand. Association for Computa-528
tional Linguistics.529

Junjie Ye, Yilong Wu, Songyang Gao, Sixian Li,530
Guanyu Li, Xiaoran Fan, Qi Zhang, Tao Gui, and531
Xuanjing Huang. 2024b. Rotbench: A multi-level532
benchmark for evaluating the robustness of large533
language models in tool learning. arXiv preprint534
arXiv:2401.08326.535

Siyu Yuan, Kaitao Song, Jiangjie Chen, Xu Tan,536
Yongliang Shen, Ren Kan, Dongsheng Li, and De-537
qing Yang. 2024. Easytool: Enhancing llm-based538
agents with concise tool instruction. arXiv preprint539
arXiv:2401.06201.540

Kechi Zhang, Jia Li, Ge Li, Xianjie Shi, and Zhi Jin.541
2024a. CodeAgent: Enhancing code generation with542
tool-integrated agent systems for real-world repo-543
level coding challenges. In Proceedings of the 62nd544
Annual Meeting of the Association for Computational545
Linguistics (Volume 1: Long Papers), pages 13643–546
13658, Bangkok, Thailand. Association for Compu-547
tational Linguistics.548

Yuxiang Zhang, Jing Chen, Junjie Wang, Yaxin Liu,549
Cheng Yang, Chufan Shi, Xinyu Zhu, Zihao Lin,550
Hanwen Wan, Yujiu Yang, Tetsuya Sakai, Tian Feng,551
and Hayato Yamana. 2024b. ToolBeHonest: A multi-552
level hallucination diagnostic benchmark for tool-553
augmented large language models. In Proceedings554
of the 2024 Conference on Empirical Methods in555
Natural Language Processing, pages 11388–11422,556
Miami, Florida, USA. Association for Computational557
Linguistics.558

Lianmin Zheng, Wei-Lin Chiang, Ying Sheng, Siyuan559
Zhuang, Zhanghao Wu, Yonghao Zhuang, Zi Lin,560
Zhuohan Li, Dacheng Li, Eric Xing, et al. 2024.561
Judging llm-as-a-judge with mt-bench and chatbot562
arena. Advances in Neural Information Processing563
Systems, 36.564

A Experimental Details 565

A.1 Implementation Details 566

All open-source LLMs are implemented 567

with the Transformers library (Wolf 568

et al., 2020). For proprietary models, 569

we use claude-3-haiku-20240307, 570

gpt-3.5-turbo-0125, gpt-4-0613, 571

gpt-4o-mini-2024-07-18, and 572

gpt-4o-2024-11-20 for Claude-3-Haiku, 573

GPT-3.5-Turbo, GPT-4, GPT-4o-mini, and GPT-4o, 574

respectively. The temperature is set to 0 across all 575

models. We use two original and two manipulated 576

instances to evaluate with few-shot examples. In 577

experiments with instances from ToolBench, we 578

select models with a context length exceeding 579

8192 tokens to handle the frequently encountered 580

lengthy API descriptions. 581

A.2 Detailed Dataset Verification Process 582

Our preliminary analysis revealed that automatic 583

generation sometimes failed to create truly incom- 584

plete scenarios, making manual verification crucial 585

for maintaining dataset quality. To resolve this, we 586

conducted the dataset verification process involved 587

rigorous criteria for both manipulation types. For 588

Relevant API Replacement, we removed instances 589

where: 590

• The user’s request could be fulfilled using al- 591

ternative APIs 592

• The request could be handled using non- 593

replaced APIs, particularly in ToolBench in- 594

stances 595

For Partial Removal of User Utterance, we filtered 596

out cases where: 597

• Only non-essential information was removed, 598

allowing APIs to still fulfill the request 599

• One of multiple requests was removed, but 600

remaining requests could be resolved through 601

existing API invocations 602

• The conversation context became unnatural or 603

grammatically incorrect 604

• The result was identical to the original in- 605

stance 606

• The last utterance no longer pertained to the 607

user, making API execution unnatural 608

7

https://aclanthology.org/2024.acl-long.119
https://aclanthology.org/2024.acl-long.119
https://aclanthology.org/2024.acl-long.119
https://aclanthology.org/2024.acl-long.119
https://aclanthology.org/2024.acl-long.119
https://doi.org/10.18653/v1/2024.acl-long.737
https://doi.org/10.18653/v1/2024.acl-long.737
https://doi.org/10.18653/v1/2024.acl-long.737
https://doi.org/10.18653/v1/2024.acl-long.737
https://doi.org/10.18653/v1/2024.acl-long.737
https://doi.org/10.18653/v1/2024.emnlp-main.637
https://doi.org/10.18653/v1/2024.emnlp-main.637
https://doi.org/10.18653/v1/2024.emnlp-main.637
https://doi.org/10.18653/v1/2024.emnlp-main.637
https://doi.org/10.18653/v1/2024.emnlp-main.637

