
Published as a conference paper at ICLR 2025

EVENT-DRIVEN ONLINE VERTICAL FEDERATED
LEARNING

Ganyu Wang1 Boyu Wang1,2 Bin Gu3∗ Charles Ling1,2∗
1Western University 2Vector Institute 3Jilin University
gwang382@uwo.ca bwang@csd.uwo.ca jsgubin@gmail.com
charles.ling@uwo.ca

ABSTRACT

Online learning is more adaptable to real-world scenarios in Vertical Federated
Learning (VFL) compared to offline learning. However, integrating online learn-
ing into VFL presents challenges due to the unique nature of VFL, where clients
possess non-intersecting feature sets for the same sample. In real-world scenarios,
the clients may not receive data streaming for the disjoint features for the same en-
tity synchronously. Instead, the data are typically generated by an event relevant to
only a subset of clients. We are the first to identify these challenges in online VFL,
which have been overlooked by previous research. To address these challenges,
we proposed an event-driven online VFL framework. In this framework, only a
subset of clients were activated during each event, while the remaining clients pas-
sively collaborated in the learning process. Furthermore, we incorporated dynamic
local regret (DLR) into VFL to address the challenges posed by online learning
problems with non-convex models within a non-stationary environment. We con-
ducted a comprehensive regret analysis of our proposed framework, specifically
examining the DLR under non-convex conditions with event-driven online VFL.
Extensive experiments demonstrated that our proposed framework was more sta-
ble than the existing online VFL framework under non-stationary data conditions
while also significantly reducing communication and computation costs.

1 INTRODUCTION

Vertical Federated Learning (VFL) (Vepakomma et al., 2018; Yang et al., 2019; Liu et al., 2019;
Chen et al., 2020; Gu et al., 2020; Zhang et al., 2021b;a; Wang et al., 2023; Qi et al., 2022; Wang
et al., 2024) is a privacy-preserving machine learning paradigm wherein multiple entities collabo-
rate to construct a model without sharing their raw data. In VFL, each participant possesses non-
intersecting features for the same set of samples, which is significantly different from the Horizontal
Federated Learning (HFL) (McMahan et al., 2017; Karimireddy et al., 2020; Li et al., 2020; 2021;
Marfoq et al., 2022; Mishchenko et al., 2019) where each client possesses the non-overlap samples
of the same features.1

Current research on VFL primarily focuses on the offline scenario, characterized by a pre-established
dataset. However, the limitations of offline learning become obvious when building real-world ap-
plications of VFL. First, offline learning is unsuitable for scenarios where the dataset undergoes
continual updates, which is typical in real-world applications. For example, in the application sce-
nario of VFL scenarios involving companies as clients (Wei et al., 2022; Vepakomma et al., 2018),
new data is constantly generated as new customers engage with the companies, or as existing cus-
tomers update their records through ongoing activities. Similarly, in VFL scenarios involving edge
devices (Wang & Xu, 2023; Liu et al., 2022), the sensors, acting as the clients, continuously receive
data streams from the environment rather than maintaining a static dataset. Second, the dynamic
nature of real-world environments leads to data distribution drift, which is particularly evident in
edge devices. In response, the offline learning paradigm requires retraining the model from scratch
to accommodate shifts in data distribution. While this retraining process may not present significant

∗Corresponding authors.
1The term Federated Learning commonly refers to HFL. However, this is not the setting of this study.

1

Published as a conference paper at ICLR 2025

challenges in centralized learning, it becomes prohibitively expensive in distributed learning scenar-
ios, as the training process imposes substantial communication and computation costs in distributed
learning. Consequently, online learning may provide greater adaptability in VFL by allowing models
to update continuously as new data arrives and handle dynamic environments.

However, applying online learning to VFL is not straightforward due to its inherent nature. First, in
online VFL, clients receive non-intersecting features of the data from the environment. In real-world
scenarios, it is rare for all clients to receive all these features of a sample simultaneously. Instead, it
is more common for only a subset of clients to obtain the relevant features in response to a specific
event. For example, in VFL implementations within large companies (Wei et al., 2022; Hu et al.,
2019; Vepakomma et al., 2018), when a customer takes an action such as making a payment or a
purchase, this action typically involves only one company of the VFL, while the data from the other
companies remain unchanged. Similarly, in VFL involving sensor networks (Wang & Xu, 2023;
Liu et al., 2022), only the sensor triggered by an event will be activated, while others remain inac-
tive (Suh, 2007; Heemels et al., 2012; Trimpe & D’Andrea, 2014; Beuchert et al., 2020). The above
scenario has brought about the demand for an event-driven online VFL framework, wherein certain
participants are activated by events during each round, thereby dominating the learning process,
while the rest of the participants remain inactive or passively cooperate with the learning.

The second challenge in online VFL lies in addressing non-convex models and dynamic environ-
ments, which are prevalent in practical applications. Current research in online VFL still pri-
marily focuses on online convex optimization, assuming both convex models and stationary data
streams (Wang & Xu, 2023). While convex models are easier to optimize, they fail to capture the
complex patterns necessary for tackling more challenging tasks. Additionally, the assumption of
stationary data streams is unrealistic in dynamic real-world environments, where data distributions
can shift over time. For example, the environmental sensor that monitors the air quality may ex-
perience dynamic change due to natural phenomena. These are challenges that current online VFL
frameworks have yet to resolve.

Figure 1: Event-driven online VFL

To address the aforementioned challenges,
we propose a novel event-driven online VFL
framework, which is well-suited for the on-
line learning scenario in non-convex cases and
non-stationary environments. Figure 1 depicts
a schematic graph of our framework. In our
framework, a subset of the clients are acti-
vated by the event at each round, while others
passively contribute to the training. This ap-
proach substantially reduces communication-
computation costs and facilitates the client
model in learning relevant content. Moreover,
we adapt the dynamic local regret approach
proposed by Aydore et al. (2019) to our event-
driven online VFL framework to effectively
handle online learning in non-convex cases and
non-stationary environments.

In summary, the contributions of our paper are:

• We identify the unrealistic assumption of synchronous data reception in online VFL research and
propose a novel event-driven online VFL paradigm that is better suited to real-world scenarios.

• We adapt the dynamic local regret approach to our event-driven online VFL to effectively handle
non-convex models in non-stationary data streaming scenarios, and we theoretically prove the
dynamic local regret bound for this framework, which incorporates partial activation of the client.

• Our experiments demonstrate that our event-driven online VFL exhibits greater stability com-
pared to existing methods when confronted with non-stationary data conditions. Additionally, it
significantly reduces communication and computation costs.

Notation We use a square bracket with multiple items to denote concatenation for convenience.
For instance, given wA ∈ RdA , wB ∈ RdB , we define [wA, wB] ≜ [w⊤

A , w
⊤
B]

⊤. The superscript t

2

Published as a conference paper at ICLR 2025

attached to the parameter w indicates the number of rounds (time step). A square bracket enclosing
a single integer represents the set of natural numbers from 1 to that particular number. For instance,
[M] = {1, 2, . . . ,M}.

2 RELATED WORK: ONLINE HFL AND ONLINE VFL2

Online HFL Most existing online federated learning research focuses on HFL because extending
the HFL framework to online learning is relatively straightforward. In HFL, each participant pos-
sesses the complete feature set of the local sample. Therefore, online HFL can be easily achieved
by assigning each client a unique data stream containing non-overlapping samples. The current re-
search on online HFL is focused on speeding up optimization (Mitra et al., 2021; Eshraghi & Liang,
2020), reducing communication cost (Hong & Chae, 2021) and dealing with concept drift (Ganguly
& Aggarwal, 2023). Mitra et al. (2021) applied online mirror descent within the Federated Learning
framework, demonstrating sub-linear regret in convex scenarios. Hong & Chae (2021) introduced a
randomized multi-kernel algorithm for online federated learning, which maintains the performance
of the multi-kernel algorithm while mitigating the linearly increasing communication cost. Kwon
et al. (2023) incorporated client sampling and quantization into online federated learning. Ganguly
& Aggarwal (2023) proposed a non-stationary detection and restart algorithm for online federated
learning, addressing the concept of drift during online learning.

Online VFL In VFL, each client possesses a non-overlapping feature set, which presents chal-
lenges when integrating online learning into this framework. The existing approach to Online VFL
is proposed by Wang & Xu (2023), which applies online convex optimization to synchronous VFL.
However, they naı̈vely assume that all clients receive a synchronous data stream, which does not
align with real-world applications. Apart from this study, no other research has explored online
VFL and the characteristics of dataset streaming in this context. Through the exploration of event-
driven mechanisms, we open up new possibilities for real-time data streaming processing across
distributed nodes within the VFL framework.

3 METHOD

3.1 PROBLEM DEFINITION

In the VFL framework, there is a single server and M clients. The server produces the label yt at
round t, while each client may receive non-intersecting features xt

m from the environment during
the same round. The model for client m, denoted as hm(wm;xt

m), is parameterized by wm ∈ Rdm

and takes the local feature xt
m as input to produce an embedding. We denote w as the concatenation

of the parameter from all clients, i.e. w = [w1, · · · , wM]. The server, parameterized by w0, recieves
embeddings hm(·) from all clients and then calculates the losses with the label yt. We define the
VFL framework in composite form.

f t(w0,w, xt; yt) = f
(
w0, h1(w1;x

t
1), · · · , hM (wM ;xt

M); yt
)

(1)

where f(·) denotes the model on the server. For brevity, we denote f t(w0,w, xt; yt) by f t(w0,w)
throughout all following sections.

Following the work from Aydore et al. (2019), we employ dynamic local regret analysis in online
non-convex optimization. To reformulate the dynamic local regret under the context of the VFL
framework, we begin by introducing the concept of exponentially weighted sliding-window average
as the basis for its computation.
Definition 1. Exponential weighted sliding-window average: Let wt

0 ∈ Rd0 denote the server’s
parameter at time t, wt

m ∈ Rdm be the client m’s parameter at time t. w = [w1, w2 · · ·wM]. Let l
denote the length of the sliding window. Then the exponential weighted sliding-window average can
be defined as follows:

St,l,α(w
t
0,w

t) ≜
1

W

l−1∑
i=0

αif t−i(wt−i
0 ,wt−i) (2)

2Extra discussion on the related work of VFL and online learning is in Appendix E.

3

Published as a conference paper at ICLR 2025

where 0 < α < 1 and the superscript i of the αi indicates the exponent. W =
∑l−1

i=0 α
i serves as

the normalization parameter for the exponential average, ensuring that 1
W

∑l−1
i=0 α

i = 1. It is worth
noting that this window gives more weight to recent values, with the weight decaying exponentially,
and the loss for f t−i(wt−i

0 ,wt−i) is computed on the past parameter at round t− i.

Then, the DLR can be formally defined based on the accumulated square norm of the gradient of the
exponentially weighted sliding-window average.
Definition 2. Dynamic l-local regret: Let St,l,α(w

t
0,w

t) be the sliding-window defined above, w0

be the server’s parameter and w be the aggregated clients’ parameter. The Dynamic l-Local Regret
can be defined as:

DLRl(T) ≜
T∑

t=1

∥∥∇St,l,α(w
t
0,w

t)
∥∥2 (3)

3.2 ADAPT DLR TO ONLINE VFL

We integrate the dynamic exponentially time-smoothed online gradient descent method introduced
by Aydore et al. (2019) into the VFL framework by incorporating a buffer to store the past gradients.

Server update Based on the special characteristic of the dynamic local regret, the server is re-
quired to maintain a buffer of the past intermediate derivative values of length l. At each time
step, the server computes the gradient and updates the buffer by enqueuing the latest gradient and
dequeuing the oldest. Subsequently, the server utilizes the buffer to compute the dynamic exponen-
tially time-smoothed gradient. Specifically, the partial derivative w.r.t. the server is shown in Eq. 4,
and the buffer stores l past gradients.

∇w0St,l,α(w
t
0,w

t) =
1

W

l−1∑
i=0

αi∇w0f
t−i(wt−i

0 ,wt−i)︸ ︷︷ ︸
Server Buffer, i = 0, 1, · · · l − 1

(4)

Finally, the server updated its model with stochastic gradient descent, i.e. wt+1
0 ← wt

0 − η0 ·
∇w0

St,l,α(w
t
0,w

t), where η0 is the learning rate for the server.

Client update The client cannot calculate the partial derivative w.r.t. its model by themselves
because they do not hold the label. Consequently, they depend on the server to transmit the partial
derivative vtm =

∂ft(wt
0,w

t)
∂hm(wt

m;xt
m) w.r.t. the client’s model output hm to facilitate model updates. The

partial derivative w.r.t. the client m’s model is computed through chain rules:

∇wm
S̃t,l,α(w

t
0,w

t) =
1

W

l−1∑
i=0

αi∇wm
f t−i(wt−i

0 ,wt−i)

=
1

W

l−1∑
i=0

αi ∂f
t−i(wt−i

0 ,wt−i)

∂hm(wt−i
m ;xt−i

m)
· ∂hm(wt−i

m ;xt−i
m)

∂wt−i
m︸ ︷︷ ︸

Client Buffer, i = 0, 1 · · · l − 1

(5)

After receiving vtm from the server, the clients update their buffer by enqueuing the vtm ·
∂hm(wt

m;xt
m)

∂wt
m

.
Finally, the client is updated with wt+1

m ← wt
m − ηm∇wm

St,l,α(w
t
0,w

t).

