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ABSTRACT

Recent advances in large language models (LLMs) have transformed software
development by automatically generating code based on users’ requests in natu-
ral language. Despite these advancements, challenges remain in generating fully
correct code and aligning with user intent. Our empirical study reveals LLMs
tend to dilute their self-attentions on the initial prompt as more code tokens are
generated. We hypothesize this self-attention dilution issue is one of the root
causes of inaccuracies in LLM-generated code. To mitigate this issue, we propose
Selective Prompt Anchoring (SPA) to amplify the influence of the selected parts in
the initial prompt, which we refer to as “anchored text”, during code generation.
Specifically, SPA calculates the logit distribution difference with and without the
anchored text. We prove this logit difference approximates the anchored text’s
contextual contribution to the output logits. SPA creates an augmented logit distri-
bution by linearly combining the original logit distribution and the logit difference.
We evaluate SPA with five LLMs on four benchmarks. Our results show that after
tuning on a few dozen tasks, SPA consistently improves Pass@1 on new tasks by up
to 7.6% across all settings. Notably, with selective text anchoring, a small version
of DeepSeek-Coder (6.7B) can achieve better performance than an original much
larger version (33B). Our code is available at https://anonymous.4open.
science/r/Selective-Prompt-Anchoring-74E7.

1 INTRODUCTION

Large language models (LLMs) have emerged as powerful programming assistants. They have
demonstrated unprecedented capabilities in interpreting natural language descriptions and generating
source code. Despite this great progress, LLMs still produce incorrect solutions to some tasks or
generate code that does not fully meet user expectations. The prevalence of such generation errors
undermines their reliability and limits their utility in real-world software development.

To improve the performance of LLMs on coding tasks, many efforts have been made to develop
high-quality training data (Li et al., 2023c; Guo et al., 2024; Wei et al., 2023) and design new domain-
specific training objectives (Niu et al., 2022; Chakraborty et al., 2022). However, these approaches
require tremendous computational resources. Training-free approaches have been explored to address
this challenge by enhancing the prompting method or incorporating external knowledge, such as
retrieval-augmented generation (Du et al., 2024), chain-of-thoughts (Le et al., 2024; Suzgun et al.,
2022), self-planning and debugging (Jiang et al., 2023; Chen et al., 2023), etc. While they have been
proven to be effective in improving performance, there exist limitations such as being sensitive to the
quality of prompt design and retrieved data (Zhao et al., 2021). Compared with existing methods,
this work aims to study and improve LLMs in an orthogonal direction through attention adjustment.

One key component of existing LLMs is the self-attention mechanism in the transformer architec-
ture (Vaswani et al., 2017), which enables models to focus on crucial parts of the given prompt.
Despite the success of the self-attention mechanism, prior works found language models exhibit sim-
ple attention patterns (Raganato & Tiedemann, 2018; Voita et al., 2019). Furthermore, an empirical
study (Kou et al., 2024) found that given a coding task, there often exists a misalignment between
LLM attention and human attention. Compared with human programmers, LLMs often focus on
different parts of a natural language description when generating code. Inspired by this finding, we
hypothesize that a root cause of inaccuracy in LLM-generated code stems from the suboptimal model
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attention. To verify our hypothesis, we conduct an empirical study that analyzes the shift in LLMs’
attention distribution during code generation. We observe that LLMs’ attention to the initial prompt
gradually dilutes as generating more code. We call this phenomenon “attention dilution” in code
generation tasks.

In standard decoding algorithms, LLMs calculate a conditional probability for the next token based
on the preceding context. However, the autoregressive nature of LLMs considers both the initial
prompt and possibly wrong self-generated tokens together as the correct context and pays comparable
attention to them. We argue LLMs should pay more attention to the absolutely correct prompt and
less attention to the following self-generated content that could potentially be wrong.

Figure 1: The Workflow of Selective Prompt Anchoring (SPA)

To mitigate this limitation, we propose Selective Prompt Anchoring (SPA), a model-agnostic approach
that optimizes LLMs’ attention by amplifying the contextual influence of selective prompt, towards
each generated token. SPA is inspired by the anchoring effect (Furnham & Boo, 2011) in psychology,
which refers to people being influenced by specific information given before decision-making. In
SPA, we refer to this information as anchored text, a group of selected tokens within the prompt that
should receive higher attention from the model than others.

Figure 1 illustrates the pipeline of SPA. Given the anchored text, SPA creates an original embedding
matrix ( 1⃝) as well as a masked embedding matrix by replacing the embeddings corresponding
to anchored text with mask embeddings ( 2⃝). We mathematically show that the anchored text’s
contextual influence can be approximately measured by the difference between the logit distribution
generated from the original prompt and the prompt with the anchored text masked ( 3⃝). To amplify
the influence of anchored text in the model output, SPA multiplies this logit distribution difference by
a hyperparameter called anchoring strength ( 4⃝), and then adds it to the original logit distribution
( 5⃝). We find while the optimal anchoring strength varies across different models and tasks, it can be
easily tuned through dozens of tasks.