Two authors independently reviewed the instances,609

discussing and resolving any disagreements to en-610

sure consistent application of these criteria. This611

process was iteratively refined until we achieved612

a high level of agreement on the identification of613

truly incomplete scenarios.614

A.3 Human Analysis615

We conducted a human analysis on the same tasks616

to establish a performance baseline for LLM evalu-617

ation. Specifically, we selected 180 instances from618

the APIBank dataset, ensuring class balance. Nine619

participants with relevant academic backgrounds620

were recruited to solve "Yes/No" questions for 20621

instances each, following the same evaluation pro-622

tocol applied to the LLMs. Each participant was623

compensated with $10 for their participation.624

B Further Analysis625

We perform analyses to understand how LLMs per-626

ceive and respond in incomplete conditions.627

B.1 Implicit Evaluation Results with628

Free-form Generation629

As described in Section 4, our experimental setup630

involves a binary classification task in which mod-631

els are asked to determine whether the current con-632

ditions are incomplete for tool invocation by an-633

swering "Yes" or "No." This approach directly as-634

sesses the models’ ability to evaluate whether the635

necessary conditions for tool usage are met. We636

also consider an alternative method that implicitly637

gauges the models’ awareness to complement our638

explicit evaluation. In this setup, the models en-639

gage in a simulated dialogue with a user, and their640

next actions are monitored. If the model generates641

a response that includes invoking a tool, it is con-642

sidered the model has determined that it can invoke643

the tool. In contrast, the absence of tool invocation644

is considered that the model has determined that it645

cannot invoke the tool. We apply this implicit eval-646

uation framework to GPT-3.5-Turbo and GPT-4 on647

the APIBank dataset.648

The results presented in Table 4 indicate that649

models generally perform worse in implicit eval-650

uation setups. For example, GPT-4’s F1 scores651

drop from 87.30 and 89.27 to 77.18 and 86.75 for652

API Replacement and Utterance Removal, respec-653

tively. GPT-3.5-Turbo’s performance on Utterance654

Removal is the exception to this trend, where accu-655

racy and F1 scores improve from 55.94 and 36.63656

API Replacement Utterance Removal
Acc. F1 Corr. Acc. F1 Corr.

GPT-3.5-T 59.69 52.17 58.75 59.70 49.90 62.66
GPT-4 80.50 77.18 85.22 87.83 86.75 88.32

Table 4: Zero-shot implicit evaluation results of GPT-
3.5-Turbo and GPT-4 on the APIBank dataset. The
Correlation (Corr.) metric measures the instance-wise
agreement between the model’s binary classification and
free-form generation predictions.

Utterance Errors in GPT-3.5 GPT-4 GPT-4o GPT-4o
Removal API Call Turbo mini

✓ ✓ 96.0 86.0 97.0 96.0
✓ 7.0 67.0 45.0 79.0

✓ 13.0 99.0 51.0 91.0

Table 5: The results of providing API invocation out-
comes to LLMs across different scenarios. Accuracy
is used as the evaluation metric, highlighting the differ-
ences in how different models handle erroneous API
call results and their ability to recognize hallucinations
and incomplete conditions.

to 59.70 and 49.90. Based on these results, we hy- 657

pothesize that the binary classification setup, which 658

explicitly prompts the model to assess whether the 659

current tool list or user information is sufficient 660

for tool invocation, enables the model to recognize 661

better when tool usage is appropriate. 662

B.2 Impact of Tool Invocation Feedback on 663

Incomplete Condition Recognition 664

Our experiment primarily focuses on assessing 665

whether LLMs can recognize incomplete condi- 666

tions before invoking a tool. This approach is 667

practical as it helps mitigate potential safety or 668

security risks associated with incorrect tool invo- 669

cation. However, in more relaxed environments 670

where some degree of incorrect tool usage is ac- 671

ceptable, allowing the model to observe the out- 672

comes of tool invocation and reassess the complete- 673

ness of the conditions could potentially enhance 674

performance. Recent studies in tool-agent frame- 675

works also suggest that observing the outcomes of 676

previous actions and adjusting plans accordingly 677

can improve task execution (Yao et al., 2023; Qin 678

et al., 2023). Building on these insights, we explore 679

whether providing LLMs with the results of tool 680

invocation can enhance their ability to recognize 681

incomplete conditions. 682

To this end, we first randomly sample 100 manip- 683

ulated instances in utterance removal, along with 684

their original counterparts, from our main experi- 685

ment on the APIBank dataset. For each instance, 686

8

7BBASE 7B 13BBASE 13B 70BBASE 70B
API Replacement
Acc. 50.06 49.94 54.86 53.75 60.52 59.66
F1 0 0.94 64.05 14.55 56.68 36.19
Utterance Removal
Acc. 50.00 50.49 53.01 51.29 54.91 52.15
F1 0 3.22 62.25 5.98 45.87 16.77

Table 6: Performance comparison between Llama-
2 model family (Touvron et al., 2023) of different
sizes and training approaches. Models not trained on
instruction-tuning datasets are marked as BASE.

we consider two types of API call results: 1) Errors687

in API Calls: Errors caused by incomplete API688

calls, and 2) Successful API Calls: Cases where a689

complete API call is made and executed correctly.690

Based on these, we categorize the input given to the691

LLMs into three scenarios: 1) Utterance Removal692

+ Wrong API Call: Instances where an API call693

fails due to missing information, 2) Utterance Re-694

moval + Hallucinated API Call: Instances where695

APIs are invoked with information not provided696

in the dialogue context, yet the API calls are suc-697

cessful, and 3) Complete Condition + Wrong API698

Call: Scenarios where the API can be correctly699

invoked, but the call fails, resulting in an error. In700

each scenario, the LLMs are provided with the API701

list, conversation history, and API call results, and702

they are asked to judge whether the information703

given was sufficient to address the user requests.704

In the first and second scenarios, the LLMs should705

recognize that an API invocation is not possible. In706

the third scenario, they should determine that the707

API calls can be successfully made.708

When API call results are erroneous, GPT-3.5-709

Turbo often concludes that the API cannot be in-710

voked, regardless of whether the necessary condi-711

tions for a successful API call are met, as demon-712

strated in Table 5. In contrast, GPT-4 and GPT-4o713

show a stronger ability to assess the feasibility of714

API calls accurately, even in complex scenarios.715

Notably, when the necessary information to invoke716

APIs is missing, but the API call is still successful,717

GPT-3.5-Turbo and GPT-4o-mini exhibit limited718

awareness of hallucinations. On the other hand,719

GPT-4 and GPT-4o is more adept at recognizing720

hallucinated API calls and correctly identifying721

incomplete conditions, even when the API call suc-722

ceeds. These results may suggest that the reasoning723

ability of LLMs plays a critical role in interpreting724

API call results and making accurate predictions.725

API Replacement Utterance Removal
Num. Acc. Num. Acc.

Mistral-7B 149 87.25 19 47.37
GPT-3.5-T 182 85.16 52 48.08
GPT-4 360 97.50 273 99.63

Table 7: The results of explanation for the incomplete
scenario. Num. represents the count of accurately iden-
tified incomplete instances, which corresponds to the
number of instances evaluated in the explanation assess-
ment. Acc. denotes accuracy of explanations judged by
GPT-4, respectively.

