
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2025

SELECTIVE PROMPT ANCHORING FOR CODE GENERA-
TION

Anonymous authors
Paper under double-blind review

ABSTRACT

Recent advances in large language models (LLMs) have transformed software
development by automatically generating code based on users’ requests in natu-
ral language. Despite these advancements, challenges remain in generating fully
correct code and aligning with user intent. Our empirical study reveals LLMs
tend to dilute their self-attentions on the initial prompt as more code tokens are
generated. We hypothesize this self-attention dilution issue is one of the root
causes of inaccuracies in LLM-generated code. To mitigate this issue, we propose
Selective Prompt Anchoring (SPA) to amplify the influence of the selected parts in
the initial prompt, which we refer to as “anchored text”, during code generation.
Specifically, SPA calculates the logit distribution difference with and without the
anchored text. We prove this logit difference approximates the anchored text’s
contextual contribution to the output logits. SPA creates an augmented logit distri-
bution by linearly combining the original logit distribution and the logit difference.
We evaluate SPA with five LLMs on four benchmarks. Our results show that after
tuning on a few dozen tasks, SPA consistently improves Pass@1 on new tasks by up
to 7.6% across all settings. Notably, with selective text anchoring, a small version
of DeepSeek-Coder (6.7B) can achieve better performance than an original much
larger version (33B). Our code is available at https://anonymous.4open.
science/r/Selective-Prompt-Anchoring-74E7.

1 INTRODUCTION

Large language models (LLMs) have emerged as powerful programming assistants. They have
demonstrated unprecedented capabilities in interpreting natural language descriptions and generating
source code. Despite this great progress, LLMs still produce incorrect solutions to some tasks or
generate code that does not fully meet user expectations. The prevalence of such generation errors
undermines their reliability and limits their utility in real-world software development.

To improve the performance of LLMs on coding tasks, many efforts have been made to develop
high-quality training data (Li et al., 2023c; Guo et al., 2024; Wei et al., 2023) and design new domain-
specific training objectives (Niu et al., 2022; Chakraborty et al., 2022). However, these approaches
require tremendous computational resources. Training-free approaches have been explored to address
this challenge by enhancing the prompting method or incorporating external knowledge, such as
retrieval-augmented generation (Du et al., 2024), chain-of-thoughts (Le et al., 2024; Suzgun et al.,
2022), self-planning and debugging (Jiang et al., 2023; Chen et al., 2023), etc. While they have been
proven to be effective in improving performance, there exist limitations such as being sensitive to the
quality of prompt design and retrieved data (Zhao et al., 2021). Compared with existing methods,
this work aims to study and improve LLMs in an orthogonal direction through attention adjustment.

One key component of existing LLMs is the self-attention mechanism in the transformer architec-
ture (Vaswani et al., 2017), which enables models to focus on crucial parts of the given prompt.
Despite the success of the self-attention mechanism, prior works found language models exhibit sim-
ple attention patterns (Raganato & Tiedemann, 2018; Voita et al., 2019). Furthermore, an empirical
study (Kou et al., 2024) found that given a coding task, there often exists a misalignment between
LLM attention and human attention. Compared with human programmers, LLMs often focus on
different parts of a natural language description when generating code. Inspired by this finding, we
hypothesize that a root cause of inaccuracy in LLM-generated code stems from the suboptimal model

1

https://anonymous.4open.science/r/Selective-Prompt-Anchoring-74E7
https://anonymous.4open.science/r/Selective-Prompt-Anchoring-74E7

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2025

attention. To verify our hypothesis, we conduct an empirical study that analyzes the shift in LLMs’
attention distribution during code generation. We observe that LLMs’ attention to the initial prompt
gradually dilutes as generating more code. We call this phenomenon “attention dilution” in code
generation tasks.

In standard decoding algorithms, LLMs calculate a conditional probability for the next token based
on the preceding context. However, the autoregressive nature of LLMs considers both the initial
prompt and possibly wrong self-generated tokens together as the correct context and pays comparable
attention to them. We argue LLMs should pay more attention to the absolutely correct prompt and
less attention to the following self-generated content that could potentially be wrong.

Figure 1: The Workflow of Selective Prompt Anchoring (SPA)

To mitigate this limitation, we propose Selective Prompt Anchoring (SPA), a model-agnostic approach
that optimizes LLMs’ attention by amplifying the contextual influence of selective prompt, towards
each generated token. SPA is inspired by the anchoring effect (Furnham & Boo, 2011) in psychology,
which refers to people being influenced by specific information given before decision-making. In
SPA, we refer to this information as anchored text, a group of selected tokens within the prompt that
should receive higher attention from the model than others.

Figure 1 illustrates the pipeline of SPA. Given the anchored text, SPA creates an original embedding
matrix (1⃝) as well as a masked embedding matrix by replacing the embeddings corresponding
to anchored text with mask embeddings (2⃝). We mathematically show that the anchored text’s
contextual influence can be approximately measured by the difference between the logit distribution
generated from the original prompt and the prompt with the anchored text masked (3⃝). To amplify
the influence of anchored text in the model output, SPA multiplies this logit distribution difference by
a hyperparameter called anchoring strength (4⃝), and then adds it to the original logit distribution
(5⃝). We find while the optimal anchoring strength varies across different models and tasks, it can be
easily tuned through dozens of tasks.

We evaluate SPA on four benchmarks with five LLMs. The result shows SPA can significantly
and consistently boost Pass@1 across all models and benchmarks, highlighting a new direction for
controlling LLMs’ high-level attention and effectively improving performance.

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2025

2 AN EMPIRICAL ANALYSIS OF ATTENTION DILUTION

We first conduct an empirical study to analyze the attention dilution phenomenon in large language
models (LLMs) during code generation. To improve the generalizability of our findings, we exper-
imented with two different methods to compute the attention scores over input tokens. First, we
used a self-attention-based method (Zhang et al., 2022; Galassi et al., 2021) to obtain self-attention
scores from the last layer in LLMs, which has been shown to represent the most accurate attention
distribution (Kou et al., 2024; Wan et al., 2022a). Second, we used a gradient-based method (Selvaraju
et al., 2016; Shrikumar et al., 2017) that treats the entire LLM as a function and measures to what
extent each input token contributes to the output. Based on these two methods, we calculate the
percentage of attention on the initial prompt. Calculation details are provided in Appendix A.1.

Figure 2: Shift of LLMs’ self-attention to the
initial prompt. The attention is calculated from
the last self-attention layer of the LLM.

Figure 3: Shift of LLMs’ gradient-based attention
to the initial prompt. The gradient is calculated
with respect to the output logits.

On HumanEval (et al., 2021c), a widely-used benchmark for code generation, we experimented with
five LLMs: CodeGen-Mono-350M (Nijkamp et al., 2023), CodeLlama-7B (Rozière et al., 2024),
and DeepSeek-Coder-Instruct-1.3B, 6.7B, and 33B (Guo et al., 2024). Figure 2 and Figure 3 show
the evolution of the density of LLMs’ attention on the initial prompt when generating the first 400
tokens. 1 The results demonstrate that as the model generates more tokens, model attention on the
initial prompt gradually becomes smaller, which we refer to as attention dilution. Consequently,
as the generated code sequence becomes longer, the code generation process becomes increasingly
influenced by tokens generated in recent time steps, rather than the prompt from users. This can
be problematic in two ways. First, generation errors in the previous time steps are very likely to
propagate to the following steps as the model pays more attention to the preceding code tokens.
Second, for complex tasks that require the generation of a long code sequence (e.g., multiple if
statements), the model is likely to miss critical descriptions as it pays little attention to the user
prompt deep in the code generation process.

3 APPROACH

3.1 AUTOREGRESSIVE DECODING AND ITS LIMITATIONS

Given an LLM fθ and a prompt x, the model generates tokens t1, t2, . . . , ti−1 in an autoregressive
manner. At step i, the input to fθ is an n×m embedding matrix Ei, defined as:

Ei = embedding(x, t1, t2, . . . , ti−1) = [Ex, e1, e2, . . . , ei−1,PAD]. (1)

where Ex is the submatrix of embeddings for tokens in prompt x, e1, . . . , ei−1 are embeddings of
generated tokens, and PAD is a padding submatrix.

1The average generated token number is 132. The gradual noisy plot results from a lack of lengthy generations.

