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Abstract

Receiver operating characteristic (ROC) curves are a popular method of summarising the
performance of classifiers. The ROC curve describes the separability of the distributions of
predictions from a two-class classifier. There are a variety of situations in which an analyst
seeks to aggregate multiple ROC curves into a single representative example. A number
of methods of doing so are available; however, there is a degree of subtlety that is often
overlooked when selecting the appropriate one. An important component of this relates to
the interpretation of the decision process for which the classifier will be used. This paper
summarises a number of methods of aggregation and carefully delineates the interpretations
of each in order to inform their correct usage. A toy example is provided that highlights
how an injudicious choice of aggregation method can lead to erroneous conclusions.

1 Introduction

ROC curves are widely used to present performance assessment results in classification studies. Their usage
spans many disciplines, including pattern recognition (Webb, 2003), medical diagnostics (Swets et al., 2000),
consumer credit scoring (Hand & Henley, 1997), and biometrics (Ross & Jain, 2003). Typically, the design
and construction of a classifier is an iterative process: at each stage, choices are made regarding feature
selection, distributional assumptions etc., and the classifier must be re-evaluated to assess the impact of
these choices on performance. In many classification problems, such as those with imbalanced classes or
asymmetric misclassification costs, a scalar measure of performance such as accuracy is not sufficient (Provost
& Fawcett, 1997). In addition, it is often the case that the misclassification costs and class frequencies are
not known at experimentation time and will only become clear at the time of deployment (Drummond &
Holte, 2000; Hernández-Orallo et al., 2012). ROC curves offer a useful visual evaluation of the trade-off
between different types of error over the full range of possible costs and class frequencies. By examining a
ROC curve, various operating points of interest—motivated by the specific application of the researcher—can
be compared. If the operating conditions at deployment time are known precisely, then a plot of the entire
ROC curve is redundant, as algorithms can be compared directly based on specific cost-sensitive classification
metrics.

There are many situations in which there is a requirement to produce a single summary ROC curve from a
collection of individual curves. For example, in credit card fraud detection, a bank may be running classifiers
based on the same features for each customer (Juszczak et al., 2008); in biometric face verification, separate
classifiers are trained for each individual subject (Marcialis & Roli, 2002); in radiology, multi-reader multi-
case (MRMC) studies involve multiple radiologists producing scores for a collection of image cases (Skaron
et al., 2012). Another situation involves the use of k-fold cross-validation procedures, which attempt to
provide some sense of the average and the uncertainty in the ROC curve. It is perhaps natural in these
settings to seek to report a single ROC curve summarising the performance of all the individual classifiers.
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Such a curve will be useful for classifier development and selection. Note that a related problem is that of
constructing a covariate-adjusted ROC curve (Janes & Pepe, 2009), which aims to account for factors or
characteristics that influence the predictions made by a classifier on certain instances within a single dataset.
The focus of this paper is on constructing a single ROC curve from multiple datasets.

To help reinforce the message of this paper, we provide three hypothetical examples of different situations
in which ROC curves may be averaged:

• Comparing classifiers: The cyber-security team in an enterprise are testing two different algo-
rithms for anomaly detection. For each device within the IT infrastructure, the algorithms model
its network traffic and produce a probabilistic score indicating the degree to which it predicts an
observation to be anomalous. Assume the number of observations varies between devices, based on
their level of activity. Assume also that the true labels are known for at least some portion of the
data, having been provided by security experts. A set of ROC curves can be constructed for both
algorithms, based on their predictions on each device. The team are interested in comparing the
average performance.

• Comparing datasets: A medical research team have developed a new type of imaging device
for tumour detection. Images are produced using both the new and old device for a sample of
patients whose tumour status is known. These images are presented to a number of radiologists
(read classifiers), who produce independent sets of scores for each image. For each radiologist, two
ROC curves can be constructed. The two imaging devices producing the input data can be compared
by interpreting the average ROC curves across all radiologists.