3.3 EVENT-DRIVEN ONLINE VFL FRAMEWORK

The event-driven online VFL framework is designed, and the procedures for both clients and servers
are formalized in the algorithm 1.3 When an event occurs at round t, the activated client m will
receive the data xt

m. Subsequently, it sends the embedding hm(wt
m;xt

m) to the server. The server
then requests embeddings from the passive clients m ∈ Āt ⊂ [M]. After gathering the embedding,

3A synchronous version of algorithm 1 is provided in the Appendix C.1.

4

Published as a conference paper at ICLR 2025

the server calculates the partial derivative of f t(·) w.r.t. its local model wt
0 and w.r.t. the output

of the activated clients hm(wt
m;xt

m). Subsequently, the server updates the buffer for the sequence
of partial derivatives in DLR. Following this, the server updates its local model with the partial
derivative w.r.t. its model w0 (Eq. 4) and sends the partial derivative w.r.t. the client’s output vtm
to the activated client. After receiving from the server, each activated client m ∈ At calculates the
partial derivative w.r.t. their parameter via chain rule (Eq. 5), and then they update their parameter
accordingly. At each round, we denote the set of the activated client as At ⊂ [M], where [M]
represents the set of all clients. The set of passive clients is denoted by Āt = [M] \At.

Algorithm 1 Event-driven online VFL

Input: window length l, coefficient α, learning rate {ηm}Mm=0,
Output: server model w0, client models wm ∈ [M]

0: initialize model wm for all participants m ∈ {0, 1, ...M}
1: Client procedure:
2: if activated by an event then:
3: sampling the environment to obtain xt

m
4: send hm(wt

m;xt
m) to the server

5: receive vtm from the server
6: enqueue vtm ·

∂hm(wt
m;xt

m)
∂wt

m
into the client’s buffer

7: calculate∇wm S̃t,l,α(w
t
0,w

t) with client’s buffer
8: update the parameter wt+1

m ← wt
m − ηm · ∇wm

St,l,α(w
t
0,w

t)
9: else if the server’s query t is received then:

10: sampling the environment to obtain xt
m

11: send hm(wt
m;xt

m) to the server
12: enqueue 000 to the client’s buffer
13: Server procedure:
14: when server receives hm(wt

m;xt
m) from activated client m ∈ At, do:

15: send query t to all passive client m ∈ Āt

16: calculate∇w0f
t(wt−i

0 ,wt−i)
17: updates its model wt+1

0 ← wt
0 − η0 · ∇w0St,l,α(w

t
0,w

t)

18: sends vm =
∂St,l,α(wt

0,w̃
t)

∂hm(wt
m;xt

m) to all activated clients m ∈ At

4 REGRET ANALYSIS

4.1 ASSUMPTION

Assumption 1 to 5 are the assumptions for analysis of the dynamic local regret bound under the non-
convex case. Specifically, Assumption 1 is used for modeling the smoothness of the loss function
f(·), with which we can link the difference of the gradients with the difference of the input in
the definition domain. These are the basic assumptions for solving the non-convex optimization
problem in VFL (Liu et al., 2019; Zhang et al., 2021a; Chen et al., 2020; Castiglia et al., 2022).
Assumption 2 and assumption 3 are the common assumptions in the analysis of stochastic non-
convex optimization (Aydore et al., 2019; Hazan et al., 2017). The unbiased gradient assumption
means that the expected value of the stochastic gradient equals the true gradient for the underlying
distribution of the sample. The bounded variance assumption ensures that the variability in the
stochastic gradient estimates is limited. Assumption 4 is used for bounding the magnitude of the
gradient for all participant’s models. This is a common assumption for the non-convex optimization
of VFL (Gu et al., 2020; Castiglia et al., 2022; Wang et al., 2023; Zhang et al., 2021a) and the
regret analysis for online learning in VFL (Wang & Xu, 2023). This assumption is specifically
employed to bound the difference between the gradient with missing elements (due to the event-
driven framework) and the ideal gradient without such omissions. Assumption 5 assumes that the
loss value is bounded, which is mainly used to bound the values of the difference between the sliding
window average and to simplify the theoretical result. This is a common assumption in the regret
analysis in online learning under non-convex case (Aydore et al., 2019; Hazan et al., 2017).

5

Published as a conference paper at ICLR 2025

Assumption 1. Lipschitz Gradient: ∇f t is L-Lipschitz continuous w.r.t. all the parameter, i.e.,
there exists a constant L for ∀ [w0,w], [w′

0,w
′] such that∥∥∇[w0,w]f

t(w0,w)−∇[w0,w]f
t(w′

0,w
′)
∥∥ ≤ L ∥[w0,w]− [w′

0,w
′]∥ (6)

Assumption 2. Unbiased gradient: The stochastic gradient ∇̂f t(w0,w) obtained at each iteration
is an unbiased estimator of the true gradient of the function f t(w0,w), i.e., for all [w0,w], we have

E
[
∇̂f t(w0,w)

]
= ∇f t(w0,w), (7)

where∇f t(w0,w) is the true gradient of the global objective function.

Assumption 3. Bounded variance: The variance of the stochastic gradient ∇̂f t(w0,w) obtained
at each iteration is bounded, i.e., there exists a constant σ2 such that for all [w0,w], we have

E
[∥∥∥∇̂f t(w0,w)−∇f t(w0,w)

∥∥∥2] ≤ σ2. (8)

This ensures that the noise in the gradient estimation is controlled.
Assumption 4. Bounded gradient: The gradient of the objective function f t(w0,w) is bounded,
i.e. there exist positive constants G such that the following inequalities hold.∥∥∇[w0,w]f

t (w0,w)
∥∥ ≤ G (9)

Assumption 5. Bounded loss: For all w0 ∈ Rd0 and w = [w1, · · ·wM], where wm ∈ Rdm for
m ∈ [M], the loss f t(w0,w) is bounded:

|f t(w0,w)| < D (10)

4.2 THEOREM

Theorem 1. Dynamic local regret bound: Under Assumption 1 - Assumption 5, solving the event-
driven online vertical federated learning problem with Algorithm 1. Select constant ηt = η, define
pmin = min pm, pmax = max pm, let α→ 1−.

DLRl(T) ≤
T

Wpmin

(
8D

ηt
+ 2Lηtpmaxσ

2

)
+ 2TLηt

pmax

pmin
G2 (11)

Remark 1. The last term in Eq. 11 arises from bounding the error between the gradient with missing
elements in the event-driven framework and the ideal gradient without missing elements.
Corollary 1. Select l = T

1
2 and ηt = T− 1

4 . Let α→ 1−.

DLRl(T) = O(T
3
4) (12)

Remark 2. Corollary 1 suggests a sub-linear growth rate compared to the linear regret boundO(T),
which demonstrates an effective regret minimization.

The proof of the Theorem 1 is in Appendix A. For the completeness of our analysis, we further pro-
vide the prevalent regret analysis of the event-driven online VFL in the convex case in Appendix B.

5 EXPERIMENT

5.1 EXPERIMENT SETUP

Supplementary experimental details, including the algorithms of the baselines specifically adapted
for VFL, are provided in Appendix C. Furthermore, supplementary experiments addressing sec-
ondary aspects, such as ablation studies on the DLR parameter (l, α) and experiments on other
datasets (SUSY, HIGGS), can be found in Appendix D.

Dataset We leveraged the Infinite MNIST (i-MNIST) dataset (Loosli et al., 2007) to assess the
performance of the proposed methodologies in the context of VFL. The i-MNIST dataset extends
the MNIST dataset by providing an endless stream of handwritten digit images along with their
corresponding labels. To convert the i-MNIST dataset into a distributed dataset, each image was
first flattened into a one-dimensional vector. This vector was then divided into four equal segments
to ensure an even distribution of features across the clients. Each client was assigned one of the four
feature partitions, while the server was assigned the label. Experiments on other practical online
learning datasets, including the SUSY and HIGGS datasets, are provided in Appendix D.2.

6

Published as a conference paper at ICLR 2025

Model architecture In our online VFL framework, there were four clients and one server. On the
client side, the models consisted of a one-layer perceptron that took flattened features as input and
generated 64-dimensional embeddings using ReLU activation. On the server side, a two-layer multi-
layer perceptron was employed. The first layer took the concatenated client embeddings as input,
produced an output of 256 units, and applied ReLU activation. The subsequent layer generated class
logits using softmax activation. The loss function used by the server was cross-entropy.

Baselines The baselines comprised three different online VFL frameworks and three add-ons to
those frameworks concerning the activation of participants, resulting in a total of nine baselines.
The first online VFL framework applied online gradient descent in VFL (referred to as “OGD”
for brevity). The second online VFL framework adapted Static Local Regret (Hazan et al., 2017)
to online VFL (referred to as “SLR”). The third online VFL framework was our VFL framework
incorporating dynamic local regret (referred to as ”DLR”).

The three activation add-ons included “Full” activation, “Random” activation, and “Event” activa-
tion. The “Full” activation represented the most common scenario where all clients were activated
and received the synchronous data stream. The “Random” activation sets the activation probability
for all clients to a constant value, i.e. pm = p, which directly interpreted the theoretical result from
theorem 1. The “Event” activation was an activation mechanism that we designed to simulate the ac-
tivation in the sensor network. Many sensors are characterized by activation in response to detecting
peaks (Suh, 2007) or stimuli (Heemels et al., 2012). Inspired by this, we implemented the “Event”
activation in which a client is activated when the average of its input features exceeds a threshold,
denoted as Γ, which mimics the stimuli from the surroundings.

To be more specific, the OGD-Full4 framework was adapted from (Wang & Xu, 2023), customized
to suit our general VFL setting. The OGD-Random and OGD-Event5 were obtained by incorpo-
rating partial activation into the OGD-based online VFL. We also designed the SLR6 baselines by
incorporating Local Regret (Hazan et al., 2017) into the VFL with different activation schemes.
DLR-Full was the model obtained by directly adapting the DLR to the synchronous VFL frame-
work. DLR-Random and DLR-Event were the main contributions of our work, which incorporate
partial client activation (“Random” or “Event”) into VFL.

Training procedure We followed the standard online learning setting, wherein at each round
t, client m received only the corresponding feature of a single sample, rather than a batch.
Each trial comprised a total of 2,000,000 non-repetitive samples. The learning rate η was
tuned from {1, 0.1, 0.01, 0.001, . . .}. The length of the exponential weighted sliding window
for the DLR was tuned from {10, 50, 100, 150}. The activation probability p for the ”Ran-
dom” activation was selected from {0.25, 0.5, 0.75}. The activation threshold Γ was tuned from
{−0.2, 0, 0.2, 0.4, 0.6, 0.8}.
We conducted experiments on both a stationary data stream and a synthetic non-stationary data
stream. In section 5.2. we used the original i-MNIST dataset as the stationary data stream, where
each class had an equal probability of being sampled (1

10) at each round. In section 5.3 we synthe-
sized a non-stationary data stream by altering the class sampling probabilities every 50 rounds. At
each stage, the sampling probability for each class was drawn from a uniform distribution U(0, 1)
and then normalized. Data was then sampled based on the updated probabilities.

Metrics To evaluate the algorithm’s performance, we employed the run-time error rate (prequen-
tial) during online learning. This error rate was averaged and reported every 20,000 samples, pro-
viding insights into performance at each stage of the training. Additionally, the accumulated error
rate, representing the overall error for the entire training process, served as a metric for evaluating
overall performance. In terms of computational efficiency, we reported the total computation time
for all clients, including both active and passive clients at each round. In terms of communication
efficiency, we recorded the total communication cost for the VFL framework throughout the entire
training process, specifically measuring the size of all communication messages exchanged between
the server and the clients.

4Algorithm for OGD-Full are provided in Algorithm 4 in Appendix C.2.
5Algorithm for OGD-Event are provided in Algorithm 2 in Appendix B.
6Algorithm for SLR-Event are provided in Algorithm 5 in Appendix C.3.

7

Published as a conference paper at ICLR 2025

Figure 2: Run-time error rate under stationary data stream

Table 1: Performance metrics for online VFL under stationary data stream

OGD SLR DLR

Metric Full Random Event Full Random Event Full Random Event

Accum. Error Rate 0.0575 0.0696 0.1027 0.0846 0.1083 0.0945 0.0618 0.0649 0.0718
Client Comp. (s) 4339.20 2652.38 3182.46 4565.42 2682.47 2992.73 4565.42 2682.47 2992.73
Client Comm. (MB) 1953.13 1465.04 1686.86 78125.02 58599.36 61565.37 1953.13 1464.73 1539.13

5.2 RESULT ON STATIONARY DATA STREAM

Figure 2 illustrates a comparison of the run-time error rates across all frameworks within a stationary
data stream scenario. The x-axis shows the number of observed instances, while the y-axis represents
the corresponding run-time error rates. From the analysis of the results, it is evident that in the
”Full” activation framework, all models demonstrate stable convergence behavior. However, under
the partial activation scheme, both SLR and DLR show superior convergence curves compared to
OGD. Notably, DLR converges more rapidly than SLR, entering the convergence phase earlier.