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2025

The model outputs logits and transforms them into a probability distribution. Then a sampling method
(e.g., greedy sampling) is applied to select the next token ti:

ti = argmax
t

softmax(fθ(Ei)) = argmax
t

Pθ(t|x, t1, . . . , ti−1) (2)

However, autoregressive decoding assumes all prior tokens are correct, giving them equal opportunity
to compete for the model’s attention—even when self-generated tokens may be wrong. As the number
of self-generated tokens increases, the model’s attention to the initial prompt (which describes the task
objective) gradually dilutes. Consequently, the later a token is generated, the higher the probability
that the model attends to incorrect information, increasing the likelihood of generating errors.

3.2 SELECTIVE PROMPT ANCHORING

To mitigate the attention dilution issue, we propose Selective Prompt Anchoring (SPA) to augment
the output logits by amplifying the contextual contribution of the selective tokens within the prompt,
which we refer to as “anchored text”.

SPA introduces the mechanism of adjusting the semantic impact of selected tokens in the input matrix
Ei towards the output logits fθ(Ei). For simplicity, here we make the entire initial prompt x as the
anchored text.

Ei is an n ×m input embedding matrix at step i, and Ex represents a n × k submatrix within Ei

covering the first k columns (corresponding to the prompt x). They are visualized below:

Ei =


e11 · · · e1k
e21 · · · e2k

...
. . .

...
en1 · · · enk︸ ︷︷ ︸

Ex

e1,k+1 · · · e1m
e2,k+1 · · · e2m

...
. . .

...
en,k+1 · · · enm

 . (3)

We construct two n×m matrices, X and Gi, which add up to Ei. Matrix X is created by preserving
the first k columns of Ei corresponding to Ex and setting all other columns to zero (note that Ex and
X remain unchanged during generating new tokens). Matrix Gi is constructed by setting the first k
columns of Ei that correspond to Ex to zero, and retaining all other elements from the remaining
columns. They are visualized as follows:

X =


e11 e12 · · · e1k 0 · · · 0
e21 e22 · · · e2k 0 · · · 0

...
...

. . .
...

...
. . .

...
en1 en2 · · · enk 0 · · · 0

 ,Gi =


0 0 · · · 0 e1,k+1 · · · e1m
0 0 · · · 0 e2,k+1 · · · e2m
...

...
. . .

...
...

. . .
...

0 0 · · · 0 en,k+1 · · · enm

 . (4)

The sum of X and Gi reconstructs the original matrix Ei:

Ei = X+Gi. (5)

Suppose we want to amplify the semantic impact of the submatrix X by a value ω. ω > 1 indicates
semantic amplification, while ω < 1 indicates semantic diminishment.

Here we need to define a semantic adjustment function Φ(X, ω) that scales the influence of X by ω
times. Note that the original embedding matrix Ei corresponds to when ω equals 1:

Ei = Φ(X, 1) +Gi. (6)

To amplify the semantic impact of the anchored prompt x in the final logits, it is essentially calculating
the integral of the partial derivative of fθ with respect to ω from 0 to ω2. Let Fθ,i,x(ω) represent the

2fθ is differentiable for backpropagation

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2025

augmented logits calculated by model fθ at step i, where the impact of anchored text x is scaled by
ω. Formally,

Fθ,i,x(ω) = fθ(Φ(X, ω) +Gi) (7)

= Fθ,i,x(0) +

∫ ω

0

dFθ,i,x(t)

dt
dt, (8)

where t is the variable of integration.

3.3 AUGMENTED LOGITS BY APPROXIMATION

Given the computational complexities of LLMs, directly solving
∫ ω

0
dFθ,i,x(t)

dt dt is impractical.
Therefore, we approximate it by employing the Taylor expansion:

Fθ,i,x(ω) = Fθ,i,x(0) + ω · Fθ,i,x
′(0) +

ω2

2!
Fθ,i,x

′′(0) + . . . (9)

Since LLMs are inherently non-linear, higher-order derivatives of the logits function are non-zero.
We truncate the series after the first derivative to get an approximation, yielding:

Fθ,i,x(ω) ≈ Fθ,i,x(0) + ω · Fθ,i,x
′(0), (10)

where the the integral part
∫ ω

0
dFθ,i,x(t)

dt dt in Equation 8 is approximated by ω · Fθ,i,x
′(0).

To calculate Fθ,i,x(0), we mask tokens in the anchored text x using masked embeddings. Each LLM
provides at least one special token reserved for text masking, which almost has no semantic influence
3, e.g., <unk> for Code Llama (Rozière et al., 2024) and <pad> for DeepSeek-Coder (Guo et al.,
2024). Each special token corresponds to a masked embedding. By replacing embeddings of x with
masked embeddings, we get a masked input matrix Emask

i . It ablates the semantic influence of the
anchored text x while the positional encoding is not affected. Thus, we can get

Fθ,i,x(0) = fθ(Emask
i). (11)

To calculate Fθ,i,x
′(0), we use finite-difference methods to get an approximation. Assuming the

interval of 1− 0 is sufficiently small for Fθ,i,x, we get:

Fθ,i,x
′(0) ≈ Fθ,i,x(1)− Fθ,i,x(0)

1− 0
. (12)

Combining Equations 10, 11 and 12, we get the augmented logits by first-order approximation:

Fθ,i,x(ω) ≈ Fθ,i,x(0) + ω · (Fθ,i,x(1)− Fθ,i,x(0)) (13)
= ω · fθ(Φ(X, 1) +Gi) + (1− ω) · fθ(Φ(X, 0) +Gi) (14)

= ω · fθ(Ei) + (1− ω) · fθ(Emask
i). (15)

Based on the augmented logits Fθ,i,x(ω) where the impact of the anchored text is adjusted by a
given value ω, a certain sampling algorithm is applied to select the particular token. SPA can be used
to augment different existing sampling methods, such as greedy sampling, beam search, nucleus
sampling (Holtzman et al., 2019), and more. We provide more discussion about approximation in
Appendix A.2.

3.4 TUNING ANCHORING STRENGTH

The anchoring strength ω serves as a hyperparameter in SPA. Our experiments demonstrate an
unimodal relationship between ω and the performance. As the anchoring strength ω increases, the
performance first improves, reaching an optimum, and then declines with further increases of ω. It is
simple to tune this single hyperparameter through a few dozen instances. More details are discussed
in Section 5.3.

3Fθ,i,x(0) does not mean setting the embedding vector to zeros. Instead, it means setting ω to zero, which
replaces the original embedding for anchored text with the masked embedding that contains no semantic
information. This masked embedding vector is non-zero.

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2025

3.5 SELECTION OF ANCHORED TEXT

While SPA can easily anchor the entire prompt, the initial prompt can significantly vary due to task
differences. In some scenarios, the prompts can be lengthy and not all information is persistently
important throughout the generation. Our goal is to identify and anchor the most informative tokens,
which LLMs should persistently focus on, while excluding trivial details in the prompt. For code
generation tasks, the prompt commonly comprises four possible components: (1) Natural language
instruction or docstring; (2) Starting code snippet; (3) A list of test cases; (4) Few-shot examples.
Intuitively, natural language instruction provides high-level guidance that LLM should continually
consider. This is confirmed by our experiment in Section 5.4.

4 EXPERIMENTS

Our experiment aims to address four main research questions:

RQ1 Can SPA effectively and consistently mitigate attention dilution and improve performance?
RQ2 Can the anchoring strength tuned on one code generation setting be transferred to another?
RQ3 How does the anchoring strength ω of SPA affect code generation performance?
RQ4 How does the selection of anchored text affect code generation performance?

4.1 COMPARISON BASELINES

SPA requires access to the full logits generated by the large language models (LLMs), so we are
unable to evaluate closed-source models, such as GPT-4o and Claude-3.5-Sonnet. We select five
representative open-source code LLMs: CodeGen-Mono-350M (Nijkamp et al., 2023), CodeLlama-
7B (Rozière et al., 2024), and DeepSeek-Coder-Instruct-1.3B, 6.7B, and 33B (Guo et al., 2024).
These models have been fine-tuned for code generation tasks. Notably, the DeepSeek-Coder-Instruct
models have been fine-tuned by instruction-tuning (Wei et al., 2022), while CodeGen-Mono and
CodeLlama are standard text completion models. This selection aims to cover diverse SOTA code
LLMs of different types and sizes.

4.2 BENCHMARKS

HumanEval (et al., 2021c). It includes 164 Python tasks designed by OpenAI developers. It was
initially designed to evaluate Codex (et al., 2021a) and has since become a common benchmark for
code generation.

MBPP (Austin et al., 2021). It includes 974 crowd-sourced Python tasks. However, due to the crowd
workers’ ambiguous or insufficient task descriptions, the MBPP authors created a sanitized version
containing 427 tasks with clearer descriptions. We evaluate SPA on the sanitized version.