Mistral-7B Claude-3 GPT-3.5-T GPT-4
API Replacement
Yes Ratio (%) 87.74/88.79 70.69/91.91 81.37/92.74 75.74/57.25
Utterance Removal
Yes Ratio (%) 97.16/98.22 84.41/99.51 97.65/99.13 91.09/73.33

Table 8: Predictive distribution on main experiments of
ToolBench. The indicators are the same as Table 10.

B.3 Impacts of Model Size and Instruction 726

Tuning 727

We analyze the impact of model size and 728

instruction-tuning on model performance across 729

our dataset. Specifically, we compare Llama-2-7B, 730

Llama-2-13B, and Llama-2-70B models against 731

their instruction-tuned counterparts, Llama-2-7B- 732

chat, Llama-2-13B-chat, and Llama-2-70B-chat. 733

The evaluation results, presented in Table 6, reveal 734

that both the 7B and 7B-chat models frequently pre- 735

dict "Yes" for most instances, resulting in very low 736

F1 scores. Overall, models that were not trained 737

on instruction-following data generally outperform 738

their instruction-tuned counterparts, regardless of 739

model size. Interestingly, while instruction-tuned 740

models show performance improvements as the 741

model size increases, the non-instruction-tuned 742

models exhibit varying trends, with a decrease in 743

F1 score as the model size scales from 13B to 70B. 744

These findings suggest that training on instruction- 745

following datasets may affect the models’ ability to 746

recognize incomplete conditions, indicating a need 747

for further exploration in future work. 748

B.4 Can Tool-augmented LLMs Correctly 749

Explain Incomplete Conditions? 750

We probe whether LLMs can accurately explain 751

their decision-making process when they correctly 752

identify incomplete conditions. To this end, we in- 753

struct the models to generate explanations for their 754

decisions and assess whether these explanations 755

correctly identify why tools cannot be used. We 756

adopt the Judge LLM (i.e., GPT-4) (Zheng et al., 757

9

Conversation
User: Can you check a reminder to call my mom on March 16th?
AI: Sure, Can you confirm your username and password?
User: My username is JohnDoe and my password is pass123.

API List
{"name":"GetUserToken", "description":"Get the user token", "parameters":["username", "password"]}

:::
{"name":"RegisterUser", "description":"Register an account", "parameters":["name", "password", "email"]}
{"name":"QueryReminder", "description":"Query a reminder", "parameters":["token", "content", "time"]}

Explanation The available APIs do not include an API for setting reminders. The only relevant API is ’QueryReminder’
which is used for querying reminders, but there is no API for setting reminders.

Conversation User: Can you show me the historical events on December 10th?

API List {"name":"QueryHistoryToday", "description":"Query the history of the given date", "parameters":["date"]}
{"name":"Calculator", "description":"Provide basic arithmetic operations", "parameters":["formula"]}

Explanation The available APIs don’t include an API for showing historical events. The only API provided is for the
calculator to perform arithmetic operations.

Table 9: Examples of Incorrect Explanation by GPT-3.5-Turbo. The upper example illustrates a case of
erroneous explanation in API Replacement, while the lower example shows one in Utterance Removal. Note that
the model correctly identifies both instances as incomplete within a binary classification setup. Removed and newly
included information, as part of our manipulation strategy, are highlighted with strikethrough and

::::::::::::
wavy underline,

respectively. Wrong explanations from the models are manually highlighted by the authors. Additional examples
can be found in Appendix C.

Llama-2-13B Llama-2-70B Vicuna-13B Mistral-7B Claude-3 GPT-3.5-T GPT-4
API Replacement
Yes Ratio (%) 24.35/0.0 57.8/62.0 78.13/54.85 68.56/67.27 64.62/84.16 64.18/65.84 51.65/53.78
Utterance Removal
Yes Ratio (%) 24.34/0.0 65.62/62.71 88.82/65.13 87.04/89.28 69.57/96.88 78.29/72.20 50.49/49.34

Table 10: Predictive distribution on main experiments of APIBank. We measure Yes Ratio, which represents the
proportion where the model predicts that it can invoke the APIs. We report the distribution for both zero-shot and
four-shot in a format of (0-shot/4-shot).

2024) to evaluate the correctness of the explana-758

tions. We manually craft four-shot examples with759

a balanced class distribution to ensure a reliable760

evaluation.761

In Table 7, we observe that GPT-3.5-Turbo762

achieves an accuracy of 85.16% for API Replace-763

ment, while Mistral-7B shows a performance with764

an accuracy of 87.25%. For Utterance Removal,765

the accuracy of GPT-3.5-Turbo and Mistral-7B are766

48.08% and 47.37%, respectively, showing simi-767

lar performance. These results indicate that it is768

more challenging for LLMs to provide accurate769

explanations when users offer insufficient context770

(Utterance Removal) compared to when the neces-771

sary tools are unavailable (API Replacement).772

To further verify the reliability of Judge LLM773

in assessing explanation validity, we manually774

annotated 100 randomly sampled instances from775

GPT-3.5-Turbo’s predictions, evenly divided be-776

tween API Replacement and Utterance Removal.777

The agreement rate between human evaluators and778

Judge LLM is 82%. This high level of agreement779

suggests that Judge LLM’s evaluations are closely780

aligned with those of human evaluators, establish- 781

ing it as a credible and effective assessment tool. 782

Additionally, we examine instances where the 783

LLMs generated incorrect reasoning, as shown in 784

Table 9. In API Replacement, LLMs often mis- 785

understand the user’s intent, leading to inaccurate 786

assertions that the available APIs are insufficient. 787

Conversely, in Utterance Removal, the predomi- 788

nant errors stem from incorrect explanations assert- 789

ing that no appropriate APIs are available, even 790

when they are present. 791

B.5 Prediction Analysis of "Yes" Token under 792

Incomplete Conditions 793

We analyze the models’ predictions to understand 794

how they respond to incomplete conditions, partic- 795

ularly focusing on their decisions to invoke tools. 796

Specifically, we examine the likelihood with which 797

LLMs indicate that they can call APIs based on 798

their predictions during our main experiments. As 799

shown in Table 8 and Table 10, most models tend 800

to overestimate their ability to invoke tools, a ten- 801

dency that becomes more pronounced when the 802

10

0.0 0.2 0.4 0.6 0.8 1.0
GPT-3.5-Turbo

0.0 0.2 0.4 0.6 0.8 1.0
GPT-4

Incomplete Complete

Figure 3: The probability distribution of "Yes" token
for complete and incomplete instances. The utterance
removal instances from APIBank are used for analysis.