• Comparing hyperparameters: A subscription business is developing a supervised learning model
to predict churn; i.e. to identify subscribers that are likely to stop paying for the service. If churn
can be accurately predicted, the business can pre-emptively contact the customer and offer them a
discounted subscription in the hope of retaining their custom. To perform hyperparameter selection
on their supervised learning model, they carry out 10-fold cross-validation using a range of possible
values. For each value of the hyperparameter, an average ROC curve is used to assess and compare
the performance of the classifier across the 10 folds of cross-validation.

Reasoning about a summary or “average” ROC curve in any of these contexts calls for fundamental consid-
erations relating to the operational use of the classifier. Crucially, an aggregate ROC curve should represent
performance in accordance with how the individual classifiers are to be deployed. As described in Section 2,
a threshold T is required to produce a decision from most classifiers. In these examples featuring multiple
classifiers, the first question is whether every classifier is to employ the same threshold T or if classifier i
operates using threshold Ti. Next, it is important that the method of aggregating individual ROC curves is
compatible with the application-specific operating points or characteristics of interest, upon which perfor-
mance assessments will be made. Once these considerations are made, it will be clear in Section 4.2, when
we revisit the above examples, how an appropriate averaging should be performed.

The literature contains a number of methods for aggregating ROC curves (Swets & Pickett, 1982; Fawcett,
2006); however, clear guidance on their correct usage is lacking. Discussing two methods, vertical averaging
and pooling (see Section 3), Witten et al. (2011) remark that “it is not clear which method is preferable.
However, the latter method is easier to implement.” Similarly, Parker et al. (2007) comment that “both
strategies are used in practice and the current literature is equivocal about which approach is to be recom-
mended.” This is also clear when one considers software packages for ROC analysis; the R package ROCR
offers three methods for averaging ROC curves, though neither its documentation (Sing et al., 2015) nor
accompanying paper (Sing et al., 2005) provide any guidance on which is appropriate for different situa-
tions. An online vignette by the authors1 demonstrates threshold averaging for combining the results of
cross-validation. Meanwhile, a similar tutorial2 for the Python package scikit-learn (Pedregosa et al.,
2011) demonstrates vertical averaging in the same context.

1https://ipa-tys.github.io/ROCR/articles/ROCR.html
2https://scikit-learn.org/stable/auto_examples/model_selection/plot_roc_crossval.html
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This paper aims to address this lack of guidance; we will show that care must be taken when choosing the
appropriate averaging method, in particular with respect to the fundamental considerations described above.
We will provide an example that demonstrates that incorrectly combining curves can lead to misrepresen-
tation of results. The purpose of this paper is not to provide a deeply novel result but rather to clearly
delineate the characteristics of different aggregation procedures and provide clear guidance for their correct
usage.

The remainder of the paper proceeds as follows: Section 2 introduces the background and notation for
individual ROC graphs. In Section 3 we describe and illustrate the construction of average ROC curves
under the three proposed combination methods. In Section 4, a discussion of the interpretations of different
aggregating methods motivates guidelines for selecting the appropriate method. Particular attention is paid
to the hypothetical examples given above. Finally, Section 5 provides a simple illustration to demonstrate
that the choice of combination method is crucial in the context of comparing classifiers.

2 ROC graphs

Here we follow closely the framework presented by Krzanowski & Hand (2009). Suppose that there exists
two populations—a ‘positive’ population P and a ‘negative’ population N—together with a classification
rule for allocating unlabelled instances to one or other of these populations. A classification rule (classifier)
is a function S(X) of the random vector X of variables measured on each instance, used to predict class
membership of a given instance. Some classifiers produce as output a discrete class label indicating only the
predicted class of the instance; others produce a continuous output or score. The focus of this paper is the
latter set of classifiers, as it is only for these that ROC curves can be produced. Suppose x is the observed
value of X for a particular instance. The score s(x) can be used to predict class membership according to
whether s(x) exceeds or does not exceed some threshold T . As S is a continuous variable, we can consider
the distribution of scores pertaining to instances from populations P and N . Let fS|P (s) = p(s | P ) and
fS|N (s) = p(s | N) be the probability density functions of scores in P and N , respectively, with corresponding
distribution functions FS|P and FS|N . A ROC graph is essentially a visual description of the degree of
separability of these score distributions generated by a particular classifier.