HumanEval+ and MBPP+. Although HumanEval and MBPP are considered de facto standards
for assessing code LLMs, a recent study (Liu et al., 2023a) found they lack sufficient test cases and
precise problem descriptions. This has been demonstrated as an issue that can lead to an unreliable
assessment of LLM-generated code (Liu et al., 2024b). Liu et al. (2023a) subsequently released
HumanEval+ and MBPP+, which supplement HumanEval and MBPP with additional test cases and
better instruction. We also evaluate SPA performance on HumanEval+ and MBPP+.

4.3 EVALUATION METRICS AND EXPERIMENT SETUP

Evaluation Metric. Following prior work (et al., 2021b; Kulal et al., 2019; et al., 2021a), we measure
model performance using the Pass@k metric, which measures whether any of the top k candidates
can pass all the test cases. In our experiments, we calculate Pass@1 and Pass@10. For Pass@1,
LLMs generate a single code snippet using greedy sampling. The task is considered successful only
if this generated code passes all test cases. For Pass@10, LLMs generate top 10 most probable code
snippets using beam search. The task is deemed successful if any of these candidates pass all test
cases.

Model Deployment. We downloaded and deployed LLMs from Huggingface. To expedite evalua-
tions, we apply 8-bit quantization (Frantar et al., 2023; Dettmers et al., 2022) to all models. Prior

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2025

studies (Li et al., 2024; Huang et al., 2024) have demonstrated that this approach has very little
impact on LLM performance. All experiments were conducted on a 64-bit Ubuntu 22.04 LTS system,
equipped with an AMD EPYC 7313 CPU, eight NVIDIA A5500 GPUs, and 512GB of memory. The
experiments ran for approximately seven weeks.

Prompt Design. We use the original task descriptions from the datasets as prompts for the text-
completion models, CodeLlama and CodeGen-Mono. For the three DeepSeek-Coder-Instruct models,
we format the prompts using the official chat template from HuggingFace.

Hyperparameter Tuning. For each model and dataset, we use grid search to tune the anchoring
strength ω on 1/5 tasks in dataset to get SPAtuned. We also get the optimal anchoring strength by
tuning on the entire dataset (SPAoptimal). We evaluate both of them on the remaining 4/5 dataset and
compute Pass@1 via greedy search as well as Pass@10 via beam search (elaborated in Appendix A.6).

5 RESULTS

5.1 MODEL PERFORMANCE IMPROVEMENTS

Table 1: Pass@1 and Pass@10 (%) with and without using SPA

Model Size
HumanEval HumanEval+ MBPP MBPP+

Pass@1 Pass@10 Pass@1 Pass@10 Pass@1 Pass@10 Pass@1 Pass@10

CodeGen-Mono (350M) 15.3 36.6 12.2 33.6 19.6 47.7 15.9 42.4
+ SPAtuned 18.3 (+3.0) 38.2 (+1.6) 16.0 (+3.8) 36.6 (+3.0) 24.9 (+5.3) 52.6 (+4.9) 20.6 (+4.7) 42.1 (-0.3)

+ SPAoptimal 18.3 (+3.0) 38.2 (+1.6) 16.0 (+3.8) 36.6 (+3.0) 24.9 (+5.3) 52.6 (+4.9) 20.6 (+4.7) 42.1 (-0.3)

DeepSeek-Coder (1.3B) 66.4 73.3 61.8 68.7 58.2 67.0 52.4 63.7
+ SPAtuned 69.5 (+3.1) 73.3 (+0.0) 66.4 (+4.6) 69.0 (+0.3) 59.1 (+0.9) 68.4 (+1.4) 52.4 (+0.0) 64.3 (+0.6)

+ SPAoptimal 71.0 (+4.6) 73.3 (+0.0) 66.4 (+4.6) 69.5 (+0.8) 61.7 (+3.5) 69.3 (+2.3) 53.4 (+1.0) 64.3 (+0.6)

DeepSeek-Coder (6.7B) 75.6 84.0 70.2 77.9 67.0 79.8 58.5 70.2
+ SPAtuned 83.2 (+7.6) 85.5 (+1.5) 75.6 (+5.4) 80.9 (+3.0) 69.6 (+2.6) 84.5 (+4.7) 60.2 (+1.7) 72.5 (+2.3)

+ SPAoptimal 84.0 (+8.4) 85.5 (+1.5) 76.3 (+6.1) 81.7 (+3.8) 72.2 (+5.2) 83.6 (+3.8) 61.1 (+2.6) 73.4 (+3.2)

CodeLlama (7B) 33.6 58.0 28.2 48.9 50.9 61.0 40.8 49.0
+ SPAtuned 40.5 (+6.9) 62.6 (+4.6) 33.6 (+5.4) 52.7 (+3.8) 52.9 (+2.0) 63.7 (+2.7) 43.1 (+2.3) 50.9 (+1.9)

+ SPAoptimal 41.2 (+7.6) 64.9 (+6.9) 35.9 (+7.7) 54.2 (+5.3) 52.9 (+2.0) 63.7 (+2.7) 43.1 (+2.3) 51.7 (+2.7)

DeepSeek-Coder (33B) 81.7 88.5 77.1 80.2 73.4 86.8 63.2 75.8
+ SPAtuned 84.7 (+3.0) 89.3 (+0.8) 77.9 (+0.8) 81.7 (+1.5) 77.2 (+3.8) 88.6 (+1.8) 68.5 (+5.3) 74.9 (-0.9)

+ SPAoptimal 85.5 (+3.8) 89.3 (+0.8) 78.6 (+1.5) 80.9 (+0.7) 77.2 (+3.8) 88.0 (+1.2) 68.5 (+5.3) 77.2 (+1.4)

The results in Table 1 show that SPA consistently improves Pass@1 and Pass@10 across all bench-
marks and LLMs (RQ1). The improvement reaches up to 7.6% on HumanEval for DeepSeek-Coder
(6.7B). Remarkably, through selective text anchoring, the smaller version of DeepSeek-Coder (6.7B)
outperforms its much larger counterpart (33B). While Pass@10 improvements are less pronounced
than Pass@1, they still demonstrate consistent enhancements across most settings. One potential rea-
son is that SPA not only increases the accuracy of top logits but also amplifies noises in lower-ranked
logits. We discuss this in detail in Appendix A.6. To better demonstrate how SPA effectively anchors
LLM’s attention on the initial prompt, we include two code generation examples in Appendix A.4.

Note that the performance improvement is achieved only by amplifying the original prompt’s influence
without introducing new knowledge or fine-tuning model parameters. We attribute SPA’s effectiveness
to two reasons. First, when generating a new token, each prior token carries a risk of being incorrectly
attended to by the model. As the model generates more tokens that compete for attention, the
likelihood of attending to irrelevant tokens increases, thereby leading to errors. In contrast, the
original prompt represents the high-level user intent that is persistently relevant to generated tokens.
Anchoring the model’s attention on the original prompt via SPA essentially enlarges the reliable
portion of the model’s attention, thereby generating more accurate next tokens. Second, while each
self-generated token carries a probability to be error, autoregressive decoding assumes all prior
tokens are correct. This allows for error propagation as more tokens are generated. By downplaying

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2025

self-generated tokens, SPA essentially provides a fairer attention distribution by measuring the
trustworthiness of prior tokens. We discuss more in Appendix A.7.

5.2 CROSS-DATASET & CROSS-MODEL EVALUATION

SPA introduces a single hyperparameter, anchoring strength ω, which modulates the degree of the
anchoring effect of SPA. We investigate the transferability of this hyperparameter across different
models and datasets (RQ2). Firstly, we conduct a cross-dataset evaluation between HumanEval/Hu-
manEval+ and MBPP/MBPP+, which have distinct prompt formats. We tune ω on HumanEval+ and
evaluate Pass@1 on MBPP and MBPP+, and vice versa4 (denoted as SPAcross−dataset). We calculate
average Pass@1 improvements on original and plus versions across all baseline models. Secondly, we
perform a cross-model evaluation by tuning ω on one model and evaluating Pass@1 on the remaining
four. For each model, we compute the average Pass@1 improvements across all the other models, for
HumanEval/HumanEval+ and MBPP/MBPP+ respectively (denoted as SPAcross−model). Similar to
Section 5, SPAtuned represents tuning within the split partial dataset, while SPAoptimal represents
tuning within the entire dataset.