models perform poorly.803

To further illustrate these tendencies, we visual-804

ize the probability distributions of two LLMs when805

faced with complete and incomplete instances. The806

visualizations reflect the probability assigned to the807

token representing a decision to invoke a tool, as808

seen in Fig. 3. While GPT-4 successfully differenti-809

ates between complete and incomplete conditions,810

GPT-3.5-Turbo struggles to distinguish corrupted811

instances, highlighting a key difference in their812

decision-making processes.813

C Samples of Incomplete Instances and814

Explanation815

We present the manipulated instances with different816

strategies are presented from Fig. 4 to Fig. 11. Both817

accurately and inaccurately modified instances re-818

sulting from our dataset construction method are819

provided. We also present additional explanation820

examples generated by LLMs when they recognize821

incomplete conditions on manipulated samples. Ex-822

amples of explanations in API Replacement are823

illustrated in Fig. 12 and Fig. 13. Examples of ex-824

planations in Utterance Removal are depicted in825

Fig. 14 and Fig. 15.826

D Prompt Templates827

The text prompt used in the dataset construction828

is presented in Fig. 16. The text prompt used in829

the zero-shot experiments (Table 2) is presented in830

Fig. 17. The text prompt used in CoT experiments831

is in Fig. 18 The text prompts used in the experi-832

ments of LLM explanation and LLM judgment are833

presented in Fig. 19 and Fig. 20 respectively. The834

text prompts used in Section B.2 are in Fig. 21 and835

Fig. 22. The text prompt used in Section B.1 is in836

Fig. 23. When implementing few-shot prompting, 837

we follow the approach of setting up interactions 838

between a human and an AI assistant to provide 839

examples (OpenAI, 2023b). 840

11

Phi-3
small

Llama3.1
8B

Llama3.1
70B

Qwen2
7B

GPT-4o
mini GPT-4o

API Replacement

APIBank
Acc. 0-shot 61.60 76.06 79.10 68.77 88.82 86.03

CoT 73.75 78.13 78.61 70.84 82.38 82.99

F1 0-shot 36.80 71.32 81.22 58.62 88.41 86.23
CoT 72.80 78.92 81.47 70.37 83.50 84.38

ToolBench
Acc. 0-shot 54.84 69.45 72.64 67.36 77.69 76.48

CoT 61.32 75.16 64.95 66.92 64.51 70.33

F1 0-shot 14.55 56.43 76.97 52.48 72.97 75.06
CoT 50.97 77.40 72.80 68.61 70.87 75.27

Utterance Removal

APIBank
Acc. 0-shot 51.95 52.63 77.42 57.39 77.25 88.29

CoT 63.33 61.80 81.66 57.39 86.59 85.74

F1 0-shot 4.07 19.60 80.06 29.69 73.41 88.74
CoT 54.81 55.97 83.98 46.93 86.72 86.96

ToolBench
Acc. 0-shot 49.94 50.19 71.54 51.10 57.57 74.51

CoT 51.88 52.26 68.31 53.43 58.99 72.19

F1 0-shot 0.51 5.41 74.94 10.85 35.18 70.90
CoT 29.01 45.17 74.56 46.27 64.82 75.87

Table 11: Performance evaluation results of LLM by manipulation type. The accuracy (Acc.) and F1 score (F1) are
used for evaluation metrics. Both the zero-shot and Chain-of-Though (CoT) performance are presented.

[Conversation]
User: Can you tell me about the stock price of SQ on March 15th, 2022?

[Relevant API (Removed)]
{\"name\": \"QueryStock\", \"description\": \"This API queries the
stock price of a given stock code and date.\", \"input_parameters\":
{\"stock_code\": {\"type\": \"str\", \"description\": \"The stock
code of the given stock.\"}, \"date\": {\"type\": \"str\",
\"description\": \"The date of the stock price. Format: %Y-%m-%d\"}},
\"output_parameters\": {\"stock_price\": {\"type\": \"float\",
\"description\": \"The stock price of the given stock.\"}}}

[Replaced Irrelevant API]
{'name': 'QueryBalance', 'description': 'This API queries the
balance of a given user.', 'input_parameters': {'token': {'type':
'str', 'description': 'The token of the user.'}},
'output_parameters': {'balance': {'type': 'float', 'description':
'The balance of the user.'}}}

Figure 4: API Replacement Successful case from APIBank instances.

12

[Conversation]

User: I'm interested in reading the content of a specific URL. Can you fetch the content of the URL

'https://www.example.com' using the 'Get Content' API? Also, I would like to know the trending news articles using the 'Get Trending' API.

[Relevant API (Removed)]

{\"category_name\": \"Tools\", \"tool_name\": \"URL Content Extractor\", \"api_name\":

\"Search Content\", \"api_description\": \"Allows you to search content for content

based on a query.\", \"required_parameters\": [{\"name\": \"query\", \"type\": \"STRING\",

\"description\": \"\", \"default\": \"\"}], \"optional_parameters\": [], \"method\":

\"GET\"}\n{\"category_name\": \"Tools\", \"tool_name\": \"URL Content Extractor\",

\"api_name\": \"Get Trending\", \"api_description\": \"This will return a list of news

articles that are trending.\", \"required_parameters\": [], \"optional_parameters\": [],

\"method\": \"GET\"}

{\"category_name\": \"Tools\", \"tool_name\": \"URL Content Extractor\", \"api_name\":

\"Get Content\", \"api_description\": \"Give a url and it will spit back the content

of that url\", \"required_parameters\": [{\"name\": \"url\", \"type\": \"STRING\",