Table 1 presents the performance metrics for the entire training process, including the accumulated
error rate, the total computational time for the client, and the total communication cost for the entire
VFL framework. The accumulated error further illustrates that the DLR exhibits greater stability
under the partial activation scheme. Specifically, the accumulated error rate for the DLR remains
approximately 0.06 when employing partial activation, whereas the accumulated error rate for OGD
undergoes a significant reduction from 0.0575 to 0.1027 when implementing the partial activation
scheme. By comparing DLR and SLR, we observed that DLR converges more quickly, resulting in
a lower average error rate. Specifically, due to the buffer design, SLR required the communication
of the entire buffer between the server and the client in each round7. Consequently, the communi-
cation volume of SLR was an order of magnitude higher than that of DLR and OGD. Compared to
“Full” activation, the partial activation approach results in a slightly higher error rate; however, it
significantly reduces client computation and overall communication costs.

5.3 RESULT ON NON-STATIONARY DATA STREAM

Figure 3 compares the run-time error rates across all the baselines under the non-stationary data
stream case. The DLR and SLR frameworks generally outperformed OGD, demonstrating greater
stability under the partial activation scheme for clients. Towards the end of the training process,
OGD became increasingly unstable, particularly when partial activation add-ons were used. In con-
trast, both DLR and SLR maintained stability across all activation schemes. Although SLR was
able to converge in non-stationary environments, it was less adaptable to dynamic environments
compared to DLR, as its convergence was slower at the beginning of training.

Table 2 presents the performance metrics of the frameworks for comparison. Overall, the DLR
method demonstrated a lower accumulated error rate compared to OGD and SLR, primarily due to
its stability against non-stationary data streams and partial activation. The communication cost of
SLR was significantly higher than that of OGD and DLR, consistent with previous experimental
results. When comparing full activation with the partial activation scheme, it was observed that

7The step that incurs a high communication cost in SLR is highlighted in Algorithm 5 in Appendix C.3.

8

Published as a conference paper at ICLR 2025

Figure 3: Run-time error rate under non-stationary data stream

Table 2: Performance metrics for online VFL under non-stationary data stream

OGD SLR DLR

Metric Full Random Event Full Random Event Full Random Event

Accum. Error Rate 0.0592 0.0788 0.1191 0.0481 0.1159 0.1118 0.0553 0.0561 0.0681
Client Comp. (s) 4406.14 2822.29 3168.34 3497.49 2172.44 2103.50 4558.20 2872.79 2698.96
Total Comm. (MB) 1953.12 1464.71 1543.32 78124.61 58589.34 61748.22 1953.12 1465.02 1413.52

the partial activation approach typically resulted in a slightly higher total error rate during training.
However, it significantly reduced both computational and communication costs, making it a more
practical and efficient solution for real-world applications.

5.4 ENHANCING COMPUTATION-COMMUNICATION EFFICIENCY WITH PARTIAL ACTIVATION

In the partial activation approach (“Random” and “Event”), fewer clients participated in the train-
ing of each epoch, therefore reducing both computation and communication costs compared to the
framework with “Full” activation.

Activation probability p In the “Random” activation framework, the activation probability p de-
termines the likelihood of a client being activated in each round. A higher value of p increases the
probability of activation, while a lower value decreases it. We conducted the study on the activa-
tion probability within the DLR-Random Framework under the non-stationary data stream, using a
window length of l = 10 and an attenuation coefficient α = 0.95. We selected p from the range
{0.25, 0.50, 0.75, 1.00}.
This observation indicates that the run-time error rate among the DLR-Random models remains
consistent across varying activation probabilities. Table 3 presents the corresponding performance
metrics of those trials. This indicates that a small activation probability proportionally decreases
the computational cost for the client, albeit with a slight increase in the accumulated error rate.
Additionally, both client computation time and communication decrease, as passive clients do not
participate in the backward process.

Figure 4: Activation probability p

Table 3: Performance metrics for different activation
probability

Activation
Probability

Accum.
Error Rate

Client
Comp. (s)

Total
Comm. (MB)

0.25 0.0622 1903.91 1220.75
0.50 0.0561 2872.79 1465.02
0.75 0.0560 3788.07 1709.04
1.00 0.0553 4558.20 1953.12

9

Published as a conference paper at ICLR 2025

Event activation threshold Γ Using the DLR-Event framework with a window length of l =
10 and an attenuation coefficient of α = 0.95, we examined the impact of varying the activation
threshold. Table 4 presents the performance metrics for the DLR-Event with different Γ. As the
threshold increased, fewer clients were activated per round, leading to an overall increase in the
framework’s accumulated error rate while reducing its computational cost and communication costs.
We further provided an examination of the activation rate for each client across various activation
thresholds. As the threshold surpasses 0.6, few clients were activated in each round, the framework
will mostly rely on the server for learning, with clients primarily offering a nearly invariant mapping
of the input features. Conversely, as the threshold decreases, clients can be activated more frequently.

Table 4: Performance metrics for activation threshold

Threshold Γ Accum. Error Rate Client Comp. (s) Total Comm. (MB)

0.6 0.1057 928.67 1017.76
0.2 0.0738 1852.15 1211.55
−0.2 0.0595 3752.07 1689.42

6 LIMITATIONS

Due to the inherent nature of VFL, wherein the clients possess non-intersecting feature sets, the
involvement of passive clients in each round remains unavoidable. Omitting passive participants
leads to missing input at the server’s model, which is known as the “incomplete view” problem
in VFL or the “non-overlapping sample” problem within the offline VFL setting. Although some
research on VFL has attempted to address the incomplete view problem through knowledge distil-
lation (KD) (Ren et al., 2022), self-supervised learning (SSL) (He et al., 2022; Li et al., 2022; Kang
et al., 2022) and semi-supervised learning (Li et al., 2024), these approaches entail more complex
models and higher computation-communication costs. For instance, Ren et al. (2022) train student
models for each case with an incomplete view via KD, which imposes a significant computational
cost, especially when the number of clients is large. Another example is the work by He et al.
(2022), which implements SSL within the VFL framework. This approach requires communication
between participants during the computation-intensive pretraining stage. Consequently, in scenarios
where participants have limited computational resources, there is no perfect solution to this problem.

The future direction of event-driven online VFL focuses on examining the complete independent
data streams for each client by addressing the incomplete view problem within the VFL frame-
work. Resolving this problem will eliminate the need for passive client participation in each event,
thereby reducing computation and communication costs and enabling the implementation of fully
asynchronous online VFL.

7 CONCLUSION

Adapting online learning to vertical federated learning poses challenges due to the unique nature of
VFL. The clients may not receive data streaming synchronously, as data generated by an ”event”
typically pertains to only a subset of the clients. To address these challenges, we proposed the
Event-Driven Online Vertical Federated Learning framework. Within this framework, only a subset
of clients is activated by the event in each round, with others passively participating in the learn-
ing process. Moreover, we incorporate dynamic local regret to address non-convex models in a
non-stationary environment, which further enhances the adaptability of our framework for real-
world applications. Through comprehensive regret analysis, we have derived the regret bound of
O(T 3

4) for dynamic local regret under the non-convex case. Through extensive experiments, we
have demonstrated the effectiveness of our approach in reducing communication-computation costs
and achieving strong performance in non-stationary environments. Overall, our contributions pave
the way for more practical and adaptable implementations of VFL in real-world scenarios.

10

Published as a conference paper at ICLR 2025

ACKNOWLEDGMENTS

This work has been supported by the Natural Sciences and Engineering Research Council of Canada
(NSERC), Discovery Grants program.

REFERENCES

Jacob D Abernethy, Elad Hazan, and Alexander Rakhlin. Competing in the dark: An efficient
algorithm for bandit linear optimization. 2009.

Naman Agarwal, Alon Gonen, and Elad Hazan. Learning in non-convex games with an optimization
oracle. In Conference on Learning Theory, pp. 18–29. PMLR, 2019.

Sergul Aydore, Tianhao Zhu, and Dean P Foster. Dynamic local regret for non-convex online fore-
casting. Advances in neural information processing systems, 32, 2019.

Jonas Beuchert, Friedrich Solowjow, Sebastian Trimpe, and Thomas Seel. Overcoming band-
width limitations in wireless sensor networks by exploitation of cyclic signal patterns: An event-
triggered learning approach. Sensors, 20(1):260, 2020.

Timothy J Castiglia, Anirban Das, Shiqiang Wang, and Stacy Patterson. Compressed-vfl:
Communication-efficient learning with vertically partitioned data. In International Conference
on Machine Learning, pp. 2738–2766. PMLR, 2022.

Tianyi Chen, Xiao Jin, Yuejiao Sun, and Wotao Yin. Vafl: a method of vertical asynchronous
federated learning. arXiv preprint arXiv:2007.06081, 2020.

Nima Eshraghi and Ben Liang. Distributed online optimization over a heterogeneous network with
any-batch mirror descent. In International Conference on Machine Learning, pp. 2933–2942.
PMLR, 2020.

Wenjing Fang, Derun Zhao, Jin Tan, Chaochao Chen, Chaofan Yu, Li Wang, Lei Wang, Jun Zhou,
and Benyu Zhang. Large-scale secure xgb for vertical federated learning. In Proceedings of the
30th ACM International Conference on Information & Knowledge Management, pp. 443–452,
2021.

Fangcheng Fu, Xupeng Miao, Jiawei Jiang, Huanran Xue, and Bin Cui. Towards communication-
efficient vertical federated learning training via cache-enabled local updates. arXiv preprint
arXiv:2207.14628, 2022.

Bhargav Ganguly and Vaneet Aggarwal. Online federated learning via non-stationary detection and
adaptation amidst concept drift. IEEE/ACM Transactions on Networking, 2023.

Xiand Gao, Xiaobo Li, and Shuzhong Zhang. Online learning with non-convex losses and non-
stationary regret. In International Conference on Artificial Intelligence and Statistics, pp. 235–
243. PMLR, 2018.

Bin Gu, An Xu, and Cheng Deng. heng huang. 2020. privacy-preserving asynchronous fed-
erated learning algorithms for multi-party vertically collaborative learning. arXiv preprint
arXiv:2008.06233, 2020.

Stephen Hardy, Wilko Henecka, Hamish Ivey-Law, Richard Nock, Giorgio Patrini, Guillaume
Smith, and Brian Thorne. Private federated learning on vertically partitioned data via entity
resolution and additively homomorphic encryption. arXiv preprint arXiv:1711.10677, 2017.

Elad Hazan and Satyen Kale. Extracting certainty from uncertainty: Regret bounded by variation in
costs. Machine learning, 80:165–188, 2010.

Elad Hazan, Alexander Rakhlin, and Peter Bartlett. Adaptive online gradient descent. Advances in
neural information processing systems, 20, 2007.

Elad Hazan, Karan Singh, and Cyril Zhang. Efficient regret minimization in non-convex games. In
International Conference on Machine Learning, pp. 1433–1441. PMLR, 2017.

11

Published as a conference paper at ICLR 2025

Elad Hazan et al. Introduction to online convex optimization. Foundations and Trends® in Opti-
mization, 2(3-4):157–325, 2016.

Yuanqin He, Yan Kang, Xinyuan Zhao, Jiahuan Luo, Lixin Fan, Yuxing Han, and Qiang Yang.
A hybrid self-supervised learning framework for vertical federated learning. arXiv preprint
arXiv:2208.08934, 2022.

WPM Heemels Heemels, MCF Donkers, and Andrew R Teel. Periodic event-triggered control for
linear systems. IEEE Transactions on automatic control, 58(4):847–861, 2012.

Amélie Héliou, Matthieu Martin, Panayotis Mertikopoulos, and Thibaud Rahier. Online non-convex
optimization with imperfect feedback. Advances in Neural Information Processing Systems, 33:
17224–17235, 2020.

SC Hoi, D Sahoo, J Lu, and P Zhao. Online learning: A comprehensive survey. arxiv. arXiv preprint
arXiv:1802.02871, 2018.

Songnam Hong and Jeongmin Chae. Communication-efficient randomized algorithm for multi-
kernel online federated learning. IEEE transactions on pattern analysis and machine intelligence,
44(12):9872–9886, 2021.

Yaochen Hu, Di Niu, Jianming Yang, and Shengping Zhou. Fdml: A collaborative machine learn-
ing framework for distributed features. In Proceedings of the 25th ACM SIGKDD International
Conference on Knowledge Discovery & Data Mining, pp. 2232–2240, 2019.

Zhenqi Huang, Sayan Mitra, and Nitin Vaidya. Differentially private distributed optimization. In
Proceedings of the 2015 international conference on distributed computing and networking, pp.
1–10, 2015.

Yan Kang, Yang Liu, and Xinle Liang. Fedcvt: Semi-supervised vertical federated learning with
cross-view training. ACM Transactions on Intelligent Systems and Technology (TIST), 13(4):
1–16, 2022.

Sai Praneeth Karimireddy, Satyen Kale, Mehryar Mohri, Sashank Reddi, Sebastian Stich, and
Ananda Theertha Suresh. Scaffold: Stochastic controlled averaging for federated learning. In
International conference on machine learning, pp. 5132–5143. PMLR, 2020.