We do not discuss how a classifier should be chosen or indeed calibrated for a particular task. These are well
studied problems (Wolpert, 1996; Vapnik, 2013). Rather, we discuss how ROC curves are used to assess the
performance of classifiers, in particular when applied to multiple datasets.

2.1 Definition

The score produced by a classifier can be a probability, representing the likelihood that an instance is a
member of a particular class (the positive class, by convention), or simply a general, uncalibrated score, in
which case it is conventional that higher scores are more indicative of positive class membership and lower
scores indicative of negative class membership. In either case, the choice of threshold T will dictate the class
assignments made by the classifier. Suppose that t is the value of the threshold T chosen for a particular
classifier; an instance is assigned to P if its score s exceeds t, otherwise N . In order to assess the efficacy of
this choice of T , we must consider four possible outcomes and the rate at which these occur:

1. an instance from P is correctly classified, i.e. the true positive rate tp = p(s > t | P );

2. an instance from N is misclassified, i.e. the false positive rate fp = p(s > t | N);

3. an instance from N is correctly classified, i.e. the true negative rate tn = p(s ≤ t | N);

4. an instance from P is misclassified, i.e. the false negative rate fn = p(s ≤ t | P ).

The choice of operating threshold t is application-specific and often complicated. By varying t and evaluating
the four quantities above, we can inform a decision regarding which value to choose. In fact, as tp + fn = 1
and fp + tn = 1, we need only consider two of the above quantities, typically fp and tp. A ROC curve is
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obtained by varying t from −∞ to ∞ and tracing a curve of (fp, tp). We can write down the equation of
this curve in terms of the distribution functions defined above:

tp = p(s > t | P ), −∞ < t < ∞
= 1 − FS|P (t), −∞ < t < ∞

= 1 − FS|P

[
F −1

S|N (1 − fp)
]

, 0 ≤ fp ≤ 1.

2.2 Estimation

The role of the ROC curve is to present an assessment of the performance of a classifier over the whole
range of potential thresholds. This performance will be determined by the degree of overlap of the scores
assigned by the classifier to instances from P and N . In practice, we hardly ever know anything about the
true underlying distributions of these scores. One typically only has available the values of X for a set of
instances whose class labels are known. The data is commonly split into two portions: a training set is used
to estimate any parameters required by the chosen classifier, and this classifier can then be applied to a test
set in order to estimate the score distributions, and hence fp and tp.

Standard methods of statistical inference are available to the researcher for this task. One may wish to
assume parametric models for FS|P and FS|N and estimate parameters using maximum likelihood on the
sample data. However, in this case, caution must be taken as the accuracy of the resulting ROC curve and
any derived quantities strongly depends on the validity of the assumptions made (Krzanowski & Hand, 2009;
Zhou et al., 2009). If a large number of test instances are available, then empirical estimation is preferred.

Let nP and nN be the number of instances in the samples from populations P and N , respectively. We write
nP (t) and nN(t) for the number of those instances whose classification scores are greater than t. Then the
empirical estimators of tp and fp at the classifier threshold t are given by

t̂p =
nP (t)

nP
and f̂p =

nN(t)

nN
.

The empirical ROC curve is then constructed by plotting the points (f̂p, t̂p) for varying t.

2.3 Area under the ROC curve

A quantity widely used to summarise an important element of the information portrayed by a ROC curve is
the area under the curve (AUC). The AUC can be interpreted as an average true positive rate, regarding all
values of the false positive rate as equally likely (Hand, 2009). Alternatively, it can be seen as the probability
that the classifier will allocate a higher score to a randomly chosen instance from P than it will to a randomly
and independently chosen instance from N . Clearly, a higher AUC is desirable; however, classifiers should
not be compared solely on their AUCs, as a higher AUC does not imply an everywhere dominating ROC
curve. As a scalar measure of performance, a lot of valuable information contained in the ROC curve is lost,
such as performance in specific regions of ROC space that may be of interest to the researcher. Moreover,
there exists a fundamental incoherence in the use of AUC to compare different classifiers—see Hand (2009)
for details, and Ferri et al. (2011) for an alternative interpretation of AUC.