Table 2: Pass@1 improvements (%) based on cross-dataset tuning

Dataset SPAcross−dataset SPAcross−model SPAtuned SPAoptimal

HumanEval/+ + 2.01 - 0.29 + 4.36 + 5.11
MBPP/+ + 2.50 + 0.37 + 2.86 + 3.57

As shown in Table 2, we find the anchoring strength ω tuned on one model is hardly transferred to
another. However, ω tuned on one dataset can be transferred to another with reduced but still effective
performance. These observations suggest that the anchoring strength is highly model-dependent and
partially task-dependent.

5.3 ANALYSIS OF ANCHORING STRENGTH

Figure 4: Analysis of Anchoring Strength

To further investigate the relationship between code generation performance and the anchoring
strength of SPA (RQ3), Figure 4 illustrates the change in Pass@1 for various values of ω across
each model and benchmark (ω = 1 represents the original model). We observe a roughly unimodal
relationship between ω and performance: as ω increases, performance first improves, reaches an
optimum, and then declines with further increases. While the optimal ω varies slightly across different
models and benchmarks, it tends to be model-dependent. Furthermore, we find that any ω value
below 1.25 leads to performance improvements across all scenarios.

5.4 ANALYSIS OF ANCHORED TEST SELECTION

To investigate the impact of anchored text selection in code generation tasks (RQ 4), we calculate
pass@1 by masking different components in the prompt. Prompts in HumanEval/HumanEval+

4The "plus" versions of HumanEval and MBPP share identical prompts with their original counterparts, so
we can only tune on the plus version.

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2025

include the function signature (referred to as Code), natural language task descriptions (NL), and
test cases (Test). Prompts in MBPP/MBPP+ consist of task descriptions (NL) followed by test cases
(Test). For HumanEval/HumanEval+, we create four conditions by removing test cases and source
code. For MBPP and MBPP+, we create two conditions by removing test cases. We chose to anchor
the natural language task descriptions in all conditions, as they serve as the core task intent to mitigate
attention dilution. We use SPA tuned on the entire dataset in all conditions. For each condition and
benchmark, we calculate the average Pass@1 improvement across all five models.

Table 3: Improvements of Pass@1 rates (values in %) for different anchored text

Anchored Text HumanEval HumanEval+ MBPP MBPP+
NL + 5.48 + 5.08 + 4.26 + 3.22
NL + Test + 5.11 + 4.89 + 4.05 + 3.11
NL + Code + 4.87 + 4.65 – –
NL + Code + Test + 4.76 + 4.57 – –

Table 3 shows that anchoring the natural language task description alone yields the best performance.
This implies that anchoring more tokens in the prompt is not necessarily beneficial. Anchoring an
increasing number of tokens can diminish the effectiveness of differentiating the logit distribution.
For example, anchoring all tokens would merely introduce random noise. Instead, focusing on fewer
but critical, informative tokens leads to better results. More specifically, the optimal anchored tokens
should be those highly relevant to the current context but overlooked by the model.

In code generation tasks, the natural language task description represents the user’s intent, which is
persistently relevant. Continuously anchoring this part provides a sub-optimal but effective trade-off
solution. While opportunities exist to further refine the range of critical tokens by filtering out less
relevant ones, we find this requires significant effort in studying and designing such an algorithm. For
other tasks, the range of anchored text can vary significantly. For instance, unlike natural language task
descriptions in code generation tasks, code translation tasks lack a component that needs persistent
anchoring. Additionally, the anchored text may also vary across different models—some tokens may
be easily overlooked by certain models but correctly attended to by others.

6 RELATED WORK

Code Generation. In recent years, there has been rapid progress in the development of code
generation approaches (Dong & Lapata, 2016; Iyer et al., 2018) and benchmarks (et al., 2021c; Austin
et al., 2021; Liu et al., 2023a; Hendrycks et al., 2021). With the advent of large language models
(LLMs), such as GPT-4 (OpenAI & et al., 2024) and Gemini (Team & et al., 2024), code generation
has become a standard capability. Subsequent research has focused on fine-tuning these pre-trained
LLMs to achieve state-of-the-art performance.

Despite their remarkable ability to follow natural language instructions, LLMs still face challenges
when generating long and complex code. To enhance the code generation capabilities of LLMs,
recent studies have explored train-free approaches such as prompt engineering (Denny et al., 2023;
White et al., 2023), in-context learning (Dong et al., 2023; Li et al., 2023a;b), and retrieval-augmented
generation (Lewis et al., 2020; Du et al., 2024). Additionally, self-debugging techniques (Chen
et al., 2023) enable LLMs to debug code based on error messages and execution results, while
self-planning (Jiang et al., 2023) allows LLMs to decompose tasks into subtasks and implement
solutions step-by-step. The chain-of-thought approach (Le et al., 2024; Suzgun et al., 2022; Ma et al.,
2023) facilitates a step-by-step reasoning process in LLMs. Complementing these approaches, SPA
introduces an orthogonal approach particularly suitable for code generation. It can be integrated with
existing methods to further improve performance.

Controllable Generation. Compared to fine-tuning a language model (LM) at the decoding time,
controllable generation aims to steer the pre-trained LMs to match a sentence-level attribute (e.g.,
a topic on sports). Existing approaches usually require additional models or training, such as fine-
tuning a smaller LM (Liu et al., 2024a; 2021; Yang & Klein, 2021; Dathathri et al., 2020), a reward
model (Deng & Raffel, 2023; Lu et al., 2023), or a fine-tuned model with controlling codes (Krause
et al., 2021; Li & Liang, 2021; Keskar et al., 2019). The mechanism used in SPA can also be used

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2025

to control the generation by adjusting anchoring strength over the input text. Compared to the
aforementioned works, SPA does not require any additional models or training.

Logit Arithmetic. There has been a growing body of methods that perform arithmetic on multiple
logit distributions to enhance text generation. These methods include contrasting logits from multiple
LMs (Liu et al., 2024a; 2021; Dou et al., 2019; Zhao et al., 2024), logits of LMs of different sizes (Li
et al., 2023d), logits from different layers of a model (Chuang et al., 2024; Gera et al., 2023), and
logits from the same model given different inputs (Pei et al., 2023; Shi et al., 2023; Malkin et al.,
2022; Sennrich et al., 2024; Leng et al., 2023). Similar ideas have also been explored in diffusion
models (Han et al., 2024; Ho & Salimans, 2022).

SPA can be considered analogous to contrasting logits from the same model when given different
inputs. However, we delve deeper by modeling a mathematical approximation of semantic adjustment
over arbitrary groups of embeddings. Furthermore, SPA is specifically designed to address the
attention dilution issue in LLMs during code generation—a phenomenon first observed in our work.
By contrast, none of existing works explored code generation tasks. They primarily focus on reducing
hallucinations (Shi et al., 2023; Sennrich et al., 2024; Leng et al., 2023), enhancing coherence (Malkin
et al., 2022), factuality (Chuang et al., 2024), and controllable text generation (Liu et al., 2021; Pei
et al., 2023; Zhao et al., 2024). Besides, SPA focuses on perturbation of the original prompt through
masking rather than providing additional context (Pei et al., 2023; Shi et al., 2023; Malkin et al.,
2022) or changing to a completely new prompt (Sennrich et al., 2024).

7 LIMITATIONS & FUTURE WORK

We employed 8-bit quantized LLMs to expedite all experiments. Although this method has been
shown to have minimal impact on performance, we did notice some degradation. Furthermore, we
did not evaluate very large LLMs (e.g., more than 100B) due to computational constraints. Despite
the unimodal feature, it is infeasible to enumerate all the anchoring strength ω on the continuous
distribution. The real optimal ω should perform slightly better than the values reported in Section 4.

While SPA achieved a consistent improvement on LLMs with different sizes and types (i.e., instruction-
tuned & text completion), we do not observe a monotonic relationship between model attributes
and the improvement. Furthermore, there is no obvious correlation between the original model
performance and the improvement. It is an interesting future direction to investigate how different
model attributes affect the improvement achieved by SPA. Given the performance improvements, the
computational overhead of SPA is acceptable. We elaborate on this in Appendix A.5.

The effectiveness of SPA highlights its potential in other domains, particularly for generation tasks.
However, we believe rigorous experiments are necessary to confirm whether attention dilution exists
in other tasks, as different tasks may have unique input and output patterns. Investigating the existence
of attention dilution and determining which text to anchor in other tasks presents an interesting avenue
for future research. In this work, we pre-define the method for selecting anchored tokens and use a
fixed anchoring strength when generating code. We consider this approach a baseline. Future work
could explore dynamically determining both the anchored text and the anchoring strength based on
different contexts and sampling stages. Furthermore, the underlying principle of SPA is not confined
to transformer-based LLMs and could be adapted for use in other model architectures (e.g., RNNs).