Dohyeok Kwon, Jonghwan Park, and Songnam Hong. Tighter regret analysis and optimization
of online federated learning. IEEE Transactions on Pattern Analysis and Machine Intelligence,
2023.

Tian Li, Anit Kumar Sahu, Manzil Zaheer, Maziar Sanjabi, Ameet Talwalkar, and Virginia Smith.
Federated optimization in heterogeneous networks. Proceedings of Machine learning and sys-
tems, 2:429–450, 2020.

Wenguo Li, Xinling Guo, Xu Jiao, Tiancheng Huang, Xiaoran Yan, and Yao Yang. Vertical federated
learning hybrid local pre-training. arXiv preprint arXiv:2405.11884, 2024.

Wenjie Li, Qiaolin Xia, Hao Cheng, Kouyin Xue, and Shu-Tao Xia. Vertical semi-federated learning
for efficient online advertising. arXiv preprint arXiv:2209.15635, 2022.

Xiaoxiao Li, Meirui Jiang, Xiaofei Zhang, Michael Kamp, and Qi Dou. Fedbn: Federated learning
on non-iid features via local batch normalization. arXiv preprint arXiv:2102.07623, 2021.

Peixi Liu, Guangxu Zhu, Wei Jiang, Wu Luo, Jie Xu, and Shuguang Cui. Vertical federated edge
learning with distributed integrated sensing and communication. IEEE Communications Letters,
26(9):2091–2095, 2022.

Yang Liu, Yan Kang, Xinwei Zhang, Liping Li, Yong Cheng, Tianjian Chen, Mingyi Hong, and
Qiang Yang. A communication efficient collaborative learning framework for distributed features.
arXiv preprint arXiv:1912.11187, 2019.

Yang Liu, Zhuo Ma, Ximeng Liu, Siqi Ma, Surya Nepal, Robert H Deng, and Kui Ren. Boosting
privately: Federated extreme gradient boosting for mobile crowdsensing. In 2020 IEEE 40th
International Conference on Distributed Computing Systems (ICDCS), pp. 1–11. IEEE, 2020.

12

Published as a conference paper at ICLR 2025

Gaëlle Loosli, Stéphane Canu, and Léon Bottou. Training invariant support vector machines using
selective sampling. In Léon Bottou, Olivier Chapelle, Dennis DeCoste, and Jason Weston (eds.),
Large Scale Kernel Machines, pp. 301–320. MIT Press, Cambridge, MA., 2007. URL http:
//leon.bottou.org/papers/loosli-canu-bottou-2006.

Othmane Marfoq, Giovanni Neglia, Richard Vidal, and Laetitia Kameni. Personalized federated
learning through local memorization. In International Conference on Machine Learning, pp.
15070–15092. PMLR, 2022.

Brendan McMahan, Eider Moore, Daniel Ramage, Seth Hampson, and Blaise Aguera y Arcas.
Communication-efficient learning of deep networks from decentralized data. In Artificial intelli-
gence and statistics, pp. 1273–1282. PMLR, 2017.

H Brendan McMahan, Gary Holt, David Sculley, Michael Young, Dietmar Ebner, Julian Grady, Lan
Nie, Todd Phillips, Eugene Davydov, Daniel Golovin, et al. Ad click prediction: a view from
the trenches. In Proceedings of the 19th ACM SIGKDD international conference on Knowledge
discovery and data mining, pp. 1222–1230, 2013.

Konstantin Mishchenko, Eduard Gorbunov, Martin Takáč, and Peter Richtárik. Distributed learning
with compressed gradient differences. arXiv preprint arXiv:1901.09269, 2019.

Aritra Mitra, Hamed Hassani, and George J Pappas. Online federated learning. In 2021 60th IEEE
Conference on Decision and Control (CDC), pp. 4083–4090. IEEE, 2021.

Vaikkunth Mugunthan, Antigoni Polychroniadou, David Byrd, and Tucker Hybinette Balch. Sm-
pai: Secure multi-party computation for federated learning. In Proceedings of the NeurIPS 2019
Workshop on Robust AI in Financial Services, 2019.

Tao Qi, Fangzhao Wu, Chuhan Wu, Lingjuan Lyu, Tong Xu, Hao Liao, Zhongliang Yang, Yongfeng
Huang, and Xing Xie. Fairvfl: A fair vertical federated learning framework with contrastive
adversarial learning. Advances in Neural Information Processing Systems, 35:7852–7865, 2022.

Thilina Ranbaduge and Ming Ding. Differentially private vertical federated learning. arXiv preprint
arXiv:2211.06782, 2022.

Zhenghang Ren, Liu Yang, and Kai Chen. Improving availability of vertical federated learning:
Relaxing inference on non-overlapping data. ACM Transactions on Intelligent Systems and Tech-
nology (TIST), 13(4):1–20, 2022.

Doyen Sahoo, Quang Pham, Jing Lu, and Steven C. H. Hoi. Online deep learning: Learning deep
neural networks on the fly. In Proceedings of the Twenty-Seventh International Joint Conference
on Artificial Intelligence, Jun 2018. doi: 10.24963/ijcai.2018/369. URL http://dx.doi.
org/10.24963/ijcai.2018/369.

Shai Shalev-Shwartz and Yoram Singer. A primal-dual perspective of online learning algorithms.
Machine Learning, 69:115–142, 2007.

Arun Sai Suggala and Praneeth Netrapalli. Online non-convex learning: Following the perturbed
leader is optimal. In Algorithmic Learning Theory, pp. 845–861. PMLR, 2020.

Young Soo Suh. Send-on-delta sensor data transmission with a linear predictor. Sensors, 7(4):
537–547, 2007.

Sebastian Trimpe and Raffaello D’Andrea. Event-based state estimation with variance-based trig-
gering. IEEE Transactions on Automatic Control, 59(12):3266–3281, 2014.

Praneeth Vepakomma, Otkrist Gupta, Tristan Swedish, and Ramesh Raskar. Split learning for health:
Distributed deep learning without sharing raw patient data. arXiv preprint arXiv:1812.00564,
2018.

Ganyu Wang, Bin Gu, Qingsong Zhang, Xiang Li, Boyu Wang, and Charles Ling. A unified so-
lution for privacy and communication efficiency in vertical federated learning. In Thirty-seventh
Conference on Neural Information Processing Systems, 2023.

13

http://leon.bottou.org/papers/loosli-canu-bottou-2006
http://leon.bottou.org/papers/loosli-canu-bottou-2006
http://dx.doi.org/10.24963/ijcai.2018/369
http://dx.doi.org/10.24963/ijcai.2018/369

Published as a conference paper at ICLR 2025

Ganyu Wang, Qingsong Zhang, Xiang Li, Boyu Wang, Bin Gu, and Charles X Ling. Secure and fast
asynchronous vertical federated learning via cascaded hybrid optimization. Machine Learning,
113(9):6413–6451, 2024.

Heqiang Wang and Jie Xu. Online vertical federated learning for cooperative spectrum sensing.
arXiv preprint arXiv:2312.11363, 2023.

Yujia Wang, Lu Lin, and Jinghui Chen. Communication-efficient adaptive federated learning. arXiv
preprint arXiv:2205.02719, 2022.

Kang Wei, Jun Li, Ming Ding, Chuan Ma, Howard H Yang, Farhad Farokhi, Shi Jin, Tony QS Quek,
and H Vincent Poor. Federated learning with differential privacy: Algorithms and performance
analysis. IEEE Transactions on Information Forensics and Security, 15:3454–3469, 2020.

Kang Wei, Jun Li, Chuan Ma, Ming Ding, Sha Wei, Fan Wu, Guihai Chen, and Thilina Ran-
baduge. Vertical federated learning: Challenges, methodologies and experiments. arXiv preprint
arXiv:2202.04309, 2022.

Daniel Whiteson. HIGGS. UCI Machine Learning Repository, 2014a. DOI:
https://doi.org/10.24432/C5V312.

Daniel Whiteson. SUSY. UCI Machine Learning Repository, 2014b. DOI:
https://doi.org/10.24432/C54606.

Kai Yang, Tao Fan, Tianjian Chen, Yuanming Shi, and Qiang Yang. A quasi-newton method based
vertical federated learning framework for logistic regression. arXiv preprint arXiv:1912.00513,
2019.

Ke Zhang, Ganyu Wang, Han Li, Yulong Wang, Hong Chen, and Bin Gu. Asynchronous vertical
federated learning for kernelized auc maximization. In Proceedings of the 30th ACM SIGKDD
Conference on Knowledge Discovery and Data Mining, pp. 4244–4255, 2024.

Qingsong Zhang, Bin Gu, Zhiyuan Dang, Cheng Deng, and Heng Huang. Desirable companion for
vertical federated learning: New zeroth-order gradient based algorithm. In Proceedings of the
30th ACM International Conference on Information & Knowledge Management, pp. 2598–2607,
2021a.

Qingsong Zhang, Bin Gu, Cheng Deng, Songxiang Gu, Liefeng Bo, Jian Pei, and Heng Huang.
Asysqn: Faster vertical federated learning algorithms with better computation resource utilization.
In Proceedings of the 27th ACM SIGKDD conference on knowledge discovery & data mining, pp.
3917–3927, 2021b.

Qingsong Zhang, Bin Gu, Cheng Deng, and Heng Huang. Secure bilevel asynchronous vertical
federated learning with backward updating. In Proceedings of the AAAI conference on artificial
intelligence, volume 35, pp. 10896–10904, 2021c.

Jun Zhou, Chaochao Chen, Longfei Zheng, Huiwen Wu, Jia Wu, Xiaolin Zheng, Bingzhe Wu,
Ziqi Liu, and Li Wang. Vertically federated graph neural network for privacy-preserving node
classification. arXiv preprint arXiv:2005.11903, 2020.

Martin Zinkevich. Online convex programming and generalized infinitesimal gradient ascent. In
Proceedings of the 20th international conference on machine learning (icml-03), pp. 928–936,
2003.

14

Published as a conference paper at ICLR 2025

A REGRET ANALYSIS: NON-CONVEX CASE WITH DYNAMIC LOCAL REGRET

Proof of Theorem 1:

Taking Expectation w.r.t xt.
Ext

[
St,l,α(w

t+1
0 ,wt+1)− St,l,α(w

t
0,w

t)
]

1)

≤Ext

〈
∇St,l,α(w

t
0,w

t), [wt+1
0 ,wt+1]− [wt

0,w
t]
〉
+

L

2
Ext

∥∥[wt+1
0 ,wt+1]− [wt

0,w
t]
∥∥2

2)
=− ηtExt

〈
∇St,l,α(w

t
0,w

t), ∇̂w0St,l,α(w
t
0,w

t)
〉
− ηtExt

〈
∇St,l,α(w

t
0,w

t),
∑

m∈At

∇̂wm S̃t,l,α(w
t
0,w

t)

〉

+
Lη2t
2

Ext

∥∥∥∇̂w0
St,l,α(w

t
0,w

t)
∥∥∥2 + Lη2t

2

∑
m∈At

Ext

∥∥∥∇̂wm
S̃t,l,α(w

t
0,w

t)
∥∥∥2

=−ηtExt

〈
∇St,l,α(w

t
0,w

t), ∇̂w0St,l,α(w
t
0,w

t)
〉
+

Lη2t
2

Ext

∥∥∥∇̂w0
St,l,α(w

t
0,w

t)
∥∥∥2︸ ︷︷ ︸

a)

−ηtExt

〈
∇St,l,α(w

t
0,w

t),
∑

m∈At

∇̂wm S̃t,l,α(w
t
0,w

t)

〉
+

Lη2t
2

∑
m∈At

Ext

∥∥∥∇̂wm S̃t,l,α(w
t
0,w

t)
∥∥∥2︸ ︷︷ ︸

b)

(13)

where 1) applies the Lipschitz Continuous of St,l,α(w
t
0,w

t),
2) applies the update in one round of the event-driven VFL.

For a)

− ηtExt

〈
∇St,l,α(w

t
0,w

t), ∇̂w0
St,l,α(w

t
0,w

t)
〉
+

Lη2t
2

Ext

∥∥∥∇̂w0
St,l,α(w

t
0,w

t)
∥∥∥2

1)
=− ηtExt

∥∥∇St,l,α(w
t
0,w

t)
∥∥2

+
Lη2t
2

Ext

∥∥∥∇̂w0St,l,α(w
t
0,w

t)−∇w0St,l,α(w
t
0,w

t) +∇w0St,l,α(w
t
0,w

t)
∥∥∥2

2)

≤− ηtExt

∥∥∇St,l,α(w
t
0,w

t)
∥∥2

+ Lη2tExt

∥∥∥∇̂w0
St,l,α(w

t
0,w

t)−∇w0
St,l,α(w

t
0,w

t)
∥∥∥2 + Lη2tExt

∥∥∇w0
St,l,α(w

t
0,w

t)
∥∥2

=−
(
ηt − Lη2t

)
Ext

∥∥∇St,l,α(w
t
0,w

t)
∥∥2

+ Lη2tExt

∥∥∥∇̂w0
St,l,α(w

t
0,w

t)−∇w0
St,l,α(w

t
0,w

t)
∥∥∥2

(14)
where 1) applies assumption 2 (unbiased gradient),
2) applies ∥a+ b∥2 ≤ 2 ∥a∥2 + 2 ∥b∥2.