3 Averaging ROC curves

The ROC graph described in the preceding section relates to a single dataset comprising instances belonging
to either of two classes. Often we have multiple independent datasets of this type and a set of classification
scores for each. In these settings, a separate ROC curve can be constructed from each set of scores. One
approach for comparing different classifiers, or different iterations during classifier design and development,
would be to compare average AUCs. Equally, we could compare the average accuracy at some known
operating point. However, as discussed in Section 1, it is often the case that full knowledge of the operating
conditions at deployment time is not available during experimentation. This is precisely why ROC curves
are useful, and hence why we may want to construct a single ROC curve that serves as a summary or average
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of the collection of individual ROC curves. In this way, the average performance at specific operating points
can be assessed.

Methods for combining or averaging ROC curves have been proposed; however, the properties of the resulting
curves have not been properly explored nor compared in this context. Moreover, there is very little guidance
in the literature regarding which of the methods is most appropriate for a given task; in fact, existing guidance
can even be misleading. As we will see, the interpretation of a summary ROC curve differs according to
the averaging technique used, and so care should be taken both in choosing the appropriate method and in
presenting results. Note that methods for averaging parametric ROC curves have also been proposed, based
on averaging the estimated parameters of each curve (Metz, 1989). However, the focus of this discussion is
on empirical ROC curves.

In this section we adapt the notation slightly to allow for the case where where there is a collection of datasets,
each consisting of instances to be classified. Say that there are M datasets, and dataset i comprises a positive
population Pi and a negative population Ni. A classifier produces scores for each instance, so the ROC curve
for dataset i describes the separability of the score distributions p(s | Pi) and p(s | Ni).

For a simple illustration of the proposed averaging methods, we simulate scores arising from a probabilistic
classifier employed on two datasets: the first ‘well separable’, the second ‘poorly separable’. We assume
equally balanced classes for both datasets but allow the total number of instances to differ between datasets.
The number of scores simulated for the negative and positive classes of the well separable dataset was
nN1 = nP1 = 150; for the poorly separable dataset nN2 = nP2 = 75. Density estimates of the simulated
positive and negative scores for the two datasets are shown in the top two panels of Figure 1a.

3.1 Pooling

Swets & Pickett (1982) propose simply merging or pooling all the scores assigned to all instances from all
datasets. A ROC curve is then constructed in the usual way as if every instance came from the one dataset:

t̃p =
∑M

i=1 nPi(t)∑M
i=1 nPi

=
nP (t)

nP

f̃p =
∑M

i=1 nNi(t)∑M
i=1 nNi

=
nN(t)

nN
,

where P and N are the total number of positive and negative instances among all M datasets, respectively.

The pooled ROC curve is a representation of the degree of separability of the mixture distributions that
result from pooling scores between the two datasets. Density estimates of these mixture distributions can
be seen in the bottom panel of Figure 1a. A fixed threshold is shown in all three plots of Figure 1a and the
corresponding points in ROC space can be seen on the ROC curves in Figure 1b.

3.2 Vertical Averaging

In Provost et al. (1998), vertical averaging is proposed, whereby points are sampled uniformly along the
fp axis and the corresponding tp values from each individual ROC curve are averaged. Each ROC curve
is treated as a function Ri such that tp = Ri(fp). This is done by choosing the maximum tp for each fp
sampled between 0 and 1, interpolating between points where necessary. The vertical average ROC curve is

R(fp) = 1
M

M∑
i=1

Ri(fp), 0 ≤ fp ≤ 1.

Standard errors can also be calculated and used to construct confidence intervals for the average curve (a
related but different problem is that of constructing confidence bands for a ROC curve estimated from a
single dataset—see Macskassy & Provost (2004)).