8 CONCLUSION

In this paper, we propose SPA, a model-agnostic approach designed to enhance the quality of
code generated by large language models (LLMs) by mitigating the attention dilution issue. SPA
employs a novel technique to adjust the influence of selected groups of input tokens, based on a
mathematical approximation. Our empirical study indicates that LLMs may overlook the initial
prompt as generating more new tokens. By amplifying the initial prompt’s influence throughout code
generation, SPA consistently and significantly improves performance across models of various sizes
on multiple benchmarks.

10

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2025

REFERENCES

Jacob Austin, Augustus Odena, Maxwell Nye, Maarten Bosma, Henryk Michalewski, David Dohan,
Ellen Jiang, Carrie Cai, Michael Terry, Quoc Le, and Charles Sutton. Program synthesis with large
language models, 2021.

Saikat Chakraborty, Toufique Ahmed, Yangruibo Ding, Premkumar T Devanbu, and Baishakhi Ray.
Natgen: generative pre-training by “naturalizing” source code. In Proceedings of the 30th ACM
joint european software engineering conference and symposium on the foundations of software
engineering, pp. 18–30, 2022.

Xinyun Chen, Maxwell Lin, Nathanael Schärli, and Denny Zhou. Teaching large language models to
self-debug, 2023.

David Chiang and Peter Cholak. Overcoming a theoretical limitation of self-attention, 2022.

Yung-Sung Chuang, Yujia Xie, Hongyin Luo, Yoon Kim, James Glass, and Pengcheng He. Dola:
Decoding by contrasting layers improves factuality in large language models, 2024.

Sumanth Dathathri, Andrea Madotto, Janice Lan, Jane Hung, Eric Frank, Piero Molino, Jason
Yosinski, and Rosanne Liu. Plug and play language models: A simple approach to controlled text
generation, 2020.

Haikang Deng and Colin Raffel. Reward-augmented decoding: Efficient controlled text generation
with a unidirectional reward model. In Houda Bouamor, Juan Pino, and Kalika Bali (eds.), Proceed-
ings of the 2023 Conference on Empirical Methods in Natural Language Processing, pp. 11781–
11791, Singapore, December 2023. Association for Computational Linguistics. doi: 10.18653/v1/
2023.emnlp-main.721. URL https://aclanthology.org/2023.emnlp-main.721.

Paul Denny, Viraj Kumar, and Nasser Giacaman. Conversing with copilot: Exploring prompt
engineering for solving cs1 problems using natural language. In Proceedings of the 54th ACM
Technical Symposium on Computer Science Education V. 1, SIGCSE 2023, pp. 1136–1142, New
York, NY, USA, 2023. Association for Computing Machinery. ISBN 9781450394314. doi:
10.1145/3545945.3569823. URL https://doi.org/10.1145/3545945.3569823.

Tim Dettmers, Mike Lewis, Younes Belkada, and Luke Zettlemoyer. Llm.int8(): 8-bit matrix
multiplication for transformers at scale, 2022.

Li Dong and Mirella Lapata. Language to logical form with neural attention. In Katrin Erk and
Noah A. Smith (eds.), Proceedings of the 54th Annual Meeting of the Association for Computational
Linguistics (Volume 1: Long Papers), pp. 33–43, Berlin, Germany, August 2016. Association
for Computational Linguistics. doi: 10.18653/v1/P16-1004. URL https://aclanthology.
org/P16-1004.

Qingxiu Dong, Lei Li, Damai Dai, Ce Zheng, Zhiyong Wu, Baobao Chang, Xu Sun, Jingjing Xu, Lei
Li, and Zhifang Sui. A survey on in-context learning, 2023.

Zi-Yi Dou, Xinyi Wang, Junjie Hu, and Graham Neubig. Domain differential adaptation for neural
machine translation. In Alexandra Birch, Andrew Finch, Hiroaki Hayashi, Ioannis Konstas, Thang
Luong, Graham Neubig, Yusuke Oda, and Katsuhito Sudoh (eds.), Proceedings of the 3rd Workshop
on Neural Generation and Translation, pp. 59–69, Hong Kong, November 2019. Association for
Computational Linguistics. doi: 10.18653/v1/D19-5606. URL https://aclanthology.
org/D19-5606.

Kounianhua Du, Renting Rui, Huacan Chai, Lingyue Fu, Wei Xia, Yasheng Wang, Ruiming Tang,
Yong Yu, and Weinan Zhang. Codegrag: Extracting composed syntax graphs for retrieval aug-
mented cross-lingual code generation, 2024.

Chen et al. Evaluating large language models trained on code, 2021a.

Chen et al. Evaluating large language models trained on code, 2021b.

Chen et al. Evaluating large language models trained on code. CoRR, abs/2107.03374, 2021c. URL
https://arxiv.org/abs/2107.03374.

11

https://aclanthology.org/2023.emnlp-main.721
https://doi.org/10.1145/3545945.3569823
https://aclanthology.org/P16-1004
https://aclanthology.org/P16-1004
https://aclanthology.org/D19-5606
https://aclanthology.org/D19-5606
https://arxiv.org/abs/2107.03374

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2025

Elias Frantar, Saleh Ashkboos, Torsten Hoefler, and Dan Alistarh. Gptq: Accurate post-training
quantization for generative pre-trained transformers, 2023.

Adrian Furnham and Hua Chu Boo. A literature review of the anchoring effect. The Jour-
nal of Socio-Economics, 40(1):35–42, 2011. ISSN 1053-5357. doi: https://doi.org/10.1016/
j.socec.2010.10.008. URL https://www.sciencedirect.com/science/article/
pii/S1053535710001411.

Andrea Galassi, Marco Lippi, and Paolo Torroni. Attention in natural language processing. IEEE
Transactions on Neural Networks and Learning Systems, 32(10):4291–4308, October 2021.
ISSN 2162-2388. doi: 10.1109/tnnls.2020.3019893. URL http://dx.doi.org/10.1109/
TNNLS.2020.3019893.

Suyu Ge, Yunan Zhang, Liyuan Liu, Minjia Zhang, Jiawei Han, and Jianfeng Gao. Model tells you
what to discard: Adaptive kv cache compression for llms, 2024. URL https://arxiv.org/
abs/2310.01801.

Ariel Gera, Roni Friedman, Ofir Arviv, Chulaka Gunasekara, Benjamin Sznajder, Noam Slonim, and
Eyal Shnarch. The benefits of bad advice: Autocontrastive decoding across model layers. In Anna
Rogers, Jordan Boyd-Graber, and Naoaki Okazaki (eds.), Proceedings of the 61st Annual Meeting
of the Association for Computational Linguistics (Volume 1: Long Papers), pp. 10406–10420,
Toronto, Canada, July 2023. Association for Computational Linguistics. doi: 10.18653/v1/2023.
acl-long.580. URL https://aclanthology.org/2023.acl-long.580.

Daya Guo, Qihao Zhu, Dejian Yang, Zhenda Xie, Kai Dong, Wentao Zhang, Guanting Chen, Xiao
Bi, Y. Wu, Y. K. Li, Fuli Luo, Yingfei Xiong, and Wenfeng Liang. Deepseek-coder: When the
large language model meets programming – the rise of code intelligence, 2024.

Xiaochuang Han, Sachin Kumar, Yulia Tsvetkov, and Marjan Ghazvininejad. David helps goliath:
Inference-time collaboration between small specialized and large general diffusion lms, 2024.

Dan Hendrycks, Steven Basart, Saurav Kadavath, Mantas Mazeika, Akul Arora, Ethan Guo, Collin
Burns, Samir Puranik, Horace He, Dawn Song, and Jacob Steinhardt. Measuring coding challenge
competence with apps, 2021.

Jonathan Ho and Tim Salimans. Classifier-free diffusion guidance, 2022.

Ari Holtzman, Jan Buys, Maxwell Forbes, and Yejin Choi. The curious case of neural text degenera-
tion. CoRR, abs/1904.09751, 2019. URL http://arxiv.org/abs/1904.09751.

Wei Huang, Xudong Ma, Haotong Qin, Xingyu Zheng, Chengtao Lv, Hong Chen, Jie Luo, Xiaojuan
Qi, Xianglong Liu, and Michele Magno. How good are low-bit quantized llama3 models? an
empirical study, 2024.

Srinivasan Iyer, Ioannis Konstas, Alvin Cheung, and Luke Zettlemoyer. Mapping language to code
in programmatic context. In Ellen Riloff, David Chiang, Julia Hockenmaier, and Jun’ichi Tsujii
(eds.), Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing,
pp. 1643–1652, Brussels, Belgium, October-November 2018. Association for Computational
Linguistics. doi: 10.18653/v1/D18-1192. URL https://aclanthology.org/D18-1192.