We evaluate SPA on four benchmarks with five LLMs. The result shows SPA can significantly
and consistently boost Pass@1 across all models and benchmarks, highlighting a new direction for
controlling LLMs’ high-level attention and effectively improving performance.
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2 AN EMPIRICAL ANALYSIS OF ATTENTION DILUTION

We first conduct an empirical study to analyze the attention dilution phenomenon in large language
models (LLMs) during code generation. To improve the generalizability of our findings, we exper-
imented with two different methods to compute the attention scores over input tokens. First, we
used a self-attention-based method (Zhang et al., 2022; Galassi et al., 2021) to obtain self-attention
scores from the last layer in LLMs, which has been shown to represent the most accurate attention
distribution (Kou et al., 2024; Wan et al., 2022a). Second, we used a gradient-based method (Selvaraju
et al., 2016; Shrikumar et al., 2017) that treats the entire LLM as a function and measures to what
extent each input token contributes to the output. Based on these two methods, we calculate the
percentage of attention on the initial prompt. Calculation details are provided in Appendix A.1.

Figure 2: Shift of LLMs’ self-attention to the
initial prompt. The attention is calculated from
the last self-attention layer of the LLM.

Figure 3: Shift of LLMs’ gradient-based attention
to the initial prompt. The gradient is calculated
with respect to the output logits.

On HumanEval (et al., 2021c), a widely-used benchmark for code generation, we experimented with
five LLMs: CodeGen-Mono-350M (Nijkamp et al., 2023), CodeLlama-7B (Rozière et al., 2024),
and DeepSeek-Coder-Instruct-1.3B, 6.7B, and 33B (Guo et al., 2024). Figure 2 and Figure 3 show
the evolution of the density of LLMs’ attention on the initial prompt when generating the first 400
tokens. 1 The results demonstrate that as the model generates more tokens, model attention on the
initial prompt gradually becomes smaller, which we refer to as attention dilution. Consequently,
as the generated code sequence becomes longer, the code generation process becomes increasingly
influenced by tokens generated in recent time steps, rather than the prompt from users. This can
be problematic in two ways. First, generation errors in the previous time steps are very likely to
propagate to the following steps as the model pays more attention to the preceding code tokens.
Second, for complex tasks that require the generation of a long code sequence (e.g., multiple if
statements), the model is likely to miss critical descriptions as it pays little attention to the user
prompt deep in the code generation process.

3 APPROACH

3.1 AUTOREGRESSIVE DECODING AND ITS LIMITATIONS

Given an LLM fθ and a prompt x, the model generates tokens t1, t2, . . . , ti−1 in an autoregressive
manner. At step i, the input to fθ is an n×m embedding matrix Ei, defined as:

Ei = embedding(x, t1, t2, . . . , ti−1) = [Ex, e1, e2, . . . , ei−1,PAD]. (1)

where Ex is the submatrix of embeddings for tokens in prompt x, e1, . . . , ei−1 are embeddings of
generated tokens, and PAD is a padding submatrix.

1The average generated token number is 132. The gradual noisy plot results from a lack of lengthy generations.
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The model outputs logits and transforms them into a probability distribution. Then a sampling method
(e.g., greedy sampling) is applied to select the next token ti:

ti = argmax
t

softmax(fθ(Ei)) = argmax
t

Pθ(t|x, t1, . . . , ti−1) (2)

However, autoregressive decoding assumes all prior tokens are correct, giving them equal opportunity
to compete for the model’s attention—even when self-generated tokens may be wrong. As the number
of self-generated tokens increases, the model’s attention to the initial prompt (which describes the task
objective) gradually dilutes. Consequently, the later a token is generated, the higher the probability
that the model attends to incorrect information, increasing the likelihood of generating errors.

3.2 SELECTIVE PROMPT ANCHORING

To mitigate the attention dilution issue, we propose Selective Prompt Anchoring (SPA) to augment
the output logits by amplifying the contextual contribution of the selective tokens within the prompt,
which we refer to as “anchored text”.

SPA introduces the mechanism of adjusting the semantic impact of selected tokens in the input matrix
Ei towards the output logits fθ(Ei). For simplicity, here we make the entire initial prompt x as the
anchored text.

Ei is an n ×m input embedding matrix at step i, and Ex represents a n × k submatrix within Ei

covering the first k columns (corresponding to the prompt x). They are visualized below:

Ei =


e11 · · · e1k
e21 · · · e2k

...
. . .

...
en1 · · · enk︸ ︷︷ ︸

Ex

e1,k+1 · · · e1m
e2,k+1 · · · e2m

...
. . .

...
en,k+1 · · · enm

 . (3)

We construct two n×m matrices, X and Gi, which add up to Ei. Matrix X is created by preserving
the first k columns of Ei corresponding to Ex and setting all other columns to zero (note that Ex and
X remain unchanged during generating new tokens). Matrix Gi is constructed by setting the first k
columns of Ei that correspond to Ex to zero, and retaining all other elements from the remaining
columns. They are visualized as follows:

X =


e11 e12 · · · e1k 0 · · · 0
e21 e22 · · · e2k 0 · · · 0

...
...

. . .
...

...
. . .

...
en1 en2 · · · enk 0 · · · 0

 ,Gi =


0 0 · · · 0 e1,k+1 · · · e1m
0 0 · · · 0 e2,k+1 · · · e2m
...

...
. . .

...
...

. . .
...

0 0 · · · 0 en,k+1 · · · enm

 . (4)

The sum of X and Gi reconstructs the original matrix Ei:

Ei = X+Gi. (5)

Suppose we want to amplify the semantic impact of the submatrix X by a value ω. ω > 1 indicates
semantic amplification, while ω < 1 indicates semantic diminishment.