\"description\": \"\", \"default\": \"https://www.cnbc.com/2022/06/27/three-arrows-capital

-crypto-hedge-fund-defaults-on-voyager-loan.html\"}], \"optional_parameters\": [],

\"method\": \"GET\"}

[Replaced Irrelevant API]

{'category_name': 'News_Media', 'tool_name’: 'Article/Page Content Extractor for SEO’,

'api_name’: 'Content Extraction’, 'method': 'POST’, 'required_parameters': [{'name': 'url’,

'type': 'STRING’, 'description': '', 'default’: 'https://www.freelancer.com/articles/

starting-your business/questions-to-ask-about-your-business-idea’}], 'optional_parameters’:

[], 'api_description': 'Allows to extract the content from a given URL’}

{'category_name’: 'News_Media', 'tool_name': 'dev-to-api', 'api_name': \"Get the month’s

top articles\", 'method': 'GET’, 'required_parameters’: [], 'optional_parameters': [],

'api_description': \"It returns the month's top articles from dev.to website.\"}

{'category_name': 'Tools', 'tool_name': 'URL Content Extractor', 'api_name’:

'Search Content', 'method': 'GET', 'required_parameters': [{'name': 'query', 'type’:

'STRING', 'description': '', 'default': ''}], 'optional_parameters': [], 'api_description’:

'Allows you to search content for content based on a query.'

Figure 5: API Replacement Successful case from ToolBench instances.

[Conversation]
User: Can you search the definition of the word \"plethora\" for me?
AI: Sure, searching for \"plethora\"...
API-Request: [Dictionary(keyword='plethora')]->[{'partOfSpeech': 'noun', 'definitions': [{'definition':
'(usually followed by of) An excessive amount or number; an abundance.', 'synonyms': [], 'antonyms':
[], 'example': 'The menu offers a plethora of cuisines from around the world.'}, {'definition': 'An
excess of red blood cells or bodily humours.', 'synonyms': [], 'antonyms': []}], 'synonyms': ['glut',
'myriad', 'slew', 'superfluity', 'surfeit'], 'antonyms': []}]
AI: Here's what I found: \"a large or excessive amount of something.\”
Can I help you with anything else?\
User: Yes, can you give me the synonyms for \"plethora\"?

[Relevant API (Removed)]
{\"name\": \"Dictionary\", \"description\": \"This API searches the
dictionary for a given keyword.\", \"input_parameters\":
{\"keyword\": {\"type\": \"str\", \"description\": \"The keyword to
search.\"}}, \"output_parameters\": {\"results\": {\"type\":
\"list\", \"description\": \"The list of results. Format be like
[{\\\"partOfSpeech\\\": \\\"xxx\\\", \\\"definitions\\\":
[{\\\"definition\\\": \\\"xxx\\\", \\\"example\\\": \\\"xxx\\\",
\\\"synonyms\\\": [\\\"xxx\\\", \\\"xxx\\\"]}, ...]\"}}}

[Replaced Irrelevant API]
{'name': 'SearchEngine', 'description': 'This API searches for a
given keyword for search engine.', 'input_parameters': {'keyword':
{'type': 'str', 'description': 'The keyword to search.'}},
'output_parameters': {'results': {'type': 'list', 'description':
'The list of results.'}}}

Figure 6: API Replacement Failed case from APIBank instances.

13

[Conversation]
User: I'm creating a database and I need unique identifiers for each entry. Can you help me generate
UUIDs?

[Relevant API (Removed)]
{\"category_name\": \"Tools\", \"tool_name\": \"Helper Function\",
\"api_name\": \"Random\", \"api_description\": \"Generate Random
String with custom length\\nBASIC: 20 \\nPRO: 30\\nULTRA: 70\\nMEGA:
150\", \"required_parameters\": [], \"optional_parameters\":
[{\"name\": \"length\", \"type\": \"NUMBER\", \"description\": \"\",
\"default\": \"20\"}], \"method\": \"GET\", \"template_response\":
{\"result\": \"str\"}}
{\"category_name\": \"Tools\", \"tool_name\": \"Helper Function\",
\"api_name\": \"Generate UUID\", \"api_description\": \"Generate
UUID v4 with dash or not.\\nmax\\nBASIC: 3\\nPRO: 20\\nULTRA:
50\\nMEGA: 150\", \"required_parameters\": [],
\"optional_parameters\": [{\"name\": \"timestamp_first\", \"type\":
\"BOOLEAN\", \"description\": \"\", \"default\": \"false\"},
{\"name\": \"remove_dash\", \"type\": \"BOOLEAN\", \"description\":
\"\", \"default\": \"true\"}, {\"name\": \"count\", \"type\":
\"STRING\", \"description\": \"\", \"default\": \"5\"}], \"method\":
\"GET\", \"template_response\": {\"result\": [\"list of str with
length 3\"]}}

[Replaced Irrelevant API]
{'category_name': 'Tools', 'tool_name': 'Random Strings',
'api_name': 'UUID', 'method': 'GET', 'required_parameters': [],
'optional_parameters': [], 'api_description': 'Generates a random
version 4 UUID.’}
{'category_name': 'Tools', 'tool_name': 'QR Code Generator',
'api_name': 'Generate Basic - Direct Image', 'method': 'GET',
'required_parameters': [{'name': 'data', 'type': 'STRING',
'description': '', 'default': '1234'}], 'optional_parameters':
{'name': 'size', 'type': 'NUMBER', 'description': '', 'default':
'500'}], 'api_description': \"Generates a QR code as a direct image
with limited settings. (NOTE: doesn't show correctly in RapidAPI)\"}

Figure 7: API Replacement Failed case from ToolBench instances.

[Conversation]
User: Hi, can you help me check my alarm for March 20th, 2023 at 6:30AM?
AI: Sure, to access your alarm information, I'll need to authenticate. Can you please provide me with
your email, username, and password?
User: My email is janesmith@example.com, username is JaneSmith, and password is password.

[Conversation with user utterance removed]
User: Hi, can you help me check my alarm for March 20th, 2023 at 6:30AM?
AI: Sure, to access your alarm information, I'll need to authenticate. Can you please provide me with
your email, username, and password?
User: My email is janesmith@example.com, username is JaneSmith.