Xue Jiang, Yihong Dong, Lecheng Wang, Zheng Fang, Qiwei Shang, Ge Li, Zhi Jin, and Wenpin
Jiao. Self-planning code generation with large language models, 2023.

Nitish Shirish Keskar, Bryan McCann, Lav R. Varshney, Caiming Xiong, and Richard Socher. Ctrl:
A conditional transformer language model for controllable generation, 2019.

Bonan Kou, Shengmai Chen, Zhijie Wang, Lei Ma, and Tianyi Zhang. Do large language models pay
similar attention like human programmers when generating code? Proc. ACM Softw. Eng., 1(FSE),
July 2024. doi: 10.1145/3660807. URL https://doi.org/10.1145/3660807.

12

https://www.sciencedirect.com/science/article/pii/S1053535710001411
https://www.sciencedirect.com/science/article/pii/S1053535710001411
http://dx.doi.org/10.1109/TNNLS.2020.3019893
http://dx.doi.org/10.1109/TNNLS.2020.3019893
https://arxiv.org/abs/2310.01801
https://arxiv.org/abs/2310.01801
https://aclanthology.org/2023.acl-long.580
http://arxiv.org/abs/1904.09751
https://aclanthology.org/D18-1192
https://doi.org/10.1145/3660807

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2025

Ben Krause, Akhilesh Deepak Gotmare, Bryan McCann, Nitish Shirish Keskar, Shafiq Joty, Richard
Socher, and Nazneen Fatema Rajani. GeDi: Generative discriminator guided sequence gen-
eration. In Marie-Francine Moens, Xuanjing Huang, Lucia Specia, and Scott Wen-tau Yih
(eds.), Findings of the Association for Computational Linguistics: EMNLP 2021, pp. 4929–4952,
Punta Cana, Dominican Republic, November 2021. Association for Computational Linguistics.
doi: 10.18653/v1/2021.findings-emnlp.424. URL https://aclanthology.org/2021.
findings-emnlp.424.

Sumith Kulal, Panupong Pasupat, Kartik Chandra, Mina Lee, Oded Padon, Alex Aiken, and Percy
Liang. Spoc: Search-based pseudocode to code, 2019.

Hung Le, Hailin Chen, Amrita Saha, Akash Gokul, Doyen Sahoo, and Shafiq Joty. Codechain:
Towards modular code generation through chain of self-revisions with representative sub-modules,
2024.

Sicong Leng, Hang Zhang, Guanzheng Chen, Xin Li, Shijian Lu, Chunyan Miao, and Lidong
Bing. Mitigating object hallucinations in large vision-language models through visual contrastive
decoding, 2023.

Patrick Lewis, Ethan Perez, Aleksandra Piktus, Fabio Petroni, Vladimir Karpukhin, Naman
Goyal, Heinrich Küttler, Mike Lewis, Wen-tau Yih, Tim Rocktäschel, Sebastian Riedel,
and Douwe Kiela. Retrieval-augmented generation for knowledge-intensive nlp tasks. In
H. Larochelle, M. Ranzato, R. Hadsell, M.F. Balcan, and H. Lin (eds.), Advances in Neu-
ral Information Processing Systems, volume 33, pp. 9459–9474. Curran Associates, Inc.,
2020. URL https://proceedings.neurips.cc/paper_files/paper/2020/
file/6b493230205f780e1bc26945df7481e5-Paper.pdf.

Jia Li, Ge Li, Chongyang Tao, Jia Li, Huangzhao Zhang, Fang Liu, and Zhi Jin. Large language
model-aware in-context learning for code generation, 2023a.

Jia Li, Yunfei Zhao, Yongmin Li, Ge Li, and Zhi Jin. Acecoder: Utilizing existing code to enhance
code generation, 2023b.

Raymond Li, Yangtian Zi, Niklas Muennighoff, Denis Kocetkov, Chenghao Mou, Marc Marone,
Christopher Akiki, LI Jia, Jenny Chim, Qian Liu, et al. Starcoder: may the source be with you!
Transactions on Machine Learning Research, 2023c.

Shiyao Li, Xuefei Ning, Luning Wang, Tengxuan Liu, Xiangsheng Shi, Shengen Yan, Guohao Dai,
Huazhong Yang, and Yu Wang. Evaluating quantized large language models, 2024.

Xiang Lisa Li and Percy Liang. Prefix-tuning: Optimizing continuous prompts for generation, 2021.

Xiang Lisa Li, Ari Holtzman, Daniel Fried, Percy Liang, Jason Eisner, Tatsunori Hashimoto, Luke
Zettlemoyer, and Mike Lewis. Contrastive decoding: Open-ended text generation as optimization.
In Anna Rogers, Jordan Boyd-Graber, and Naoaki Okazaki (eds.), Proceedings of the 61st Annual
Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), pp. 12286–
12312, Toronto, Canada, July 2023d. Association for Computational Linguistics. doi: 10.18653/
v1/2023.acl-long.687. URL https://aclanthology.org/2023.acl-long.687.

Alisa Liu, Maarten Sap, Ximing Lu, Swabha Swayamdipta, Chandra Bhagavatula, Noah A. Smith,
and Yejin Choi. Dexperts: Decoding-time controlled text generation with experts and anti-experts,
2021.

Alisa Liu, Xiaochuang Han, Yizhong Wang, Yulia Tsvetkov, Yejin Choi, and Noah A. Smith. Tuning
language models by proxy, 2024a.

Jiawei Liu, Chunqiu Steven Xia, Yuyao Wang, and Lingming Zhang. Is your code generated by
chatgpt really correct? rigorous evaluation of large language models for code generation, 2023a.

Yue Liu, Chakkrit Tantithamthavorn, Yonghui Liu, and Li Li. On the reliability and explainability of
language models for program generation, 2024b.

13

https://aclanthology.org/2021.findings-emnlp.424
https://aclanthology.org/2021.findings-emnlp.424
https://proceedings.neurips.cc/paper_files/paper/2020/file/6b493230205f780e1bc26945df7481e5-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2020/file/6b493230205f780e1bc26945df7481e5-Paper.pdf
https://aclanthology.org/2023.acl-long.687

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2025

Zichang Liu, Aditya Desai, Fangshuo Liao, Weitao Wang, Victor Xie, Zhaozhuo Xu, Anas-
tasios Kyrillidis, and Anshumali Shrivastava. Scissorhands: Exploiting the persistence of
importance hypothesis for llm kv cache compression at test time. In A. Oh, T. Nau-
mann, A. Globerson, K. Saenko, M. Hardt, and S. Levine (eds.), Advances in Neural
Information Processing Systems, volume 36, pp. 52342–52364. Curran Associates, Inc.,
2023b. URL https://proceedings.neurips.cc/paper_files/paper/2023/
file/a452a7c6c463e4ae8fbdc614c6e983e6-Paper-Conference.pdf.

Ximing Lu, Faeze Brahman, Peter West, Jaehun Jung, Khyathi Chandu, Abhilasha Ravichander,
Prithviraj Ammanabrolu, Liwei Jiang, Sahana Ramnath, Nouha Dziri, Jillian Fisher, Bill Lin,
Skyler Hallinan, Lianhui Qin, Xiang Ren, Sean Welleck, and Yejin Choi. Inference-time policy
adapters (IPA): Tailoring extreme-scale LMs without fine-tuning. In Houda Bouamor, Juan Pino,
and Kalika Bali (eds.), Proceedings of the 2023 Conference on Empirical Methods in Natural
Language Processing, pp. 6863–6883, Singapore, December 2023. Association for Computational
Linguistics. doi: 10.18653/v1/2023.emnlp-main.424. URL https://aclanthology.org/
2023.emnlp-main.424.

Yingwei Ma, Yue Yu, Shanshan Li, Yu Jiang, Yong Guo, Yuanliang Zhang, Yutao Xie, and Xiangke
Liao. Bridging code semantic and llms: Semantic chain-of-thought prompting for code generation,
2023.

Nikolay Malkin, Zhen Wang, and Nebojsa Jojic. Coherence boosting: When your pretrained
language model is not paying enough attention. In Smaranda Muresan, Preslav Nakov, and
Aline Villavicencio (eds.), Proceedings of the 60th Annual Meeting of the Association for
Computational Linguistics (Volume 1: Long Papers), pp. 8214–8236, Dublin, Ireland, May
2022. Association for Computational Linguistics. doi: 10.18653/v1/2022.acl-long.565. URL
https://aclanthology.org/2022.acl-long.565.