Here we need to define a semantic adjustment function Φ(X, ω) that scales the influence of X by ω
times. Note that the original embedding matrix Ei corresponds to when ω equals 1:

Ei = Φ(X, 1) +Gi. (6)

To amplify the semantic impact of the anchored prompt x in the final logits, it is essentially calculating
the integral of the partial derivative of fθ with respect to ω from 0 to ω2. Let Fθ,i,x(ω) represent the

2fθ is differentiable for backpropagation
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augmented logits calculated by model fθ at step i, where the impact of anchored text x is scaled by
ω. Formally,

Fθ,i,x(ω) = fθ(Φ(X, ω) +Gi) (7)

= Fθ,i,x(0) +

∫ ω

0

dFθ,i,x(t)

dt
dt, (8)

where t is the variable of integration.

3.3 AUGMENTED LOGITS BY APPROXIMATION

Given the computational complexities of LLMs, directly solving
∫ ω

0
dFθ,i,x(t)

dt dt is impractical.
Therefore, we approximate it by employing the Taylor expansion:

Fθ,i,x(ω) = Fθ,i,x(0) + ω · Fθ,i,x
′(0) +

ω2

2!
Fθ,i,x

′′(0) + . . . (9)

Since LLMs are inherently non-linear, higher-order derivatives of the logits function are non-zero.
We truncate the series after the first derivative to get an approximation, yielding:

Fθ,i,x(ω) ≈ Fθ,i,x(0) + ω · Fθ,i,x
′(0), (10)

where the the integral part
∫ ω

0
dFθ,i,x(t)

dt dt in Equation 8 is approximated by ω · Fθ,i,x
′(0).

To calculate Fθ,i,x(0), we mask tokens in the anchored text x using masked embeddings. Each LLM
provides at least one special token reserved for text masking, which almost has no semantic influence
3, e.g., <unk> for Code Llama (Rozière et al., 2024) and <pad> for DeepSeek-Coder (Guo et al.,
2024). Each special token corresponds to a masked embedding. By replacing embeddings of x with
masked embeddings, we get a masked input matrix Emask

i . It ablates the semantic influence of the
anchored text x while the positional encoding is not affected. Thus, we can get

Fθ,i,x(0) = fθ(Emask
i ). (11)

To calculate Fθ,i,x
′(0), we use finite-difference methods to get an approximation. Assuming the

interval of 1− 0 is sufficiently small for Fθ,i,x, we get:

Fθ,i,x
′(0) ≈ Fθ,i,x(1)− Fθ,i,x(0)

1− 0
. (12)

Combining Equations 10, 11 and 12, we get the augmented logits by first-order approximation:

Fθ,i,x(ω) ≈ Fθ,i,x(0) + ω · (Fθ,i,x(1)− Fθ,i,x(0)) (13)
= ω · fθ(Φ(X, 1) +Gi) + (1− ω) · fθ(Φ(X, 0) +Gi) (14)

= ω · fθ(Ei) + (1− ω) · fθ(Emask
i ). (15)

Based on the augmented logits Fθ,i,x(ω) where the impact of the anchored text is adjusted by a
given value ω, a certain sampling algorithm is applied to select the particular token. SPA can be used
to augment different existing sampling methods, such as greedy sampling, beam search, nucleus
sampling (Holtzman et al., 2019), and more. We provide more discussion about approximation in
Appendix A.2.

3.4 TUNING ANCHORING STRENGTH

The anchoring strength ω serves as a hyperparameter in SPA. Our experiments demonstrate an
unimodal relationship between ω and the performance. As the anchoring strength ω increases, the
performance first improves, reaching an optimum, and then declines with further increases of ω. It is
simple to tune this single hyperparameter through a few dozen instances. More details are discussed
in Section 5.3.

3Fθ,i,x(0) does not mean setting the embedding vector to zeros. Instead, it means setting ω to zero, which
replaces the original embedding for anchored text with the masked embedding that contains no semantic
information. This masked embedding vector is non-zero.

5
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3.5 SELECTION OF ANCHORED TEXT

While SPA can easily anchor the entire prompt, the initial prompt can significantly vary due to task
differences. In some scenarios, the prompts can be lengthy and not all information is persistently
important throughout the generation. Our goal is to identify and anchor the most informative tokens,
which LLMs should persistently focus on, while excluding trivial details in the prompt. For code
generation tasks, the prompt commonly comprises four possible components: (1) Natural language
instruction or docstring; (2) Starting code snippet; (3) A list of test cases; (4) Few-shot examples.
Intuitively, natural language instruction provides high-level guidance that LLM should continually
consider. This is confirmed by our experiment in Section 5.4.

4 EXPERIMENTS

Our experiment aims to address four main research questions:

RQ1 Can SPA effectively and consistently mitigate attention dilution and improve performance?
RQ2 Can the anchoring strength tuned on one code generation setting be transferred to another?
RQ3 How does the anchoring strength ω of SPA affect code generation performance?
RQ4 How does the selection of anchored text affect code generation performance?

4.1 COMPARISON BASELINES

SPA requires access to the full logits generated by the large language models (LLMs), so we are
unable to evaluate closed-source models, such as GPT-4o and Claude-3.5-Sonnet. We select five
representative open-source code LLMs: CodeGen-Mono-350M (Nijkamp et al., 2023), CodeLlama-
7B (Rozière et al., 2024), and DeepSeek-Coder-Instruct-1.3B, 6.7B, and 33B (Guo et al., 2024).
These models have been fine-tuned for code generation tasks. Notably, the DeepSeek-Coder-Instruct
models have been fine-tuned by instruction-tuning (Wei et al., 2022), while CodeGen-Mono and
CodeLlama are standard text completion models. This selection aims to cover diverse SOTA code
LLMs of different types and sizes.