For b)

− ηtExt

〈
∇St,l,α(w

t
0,w

t),
∑

m∈At

∇̂wm
S̃t,l,α(w

t
0,w

t)

〉
+

Lη2t
2

∑
m∈At

Ext

∥∥∥∇̂wm
S̃t,l,α(w

t
0,w

t)
∥∥∥2

=− ηtExt

〈
∇St,l,α(w

t
0,w

t),
∑

m∈At

∇̂wm S̃t,l,α(w
t
0,w

t)−
∑

m∈At

∇̂wmSt,l,α(w
t
0,w

t) +
∑

m∈At

∇̂wmSt,l,α(w
t
0,w

t)

〉

+
Lη2t
2

∑
m∈At

Ext

∥∥∥∇̂wm
S̃t,l,α(w

t
0,w

t)− ∇̂wm
St,l,α(w

t
0,w

t) + ∇̂wm
St,l,α(w

t
0,w

t)
∥∥∥2

15

Published as a conference paper at ICLR 2025

1)
=− ηtExt

∥∥∥∥∥ ∑
m∈At

∇wmSt,l,α(w
t
0,w

t)

∥∥∥∥∥
2

− ηtExt

〈
∇St,l,α(w

t
0,w

t),
∑

m∈At

∇̂wm S̃t,l,α(w
t
0,w

t)−
∑

m∈At

∇̂wmSt,l,α(w
t
0,w

t)

〉

+
Lη2t
2

∑
m∈At

Ext

∥∥∥∇̂wm
S̃t,l,α(w

t
0,w

t)− ∇̂wm
St,l,α(w

t
0,w

t) + ∇̂wm
St,l,α(w

t
0,w

t)
∥∥∥2

2)
=− ηtExt

∥∥∥∥∥ ∑
m∈At

∇wm
St,l,α(w

t
0,w

t)

∥∥∥∥∥
2

− ηtExt

〈
∇St,l,α(w

t
0,w

t),
∑

m∈At

∇̂wm
S̃t,l,α(w

t
0,w

t)−
∑

m∈At

∇̂wm
St,l,α(w

t
0,w

t)

〉

+ Lη2t
∑

m∈At

Ext

∥∥∥∇̂wm
S̃t,l,α(w

t
0,w

t)− ∇̂wm
St,l,α(w

t
0,w

t)
∥∥∥2

+ Lη2t
∑

m∈At

Ext

∥∥∥∇̂wmSt,l,α(w
t
0,w

t)
∥∥∥2

3)
=− ηtExt

∥∥∥∥∥ ∑
m∈At

∇wmSt,l,α(w
t
0,w

t)

∥∥∥∥∥
2

− ηtExt

〈
∇St,l,α(w

t
0,w

t),
∑

m∈At

∇̂wm S̃t,l,α(w
t
0,w

t)−
∑

m∈At

∇̂wmSt,l,α(w
t
0,w

t)

〉

+ Lη2t
∑

m∈At

Ext

∥∥∥∇̂wm
S̃t,l,α(w

t
0,w

t)− ∇̂wm
St,l,α(w

t
0,w

t)
∥∥∥2

+ Lη2t
∑

m∈At

Ext

∥∥∇wm
St,l,α(w

t
0,w

t)
∥∥2 + Lη2t

∑
m∈At

Ext

∥∥∥∇̂wm
St,l,α(w

t
0,w

t)−∇wm
St,l,α(w

t
0,w

t)
∥∥∥2

=−
(
ηt − Lη2t

)
Ext

∥∥∥∥∥ ∑
m∈At

∇wmSt,l,α(w
t
0,w

t)

∥∥∥∥∥
2

− ηtExt

〈
∇St,l,α(w

t
0,w

t),
∑

m∈At

∇̂wm
S̃t,l,α(w

t
0,w

t)−
∑

m∈At

∇̂wm
St,l,α(w

t
0,w

t)

〉

+ Lη2t
∑

m∈At

Ext

∥∥∥∇̂wm S̃t,l,α(w
t
0,w

t)− ∇̂wmSt,l,α(w
t
0,w

t)
∥∥∥2

+ Lη2t
∑

m∈At

Ext

∥∥∥∇̂wm
St,l,α(w

t
0,w

t)−∇wm
St,l,α(w

t
0,w

t)
∥∥∥2

(15)

where 1) applies assumption 2 (unbiased gradient),
2) applies ∥a+ b∥2 ≤ 2 ∥a∥2 + 2 ∥b∥2,
3) E(X2) = E(X)2 +Var(X).

Plug in a) and b) and taking expectation w.r.t. the activated client m ∈ At, where the activation
probability of client m is pm, we derive:

EmExt

[
St,l,α(w

t+1
0 ,wt+1)− St,l,α(w

t
0,w

t)
]

≤−
(
ηt − Lη2t

)
Ext

∥∥∇w0
St,l,α(w

t
0,w

t)
∥∥2
16

Published as a conference paper at ICLR 2025

+ Lη2tExt

∥∥∥∇̂w0
St,l,α(w

t
0,w

t)−∇w0
St,l,α(w

t
0,w

t)
∥∥∥2

−
(
ηt − Lη2t

) ∑
m∈[M]

pmExt

∥∥∇wmSt,l,α(w
t
0,w

t)
∥∥2

− ηtExt

∑
m∈[M]

pm

〈
∇wm

St,l,α(w
t
0,w

t), ∇̂wm
S̃t,l,α(w

t
0,w

t)− ∇̂wm
St,l,α(w

t
0,w

t)
〉

+ Lη2t
∑

m∈[M]

pmExt

∥∥∥∇̂wm S̃t,l,α(w
t
0,w

t)− ∇̂wmSt,l,α(w
t
0,w

t)
∥∥∥2

+ Lη2t
∑

m∈[M]

pmExt

∥∥∥∇̂wm
St,l,α(w

t
0,w

t)−∇wm
St,l,α(w

t
0,w

t)
∥∥∥2

1)

≤−
(
ηt − Lη2t

)
pminExt

∥∥∇St,l,α(w
t
0,w

t)
∥∥2

+ Lη2t pmaxExt

∥∥∥∇̂St,l,α(w
t
0,w

t)−∇St,l,α(w
t
0,w

t)
∥∥∥2

− ηtExt

∑
m∈[M]

pm

〈
∇wm

St,l,α(w
t
0,w

t), ∇̂wm
S̃t,l,α(w

t
0,w

t)− ∇̂wm
St,l,α(w

t
0,w

t)
〉

+ Lη2t
∑

m∈[M]

pmExt

∥∥∥∇̂wm S̃t,l,α(w
t
0,w

t)− ∇̂wmSt,l,α(w
t
0,w

t)
∥∥∥2

2)

≤−
(
ηt − Lη2t

)
pminExt

∥∥∇St,l,α(w
t
0,w

t)
∥∥2

+ Lη2t pmax ·
σ2

W 2
· 1− α2l

1− α2

− ηtExt

∑
m∈[M]

pm

〈
∇wmSt,l,α(w

t
0,w

t), ∇̂wm S̃t,l,α(w
t
0,w

t)− ∇̂wmSt,l,α(w
t
0,w

t)
〉

+ Lη2t
∑

m∈[M]

pmExt

∥∥∥∇̂wm
S̃t,l,α(w

t
0,w

t)− ∇̂wm
St,l,α(w

t
0,w

t)
∥∥∥2

︸ ︷︷ ︸
c)

3)

≤−
(
ηt − Lη2t

)
pminExt

∥∥∇St,l,α(w
t
0,w

t)
∥∥2

+ Lη2t pmax ·
σ2

W 2
· 1− α2l

1− α2

− ηtExt

∑
m∈[M]

pm

〈
∇wm

St,l,α(w
t
0,w

t), ∇̂wm
S̃t,l,α(w

t
0,w

t)− ∇̂wm
St,l,α(w

t
0,w

t)
〉

+ Lη2t pmaxG
2

(16)

where 1) note that m is in different dimension,
2) applies assumption 3 (bounded variance), and α is a weighted average of l independently,

therefore Ext

∥∥∥∇̂St,l,α(w
t
0,w

t)−∇St,l,α(w
t
0,w

t)
∥∥∥2 ≤ σ2

W 2 · 1−α2l

1−α2 ,
3) plug in c).

For c) ∑
m∈[M]

pmExt

∥∥∥∇̂wm
S̃t,l,α(w

t
0,w

t)− ∇̂wm
St,l,α(w

t
0,w

t)
∥∥∥2

=
∑

m∈[M]

pmExt

∥∥∥∥∥ 1

W

l−1∑
i=0

αi∇wm
f t−i(wt−i

0 ,wt−i) · (1− γt−i
m)

∥∥∥∥∥
2

17

Published as a conference paper at ICLR 2025

=
1

W 2

∑
m∈[M]

pmExt

∥∥∥∥∥
l−1∑
i=0

αi∇̂wmf t−i(wt−i
0 ,wt−i) · (1− γt−i

m)

∥∥∥∥∥
2

1)

≤ 1

W 2

∑
m∈[M]

pm

(
l−1∑
i=0

αi(1− γt−i
m)

)2 ∥∥∥∇̂wmf t−i(wt−i
0 ,wt−i)

∥∥∥2

≤ 1

W 2

∑
m∈[M]

pm

(
l−1∑
i=0

αi

)2 ∥∥∥∇̂wm
f t−i(wt−i

0 ,wt−i)
∥∥∥2

2)

≤
∑

m∈[M]

pm

∥∥∥∇̂wmf t−i(wt−i
0 ,wt−i)

∥∥∥2
3)

≤
∑

m∈[M]

pmax

∥∥∥∇̂wmf t−i(wt−i
0 ,wt−i)

∥∥∥2
4)

≤pmaxG
2

(17)

where 1) by triangle inequality
∥∥∥∑l−1

i=0 α
i∇wm

f t−i(wt−i
0 ,wt−i) · (1− γt−i

m)
∥∥∥ ≤∑l−1

i=0

∥∥αi∇wm
f t−i(wt−i

0 ,wt−i) · (1− γt−i
m)

∥∥ ≤∑l−1
i=0 α

i(1− γt−i
m)

∥∥∇wm
f t−i(wt−i

0 ,wt−i)
∥∥,

2) W =
∑l−1

i=0 α
i,

3) denote maxm {pm} = pmax,
4) applies assumption 4 (bounded gradient).

Taking expectation w.r.t. time step t ∼ Unif([T]), and use E to denote the expectation
EtEmExt . We can eliminate

〈
∇wmSt,l,α(w

t
0,w

t), ∇̂wm S̃t,l,α(w
t
0,w

t)− ∇̂wmSt,l,α(w
t
0,w

t)
〉

,

because Et∇S̃t,l,α(w
t
0,w

t) = Et∇St,l,α(w
t
0,w

t).

E
[
St,l,α(w

t+1
0 ,wt+1)− St,l,α(w

t
0,w

t)
]
≤−

(
ηt − Lη2t

)
pminE

∥∥∇St,l,α(w
t
0,w

t)
∥∥2

+ Lη2t pmax ·
σ2

W 2
· 1− α2l

1− α2
+ Lη2t pmaxG

2

(18)

Rearrange the above equation we have:(
ηt − Lη2t

)
pminE

∥∥∇St,l,α(w
t
0,w

t)
∥∥2

≤E
[
St,l,α(w

t
0,w

t)− St,l,α(w
t+1
0 ,wt+1)

]
+ Lη2t pmax ·

σ2

W 2
· 1− α2l

1− α2
+ Lη2t pmaxG

2

≤ESt,l,α(w
t
0,w

t)− ESt+1,l,α(w
t+1
0 ,wt+1)︸ ︷︷ ︸

d)

+ESt+1,l,α(w
t+1
0 ,wt+1)− ESt,l,α(w

t+1
0 ,wt+1)︸ ︷︷ ︸

e)

+ Lη2t pmax ·
σ2

W 2
· 1− α2l

1− α2
+ Lη2t pmaxG

2

1)

≤2D

W
· (1− αl)

1− α
+

D

W

[
(1 + αl−1) +

(1− αl−1)(1 + α)

1− α

]
+ Lη2t pmax ·

σ2

W 2
· 1− α2l

1− α2
+ Lη2t pmaxG

2 (19)

The remaining follow the same procedure as Aydore et al. (2019), for brevity, we use the lemma on
their paper. For d) we apply the (Aydore et al., 2019, Lemma 3.3) and derive ESt,l,α(w

t
0,w

t) −

18

Published as a conference paper at ICLR 2025

ESt+1,l,α(w
t+1
0 ,wt+1) ≤ 2D

W ·
(1−αl)
1−α . For e) we apply the (Aydore et al., 2019, Lemma 3.2) and

derive ESt+1,l,α(w
t+1
0 ,wt+1) − ESt,l,α(w

t+1
0 ,wt+1) ≤ D

W

[
(1 + αl−1) + (1−αl−1)(1+α)

1−α

]
. 1)

plugs in d) and e).

Divide both side by (ηt − Lη2t)pmin.