Erik Nijkamp, Bo Pang, Hiroaki Hayashi, Lifu Tu, Huan Wang, Yingbo Zhou, Silvio Savarese,
and Caiming Xiong. Codegen: An open large language model for code with multi-turn program
synthesis, 2023.

Changan Niu, Chuanyi Li, Vincent Ng, Jidong Ge, Liguo Huang, and Bin Luo. Spt-code: Sequence-
to-sequence pre-training for learning source code representations. In Proceedings of the 44th
international conference on software engineering, pp. 2006–2018, 2022.

OpenAI and Achiam et al. Gpt-4 technical report, 2024.

Jonathan Pei, Kevin Yang, and Dan Klein. PREADD: Prefix-adaptive decoding for controlled text
generation. In Anna Rogers, Jordan Boyd-Graber, and Naoaki Okazaki (eds.), Findings of the
Association for Computational Linguistics: ACL 2023, pp. 10018–10037, Toronto, Canada, July
2023. Association for Computational Linguistics. doi: 10.18653/v1/2023.findings-acl.636. URL
https://aclanthology.org/2023.findings-acl.636.

Alessandro Raganato and Jörg Tiedemann. An analysis of encoder representations in transformer-
based machine translation. In Tal Linzen, Grzegorz Chrupała, and Afra Alishahi (eds.), Proceedings
of the 2018 EMNLP Workshop BlackboxNLP: Analyzing and Interpreting Neural Networks for
NLP, pp. 287–297, Brussels, Belgium, November 2018. Association for Computational Linguistics.
doi: 10.18653/v1/W18-5431. URL https://aclanthology.org/W18-5431.

Baptiste Rozière, Jonas Gehring, Fabian Gloeckle, Sten Sootla, Itai Gat, Xiaoqing Ellen Tan, Yossi
Adi, Jingyu Liu, Romain Sauvestre, Tal Remez, Jérémy Rapin, Artyom Kozhevnikov, Ivan Evtimov,
Joanna Bitton, Manish Bhatt, Cristian Canton Ferrer, Aaron Grattafiori, Wenhan Xiong, Alexandre
Défossez, Jade Copet, Faisal Azhar, Hugo Touvron, Louis Martin, Nicolas Usunier, Thomas
Scialom, and Gabriel Synnaeve. Code llama: Open foundation models for code, 2024.

Ramprasaath R. Selvaraju, Abhishek Das, Ramakrishna Vedantam, Michael Cogswell, Devi Parikh,
and Dhruv Batra. Grad-cam: Why did you say that? visual explanations from deep networks via
gradient-based localization. CoRR, abs/1610.02391, 2016. URL http://arxiv.org/abs/
1610.02391.

Rico Sennrich, Jannis Vamvas, and Alireza Mohammadshahi. Mitigating hallucinations and off-target
machine translation with source-contrastive and language-contrastive decoding, 2024.

14

https://proceedings.neurips.cc/paper_files/paper/2023/file/a452a7c6c463e4ae8fbdc614c6e983e6-Paper-Conference.pdf
https://proceedings.neurips.cc/paper_files/paper/2023/file/a452a7c6c463e4ae8fbdc614c6e983e6-Paper-Conference.pdf
https://aclanthology.org/2023.emnlp-main.424
https://aclanthology.org/2023.emnlp-main.424
https://aclanthology.org/2022.acl-long.565
https://aclanthology.org/2023.findings-acl.636
https://aclanthology.org/W18-5431
http://arxiv.org/abs/1610.02391
http://arxiv.org/abs/1610.02391

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2025

Weijia Shi, Xiaochuang Han, Mike Lewis, Yulia Tsvetkov, Luke Zettlemoyer, and Scott Wen tau Yih.
Trusting your evidence: Hallucinate less with context-aware decoding, 2023.

Avanti Shrikumar, Peyton Greenside, and Anshul Kundaje. Learning important features through
propagating activation differences. CoRR, abs/1704.02685, 2017. URL http://arxiv.org/
abs/1704.02685.

Mirac Suzgun, Nathan Scales, Nathanael Schärli, Sebastian Gehrmann, Yi Tay, Hyung Won Chung,
Aakanksha Chowdhery, Quoc V. Le, Ed H. Chi, Denny Zhou, and Jason Wei. Challenging
big-bench tasks and whether chain-of-thought can solve them, 2022.

Gemini Team and Anil et al. Gemini: A family of highly capable multimodal models, 2024.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N. Gomez,
Lukasz Kaiser, and Illia Polosukhin. Attention is all you need. CoRR, abs/1706.03762, 2017. URL
http://arxiv.org/abs/1706.03762.

Elena Voita, David Talbot, Fedor Moiseev, Rico Sennrich, and Ivan Titov. Analyzing multi-head
self-attention: Specialized heads do the heavy lifting, the rest can be pruned, 2019.

Yao Wan, Wei Zhao, Hongyu Zhang, Yulei Sui, Guandong Xu, and Hai Jin. What do they capture?
a structural analysis of pre-trained language models for source code. In Proceedings of the 44th
International Conference on Software Engineering, ICSE ’22, pp. 2377–2388, New York, NY,
USA, 2022a. Association for Computing Machinery. ISBN 9781450392211. doi: 10.1145/
3510003.3510050. URL https://doi.org/10.1145/3510003.3510050.

Yao Wan, Wei Zhao, Hongyu Zhang, Yulei Sui, Guandong Xu, and Hai Jin. What do they capture? –
a structural analysis of pre-trained language models for source code, 2022b.

Jason Wei, Maarten Bosma, Vincent Y. Zhao, Kelvin Guu, Adams Wei Yu, Brian Lester, Nan Du,
Andrew M. Dai, and Quoc V. Le. Finetuned language models are zero-shot learners, 2022.

Yuxiang Wei, Zhe Wang, Jiawei Liu, Yifeng Ding, and Lingming Zhang. Magicoder: Source code is
all you need. arXiv preprint arXiv:2312.02120, 2023.

Jules White, Quchen Fu, Sam Hays, Michael Sandborn, Carlos Olea, Henry Gilbert, Ashraf Elnashar,
Jesse Spencer-Smith, and Douglas C. Schmidt. A prompt pattern catalog to enhance prompt
engineering with chatgpt, 2023.

Kevin Yang and Dan Klein. FUDGE: Controlled text generation with future discriminators. In
Kristina Toutanova, Anna Rumshisky, Luke Zettlemoyer, Dilek Hakkani-Tur, Iz Beltagy, Steven
Bethard, Ryan Cotterell, Tanmoy Chakraborty, and Yichao Zhou (eds.), Proceedings of the 2021
Conference of the North American Chapter of the Association for Computational Linguistics:
Human Language Technologies, pp. 3511–3535, Online, June 2021. Association for Computational
Linguistics. doi: 10.18653/v1/2021.naacl-main.276. URL https://aclanthology.org/
2021.naacl-main.276.

Kechi Zhang, Ge Li, and Zhi Jin. What does transformer learn about source code?, 2022.

Tony Z. Zhao, Eric Wallace, Shi Feng, Dan Klein, and Sameer Singh. Calibrate before use: Improving
few-shot performance of language models. CoRR, abs/2102.09690, 2021. URL https://
arxiv.org/abs/2102.09690.

Xuandong Zhao, Xianjun Yang, Tianyu Pang, Chao Du, Lei Li, Yu-Xiang Wang, and William Yang
Wang. Weak-to-strong jailbreaking on large language models, 2024.

A APPENDIX / SUPPLEMENTAL MATERIAL

A.1 ATTENTION CALCULATION

Self-attention. Most LLMs are based on the decoder of transformer (Vaswani et al., 2017) which has
multiple self-attention layers. Roughly speaking, given an LLM fθ and an input sequence of tokens

15

http://arxiv.org/abs/1704.02685
http://arxiv.org/abs/1704.02685
http://arxiv.org/abs/1706.03762
https://doi.org/10.1145/3510003.3510050
https://aclanthology.org/2021.naacl-main.276
https://aclanthology.org/2021.naacl-main.276
https://arxiv.org/abs/2102.09690
https://arxiv.org/abs/2102.09690

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2025

t0, t1, . . . , tn where ti represents the ith token. The transformer calculates relevance scores between
every pair of tokens. The self-attention score for a token ti in the sequence can be roughly formulated
as:

attention(ti) ≈
∑n

j=1 relevance(ti, tj)∑n
i=1

∑n
j=1 relevance(ti, tj)

, (16)

where the relevance function approximates the computation among Q,K, V in transformers (Vaswani
et al., 2017). However, different layers have different attention distributions. According to a
study (Wan et al., 2022b), deeper self-attention layers can better capture long-distance dependencies
and program structure, so we calculate the attention by aggregating attention from multiple heads at
the last layer. Nevertheless, this still excludes the influence from the last forward layer.