4.2 BENCHMARKS

HumanEval (et al., 2021c). It includes 164 Python tasks designed by OpenAI developers. It was
initially designed to evaluate Codex (et al., 2021a) and has since become a common benchmark for
code generation.

MBPP (Austin et al., 2021). It includes 974 crowd-sourced Python tasks. However, due to the crowd
workers’ ambiguous or insufficient task descriptions, the MBPP authors created a sanitized version
containing 427 tasks with clearer descriptions. We evaluate SPA on the sanitized version.

HumanEval+ and MBPP+. Although HumanEval and MBPP are considered de facto standards
for assessing code LLMs, a recent study (Liu et al., 2023a) found they lack sufficient test cases and
precise problem descriptions. This has been demonstrated as an issue that can lead to an unreliable
assessment of LLM-generated code (Liu et al., 2024b). Liu et al. (2023a) subsequently released
HumanEval+ and MBPP+, which supplement HumanEval and MBPP with additional test cases and
better instruction. We also evaluate SPA performance on HumanEval+ and MBPP+.

4.3 EVALUATION METRICS AND EXPERIMENT SETUP

Evaluation Metric. Following prior work (et al., 2021b; Kulal et al., 2019; et al., 2021a), we measure
model performance using the Pass@k metric, which measures whether any of the top k candidates
can pass all the test cases. In our experiments, we calculate Pass@1 and Pass@10. For Pass@1,
LLMs generate a single code snippet using greedy sampling. The task is considered successful only
if this generated code passes all test cases. For Pass@10, LLMs generate top 10 most probable code
snippets using beam search. The task is deemed successful if any of these candidates pass all test
cases.

Model Deployment. We downloaded and deployed LLMs from Huggingface. To expedite evalua-
tions, we apply 8-bit quantization (Frantar et al., 2023; Dettmers et al., 2022) to all models. Prior
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studies (Li et al., 2024; Huang et al., 2024) have demonstrated that this approach has very little
impact on LLM performance. All experiments were conducted on a 64-bit Ubuntu 22.04 LTS system,
equipped with an AMD EPYC 7313 CPU, eight NVIDIA A5500 GPUs, and 512GB of memory. The
experiments ran for approximately seven weeks.

Prompt Design. We use the original task descriptions from the datasets as prompts for the text-
completion models, CodeLlama and CodeGen-Mono. For the three DeepSeek-Coder-Instruct models,
we format the prompts using the official chat template from HuggingFace.

Hyperparameter Tuning. For each model and dataset, we use grid search to tune the anchoring
strength ω on 1/5 tasks in dataset to get SPAtuned. We also get the optimal anchoring strength by
tuning on the entire dataset (SPAoptimal). We evaluate both of them on the remaining 4/5 dataset and
compute Pass@1 via greedy search as well as Pass@10 via beam search (elaborated in Appendix A.6).

5 RESULTS

5.1 MODEL PERFORMANCE IMPROVEMENTS

Table 1: Pass@1 and Pass@10 (%) with and without using SPA

Model Size
HumanEval HumanEval+ MBPP MBPP+

Pass@1 Pass@10 Pass@1 Pass@10 Pass@1 Pass@10 Pass@1 Pass@10

CodeGen-Mono (350M) 15.3 36.6 12.2 33.6 19.6 47.7 15.9 42.4
+ SPAtuned 18.3 (+3.0) 38.2 (+1.6) 16.0 (+3.8) 36.6 (+3.0) 24.9 (+5.3) 52.6 (+4.9) 20.6 (+4.7) 42.1 (-0.3)

+ SPAoptimal 18.3 (+3.0) 38.2 (+1.6) 16.0 (+3.8) 36.6 (+3.0) 24.9 (+5.3) 52.6 (+4.9) 20.6 (+4.7) 42.1 (-0.3)

DeepSeek-Coder (1.3B) 66.4 73.3 61.8 68.7 58.2 67.0 52.4 63.7
+ SPAtuned 69.5 (+3.1) 73.3 (+0.0) 66.4 (+4.6) 69.0 (+0.3) 59.1 (+0.9) 68.4 (+1.4) 52.4 (+0.0) 64.3 (+0.6)

+ SPAoptimal 71.0 (+4.6) 73.3 (+0.0) 66.4 (+4.6) 69.5 (+0.8) 61.7 (+3.5) 69.3 (+2.3) 53.4 (+1.0) 64.3 (+0.6)

DeepSeek-Coder (6.7B) 75.6 84.0 70.2 77.9 67.0 79.8 58.5 70.2
+ SPAtuned 83.2 (+7.6) 85.5 (+1.5) 75.6 (+5.4) 80.9 (+3.0) 69.6 (+2.6) 84.5 (+4.7) 60.2 (+1.7) 72.5 (+2.3)

+ SPAoptimal 84.0 (+8.4) 85.5 (+1.5) 76.3 (+6.1) 81.7 (+3.8) 72.2 (+5.2) 83.6 (+3.8) 61.1 (+2.6) 73.4 (+3.2)