[Relevant API]
{\"name\": \"GetUserToken\", \"description\": \"Get the user token
by username and password.\", \"input_parameters\": {\"username\":
{\"type\": \"str\", \"description\": \"The username of the user.\"},
\"password\": {\"type\": \"str\", \"description\": \"The password
of the user.\"}}, \"output_parameters\": {\"token\": {\"type\":
\"str\", \"description\": \"The token of the user.\"}}}
{\"name\": \"QueryAlarm\", \"description\": \"The API for querying
alarm clock, help user to check the alarm clock they have set.\",
\"input_parameters\": {\"token\": {\"type\": \"str\",
\"description\": \"User's token.\"}, \"time\": {\"type\": \"str\",
\"description\": \"The time for alarm. Format: %Y-%m-
%d %H:%M:%S\"}}, \"output_parameters\": {\"info\": {\"type\":
\"json\", \"description\": \"alarm info including username, time,
content and location\"}}}

Figure 8: Utterance Removal Successful case from APIBank instances.

14

[Conversation]
User: Can you help me analyze the number of pages indexed in Google for my company's website?
The URL is 'www.example.com’.

[Conversation with user utterance removed]
User: Can you help me analyze the number of pages indexed in Google for my company's website?

[Relevant API]
{\"category_name\": \"Tools\", \"tool_name\": \"SEO - Count website
pages in Google index\", \"api_name\": \"countPages\",
\"api_description\": \"Count website pages in Google index\",
\"required_parameters\": [{\"name\": \"url\", \"type\": \"STRING\",
\"description\": \"\", \"default\": \"\"}], \"optional_parameters\":
[], \"method\": \"GET\"}

Figure 9: Utterance Removal Successful case from ToolBench instances.

[Conversation]
User: Can you search for news articles about sustainable development goals?
AI: Sure, what specific keyword are you looking for?
User: the sustainable development.

[Conversation with user utterance removed]
User: Can you search for news articles about sustainable development goals?
AI: Sure, what specific keyword are you looking for?
User: Can you help me find information?

[Relevant API]
{\"name\": \"SearchEngine\", \"description\": \"This API searches
for a given keyword for search engine.\", \"input_parameters\":
{\"keyword\": {\"type\": \"str\", \"description\": \"The keyword to
search.\"}}, \"output_parameters\": {\"results\": {\"type\":
\"list\", \"description\": \"The list of results.\"}}}

Figure 10: Utterance Removal Failed case from APIBank instances.

[Conversation]
User: I am working on a project that requires unique IDs for each document. Can you assist me in
generating GUIDs for the documents? I would need 50 GUIDs in total.

[Conversation with user utterance removed]
User: I am working on a project that requires unique IDs for each document. Can you assist me in
generating GUIDs for the documents?

[Relevant API]
{\"category_name\": \"Tools\", \"tool_name\": \"GUID generator\",
\"api_name\": \"GenerateGuid\", \"api_description\": \" \",
\"required_parameters\": [], \"optional_parameters\": [],
\"method\": \"GET\"} {\"category_name\": \"Tools\", \"tool_name\":
\"GUID generator\", \"api_name\": \"BulkGenerateGuids\",
\"api_description\": \" \", \"required_parameters\": [],
\"optional_parameters\": [{\"name\": \"batch_size\", \"type\":
\"NUMBER\", \"description\": \"The number of GUIDs to return. Must
be between 1 and 10000. If the parameter is not provided, the
default batch size is 20.\", \"default\": \"\"}], \"method\":
\"GET\"}

Figure 11: Utterance Removal Failed case from ToolBench instances.

15

[Conversation]
User: Can you tell me today's date?

[API List]
{'name': 'AddAgenda', 'description': 'The API for adding a schedule
item includes parameters for token, content, time, and location.',
'input_parameters': {'token': {'type': 'str', 'description': "User's
token."}, 'content': {'type': 'str', 'description': 'The content of
the agenda.'}, 'time': {'type': 'str', 'description': 'The time for
agenda. Format: %Y-%m-%d %H:%M:%S'}, 'location': {'type': 'str',
'description': 'The location of the agenda.'}}, 'output_parameters':
{'status': {'type': 'str', 'description': 'success or failed’}}}

[LLM Explanation] (ChatGPT)
The available APIs do not include an API specifically for retrieving today's date. The AddAgenda
API is for adding a schedule item and does not provide information on the current date.

Figure 12: Explanation Success Case in API Replacement. The model clearly states and explains that an API to
know current date is not provided.

[Conversation]
User: Can you record my blood pressure and heart rate data?
AI: Sure, I can help you with that. Please provide me with your user ID, time, blood pressure, and
heart rate data.
User: My user ID is 1234, time is 2022-01-01 10:00:00, blood pressure is 110/70, and heart rate is 90.

[API List]
{'name': 'QueryHealthData', 'description': 'This API queries the
recorded health data in database of a given user and time span.',
'input_parameters': {'user_id': {'type': 'str', 'description': 'The
user id of the given user. Cases are ignored.'}, 'start_time':
{'type': 'str', 'description': 'The start time of the time span.
Format: %Y-%m-%d %H:%M:%S'}, 'end_time': {'type': 'str',
'description': 'The end time of the time span. Format: %Y-%m-
%d %H:%M:%S'}}, 'output_parameters': {'health_data': {'type':
'list', 'description': 'The health data of the given user and time
span.’}}}

[LLM Explanation] (ChatGPT)
The available API "QueryHealthData" allows querying recorded health data based on user ID and a
time span. However, the conversation between the user and AI only provided the user ID, time, blood
pressure, and heart rate data for a specific timestamp (2022-01-01 10:00:00). The API requires a start
and end time for the time span, which are not provided in the conversation. Therefore, the current
information is not sufficient to generate API calls to record the blood pressure and heart rate data.

Figure 13: Example of failed explanation in API Replacement. The user wants to record health data, but only the
QueryHealthData API, which is for searching health data, is provided instead of an API for recording health data.
The model incorrectly assumes that it must use the QueryHealthData API and provides an erroneous explanation
that it cannot call the API due to insufficient information.