E
∥∥∇St,l,α(w

t
0,w

t)
∥∥2

≤
2D
W ·

(1−αl)
1−α + D

W

[
(1 + αl−1) + (1−αl−1)(1+α)

1−α

]
+ Lη2t pmax · σ2

W 2 · 1−α2l

1−α2 + Lη2t pmaxG
2

(ηt − Lη2t)pmin

1)

≤ 4D

ηtWpmin
· (1− αl)

1− α
+

2D

ηtWpmin

[
(1 + αl−1) +

(1− αl−1)(1 + α)

1− α

]
+ 2Lηt

pmax

pmin
· σ

2

W 2
· 1− α2l

1− α2
+ 2Lηt

pmax

pmin
G2

=
2D

ηtWpmin

[
2(1− αl)

1− α
+ (1 + αl−1) +

(1− αl−1)(1 + α)

1− α

]
+ 2Lηt

pmax

pmin
· σ

2

W 2
· 1− α2l

1− α2
+ 2Lηt

pmax

pmin
G2 (20)

where 1) note that when ηt ≤ 1
2L , ηt − Lη2t ≤ 1

2ηt,

Follow the proof of (Aydore et al., 2019, Theorem 3.4), as α→ 1−

lim
α→1−

E
∥∥∇St,l,α(w

t
0,w

t)
∥∥2

≤ 8D

ηtWpmin
+ 2Lηt

pmax

pmin
· σ

2

W 2
· 1− α2l

1− α2
+ 2Lηt

pmax

pmin
G2

≤ 1

Wpmin

(
8D

ηt
+ 2Lηtpmaxσ

2

)
+ 2Lηt

pmax

pmin
G2 (21)

Summing from t = 0, 1, ...T concludes the proof.

DLRl(T) =

t∑
t=0

lim
α→1−

E
∥∥∇St,l,α(w

t
0,w

t)
∥∥2

≤ T

Wpmin

(
8D

ηt
+ 2Lηtpmaxσ

2

)
+ 2TLηt

pmax

pmin
G2 (22)

□

Proof of Corollary 1:

Select l = T
1
2 and ηt = T− 1

4 , note that limα→1− W = limα→1−
1−αl

1−α = l.
t∑

t=0

lim
α→1−

E
∥∥∇St,l,α(w

t
0,w

t)
∥∥2

1)

≤ T

lpmin

(
8D

ηt
+ 2Lηtpmaxσ

2

)
+ 2TLηt

pmax

pmin
G2

2)

≤ T√
Tpmin

(
8DT

1
4 + 2LT− 1

4 pmaxσ
2
)
+ 2T

3
4Lηt

pmax

pmin
G2

=
8D

pmin
T

3
4 +

2Lpmaxσ
2

pmin
T

1
4 +

2LηtpmaxG
2

pmin
T

3
4

=O(T 3
4) (23)

■

19

Published as a conference paper at ICLR 2025

B REGRET ANALYSIS FOR OGD-EVENT IN CONVEX CASE

In the convex case, OGD is already an efficient algorithm to solve the online learning problem with
partial client activation.

We start by defining Regret in the VFL framework below.
Definition 3. Regret for online convex optimization in VFL framework

RT =

T∑
t=1

f(wt
0,w

t
0)−

T∑
t=1

f(w∗
0 ,w

∗) (24)

where [w0∗,w∗] = argmin
[w∗

0 ,w
∗]

∑T
t=1 f(w

∗
0 ,w

∗)

Following the online convex optimization (Hazan et al., 2016), we design the event-driven online
VFL with online gradient descent (OGD-Event in Section 5.1). The algorithm is provided in the
algorithm 2 below.

Algorithm 2 Event-driven online VFL with online gradient descent (OGD-Event)

Input:
Output: model parameter wm for all workers m ∈ {0, 1, ...M}.

0: Initialize wm for all participants m ∈ {0, 1, ...M}
1: for t ∈ [T] do
2: for m ∈ At do
3: client m send hm(wm;xm) to the server.
4: end for
5: for m ∈ Āt do
6: Server queries the embeddings from passive client m.
7: Client m send hm(wm;xm) to the server.
8: end for
9: The server updates its model w0 ← w0 − η0 · ∂f(w0,w)

∂w0

10: for m ∈ At do
11: Server send vm =

∂f(w0,w)
∂hm

to the client m.
12: Client m update parameter wm ← wm − ηmvm · ∂hm

∂wm

13: end for
14: end for

We use a different set of assumptions on convexity, the diameter of the space, and the client’s delay
to make it fit the regret analysis framework for online convex optimization with Algorithm 2.
Assumption 6. Convexity: for any [w0,w] and [w′

0,w
′], w0, w

′
0 ∈ Rd0 , wm, w′

m ∈ Rdm ,
f t(w0,w) satisfy

f t(w′
0,w

′) ≥ f t(w0,w) +
〈
∇f t(w0,w), [w′

0,w
′]− [w0,w]

〉
(25)

Assumption 7. Bounded space diameter: For any [w0,w] and [w′
0,w

′], satisfy

∥[w0,w]− [w′
0,w

′]∥ ≤ D (26)

Assumption 8. Independent client activation: The activated client mt for the global iteration t is
independent of m0, · · · , mt−1 and satisfies P(mt = m) := pm.
Assumption 9. Uniformly bounded delay: For each client m, the delay at each global iteration t
is bounded by a constant τ . i.e. τ tm ≤ τ .
Theorem 2. Under Assumptions 6 ∼ 9, to solve the online VFL problem with partial client partici-
pation using Algorithm 2, the following inequality holds.

RT ≤
3G2D + 4D3 + 2L2τ2G2D

2Gmin {pm}
·
√
T (27)

where the learning rate is chosen as ηt = D
G

√
t
.

20

Published as a conference paper at ICLR 2025

Remark 3. The regret is sublinear O(
√
T).

Proof of Theorem 2:

First, we bound the update of the participants. For notation brevity, we use ∇w0f(w0,w) and
∇wmf(w0,w) are the partial derivative w.r.t. the corresponding parameter in the space of the pa-
rameter of the global model, where the position of all other parameters are filled with 0.

∥∥[wt+1
0 ,wt+1]− [w∗

0 ,w
∗]
∥∥2

1)
=

∥∥∥∥∥[wt
0,w

t]− ηt∇w0f(w
t
0, w̃

t)− ηt
∑

m∈At

∇wmf(wt
0, w̃

t)− [w∗
0 ,w

∗]

∥∥∥∥∥
2

2)
=
∥∥[wt

0,w
t]− [w∗

0 ,w
∗]
∥∥2 + η2t

∥∥∥∥∥∇w0
f(w0, w̃) +

∑
m∈At

∇wm
f(wt

0, w̃
t)

∥∥∥∥∥
2

− 2ηt

〈
∇w0f(w

t
0, w̃

t) +
∑

m∈At

∇wmf(wt
0, w̃

t), [wt
0,w

t]− [w∗
0 ,w

∗]

〉
3)

≤
∥∥[wt

0,w
t]− [w∗

0 ,w
∗]
∥∥2 + η2tG

2

− 2ηt

〈
∇w0f(w

t
0, w̃

t) +
∑

m∈At

∇wmf(wt
0, w̃

t), [wt
0,w

t]− [w∗
0 ,w

∗]

〉
=
∥∥[wt

0,w
t]− [w∗

0 ,w
∗]
∥∥2 + η2tG

2

− 2ηt
〈
∇w0f(w

t
0, w̃

t), [wt
0,w

t]− [w∗
0 ,w

∗]
〉

− 2ηt

〈 ∑
m∈At

∇wm
f(wt

0, w̃
t), [wt

0,w
t]− [w∗

0 ,w
∗]

〉
=
∥∥[wt

0,w
t]− [w∗

0 ,w
∗]
∥∥2 + η2tG

2

− 2ηt
〈
∇w0

f(wt
0, w̃

t)−∇w0
f(wt

0,w
t) +∇w0

f(wt
0,w

t), [wt
0,w

t]− [w∗
0 ,w

∗]
〉

− 2ηt

〈 ∑
m∈At

∇wm
f(wt

0, w̃
t)−

∑
m∈At

∇wm
f(wt

0,w
t) +

∑
m∈At

∇wm
f(wt

0,w
t), [wt

0,w
t]− [w∗

0 ,w
∗]

〉
=
∥∥[wt

0,w
t]− [w∗

0 ,w
∗]
∥∥2 + η2tG

2

+ 2
〈
∇w0

f(wt
0,w

t)−∇w0
f(wt

0, w̃
t), ηt

(
[wt

0,w
t]− [w∗

0 ,w
∗]
)〉
− 2ηt

〈
∇w0

f(wt
0,w

t), [wt
0,w

t]− [w∗
0 ,w

∗]
〉

+ 2

〈 ∑
m∈At

∇wm
f(wt

0,w
t)−

∑
m∈At

∇wm
f(wt

0, w̃
t), ηt

(
[wt

0,w
t]− [w∗

0 ,w
∗]
)〉

− 2ηt

〈 ∑
m∈At

∇wmf(wt
0,w

t), [wt
0,w

t]− [w∗
0 ,w

∗]

〉
4)

≤
∥∥[wt

0,w
t]− [w∗

0 ,w
∗]
∥∥2 + η2tG

2

+
∥∥∇w0f(w

t
0,w

t)−∇w0f(w
t
0, w̃

t)
∥∥2 + η2t

∥∥([wt
0,w

t]− [w∗
0 ,w

∗]
)∥∥2

− 2ηt
〈
∇w0

f(wt
0,w

t), [wt
0,w

t]− [w∗
0 ,w

∗]
〉

+

∥∥∥∥∥ ∑
m∈At

∇wm
f(wt

0,w
t)−

∑
m∈At

∇wm
f(wt

0, w̃
t)

∥∥∥∥∥
2

+ η2t
∥∥([wt

0,w
t]− [w∗

0 ,w
∗]
)∥∥2

− 2ηt

〈 ∑
m∈At

∇wm
f(wt

0,w
t), [wt

0,w
t]− [w∗

0 ,w
∗]

〉

21

Published as a conference paper at ICLR 2025

5)
=
∥∥[wt

0,w
t]− [w∗

0 ,w
∗]
∥∥2 + η2tG

2

+

∥∥∥∥∥∇w0
f(wt

0,w
t) +

∑
m∈At

∇wm
f(wt

0,w
t)−∇w0

f(wt
0, w̃

t)−
∑

m∈At

∇wm
f(wt

0, w̃
t)

∥∥∥∥∥
2

+ η2t
∥∥([wt

0,w
t]− [w∗

0 ,w
∗]
)∥∥2 − 2ηt

〈
∇w0f(w

t
0,w

t), [wt
0,w

t]− [w∗
0 ,w

∗]
〉

+ η2t
∥∥([wt

0,w
t]− [w∗

0 ,w
∗]
)∥∥2 − 2ηt

〈 ∑
m∈At

∇wmf(wt
0,w

t), [wt
0,w

t]− [w∗
0 ,w

∗]

〉
6)

≤
∥∥[wt

0,w
t]− [w∗

0 ,w
∗]
∥∥2 + η2tG

2

+ L2
∥∥wt − w̃t

∥∥2
+ 2η2t

∥∥([wt
0,w

t]− [w∗
0 ,w

∗]
)∥∥2

− 2ηt
〈
∇w0f(w

t
0,w

t), [wt
0,w

t]− [w∗
0 ,w

∗]
〉
− 2ηt

〈 ∑
m∈At

∇wmf(wt
0,w

t), [wt
0,w

t]− [w∗
0 ,w

∗]

〉
7)

≤
∥∥[wt

0,w
t]− [w∗

0 ,w
∗]
∥∥2 + η2tG

2 + L2τ2G2 max
i∈[τ]

{
η2t−i

}
+ 2η2t

∥∥([wt
0,w

t]− [w∗
0 ,w

∗]
)∥∥2

− 2ηt
〈
∇w0

f(wt
0,w

t), [wt
0,w

t]− [w∗
0 ,w

∗]
〉
− 2ηt

〈 ∑
m∈At

∇wm
f(wt

0,w
t), [wt

0,w
t]− [w∗

0 ,w
∗]

〉
8)

≤
∥∥[wt

0,w
t]− [w∗

0 ,w
∗]
∥∥2 + η2tG

2 + L2τ2G2 max
i∈[τ]

{
η2t−i

}
+ 2η2tD

2

− 2ηt
〈
∇w0

f(wt
0,w

t), [wt
0,w

t]− [w∗
0 ,w

∗]
〉
− 2ηt

〈 ∑
m∈At

∇wm
f(wt

0,w
t), [wt

0,w
t]− [w∗

0 ,w
∗]

〉
(28)

where 1) is the partial activation of clients and server optimization step at time step t, 2) note that
{∇wmf(wt

0, w̃
t)}m∈{0}∪At

are in the non-intersect dimensions, 3) applies assumption 4 (bounded

gradient), 4) applies ⟨a, b⟩ ≤ 1
2 ∥a∥

2
+ 1

2 ∥b∥
2, 5) {∇wm

f(wt
0, w̃

t)}m∈{0}∪At
are in the non-

intersect dimensions, 6) applies assumption assumption 1 (Lipschitz Gradient). 7) applies Eq. 29
below, 8) applies assumption 7 (bounded parameter diameter).