CodeLlama (7B) 33.6 58.0 28.2 48.9 50.9 61.0 40.8 49.0
+ SPAtuned 40.5 (+6.9) 62.6 (+4.6) 33.6 (+5.4) 52.7 (+3.8) 52.9 (+2.0) 63.7 (+2.7) 43.1 (+2.3) 50.9 (+1.9)

+ SPAoptimal 41.2 (+7.6) 64.9 (+6.9) 35.9 (+7.7) 54.2 (+5.3) 52.9 (+2.0) 63.7 (+2.7) 43.1 (+2.3) 51.7 (+2.7)

DeepSeek-Coder (33B) 81.7 88.5 77.1 80.2 73.4 86.8 63.2 75.8
+ SPAtuned 84.7 (+3.0) 89.3 (+0.8) 77.9 (+0.8) 81.7 (+1.5) 77.2 (+3.8) 88.6 (+1.8) 68.5 (+5.3) 74.9 (-0.9)

+ SPAoptimal 85.5 (+3.8) 89.3 (+0.8) 78.6 (+1.5) 80.9 (+0.7) 77.2 (+3.8) 88.0 (+1.2) 68.5 (+5.3) 77.2 (+1.4)

The results in Table 1 show that SPA consistently improves Pass@1 and Pass@10 across all bench-
marks and LLMs (RQ1). The improvement reaches up to 7.6% on HumanEval for DeepSeek-Coder
(6.7B). Remarkably, through selective text anchoring, the smaller version of DeepSeek-Coder (6.7B)
outperforms its much larger counterpart (33B). While Pass@10 improvements are less pronounced
than Pass@1, they still demonstrate consistent enhancements across most settings. One potential rea-
son is that SPA not only increases the accuracy of top logits but also amplifies noises in lower-ranked
logits. We discuss this in detail in Appendix A.6. To better demonstrate how SPA effectively anchors
LLM’s attention on the initial prompt, we include two code generation examples in Appendix A.4.

Note that the performance improvement is achieved only by amplifying the original prompt’s influence
without introducing new knowledge or fine-tuning model parameters. We attribute SPA’s effectiveness
to two reasons. First, when generating a new token, each prior token carries a risk of being incorrectly
attended to by the model. As the model generates more tokens that compete for attention, the
likelihood of attending to irrelevant tokens increases, thereby leading to errors. In contrast, the
original prompt represents the high-level user intent that is persistently relevant to generated tokens.
Anchoring the model’s attention on the original prompt via SPA essentially enlarges the reliable
portion of the model’s attention, thereby generating more accurate next tokens. Second, while each
self-generated token carries a probability to be error, autoregressive decoding assumes all prior
tokens are correct. This allows for error propagation as more tokens are generated. By downplaying
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self-generated tokens, SPA essentially provides a fairer attention distribution by measuring the
trustworthiness of prior tokens. We discuss more in Appendix A.7.

5.2 CROSS-DATASET & CROSS-MODEL EVALUATION

SPA introduces a single hyperparameter, anchoring strength ω, which modulates the degree of the
anchoring effect of SPA. We investigate the transferability of this hyperparameter across different
models and datasets (RQ2). Firstly, we conduct a cross-dataset evaluation between HumanEval/Hu-
manEval+ and MBPP/MBPP+, which have distinct prompt formats. We tune ω on HumanEval+ and
evaluate Pass@1 on MBPP and MBPP+, and vice versa4 (denoted as SPAcross−dataset). We calculate
average Pass@1 improvements on original and plus versions across all baseline models. Secondly, we
perform a cross-model evaluation by tuning ω on one model and evaluating Pass@1 on the remaining
four. For each model, we compute the average Pass@1 improvements across all the other models, for
HumanEval/HumanEval+ and MBPP/MBPP+ respectively (denoted as SPAcross−model). Similar to
Section 5, SPAtuned represents tuning within the split partial dataset, while SPAoptimal represents
tuning within the entire dataset.

Table 2: Pass@1 improvements (%) based on cross-dataset tuning

Dataset SPAcross−dataset SPAcross−model SPAtuned SPAoptimal

HumanEval/+ + 2.01 - 0.29 + 4.36 + 5.11
MBPP/+ + 2.50 + 0.37 + 2.86 + 3.57

As shown in Table 2, we find the anchoring strength ω tuned on one model is hardly transferred to
another. However, ω tuned on one dataset can be transferred to another with reduced but still effective
performance. These observations suggest that the anchoring strength is highly model-dependent and
partially task-dependent.

5.3 ANALYSIS OF ANCHORING STRENGTH

Figure 4: Analysis of Anchoring Strength

To further investigate the relationship between code generation performance and the anchoring
strength of SPA (RQ3), Figure 4 illustrates the change in Pass@1 for various values of ω across
each model and benchmark (ω = 1 represents the original model). We observe a roughly unimodal
relationship between ω and performance: as ω increases, performance first improves, reaches an
optimum, and then declines with further increases. While the optimal ω varies slightly across different
models and benchmarks, it tends to be model-dependent. Furthermore, we find that any ω value
below 1.25 leads to performance improvements across all scenarios.

5.4 ANALYSIS OF ANCHORED TEST SELECTION

To investigate the impact of anchored text selection in code generation tasks (RQ 4), we calculate
pass@1 by masking different components in the prompt. Prompts in HumanEval/HumanEval+

4The "plus" versions of HumanEval and MBPP share identical prompts with their original counterparts, so
we can only tune on the plus version.