Gradient-based Attention. Compared to using self-attention layers in transformers, the gradient-
based method can be generalized to different model architectures and consider the entire model as a
whole. It computes the model’s attention by calculating the gradients relative to the input. Intuitively,
a token that induces a larger gradient is considered more influential, suggesting that the model pays
greater attention to it. Formally, the attention over the token ti is calculated by

attention(ti) =
∂fθ(t0, t1, . . . , tn)

∂ti
. (17)

Attention Percentage to the Prompt. Based on these two methods, we analyze how the attention of
LLMs to the initial prompt shifts. Formally, given the prompt x and the following generated tokens
t0, t1, . . . , ti−1, we calculate the percentage of attention α(x) over the initial prompt

α(x) =
attention(x)

attention(x) +
∑n

i=1 attention(ti)
(18)

Given attention analysis requires open sourcing, we select five SOTA code LLMs with various sizes.
We run the experiments on HumanEval (et al., 2021c), one of the most popular benchmarks for
evaluating code generation models. We run five LLMs (Nijkamp et al., 2023; Rozière et al., 2024;
Guo et al., 2024) on all 164 Humaneval tasks. Figure 2 shows the self-attention shift and Figure 3
shows the gradient-based attention shift when generating the first 400 tokens. The value gradually
becomes noisy due to the lack of generated sequence with enough length.

The results demonstrate that there indeed exists such attention dilution issue. Due to the autoregressive
nature, LLMs’ attention to the initial prompt is gradually diluted as generating more code. LLMs tend
to attend to code generated by itself. Our finding is supported by another study (Chiang & Cholak,
2022) which investigates the self-attention dilution of transformers in a more general scenario.

A.2 APPROXIMATION IN SPA

In Equation 10, we get the approximation by only keeping the first derivative in Equation 9, but it is
also feasible to calculate a higher-order approximation. For example, if we want to keep the term
involving the second-order derivative ω2

2! Fθ,i,x
′′(0), it can still be computed using finite-difference

methods:

Fθ,i,x
′′(0) ≈ Fθ,i,x(1)− 2Fθ,i,x(0) + Fθ,i,x(−1)

(1− 0)2
. (19)

Fθ,i,x(−1) can be solved by Equation 13 where Fθ,i,x(0) and Fθ,i,x(1) are the logits generated from
the original input and the logits generated from the masked input.

However, no matter how many terms we keep in Equation 9, we find we can only represent Fθ,i,x(ω)
as a linear combination of F (0) and F (1), weighted by an unknown variable ω.

In Section 5.3, our experiments reveal that ω’s impact on code generation performance follows an
unimodal pattern—initially increasing, then decreasing. Due to its distribution simplicity, we argue
that while a higher-order approximation may yield a more reasonable performance distribution across
different ω values, it does not significantly affect the process of locating the optimal anchoring
strength. Therefore, beyond its computational efficiency, the first-order approximation in SPA is
adequate for calculating semantically accurate augmented logits.

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2025

Table 4: Optimal ω for each model and benchmark

Model HumanEval HumanEval+ MBPP MBPP+ Average

CodeGen-Mono (350M) 1.20 1.20 1.35 1.35 1.28

DeepSeek-Coder (1.3B) 1.05 1.05 1.20 1.20 1.13

DeepSeek-Coder (6.7B) 1.28 1.28 1.25 1.25 1.26

CodeLlama (7B) 1.60 1.60 1.20 1.20 1.40

DeepSeek-Coder (33B) 1.35 1.35 1.30 1.30 1.33

Average 1.30 1.30 1.33 1.33 1.28

A.3 OPTIMAL ANCHORING STRENGTH

Table 4 reports optimal anchoring strength values ω that are used in our main results (Table 1).
We observe the average value of 1.28 can be used to effectively improve performance across all
benchmarks for all LLMs.

A.4 EXAMPLES

Figure 5 presents two examples comparing the code generated by models alone and the models
augmented using SPA.

In the first example, CodeLlama (7B) overlooks the specified condition "upper vowels." In contrast,
SPA enhances the model’s focus on the intended purpose. The code initializes all the upper vowels in
the first line and correctly refers to it later.

In the second example, DeepSeek-Coder (1.3B) erroneously sorts the list by string names instead of
integers. When using SPA, the model demonstrates improved recognition of the required procedures,
aligning more closely with the task description. The code correctly sorts and reverses the list. Then
the integer list is mapped to the string list.

A.5 COMPUTATIONAL COST

In our implementation, SPA requires twice the inference time to obtain two logits, plus some minor
additional computation costs for operations like logit addition. We observe that SPA typically takes 2
to 3.5 times longer than regular inference. There is little extra memory overhead. Compared to the
size of the LLM, SPA only requires a few additional variables and an embedding matrix to buffer in
the RAM.

We believe our implementation can be further optimized for speed. For example, there is a significant
overlap between the masked embedding and the original embedding. This overlap can be leveraged
for acceleration through caching repetitive computations in transformer Liu et al. (2023b); Ge et al.
(2024).

A.6 BEAM SEARCH WITH SPA

To calculate Pass@10 in Section 5, we employ beam search to generate 10 candidate code snippets.
When running beam search with SPA, however, we found that directly sampling top beams based on
the augmented logits produced by SPA led to performance degradation.

We hypothesize that this phenomenon occurs because while SPA successfully amplifies the influence
of anchored text and improves the accuracy of top logits, it also amplifies noise in lower-ranked logits.
This undermines the reliability of the overall probability distribution, thereby hindering the sampling
process.

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2025

Figure 5: Examples of generated code by LLMs alone (left) and using SPA (right).

To address this issue, we retrieve top candidate tokens based on the augmented logits but use original
probabilities to compute beam probability. This ensures that important, potentially overlooked tokens
are considered while maintaining reliable probabilities.

As demonstrated in our experiment results (Table 1), the improvements in Pass@10 are less effective
than Pass@1. We posit that fully leveraging the power of SPA requires a more sophisticated beam
search algorithm specifically adapted to SPA. We leave this as an avenue for future work.

A.7 HYPOTHESIZED EXPLANATION FOR ATTENTION DILUTION AND SPA’S EFFECTIVENESS

SPA is motivated by a recent study Kou et al. (2024) and our empirical observations demonstrating
the attention dilution issue. Our experiment results in Section 5 echo our observation and confirm the
existence of attention dilution during code generation. Here we propose a detailed explanation for
this phenomenon based on our knowledge and hypotheses. We believe it stems from two limitations
in regular decoding: (1) Distraction and (2) Error propagation.

18

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2025

Distraction. When a transformer generates a token, its correctness depends on two abilities: (1)
whether the model attends to the correct context, and (2) whether the model can derive the correct
token based on this context. SPA aims to improve the first ability. Suppose we have a perfect
transformer. For each generated token, it should only attend to relevant prior tokens and ignore
irrelevant ones. However, no model is perfect. For each prior token, there is a chance the model
incorrectly identifies and attends to it. More tokens mean a higher probability that the attention
contains an error, thereby leading to distraction.

While self-generated tokens are also important context, they are less persistently related than task
description in code generation. Amplifying the task description via SPA can improve attention
reliability, thereby mitigating distraction.

Error propagation. Compared to reliable task description tokens, the self-generated code tokens
may be wrong. However, autoregressive decoding assumes all prior tokens are correct, and all the
tokens have an equal opportunity to compete for the model’s attention. As a result, the later a token
is generated, the higher the probability it is wrong as errors propagate. SPA adds extra attention to
earlier tokens that are less likely to be incorrect, creating a fairer attention distribution.

19

	Introduction
	An Empirical Analysis of Attention Dilution
	Approach
	Autoregressive Decoding and its Limitations
	Selective Prompt Anchoring
	Augmented Logits by Approximation
	Tuning Anchoring Strength
	Selection of Anchored Text

	Experiments
	Comparison Baselines
	Benchmarks
	Evaluation Metrics and Experiment Setup

	Results
	Model Performance Improvements
	Cross-dataset & Cross-Model Evaluation
	Analysis of Anchoring Strength
	Analysis of Anchored Test Selection

	Related work
	Limitations & Future Work
	Conclusion
	Appendix / supplemental material
	Attention Calculation
	Approximation in Spa
	Optimal Anchoring Strength
	Examples
	Computational Cost
	Beam Search with Spa
	Hypothesized explanation for Attention dilution and Spa's effectiveness