∥∥wt − w̃t
∥∥2

1)

≤

∥∥∥∥∥
τ∑

i=1

(
wt+1−i −wt−i

)∥∥∥∥∥
2

2)

≤τ
τ∑

i=1

∥∥wt+1−i −wt−i
∥∥2

=τ

τ∑
i=1

∥∥∥∥∥∥−ηt−i

∑
m∈At−i

∇wm
f(wt−i

0 ,wt−i)

∥∥∥∥∥∥
2

=τ

τ∑
i=1

η2t−i

∥∥∥∥∥∥
∑

m∈At−i

∇wmf(wt−i
0 ,wt−i)

∥∥∥∥∥∥
2

3)

≤τG2
τ∑

i=1

η2t−i

22

Published as a conference paper at ICLR 2025

≤τ2G2 max
i∈[τ]

{
η2t−i

}
(29)

where 1) applies assumption 9 (uniformly bounded delay), 2) by Cauchy-Schwarz inequality,(∑n−1
i=0 xi

)2
=
(∑n−1

i=0 1 · xi

)2
≤ n

∑n−1
i=0 x2

i , 3) applies assumption 4 (bounded gradient), noting
that the gradients are in non-intersect dimensions.

Rearrange Eq. 28:

2ηt
〈
∇w0f(w

t
0,w

t), [wt
0,w

t]− [w∗
0 ,w

∗]
〉
+ 2ηt

〈 ∑
m∈At

∇wmf(wt
0,w

t), [wt
0,w

t]− [w∗
0 ,w

∗]

〉
≤
∥∥[wt

0,w
t]− [w∗

0 ,w
∗]
∥∥2 − ∥∥[wt+1

0 ,wt+1]− [w∗
0 ,w

∗]
∥∥2 + η2tG

2 + L2τ2G2 max
i∈[τ]

{
η2t−i

}
+ 2η2tD

2

(30)

Taking expectation w.r.t. the activation client sets At from both sides.

2ηt
〈
∇w0

f(wt
0,w

t), [wt
0,w

t]− [w∗
0 ,w

∗]
〉
+ 2ηt

〈
M∑

m=1

pm∇wm
f(wt

0,w
t), [wt

0,w
t]− [w∗

0 ,w
∗]

〉
≤E

∥∥[wt
0,w

t]− [w∗
0 ,w

∗]
∥∥2 − E

∥∥[wt+1
0 ,wt+1]− [w∗

0 ,w
∗]
∥∥2 + η2tG

2 + L2τ2G2 max
i∈[τ]

{
η2t−i

}
+ 2η2tD

2

(31)

Taking the minimum of pm:

2ηt min {pm}
〈
∇w0

f(wt
0,w

t), [wt
0,w

t]− [w∗
0 ,w

∗]
〉
+ 2ηt min {pm}

〈
M∑

m=1

∇wm
f(wt

0,w
t), [wt

0,w
t]− [w∗

0 ,w
∗]

〉
≤E

∥∥[wt
0,w

t]− [w∗
0 ,w

∗]
∥∥2 − E

∥∥[wt+1
0 ,wt+1]− [w∗

0 ,w
∗]
∥∥2 + η2tG

2 + L2τ2G2 max
i∈[τ]

{
η2t−i

}
+ 2η2tD

2

(32)

Combining the gradient from different dimensions, and rearranging the equation:〈
∇[w0,w]f(w

t
0,w

t), [wt
0,w

t]− [w∗
0 ,w

∗]
〉

≤ 1

2ηt min {pm}

(
E
∥∥[wt

0,w
t]− [w∗

0 ,w
∗]
∥∥2 − E

∥∥[wt+1
0 ,wt+1]− [w∗

0 ,w
∗]
∥∥2)

+
1

2ηt min {pm}

(
η2tG

2 + L2τ2G2 max
i∈[τ]

{
η2t−i

}
+ 2η2tD

2

)
1)

≤ 1

2min {pm}

(
Q

ηt
+ ηtG

2 +
L2τ2G2 maxi∈[τ]

{
η2t−i

}
ηt

+ 2ηtD
2

)
(33)

where 1) denote Q = E ∥[wt
0,w

t]− [w∗
0 ,w

∗]∥2 − E
∥∥[wt+1

0 ,wt+1]− [w∗
0 ,w

∗]
∥∥2 for brevity.

By convexity (assumption 6):

f t(wt
0,w

t)− f t(w∗
0 ,w

∗) ≤
〈
∇[w0,w]f

t, [wt
0,w

t]− [w∗
0 ,w

∗]
〉

(34)

Summing over t = 1...T , and if we set a diminish learning rate ηt =
D

G
√
t

with (1
η0

≜ 0):

T∑
t=1

(
f t(wt

0,w
t)− f t(w∗

0 ,w
∗)
)

≤
T∑

t=1

(〈
∇[w0,w]f

t, [wt
0,w

t]− [w∗
0 ,w

∗]
〉)

23

Published as a conference paper at ICLR 2025

1)

≤ 1

2min {pm}

T∑
t=1

(
Q

ηt
+ ηtG

2 +
L2τ2G2 maxi∈[τ]

{
η2t−i

}
ηt

+ 2ηtD
2

)
2)
=

1

2min {pm}

{
T∑

t=1

E ∥[wt
0,w

t]− [w∗
0 ,w

∗]∥2 − E
∥∥[wt+1

0 ,wt+1]− [w∗
0 ,w

∗]
∥∥2

ηt
+

T∑
t=1

[
ηt(G

2 + 2D2 + L2τ2G2)
]}

3)

≤ 1

2min {pm}

{
T∑

t=1

E
∥∥[wt

0,w
t]− [w∗

0 ,w
∗]
∥∥2(1

ηt
− 1

ηt+1

)
+

T∑
t=1

[
ηt(G

2 + 2D2 + L2τ2G2)
]}

4)

≤ 1

2min {pm}

{
T∑

t=1

D2

(
1

ηt
− 1

ηt+1

)
+

T∑
t=1

[
ηt(G

2 + 2D2 + L2τ2G2)
]}

=
1

2min {pm}

[
D2 1

ηT
+ (G2 + 2D2 + L2τ2G2)

T∑
t=1

ηt

]
5)

≤ 1

2min {pm}

[
GD
√
T + (GD +

2D3

G
+ L2τ2GD) · 2

√
T

]
≤3G2D + 4D3 + 2L2τ2G2D

2Gmin {pm}
√
T (35)

where 1) applies Eq. 33,
2) ηt is diminish. Expand Q,
3) 1

η0
≜ 0, and

∥∥[wT+1
0 ,wT+1]− [w∗

0 ,w
∗]
∥∥2 ≥ 0,

4) applies assumption 7 (bounded parameter diameter).
5)
∑T

t=1
1√
t
≤ 2
√
T .

The proof of Theorem 2 is complete. ■

C EXTRA DETAILS

C.1 ALGORITHM 1 IN A SYNCHRONOUS MANNER

We also provide a synchronous version of the algorithm 1 below.

Algorithm 3 Event-driven online VFL on Dynamic Local Regret

Input: hyperparameter l, α, η
Output: server model w0, client models wm ∈ [M]

0: initialize model wm for all participants m ∈ {0, 1, ...M}
1: for t ∈ [T] do
2: for m ∈ At do
3: activated client m send hm(wt

m;xt
m) to the server.

4: end for
5: for m ∈ Āt do
6: server queries the passive client m.
7: passive client m send hm(wt

m;xt
m) to the server.

8: end for
9: server updates its model wt+1

0 ← wt
0 − η0 · ∇w0St,l,α(w

t
0,w

t)
10: for m ∈ At do
11: server send vm =

∂St,l,α(wt
0,w

t)
∂hm(wt

m;xt
m) to the client m.

12: client m update parameter wt+1
m ← wt

m − ηm · vm · ∂hm

∂wm

13: end for
14: end for

24

Published as a conference paper at ICLR 2025

C.2 ALGORITHM: OGD-FULL

Below we introduce the algorithm for the OGD-Full baseline in Algorithm 4 adapted from Wang &
Xu (2023), and transformed into a partial gradient-based approach similar to the split neural network
method proposed by Vepakomma et al. (2018). It is important to highlight that the utilization of
multiple local updates in Wang & Xu (2023) is not applicable within the context of our study on
the general VFL framework because the multiple local update approach requires that clients possess
labeled data, which does not align with the setting in our paper.

Algorithm 4 Online VFL with Online Gradient Descent (OGD-Full)

Input: Learning rate η
Output: Model parameter wm for all workers m ∈ {0, 1, ...M}.

0: Initialize wm for all participants m ∈ {0, 1, ...M}
1: for t ∈ [T] do
2: for m ∈ [M] do
3: Client m send hm(wm;xm) to the server.
4: end for
5: The server updates its model w0 ← w0 − η0 · ∂f(w0,w)

∂w0

6: for m ∈ [M] do
7: Server send vm =

∂f(w0,w)
∂hm

to the client m.
8: Client m update parameter wm ← wm − ηmvm · ∂hm

∂wm

9: end for
10: end for

C.3 ALGORITHM: EVENT-DRIVEN ONLINE VFL USING STATIC LOCAL REGRET

We also provide a Static Time-Smoothed Stochastic Gradient Descent algorithm (Aydore et al.,
2019; Hazan et al., 2017) which is adapted to Event-Driven Online VFL. Note that the static slide
window is Ft,l(w

t
0,w

t) = 1
l

∑l
i=0 f

t−i(wt
0,w

t), where the time step for the parameter is t.

Algorithm 5 Event-driven online VFL on Static Local Regret

Input: Hyperparameter l, α, η, fixed model w∗

Output: Server model w0, client models wm ∈ [M]
0: Initialize model wm for all participants m ∈ {0, 1, . . . ,M}
1: for t ∈ [T] do
2: for m ∈ At do
3: Activated client m sends a window of embeddings

{
hm(wt

m;xt−i
m)

}l−1

i=0
to the server.

4: end for
5: for m ∈ Āt do
6: Server queries the passive client m, for the window of embeddings of length l

7: Passive clients m sends the window of embeddings
{
hm(wt

m;xt−i
m)

}l−1

i=0
to the server.

8: end for
9: Server updates its model wt+1

0 ← wt
0 − η0 · ∇w0

Ft,l(w
t
0,w

t)

10: # ∇w0Ft,l(w
t
0,w

t) = 1
l

∑l
i=0∇w0f

t−i(wt
0,w

t)
11: for m ∈ At do
12: Server sends a window of gradient

{
∇hmf t−i(wt

0,w
t)
}l−1

i=0
to client m.

13: Client m updates parameter wt+1
m ← wt

m − ηm · ∇wmFt,l(w
t
0,w

t)

14: # ∇wm
Ft,l(w

t
0,w

t) = 1
l

∑l
i=0∇wm

f t−i(wt
0,w

t) =
1
l

∑l
i=0∇hm

f t−i(wt
0,w

t) · ∇wm
hm(wt

m;xt−i
m)

15: end for
16: end for

25

Published as a conference paper at ICLR 2025

D SUPPLEMENT EXPERIMENTS

D.1 ABLATION STUDY OF DLR PARAMETERS

In order to achieve a thorough comprehension of applying DLR in the VFL framework, we conduct
an ablation study on several key parameters, including the sliding window length l, and attenuation
coefficient α.

Sliding window length l The sliding window length l determines the length of the exponential
average window of the DLR. A larger window implies that a greater number of past gradients
influence the update at the current time. In the DLR-Full framework, employed under the con-
cept drift data stream and with an attenuation coefficient of α = 0.95, we vary the window length
l = 10, 50, 100, 150, and conduct the training. It’s worth noting that 0.9510 ≈ 0.60, 0.9550 ≈ 0.08,
and 0.95100 ≈ 0.006 represent three different shapes of the exponential sliding average window.

Figure 5 presents the run-time error rate of different window lengths in the DLR-Full framework.
As observed in the figure, the DLR is stable across different window lengths, which is consistent
with the result reported by Aydore et al. (2019).

Figure 5: Ablation study on window length l

Attenuation coefficient α The attenuation coefficient of dynamic local regret influences the
weighting of past gradients: a larger α indicates that the influence of past gradients decreases more
slowly, while a smaller α leads to a quicker attenuation of the effect of old parameters. For our
experiment, we utilize a sliding window length of 100 and vary α across 0.99, 0.95, and 0.9 in the
DLR-Full framework. Notably, 0.99100 ≈ 0.37, 0.9590 ≈ 0.01, and 0.944 ≈ 0.01 represent three
distinct shapes of the exponential averaging window. Figure 6 illustrates the run-time error rate for
different values of α. We observed that better results were obtained for α = 0.95 and 0.9. Therefore,
we recommend using exponential average windows where the tail approximates 0.