8



432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2025

include the function signature (referred to as Code), natural language task descriptions (NL), and
test cases (Test). Prompts in MBPP/MBPP+ consist of task descriptions (NL) followed by test cases
(Test). For HumanEval/HumanEval+, we create four conditions by removing test cases and source
code. For MBPP and MBPP+, we create two conditions by removing test cases. We chose to anchor
the natural language task descriptions in all conditions, as they serve as the core task intent to mitigate
attention dilution. We use SPA tuned on the entire dataset in all conditions. For each condition and
benchmark, we calculate the average Pass@1 improvement across all five models.

Table 3: Improvements of Pass@1 rates (values in %) for different anchored text

Anchored Text HumanEval HumanEval+ MBPP MBPP+
NL + 5.48 + 5.08 + 4.26 + 3.22
NL + Test + 5.11 + 4.89 + 4.05 + 3.11
NL + Code + 4.87 + 4.65 – –
NL + Code + Test + 4.76 + 4.57 – –

Table 3 shows that anchoring the natural language task description alone yields the best performance.
This implies that anchoring more tokens in the prompt is not necessarily beneficial. Anchoring an
increasing number of tokens can diminish the effectiveness of differentiating the logit distribution.
For example, anchoring all tokens would merely introduce random noise. Instead, focusing on fewer
but critical, informative tokens leads to better results. More specifically, the optimal anchored tokens
should be those highly relevant to the current context but overlooked by the model.

In code generation tasks, the natural language task description represents the user’s intent, which is
persistently relevant. Continuously anchoring this part provides a sub-optimal but effective trade-off
solution. While opportunities exist to further refine the range of critical tokens by filtering out less
relevant ones, we find this requires significant effort in studying and designing such an algorithm. For
other tasks, the range of anchored text can vary significantly. For instance, unlike natural language task
descriptions in code generation tasks, code translation tasks lack a component that needs persistent
anchoring. Additionally, the anchored text may also vary across different models—some tokens may
be easily overlooked by certain models but correctly attended to by others.

6 RELATED WORK

Code Generation. In recent years, there has been rapid progress in the development of code
generation approaches (Dong & Lapata, 2016; Iyer et al., 2018) and benchmarks (et al., 2021c; Austin
et al., 2021; Liu et al., 2023a; Hendrycks et al., 2021). With the advent of large language models
(LLMs), such as GPT-4 (OpenAI & et al., 2024) and Gemini (Team & et al., 2024), code generation
has become a standard capability. Subsequent research has focused on fine-tuning these pre-trained
LLMs to achieve state-of-the-art performance.

Despite their remarkable ability to follow natural language instructions, LLMs still face challenges
when generating long and complex code. To enhance the code generation capabilities of LLMs,
recent studies have explored train-free approaches such as prompt engineering (Denny et al., 2023;
White et al., 2023), in-context learning (Dong et al., 2023; Li et al., 2023a;b), and retrieval-augmented
generation (Lewis et al., 2020; Du et al., 2024). Additionally, self-debugging techniques (Chen
et al., 2023) enable LLMs to debug code based on error messages and execution results, while
self-planning (Jiang et al., 2023) allows LLMs to decompose tasks into subtasks and implement
solutions step-by-step. The chain-of-thought approach (Le et al., 2024; Suzgun et al., 2022; Ma et al.,
2023) facilitates a step-by-step reasoning process in LLMs. Complementing these approaches, SPA
introduces an orthogonal approach particularly suitable for code generation. It can be integrated with
existing methods to further improve performance.

Controllable Generation. Compared to fine-tuning a language model (LM) at the decoding time,
controllable generation aims to steer the pre-trained LMs to match a sentence-level attribute (e.g.,
a topic on sports). Existing approaches usually require additional models or training, such as fine-
tuning a smaller LM (Liu et al., 2024a; 2021; Yang & Klein, 2021; Dathathri et al., 2020), a reward
model (Deng & Raffel, 2023; Lu et al., 2023), or a fine-tuned model with controlling codes (Krause
et al., 2021; Li & Liang, 2021; Keskar et al., 2019). The mechanism used in SPA can also be used

9
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to control the generation by adjusting anchoring strength over the input text. Compared to the
aforementioned works, SPA does not require any additional models or training.

Logit Arithmetic. There has been a growing body of methods that perform arithmetic on multiple
logit distributions to enhance text generation. These methods include contrasting logits from multiple
LMs (Liu et al., 2024a; 2021; Dou et al., 2019; Zhao et al., 2024), logits of LMs of different sizes (Li
et al., 2023d), logits from different layers of a model (Chuang et al., 2024; Gera et al., 2023), and
logits from the same model given different inputs (Pei et al., 2023; Shi et al., 2023; Malkin et al.,
2022; Sennrich et al., 2024; Leng et al., 2023). Similar ideas have also been explored in diffusion
models (Han et al., 2024; Ho & Salimans, 2022).

SPA can be considered analogous to contrasting logits from the same model when given different
inputs. However, we delve deeper by modeling a mathematical approximation of semantic adjustment
over arbitrary groups of embeddings. Furthermore, SPA is specifically designed to address the
attention dilution issue in LLMs during code generation—a phenomenon first observed in our work.
By contrast, none of existing works explored code generation tasks. They primarily focus on reducing
hallucinations (Shi et al., 2023; Sennrich et al., 2024; Leng et al., 2023), enhancing coherence (Malkin
et al., 2022), factuality (Chuang et al., 2024), and controllable text generation (Liu et al., 2021; Pei
et al., 2023; Zhao et al., 2024). Besides, SPA focuses on perturbation of the original prompt through
masking rather than providing additional context (Pei et al., 2023; Shi et al., 2023; Malkin et al.,
2022) or changing to a completely new prompt (Sennrich et al., 2024).