Note that the threshold that yields a given value of fp on each ROC curve will usually be different. The
fixed threshold in Figure 1a yields a false positive rate of 0.12 for the well-separable dataset; the threshold
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Figure 1: Illustration of three methods of averaging ROC curves. (a) Simulated classification scores for
two datasets (top and middle) with density estimates of the negative and positive score distributions. The
bottom plot shows density estimates of the pooled score distributions. (b) ROC curve pooling. (c) Vertical
averaging. (d) Threshold averaging. In (b)–(d), coloured markers correspond to the fixed thresholds in (a);
a split-colour marker indicates an average of the rates at the corresponding thresholds.

yielding the same false positive rate for the poorly-separable dataset is shown in green. The corresponding
true positive values for each dataset are shown on the ROC curves in Figure 1c, along with the vertical
average curve.

3.3 Threshold Averaging

Instead of sampling points based on their positions in ROC space, threshold averaging (Fawcett, 2006)
samples uniformly from the threshold values t and averages separately the fp and tp rates achieved by each
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ROC curve for that value of t.

tp = 1
M

M∑
i=1

tpi

= 1
M

M∑
i=1

nPi(t)

nPi

fp = 1
M

M∑
i=1

fpi

= 1
M

M∑
i=1

nNi(t)

nNi

.

The threshold average ROC curve is shown in Figure 1d. Note that for the fixed threshold shown in Figure 1a,
the average fp and tp values do not equal f̃p and t̃p (the pooled rates). As nN1 > nN2 and nP1 > nP2 , the
well separable scores dominate in the calculation of f̃p and t̃p, so the pooled ROC curve is drawn closer to
the well separable ROC curve. If instead nN1 = nN2 and nP1 = nP2 , then the threshold average curve and
the pooled curve would in fact be identical.

4 Interpreting Average ROC Curves

In most cases, the methods described each result in different average ROC curves. This can be seen clearly
in the simple illustration provided in Figure 1. Furthermore, the interpretation of each is subtly different.
It is important therefore to consider which method is most appropriate for a given study.

Pooling classification scores disregards datasets. The pooled ROC curve can be considered as a weighted
average of the individual ROC curves, weighted by the number of instances scored in each. Pooling produces
only a single curve and so provides no information regarding uncertainty. If one dataset contains a sub-
stantially larger number of instances than the other datasets, the pooled ROC curve will be biased towards
the ROC curve for that dataset. This should not be an issue in k-fold cross-validation, as the test sets
are typically the same size. However, the pooling strategy—and equivalently, threshold averaging—assumes
that the classifier outputs across folds of cross-validation are comparable and thus can be globally ordered.
Parker et al. (2007) show that this assumption is generally not valid and can lead to large pessimistic biases
in the estimation of the AUC and the shape of the ROC curve. Such biases are not suffered by vertical
averaging (or its variants, discussed in Section 4.1); Chen & Samuelson (2014) prove that the AUC of the
average curve equals the average of the individual AUCs.

In Fawcett (2006, p. 869), it is claimed that vertical averaging “is appropriate when the [false positive]
rate can indeed be fixed by the researcher, or when a single-dimensional measure of variation is desired.”
Threshold averaging is presented as an alternative approach for situations when the false positive rate is
not under the direct control of the researcher. The proposed solution is to average ROC points with respect
to fixed thresholds, as these can be controlled by the researcher. We argue that this guidance is highly
misleading, and the choice of averaging technique should instead be made under careful consideration of the
interpretation of the resulting ROC curve. The vertical average ROC curve should be interpreted as the
average true positive rate achieved amongst datasets for each fixed false positive rate, allowing the threshold
yielding that false positive rate to vary between datasets. The threshold average ROC curve’s interpretation
is the average performance achieved amongst datasets if the threshold is fixed across all datasets.

The way in which the classifier is to be deployed should therefore be the first consideration to guide whether
ROC curves should be averaged by threshold or averaged in ROC space. If a fixed threshold is used in
practice, then threshold averaging is appropriate. Otherwise, averaging should take place in ROC space and
the researcher must next consider the characteristics of the curve upon which evaluation or comparisons will
be made.