D.2 EXPERIMENT ON OTHER ONLINE LEARNING DATASET

SUSY dataset SUSY (Whiteson, 2014b) is a physics dataset from the UCI repository. It is a clas-
sification problem to distinguish between a signal process that produces supersymmetric particles
and a background process that does not. Eighteen features are used for each sample to determine
whether it belongs to the signal or background class. The first 8 features are kinematic properties
measured by the particle detectors in the accelerator. The last ten features are functions of the first
8 features; these are high-level features derived by physicists to help discriminate between the two
classes. The preprocess method follows the In the experiment, two clients are employed, and each
holds half of the feature set. Each client models are composed of four fully-connected layers with
the following neuron configurations: 32, 64, 98, and an output layer containing 128 neurons. After
each hidden layer, a Rectified Linear Unit (ReLU) activation function is applied to introduce non-
linearity. On the server side, a five-layer MLP is employed. This model integrates the concatenated
outputs from the client models and processes them through successive fully-connected layers with

26

Published as a conference paper at ICLR 2025

Figure 6: Attenuation coefficient α

neuron counts of 256, 128, 64, and 32, ending with an output layer with 2 neurons. We tested var-
ious learning rates within the range of [0.01, 0.003, 0.001] to identify the optimal setting for our
models under different experimental conditions. The exponential weighted sliding window’s length
of the DLR is tuned from {10, 50}, and the attenuation coefficient α from {0.95, 0.99}. The acti-
vation probability p for the “Random” activation is selected from {0.25, 0.5, 0.75}. The activation
threshold Γ is tuned from {−1,−0.5, 0, 0.5}. The results for both the stationary and non-stationary
data streams are depicted in Figures 7 and 8, respectively. These figures demonstrate that the DLR
model achieves stable convergence in both Full and Partial activation modes, consistently outper-
forming OGD across varying data conditions. Additionally, DLR is learning faster than SLR in both
scenarios.

Figure 7: SUSY dataset, stationary case

Figure 8: SUSY dataset, non-stationary case

HIGGS dataset HIGGS (Whiteson, 2014a) is also a physics dataset from UCI repository. It is
a classification challenge aimed at distinguishing between a signal process that produces Higgs
bosons and a background process that does not. Each sample comprises 28 features: 21 low-level
features representing kinematic properties measured by particle detectors in the accelerator and 7

27

Published as a conference paper at ICLR 2025

high-level features derived from the first 21. The model architecture employed in this experiment is
identical to that used in the SUSY study, with the sole difference being the number of input features.
The hyperparameter tuning procedure also remains consistent with the previous experiment. The
results for both stationary and non-stationary conditions are depicted in Figure 9 and Figure 10,
respectively. These results illustrate that the DLR model achieves comparable performance under
stationary conditions and exhibits enhanced stability under non-stationary conditions. Furthermore,
DLR demonstrates faster learning compared to SLR, with less initial stagnation at the early phases
of training.

Figure 9: HIGGS dataset, stationary case

Figure 10: HIGGS dataset, non-stationary case

D.3 ADDITIONAL EXPERIMENT ON EVENT-DRIVEN ONLINE VFL

Scalability of the framework (number of total clients): To evaluate scalability, we increase the
total number of clients in the experiment described in Section 5.2 on the stationary iMNIST dataset
to 8 and 16 clients. Most settings remain consistent with those described in Section 5.1, with the
number of clients increased to 8 and 16. Features are evenly distributed among the clients, and
the input size of each client’s model is adjusted accordingly. While the output size of the clients
remains unchanged, the input size of the server model is scaled up to accommodate the increased
number of clients. The results for 8 clients are presented in Figure 11, while the results for 16
clients are presented in Figure 12. Those figures demonstrate that when scale up the number of
clients, the conclusion remain consistent: OGD is less stable under partial client activation, while
DLR converges more rapidly than SLR. This consistency supports the robustness and scalability of
our proposed framework.

28

Published as a conference paper at ICLR 2025

Figure 11: Run-time error rates on the iMNIST with 16 clients under stationary data stream

Figure 12: Run-time error rates on the iMNIST with 16 clients under stationary data stream

Number of activated clients: To further examine the impact of partial client activation, we con-
ducted experiments in which a fixed number of clients were randomly selected to participate in each
round. The experimental setup remains consistent with the configuration described in Section 5.1.
The experiment involves 4 clients, with the activated clients randomly selected in each round. The
number of activated clients varies from 1 to 4. The results are presented in Figure 13. The results
suggest that increasing the number of activated clients enhances the stability of learning and reduces
the variability in error rate over time. However, even with a single activated client, the model even-
tually achieves comparable performance, demonstrating robustness under limited client activation.

Figure 13: Number of activated client.

Client activation statistic: To further analyze and validate the partial client activation mechanism,
we conducted additional experiments to monitor and record the activation frequency of each client
throughout the training process. Table 5 presents the activation frequencies for each client under
various event-driven framework settings described in Section 5.4, considering different activation
probabilities p and activation thresholds Γ. Note that the activation frequency for each client is
defined as the ratio of the number of iterations in which the client was activated to the total number

29

Published as a conference paper at ICLR 2025

of iterations. Additionally, we present results for extreme Γ values, including Γ = +∞ (where no
clients are activated) and Γ = −∞ (where all clients are always activated). This table also provides
insight into the selection of Γ values in Section 5.4, ensuring that the chosen Γ values cover a wide
range of activation frequencies for the clients.

Table 5: Frequency of activation for each client under different settings

Setting Client 1 Client 2 Client 3 Client 4
Random
p = 0.25 0.249747 0.250473 0.250277 0.250142
p = 0.5 0.499507 0.499811 0.500266 0.500179
p = 0.75 0.749623 0.750214 0.750155 0.750257
p = 1.0 1.0 1.0 1.0 1.0

Event
Γ = +∞ (+100) 0 0 0 0
Γ = 0.6 0.000006 0.066729 0.101827 0.000204
Γ = 0.2 0.006346 0.461186 0.456317 0.038649
Γ = −0.2 0.355166 0.982896 0.985216 0.596582
Γ = −∞ (−100) 1.0 1.0 1.0 1.0

E RELATED WORKS

E.1 VERTICAL FEDERATED LEARNING

Federated learning is a decentralized machine learning approach where models are trained collabo-
ratively across multiple participants. In terms of how the data is distributed among the participants of
federated learning, federated learning can be roughly categorized into Horizontal Federated Learn-
ing (HFL) and Vertical Federated Learning (VFL). HFL is centered on collaborative model training
among the devices possessing the same feature set but with non-overlapping samples (McMahan
et al., 2017; Karimireddy et al., 2020; Li et al., 2020; 2021; Marfoq et al., 2022; Mishchenko et al.,
2019). In contrast, VFL involves collaboration among participants with non-overlapping feature sets
but on the same sample (Vepakomma et al., 2018; Yang et al., 2019; Liu et al., 2019; Chen et al.,
2020; Gu et al., 2020; Zhang et al., 2021c;b;a; Wang et al., 2023; Zhang et al., 2024; Qi et al., 2022).

Research on VFL is facing a wide variety of challenges. The primary concern in VFL lies in privacy
and security. To protect the privacy, VFL frameworks commonly employ privacy protection meth-
ods such as differential privacy (DP) (Ranbaduge & Ding, 2022; Wei et al., 2020; Zhou et al., 2020;
Huang et al., 2015; Zhou et al., 2020; Huang et al., 2015), homomorphic encryption (HE) (Hardy
et al., 2017; Liu et al., 2020), secure multiparty computation (SMC)(Fang et al., 2021; Mugunthan
et al., 2019; Gu et al., 2020). The second challenge encountered in VFL pertains to communication
costs. This is due to the transmission of large intermediate model information through the network
during VFL training. To enhance communication efficiency in federated learning, the most common
method is to compress the communication of the VFL (Castiglia et al., 2022; Wang et al., 2022;
2023). Besides, another common strategy involves using multiple local updates on each participant
to reduce the number of communication rounds (Liu et al., 2019; Fu et al., 2022). However, these
methods often assume the client possesses additional information, such as data labels, which may
not align with the general VFL framework. The third challenge of VFL involves adapting to a new
data distribution efficiently. The distribution of data may change throughout the life cycle of VFL.
Offline learning settings require retraining the VFL model when encountering concept drift, which
is neither computationally efficient nor communication efficient within the VFL framework. There-
fore, applying online learning to the VFL framework is essential (Wang & Xu, 2023). Moreover,
online VFL also alleviates storage costs, particularly when clients have limited storage space. In the
offline learning paradigm, both the client and the server possess large datasets. Certain types of VFL
based on the offline learning paradigm are required to store the intermediate results corresponding
to each sample which takes a large storage cost (Chen et al., 2020; Wang et al., 2023; Zhang et al.,
2021a). In contrast, online learning obviates the need to store large datasets. Participants receive

30

Published as a conference paper at ICLR 2025

one sample from the environment at a time, making it suitable for VFL scenarios with low-capacity
participants, such as sensor networks (Wang & Xu, 2023; Liu et al., 2022).

E.2 ONLINE LEARNING

Online learning is a paradigm wherein models are continually updated as fresh data becomes ac-
cessible, as opposed to being trained on a static dataset in a batch mode. In the well-established
online convex optimization, the primary objective is to minimize regret (Hoi et al., 2018; Hazan
et al., 2016), which is the difference between the cumulative loss of the player and the optimal
solution. The most straightforward approach to online convex optimization involves directly opti-
mizing regret, known as follow the leader (FTL) (Hazan et al., 2016). However, FTL can be unstable
which motivates the need to stabilize the training through regularization. Therefore the idea of fol-
low the regularized leader (FTRL) (Shalev-Shwartz & Singer, 2007; Abernethy et al., 2009; Hazan
& Kale, 2010; McMahan et al., 2013) was proposed to address this problem. In FTL and FTRL,
the learner is required to store all previously seen samples, which is inefficient in terms of memory
and computation. Another prevalent algorithm for online convex optimization is online gradient
descent (OGD) (Zinkevich, 2003). This iterative optimization algorithm updates the model using
the gradient on the incoming data point. In theory, it achieves a sublinear regret of O(

√
T). Hazan

et al. (2007) further introduced the adaptive OGD algorithm, which offers intermediate regret rates
between O(

√
T) and O(log(T)).

While traditional online learning predominantly addresses convex cases with shallow models, recent
research has shifted its focus towards the non-convex case of online learning. Hazan et al. (2017) in-
troduced the concept of local regret as a surrogate for regret analysis in non-convex online learning.
Unlike the regret utilized in online convex optimization, the fundamental idea is to confine the re-
gret within a sliding window, rendering it “local”. Aydore et al. (2019) further explores the concept
of local regret, introducing dynamic local regret to address concept drift in the data stream. This
approach incorporates an exponential average over the sliding window of local regret. Additionally,
they utilize past gradients for the window, enhancing computational efficiency compared to the static
local regret proposed by Hazan et al. (2017). Gao et al. (2018) present an online normalized gradient
descent algorithm for scenarios with gradient information available and a bandit online normalized
gradient descent algorithm when only loss function values are accessible. They demonstrate achiev-
ing a regret bound of O(

√
T + VTT). Sahoo et al. (2018) propose online deep learning to tackle

online learning within the deep learning paradigm. Agarwal et al. (2019) addresses online learning
in a non-convex setting by leveraging an offline optimization oracle. Their study demonstrates that
by enhancing the oracle model, online and statistical learning models achieve computational equiv-
alence. Suggala & Netrapalli (2020) demonstrate achieving an O(

√
T) rate using the Follow the

Perturbed Leader (FTPL) algorithm. Héliou et al. (2020) address online learning with non-convex
losses, introducing a mixed-strategy learning policy based on dual averaging under the assumption
of inexact model feedback for the loss function.

To facilitate a clear comparison, we present Table 6 which summarizes the regret bounds of the most
relevant works, including both standalone online learning algorithms and the online VFL. Specif-
ically, compared to the theoretical results of standalone DLR (Aydore et al., 2019), the additional
constant term (2WG) arises from the missing gradient elements of passive clients due to the dy-
namic partial activation of clients in the event-driven online VFL framework.

Table 6: Comparison of the regret bound

Method Online Convex Learning Online Non-Convex Learning
Standalone
OGD (Hazan et al., 2016) O(

√
T) -

SLR (Hazan et al., 2017) - SLRw(T) ≤ T
w (8βM + σ2)

DLR (Aydore et al., 2019) - DLRw(T) ≤ T
W (8βM + σ2)

Online VFL
Online VFL (Wang & Xu, 2023) O(

√
T) -

Event-Driven Online VFL (ours) O(
√
T) DLRw(T) ≤ T

W ·
pmax

pmin
·
(

8βM
pmax

+ 2σ2 + 2WG
)

31

	Introduction
	Related work: online HFL and online VFL
	Method
	Problem definition
	Adapt DLR to online VFL
	Event-driven online VFL framework

	Regret analysis
	Assumption
	 Theorem

	Experiment
	Experiment setup
	Result on stationary data stream
	Result on non-stationary data stream
	Enhancing computation-communication efficiency with partial activation

	Limitations
	Conclusion
	Regret analysis: non-convex case with dynamic local regret
	Regret analysis for OGD-event in convex case
	Extra details
	Algorithm 1 in a synchronous manner
	Algorithm: OGD-Full
	Algorithm: event-driven online VFL using static local regret

	Supplement experiments
	Ablation study of DLR parameters
	Experiment on other online learning dataset
	Additional experiment on event-driven online VFL

	Related works
	Vertical federated learning
	Online learning