7 LIMITATIONS & FUTURE WORK

We employed 8-bit quantized LLMs to expedite all experiments. Although this method has been
shown to have minimal impact on performance, we did notice some degradation. Furthermore, we
did not evaluate very large LLMs (e.g., more than 100B) due to computational constraints. Despite
the unimodal feature, it is infeasible to enumerate all the anchoring strength ω on the continuous
distribution. The real optimal ω should perform slightly better than the values reported in Section 4.

While SPA achieved a consistent improvement on LLMs with different sizes and types (i.e., instruction-
tuned & text completion), we do not observe a monotonic relationship between model attributes
and the improvement. Furthermore, there is no obvious correlation between the original model
performance and the improvement. It is an interesting future direction to investigate how different
model attributes affect the improvement achieved by SPA. Given the performance improvements, the
computational overhead of SPA is acceptable. We elaborate on this in Appendix A.5.

The effectiveness of SPA highlights its potential in other domains, particularly for generation tasks.
However, we believe rigorous experiments are necessary to confirm whether attention dilution exists
in other tasks, as different tasks may have unique input and output patterns. Investigating the existence
of attention dilution and determining which text to anchor in other tasks presents an interesting avenue
for future research. In this work, we pre-define the method for selecting anchored tokens and use a
fixed anchoring strength when generating code. We consider this approach a baseline. Future work
could explore dynamically determining both the anchored text and the anchoring strength based on
different contexts and sampling stages. Furthermore, the underlying principle of SPA is not confined
to transformer-based LLMs and could be adapted for use in other model architectures (e.g., RNNs).

8 CONCLUSION

In this paper, we propose SPA, a model-agnostic approach designed to enhance the quality of
code generated by large language models (LLMs) by mitigating the attention dilution issue. SPA
employs a novel technique to adjust the influence of selected groups of input tokens, based on a
mathematical approximation. Our empirical study indicates that LLMs may overlook the initial
prompt as generating more new tokens. By amplifying the initial prompt’s influence throughout code
generation, SPA consistently and significantly improves performance across models of various sizes
on multiple benchmarks.
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A.1 ATTENTION CALCULATION

Self-attention. Most LLMs are based on the decoder of transformer (Vaswani et al., 2017) which has
multiple self-attention layers. Roughly speaking, given an LLM fθ and an input sequence of tokens
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t0, t1, . . . , tn where ti represents the ith token. The transformer calculates relevance scores between
every pair of tokens. The self-attention score for a token ti in the sequence can be roughly formulated
as:

attention(ti) ≈
∑n

j=1 relevance(ti, tj)∑n
i=1

∑n
j=1 relevance(ti, tj)

, (16)

where the relevance function approximates the computation among Q,K, V in transformers (Vaswani
et al., 2017). However, different layers have different attention distributions. According to a
study (Wan et al., 2022b), deeper self-attention layers can better capture long-distance dependencies
and program structure, so we calculate the attention by aggregating attention from multiple heads at
the last layer. Nevertheless, this still excludes the influence from the last forward layer.

Gradient-based Attention. Compared to using self-attention layers in transformers, the gradient-
based method can be generalized to different model architectures and consider the entire model as a
whole. It computes the model’s attention by calculating the gradients relative to the input. Intuitively,
a token that induces a larger gradient is considered more influential, suggesting that the model pays
greater attention to it. Formally, the attention over the token ti is calculated by

attention(ti) =
∂fθ(t0, t1, . . . , tn)

∂ti
. (17)

Attention Percentage to the Prompt. Based on these two methods, we analyze how the attention of
LLMs to the initial prompt shifts. Formally, given the prompt x and the following generated tokens
t0, t1, . . . , ti−1, we calculate the percentage of attention α(x) over the initial prompt

α(x) =
attention(x)

attention(x) +
∑n

i=1 attention(ti)
(18)

Given attention analysis requires open sourcing, we select five SOTA code LLMs with various sizes.
We run the experiments on HumanEval (et al., 2021c), one of the most popular benchmarks for
evaluating code generation models. We run five LLMs (Nijkamp et al., 2023; Rozière et al., 2024;
Guo et al., 2024) on all 164 Humaneval tasks. Figure 2 shows the self-attention shift and Figure 3
shows the gradient-based attention shift when generating the first 400 tokens. The value gradually
becomes noisy due to the lack of generated sequence with enough length.

The results demonstrate that there indeed exists such attention dilution issue. Due to the autoregressive
nature, LLMs’ attention to the initial prompt is gradually diluted as generating more code. LLMs tend
to attend to code generated by itself. Our finding is supported by another study (Chiang & Cholak,
2022) which investigates the self-attention dilution of transformers in a more general scenario.

A.2 APPROXIMATION IN SPA

In Equation 10, we get the approximation by only keeping the first derivative in Equation 9, but it is
also feasible to calculate a higher-order approximation. For example, if we want to keep the term
involving the second-order derivative ω2

2! Fθ,i,x
′′(0), it can still be computed using finite-difference

methods:

Fθ,i,x
′′(0) ≈ Fθ,i,x(1)− 2Fθ,i,x(0) + Fθ,i,x(−1)

(1− 0)2
. (19)

Fθ,i,x(−1) can be solved by Equation 13 where Fθ,i,x(0) and Fθ,i,x(1) are the logits generated from
the original input and the logits generated from the masked input.