4.1 ROC Space Averaging

In situations where we do not assume a fixed threshold, vertical averaging is preferable to threshold averaging
to provide a representation of the average performance achieved. Indeed, in many operational settings, the
researcher is concerned with the average true positive rate achieved for small false positive rates. However,
in other settings it may be more relevant to assess the average false positive rate suffered in order to achieve
a high true positive rate, say. This information will not be conveyed by the vertical average curve. Similarly,
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it is common in biometrics studies (Wayman, 1999) to consider a ROC curve in terms of the ratio of the
false acceptance rate (fp) and the false rejection rate (1 − tp). The equal error rate (EER), the point at
which these rates are equal, is then often used to assess and compare classifier performance. The vertical
average ROC curve will again be a misleading description of the average performance when considered from
this point of reference.

When averaging ROC curves in ROC space, the researcher must consider how the curve will be read, i.e. the
axis of reference from which characteristics of interest are compared. To compare performance with respect
to fixed false positive rates, averaging should take place vertically; for performance with respect to fixed
true positive rates, averaging should take place horizontally; for performance with respect to fixed error rate
ratios, averaging should take place diagonally.

All three approaches can be generalised into a single procedure for performing averaging in ROC space (Chen
& Samuelson, 2014). The fp and tp axes are first rotated clockwise by an angle θ by applying a rotation
matrix [

fp′

tp′

]
=

[
cos θ sin θ

− sin θ cos θ

][
fp
tp

]
.

The procedure is then the same as vertical averaging: values of fp′ are sampled uniformly and the corre-
sponding tp′ values are averaged, yielding tp′. The (fp′, tp′) pairs are then rotated anti-clockwise to the
original ROC space: [

fp
tp

]
=

[
cos θ − sin θ

sin θ cos θ

][
fp′

tp′

]
.

Vertical, horizontal and diagonal averaging can then be achieved using θ = 0, π/2, π/4 respectively.

Averages along other directions may also be of interest. For example, denote the cost of misclassifying an
instance from P and N by cP and cN , respectively. If the ratio of these costs is known or estimated, the
threshold that minimises cost corresponds to the point of intersection of the ROC curve and a line originating
from the point (0,1) with slope −πP cP /πN cN , where πP and πN are the probability that an instance comes
from P and N , respectively (Adams & Hand, 1999). Hence, ROC curves can also be averaged with respect
to fixed costs using θ = arctan (πN cN /πP cP ). However, Adams & Hand (1999) point out that it is rare in
practice for these costs to be known precisely, hence the pre-eminence of ROC curves in practical applications.

4.2 Examples Revisited

It should now be clear that two fundamental considerations—the operational intention and the evaluation
objective—should inform the choice of averaging method. The primary consideration relates to whether
a classifier is intended to operate on all datasets using a common, fixed threshold. This dictates whether
averaging should take place based on such fixed thresholds (i.e. pooling or threshold averaging) or instead
in ROC space. If ROC space averaging is appropriate, a further consideration guides the choice of direction
along which ROC points should be averaged. An average ROC curve can convey the performance of a
classifier with respect to fixed false positive rates, true positive rates, error rate ratios or misclassification
cost ratios. Crucially, the quantity remaining fixed should be informed by the objectives of the evaluation
and should be clearly stated in the presentation of results.

We now reconsider the examples given in Section 1 and suggest appropriate solutions:

• Comparing classifiers: For each of M devices in the enterprise network, ROC curves are con-
structed using the predictions make by both classifiers. The size of the test sets varies between
devices, so pooling would bias an average ROC curve towards more active computers. For opera-
tional reasons, the team would like to be able to tune a single threshold for the anomaly detectors
across all devices. The two algorithms should therefore be compared based on the threshold average
ROC curve. A useful anomaly detector should produce few false alarms; therefore, the shape of the
two curves in the bottom left corner of ROC space is of particular interest.

• Comparing datasets: For a given imaging device, each radiologist produces a set of scores based
on their confidence level (on a scale of 1–10) of whether or not a tumour is present in each image.
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Figure 2: Simulated ROC curves for three classifiers and their averages under vertical and threshold aver-
aging. The locations of the distributions used to simulate classification scores for C-1 are perturbed such
that, for C-2a, the ROC curves—and hence the vertical average curves—are comparable but the threshold
average curves differ, and for C-2b, the threshold average curves are comparable but the vertical average
curves differ.