16

[Conversation]
User: Can you help me find possible diseases related to a symptom I'm experiencing?
AI: Sure, I can search for possible diseases related to fatigue. Please provide the symptom you want
to search for.
User: I prefer not to specify right now.

[API List]
{'name': 'SymptomSearch', 'description': 'This API searches for a
given symptom.', 'input_parameters': {'symptom': {'type': 'str',
'description': 'The symptom to search.'}}, 'output_parameters':
{'results': {'type': 'list', 'description': 'The list of results.
Format be like [{"name":possible disease name, "description":
disease details},...]’}}}
{'name': 'AppointmentRegistration', 'description': 'This API
registers an appointment of hospital.', 'input_parameters':
{'patient_name': {'type': 'str', 'description': 'The name of
patient.'}, 'date': {'type': 'str', 'description': 'The date of
appointment. Format be like %Y-%m-%d'}, 'doctor_name': {'type':
'str', 'description': 'The name of appointed doctor.'}},
'output_parameters': {'appointment_id': {'type': 'str',
'description': 'The ID of appointment.’}}}

[LLM Explanation] (ChatGPT)
The available API "SymptomSearch" requires the user to provide the specific symptom to search for.
Since the user preferred not to specify the symptom at the moment, we do not have enough
information to make an API call to search for possible diseases related to the symptom.

Figure 14: Example of successful explanation in Utterance Removal. The model recognizes the need to call the
SymptomSearch API to address the user’s requirements. Additionally, it clearly acknowledges and explains that the
necessary symptom information required to call the API has not been provided.

17

[Conversation]
User: Can you please check my account balance?
AI: Sure, I can help you with that. I just need your token. Do you have your token with you?
User: No, I don't have it.
AI: That's alright. I can get your token for you. Can you please confirm your username, password,
and email address?
User: My username is user2 and email is user2@example.com.

[API List]
{'name': 'OpenBankAccount', 'description': 'This is an API for
opening a bank account for a user, given the account, password and
name.', 'input_parameters': {'account': {'type': 'str',
'description': 'The account for the user.'}, 'password': {'type':
'str', 'description': 'The password.'}, 'name': {'type': 'str',
'description': 'account holder name.'}}, 'output_parameters':
{'status': {'type': 'str', 'description': 'success or failed'}}}
{'name': 'QueryStock', 'description': 'This API queries the stock
price of a given stock code and date.', 'input_parameters':
{'stock_code': {'type': 'str', 'description': 'The stock code of
the given stock.'}, 'date': {'type': 'str', 'description': 'The
date of the stock price. Format: %Y-%m-%d'}}, 'output_parameters':
{'stock_price': {'type': 'float', 'description': 'The stock price
of the given stock.’}}}
{'name': 'QueryBalance', 'description': 'This API queries the
balance of a given user.', 'input_parameters': {'token': {'type':
'str', 'description': 'The token of the user.'}},
'output_parameters': {'balance': {'type': 'float', 'description':
'The balance of the user.’}}}
{'name': 'GetUserToken', 'description': 'Get the user token by
username and password.', 'input_parameters': {'username': {'type':
'str', 'description': 'The username of the user.'}, 'password':
{'type': 'str', 'description': 'The password of the user.'}},
'output_parameters': {'token': {'type': 'str', 'description': 'The
token of the user.'}}}

[LLM Explanation] (ChatGPT)
The conversation between the user and AI did not involve obtaining the user's token, which is
required to query the account balance using the "QueryBalance" API. The user provided their
username and email address, but without the token, we cannot make an API call to check the account
balance.

Figure 15: Example of failed explanation in Utterance Removal. The user’s requirement is to check the account
balance, which necessitates a token. However, the user has not provided the password required to obtain the token.
Although an API exists to obtain the token, the model fails to recognize this and incorrectly states that the API call
cannot be made due to the absence of the token.

18

[System Prompt]
You are an expert in data annotation with a specific task of processing user requests, corresponding
API descriptions, and API calls.
Your goal is to remove specific information from the user requests to sound natural while ensuring
the API call fails due to missing information.
Follow these steps to achieve this:

1. Analyze User Requests and API Information:
- Examine the relationship between the user's request, the API description, and the actual API call.
- Identify the parameters and details the API requires to function correctly.

2. Generate the Thought Process:
- Before making any modifications, articulate your thought process.
- Select information from the user utterances that can be removed while keeping the dialogue context
intact.
- Ensure you only remove information relevant to the API descriptions and calls provided.

3. Modify the User Request:
- Adjust the user request so that it remains natural-sounding but lacks the necessary information for
the API call.
- Do not alter or remove any parts of the dialogue other than the essential information identified.

Output the results in the following JSON format:

{
"thought": "YOUR_THOUGHT_PROCESS",
"answer": "MODIFIED_CONVERSATION"
}

[User Prompt]
API_Description:
{api_description}

Conversation:
{conversation}

Figure 16: Data Construction Prompt Template.

[System Prompt]
I will provide you with a user’s query, and you should assess, based on your own capabilities,
whether the current information is sufficient to generate API calls for addressing the user’s query.
The information includes (a) conversation between user and AI (you) and (b) the list of available
APIs.
You can't use APIs other than the given APIs.
Based on the given query, if you think you can successfully address the user's request by making an
API call, please respond with "Yes"; otherwise, respond with "No".

[User Prompt]
Here is the previous conversation between User and AI (you):
[Conversation Begins]
{conversation}
[Conversation Ends]

Here is the list of available APIs:
[List of APIs Begins]
{api_list}
[List of APIs Ends]

Can you address the user's request by making an API call now?
Please answer in "Yes" or "No".

Figure 17: Zero-shot Experiments Prompt Template.

19

[System Prompt]
I will provide you with a user’s query, and you should assess, based on your own capabilities,
whether the current information is sufficient to generate API calls for addressing the user’s query.
The information includes (a) converstaion between user and AI (you) and (b) the list of available
APIs. You can't use APIs other than the given APIs.
Based on the given query, if you think you can successfully address the user's request by making an
API call, please respond with "Yes"; otherwise, respond with "No". Begin your response with brief
reasoning first.