However, no matter how many terms we keep in Equation 9, we find we can only represent Fθ,i,x(ω)
as a linear combination of F (0) and F (1), weighted by an unknown variable ω.

In Section 5.3, our experiments reveal that ω’s impact on code generation performance follows an
unimodal pattern—initially increasing, then decreasing. Due to its distribution simplicity, we argue
that while a higher-order approximation may yield a more reasonable performance distribution across
different ω values, it does not significantly affect the process of locating the optimal anchoring
strength. Therefore, beyond its computational efficiency, the first-order approximation in SPA is
adequate for calculating semantically accurate augmented logits.
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Table 4: Optimal ω for each model and benchmark

Model HumanEval HumanEval+ MBPP MBPP+ Average

CodeGen-Mono (350M) 1.20 1.20 1.35 1.35 1.28

DeepSeek-Coder (1.3B) 1.05 1.05 1.20 1.20 1.13

DeepSeek-Coder (6.7B) 1.28 1.28 1.25 1.25 1.26

CodeLlama (7B) 1.60 1.60 1.20 1.20 1.40

DeepSeek-Coder (33B) 1.35 1.35 1.30 1.30 1.33

Average 1.30 1.30 1.33 1.33 1.28

A.3 OPTIMAL ANCHORING STRENGTH

Table 4 reports optimal anchoring strength values ω that are used in our main results (Table 1).
We observe the average value of 1.28 can be used to effectively improve performance across all
benchmarks for all LLMs.

A.4 EXAMPLES

Figure 5 presents two examples comparing the code generated by models alone and the models
augmented using SPA.

In the first example, CodeLlama (7B) overlooks the specified condition "upper vowels." In contrast,
SPA enhances the model’s focus on the intended purpose. The code initializes all the upper vowels in
the first line and correctly refers to it later.

In the second example, DeepSeek-Coder (1.3B) erroneously sorts the list by string names instead of
integers. When using SPA, the model demonstrates improved recognition of the required procedures,
aligning more closely with the task description. The code correctly sorts and reverses the list. Then
the integer list is mapped to the string list.

A.5 COMPUTATIONAL COST

In our implementation, SPA requires twice the inference time to obtain two logits, plus some minor
additional computation costs for operations like logit addition. We observe that SPA typically takes 2
to 3.5 times longer than regular inference. There is little extra memory overhead. Compared to the
size of the LLM, SPA only requires a few additional variables and an embedding matrix to buffer in
the RAM.

We believe our implementation can be further optimized for speed. For example, there is a significant
overlap between the masked embedding and the original embedding. This overlap can be leveraged
for acceleration through caching repetitive computations in transformer Liu et al. (2023b); Ge et al.
(2024).

A.6 BEAM SEARCH WITH SPA

To calculate Pass@10 in Section 5, we employ beam search to generate 10 candidate code snippets.
When running beam search with SPA, however, we found that directly sampling top beams based on
the augmented logits produced by SPA led to performance degradation.

We hypothesize that this phenomenon occurs because while SPA successfully amplifies the influence
of anchored text and improves the accuracy of top logits, it also amplifies noise in lower-ranked logits.
This undermines the reliability of the overall probability distribution, thereby hindering the sampling
process.
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Figure 5: Examples of generated code by LLMs alone (left) and using SPA (right).

To address this issue, we retrieve top candidate tokens based on the augmented logits but use original
probabilities to compute beam probability. This ensures that important, potentially overlooked tokens
are considered while maintaining reliable probabilities.

As demonstrated in our experiment results (Table 1), the improvements in Pass@10 are less effective
than Pass@1. We posit that fully leveraging the power of SPA requires a more sophisticated beam
search algorithm specifically adapted to SPA. We leave this as an avenue for future work.

A.7 HYPOTHESIZED EXPLANATION FOR ATTENTION DILUTION AND SPA’S EFFECTIVENESS

SPA is motivated by a recent study Kou et al. (2024) and our empirical observations demonstrating
the attention dilution issue. Our experiment results in Section 5 echo our observation and confirm the
existence of attention dilution during code generation. Here we propose a detailed explanation for
this phenomenon based on our knowledge and hypotheses. We believe it stems from two limitations
in regular decoding: (1) Distraction and (2) Error propagation.
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Distraction. When a transformer generates a token, its correctness depends on two abilities: (1)
whether the model attends to the correct context, and (2) whether the model can derive the correct
token based on this context. SPA aims to improve the first ability. Suppose we have a perfect
transformer. For each generated token, it should only attend to relevant prior tokens and ignore
irrelevant ones. However, no model is perfect. For each prior token, there is a chance the model
incorrectly identifies and attends to it. More tokens mean a higher probability that the attention
contains an error, thereby leading to distraction.

While self-generated tokens are also important context, they are less persistently related than task
description in code generation. Amplifying the task description via SPA can improve attention
reliability, thereby mitigating distraction.

Error propagation. Compared to reliable task description tokens, the self-generated code tokens
may be wrong. However, autoregressive decoding assumes all prior tokens are correct, and all the
tokens have an equal opportunity to compete for the model’s attention. As a result, the later a token
is generated, the higher the probability it is wrong as errors propagate. SPA adds extra attention to
earlier tokens that are less likely to be incorrect, creating a fairer attention distribution.
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