Importantly, these scores are not calibrated probabilities, and the distribution of scores will vary
between radiologists. For example, one radiologist may consistently make predictions with high
confidence, i.e. 1s and 9s, while another might more often predict 4s and 6s; their discriminative
power may nevertheless be the same. Pooling and threshold averaging, which assume a common
threshold, do not make sense; averaging should take place in ROC space. The cost of missing a
tumour is much greater than the cost of misdiagnosing one. Therefore, for a given imaging device,
the threshold used in practice by a radiologist is likely to be selected to achieve some acceptably
high true positive rate—which may not be known at the time of the study. To reflect this in the
presentation of results, the researchers choose to compare the average false positive rate suffered for
a range of fixed true positive rates. Horizontal averaging is appropriate.

• Comparing hyperparameters: For the reasons given in Section 4, threshold averaging is unlikely
to be suitable for averaging over separate folds. To average in ROC space, the analyst must decide
from what axis of reference the curves will be compared. If the cost of missing a churned customer is
high, then horizontal averaging may be appropriate. However, the cost of false positives may also be
high due to offering discounts to customers that were not planning on leaving. In this case, vertical
averaging should be considered.

5 Simulated Illustration

We now present an example of a realistic use-case of ROC curve averaging in which the resulting conclusion
depends on the method of averaging used. Suppose a researcher wishes to compare the performance of two
different classifiers on data arising from a collection of M datasets. Classification rules are learnt and scores
generated by both classifiers using data from each dataset separately. The aim is to choose the classifier that
has the better overall or average performance. We illustrate two scenarios.

Scenario 1. The output classification scores for two arbitrary classifiers were simulated as follows: For
classifier 1 (C-1), negative and positive class scores for dataset i are simulated from Gaussian distributions
N(µi0, σi0) and N(µi1, σi1) respectively. For classifier 2a (C-2a), the scores for dataset i are simulated from
N(µi0 + εi, σi0) and N(µi1 + εi, σi1), where εi ∼ N(0, 1) is some random noise that differs between datasets
but is the same for positive and negative populations within a dataset. As such, the locations of the modes
of the score distributions of the two classifiers will be shifted but the class separability will be the same.
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The first two panels of Figure 2 show ROC curves for both classifiers constructed using scores for M = 100
datasets simulated in this way. The vertical and threshold average ROC curves are shown for both classifiers.
95% confidence intervals for the averages were constructed at each point using the assumption of normality.
Note that the vertical average curves remain approximately equal for both classifiers but the threshold
average curves differ. This highlights the importance of considering the interpretations of average ROC
curves in order to avoid erroneous comparisons. Here, if the operational intention is to fix a threshold across
all datasets, but vertical averaging is used, no difference between the classifiers is evident and the researcher
will choose either.

Scenario 2. The opposite scenario is also possible. We simulate scores for an alternative classifier (C-2b),
this time shifting the modes of C-1’s score distributions unequally in order to increase the class separability.
We do this by simulating negative class scores for dataset i from N(µi0 + εi, σi0) as we did for C-2a but
simulating positive class scores from N(µi1 + |εi|, σi1). For datasets where εi < 0, the score distributions
become more separable. In Figure 2, the vertical average ROC curve for C-2b dominates both average
curves for C-1; however the threshold average ROC curve remains approximately equal. Again, an averaging
method unsuitable for the operational intentions can result in a misguided choice of classifier.

6 Conclusion

The naïve use of ROC curve combination methods is fraught with risk. We have summarised the common
methods and pointed towards their interpretation in the operational context. Fundamentally, the appropriate
choice of combination method must correspond to the operational approach for the classifier. To drive the
message home, we provide a very simple illustration to show that incorrect decisions can result from ill-
considered choice of combination method. We hope to have highlighted that in the context of classifier
design and development, valuable information may be lost if due care and consideration is not paid when
presenting and assessing results.
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