[User Prompt]
Here is the previous conversation between User and AI (you):
[Conversation Begins]
{conversation}
[Converstaion Ends]

Here is the list of available APIs.
[List of APIs Begins]
{api_list}
[List of APIs Ends]

Can you address the user's request by making an API call now? Begin your response with brief
reasoning first. Strictly follow the format: "Thought: {{your_thought}}
"Answer: {{Yes or No}}".

Figure 18: CoT Experiments Prompt Template.

[System Prompt]
I will provide you with a user’s query, and you should assess, based on your own capabilities,
whether the current information is sufficient to generate API calls for addressing the user’s query.
The information includes (a) conversation between user and AI (you) and (b) the list of available
APIs.
You can't use APIs other than the given APIs.
Based on the given query, if you think you can successfully address the user's request by making an
API call, please respond with "Yes"; otherwise, respond with "No".
Begin your response your decision ("Yes" or "No") and then output explanations behind your
decision.
Follow this format: Decision: <Yes/No> Explanation: <your explanation>

[User Prompt]
Here is the previous conversation between User and AI (you):
[Conversation Begins]
{conversation}
[Conversation Ends]

Here is the list of available APIs:
[List of APIs Begins]
{api_list}
[List of APIs Ends]

Figure 19: Prompt template of explanation.

20

[System Prompt]
You are a judge evaluating the appropriateness of the AI Assistant's response.
The AI Assistant was tasked with determining whether it could create an API call to solve a user's
query, based on the provided APIs and conversations.
There isn't enough information available to actually perform the API call.
Your role is to assess if the AI Assistant's reasoning for being unable to create the API call is valid.
If the necessary information is available in the APIs and conversations but the AI Assistant claims it
isn't, or if the AI Assistant states that unnecessary information to call API is required, you should
judge the response as incorrect.
Output "Correct" if the AI Assistant's reasoning is valid, and "Wrong" if it is not.

[User Prompt]
[Conversation Begins]
{conversation}
[Conversation Ends]

[List of APIs Begins]
{api_list}
[List of APIs Ends]

[AI Assistant Explanation Begins]
{explanation}
[AI Assistant Explanation Ends]

Figure 20: Prompt template of Judge LLM.

[System Prompt]
I will provide you with a user’s query, and you should assess, based on your own capabilities,
whether the current information is sufficient to generate API calls for addressing the user’s query.
The information includes (a) conversation between user and AI (you), (b) the list of available APIs
and (c) the previous API call made to address the user's request (if applicable).
You can't use APIs other than the given APIs.
Based on the given query, if you think you can successfully address the user's request by making an
API call, please respond with "Yes"; otherwise, respond with "No".

[User Prompt]
Here is the previous conversation between User and AI (you):
[Conversation Begins]
{conversation}
[Conversation Ends]

Here is the list of available APIs:
[List of APIs Begins]
{api_list}
[List of APIs Ends]

This is not your first attempt, and the previous attempt has failed.
In your previous attempt, you determined that you could create an API call to address user's request,
and you created an API Call in subsequent steps.
Before determining if you can now address the user's request with an API call, you must review and
analyze the API calls you have previously made:
[Previous API Call Begins]
{api_call}
[Previous API Call Ends]

Can you address the user's request by making an API call now?
Please answer in "Yes" or "No".

Figure 21: Prompt Template of self-verification for API invocation error. We use the same prompt for error in
utterance removal and complete scenario. Both receive information about an erroneous API call result and are asked
whether the API call is currently feasible.

21

[System Prompt]
I will provide you with a user's query, and you should assess, based on your own capabilities,
whether the current information is sufficient and appropriate to answer the user's query.
The information includes (a) conversation between user and AI (you), (b) the list of available APIs,
and (c) the API call generated by AI(you) in the previous step to address the user's query.
No API other than the given API is available.
Based on the given information, if you think you can provide an appropriate answer to user's request,
please response with "Yes"; otherwise, respond with "No".

[User Prompt]
Here is the previous conversation between User and AI (you):
[Conversation Begins]
{conversation}
[Conversation Ends]

Here is the list of available APIs:
[List of APIs Begins]
{api_list}
[List of APIs Ends]

Here is the API calls you have previously made
[Previous API Call Begins]
{api_call}
[Previous API Call Ends]

Can you provide an appropriate answer to the user now?
Please answer in "Yes" or "No".

Figure 22: Prompt Template of self-verification for hallucination.

[System Prompt]
You are an AI assistant tasked with addressing the user's query based on the provided conversation history
(1 to t). Your goal is to respond to the user's query in step t+1.
You may use the given API descriptions to assist in your response.
If you choose to call an API, format the output as [ApiName(key1='value1', key2='value2', ...)], where
ApiName is the actual API name and the keys and values are the corresponding parameters.
In this case, ensure that your output begins with a square bracket "[" and ends with a square bracket "]".

[User Prompt]
Here is the previous conversation between User and AI (you):
[Conversation Begins]
{conversation}
[Conversation Ends]

Here is the list of available APIs:
[List of APIs Begins]
{api_list}
[List of APIs Ends]

Figure 23: Prompt Template of implicit evaluation of LLMs with free-form generation.

22

	Introduction
	Related Work
	How to Evaluate the Awareness of Tool-augmented LLMs
	Data Source
	Simulating Incomplete Scenarios with Instance Manipulation
	Data Verification
	Dataset Statistics

	Experimental Setup
	Results and Analysis
	Conclusion
	Experimental Details
	Implementation Details
	Detailed Dataset Verification Process
	Human Analysis

	Further Analysis
	Implicit Evaluation Results with Free-form Generation
	Impact of Tool Invocation Feedback on Incomplete Condition Recognition
	Impacts of Model Size and Instruction Tuning
	Can Tool-augmented LLMs Correctly Explain Incomplete Conditions?
	Prediction Analysis of "Yes" Token under Incomplete Conditions

	Samples of Incomplete Instances and Explanation
	Prompt Templates

