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Abstract

Clarification requests are a mechanism to help001
solve communication problems in instruction-002
following interactions. Despite their impor-003
tance, even skilful models struggle with pro-004
ducing or interpreting such repair acts. In005
this work, we show that even well-motivated,006
Transformer-based models fail to learn a good007
policy for when to ask Instruction CRs (iCRs),008
while the task of determining what to ask about009
can be more successfully predicted. We test010
three hypotheses concerning the effects of ac-011
tion taking as an auxiliary task for iCR policies,012
concluding that, while its contribution is lim-013
ited, some information can be extracted from014
prediction uncertainty. Considering the impli-015
cations of these findings, we further discuss the016
shortcomings of the data-driven paradigm for017
learning meta-communication acts.018

1 Introduction019

The concept of graceful interaction (Hayes and020

Reddy, 1979, 1983) was proposed as a set of skills021

that machines should exhibit to properly engage in022

cooperative dialogue with humans, among which023

are being able to ask for, understand and offer clar-024

ification. More than forty years later, the ineptitude025

of large language models and voice assistants to026

handle underspecifications and to properly process027

or produce clarification requests (CR) is still be-028

ing documented (Larsson, 2017; Kuhn et al., 2022;029

Li et al., 2023; Deng et al., 2023). It is also one030

of the acknowledged limitations of the currently031

prevailing commercial chat-optimised LLM.1032

Given that they are modulated for instructions,033

this seems to be a peculiar fault: CRs are a crucial034

mechanism used to repair misunderstandings in035

instruction following interactions (Benotti, 2009),036

1In the blogpost releasing chatGPT, the limitations section
says: “Ideally, the model would ask clarifying questions when
the user provided an ambiguous query. Instead, our current
models usually guess what the user intended.”. Source: https:
//openai.com/blog/chatgpt.

Figure 1: Clarification requests posed by an instruction
follower, demonstrating uncertainty on deciding what
actions to take. From: CoDraw dialogue game 8198,
CC BY-NC 4.0, scene from Zitnick and Parikh (2013).

as we see in Figure 1. On second thoughts, it comes 037

as no surprise. Clarification exchanges are meta- 038

communication acts that do not normally appear in 039

non-interactive data (Kuhn et al., 2022) and are also 040

relatively rare in dialogue data, with an empirical 041

frequency of 4% to 11% of turns (Purver et al., 042

2001; Benotti and Blackburn, 2021; Madureira and 043

Schlangen, 2023b). Therefore, it is still unclear to 044

what extent CR strategies can be learnt with data- 045

driven approaches (Benotti and Blackburn, 2021). 046

As we discuss in §2, many existing CR datasets, 047

despite their utility for applications like conver- 048

sational search (Keyvan and Huang, 2022; Rah- 049

mani et al., 2023), either have not been collected 050

via real interactions or are synthetic, so that learnt 051

CR policies may not correspond to genuine hu- 052

man behaviour. Moreover, current best-performing 053

data-driven models are still not doing very well in 054

deciding when to ask for clarification (see §2). 055

Recently, Madureira and Schlangen (2023b,a) 056

have argued that CoDraw (Kim et al., 2019) is a 057

rich resource for Instruction CRs (iCR), naturally 058

produced as a by-product of game playing, as in the 059
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example in Figure 1. The dataset offers a balance060

between size (in comparison to well-curated but061

small corpora) and retaining ecological validity (as062

opposed to massive datasets collected or crafted063

artificially). iCRs emerge at Clark’s 4th level of064

communication (Clark, 1996), i.e. at the level of065

uptake (Schlöder and Fernández, 2014). Suppos-066

ing their underlying strategies can emerge from067

data, we can reasonably assume that action-taking068

is a key component in modelling policies for decid-069

ing when and what to repair. However, one major070

drawback in the proposed baseline models is the071

overhearer paradigm, where models are trained to072

predict when to ask iCRs in a process detached073

from the actual actions required by the game.074

Contributions Given that background, this work075

aims to expand the boundaries of the open question076

of learning meta-communication acts from human077

data. We do that by (i) proposing a well-motivated078

model for learning when to ask iCRs; (ii) taking079

another step towards a more realistic CoDraw agent080

by defining and modelling the task of what to ask081

about; and (iii) testing three hypotheses to study the082

effect of action-taking in learning iCR policies, ver-083

ifying whether a measure of certainty can be used084

to probe for iCR abilities and inform predictions.085

2 Related Work086

Learning when to ask questions The problem087

of knowing when to ask questions in an interac-088

tion appears in various contexts. Relevant work089

has been done in language-aided visual navigation090

(Nguyen and Daumé III, 2019; Thomason et al.,091

2020; Chi et al., 2020; Nguyen et al., 2022), in092

which the agent must take actions in an environ-093

ment and decide when to ask for help, where RL is094

a suitable method. Similar policies are necessary095

in interactive settings like visual dialogue games096

that require deciding when to stop asking (Shekhar097

et al., 2018) or incremental predictions on when to098

answer a question (Boyd-Graber et al., 2012).099

Modelling clarification requests A vast litera-100

ture exists on describing and modelling clarifica-101

tion strategies (Purver et al., 2003; Gabsdil, 2003;102

Schlangen, 2004; Rodríguez and Schlangen, 2004;103

Rieser and Lemon, 2006; Stoyanchev et al., 2013,104

inter alia). In the age of neural network-based NLP,105

the problem has commonly been broken down into106

various tasks that are learnt from data: When to107

ask (Narayan-Chen et al., 2019; Aliannejadi et al.,108

2021; Shi et al., 2022; Kiseleva et al., 2022), what 109

to ask about (Braslavski et al., 2017; Aliannejadi 110

et al., 2021; Hu et al., 2020), and how to gener- 111

ate (Kumar and Black, 2020; Gervits et al., 2021; 112

Majumder et al., 2021) or select/rank appropri- 113

ate CRs (Rao and Daumé III, 2018; Aliannejadi 114

et al., 2019; Mohanty et al., 2023). Ideally, these 115

tasks should be tied into a single agent, but sev- 116

eral works are still approaching the problem in a 117

“task-framed” fashion without integration of all ca- 118

pabilities (Schlangen, 2021). 119

Modelling policies for when to ask for clarifi- 120

cation in instruction following is far from being a 121

solved problem, with models performing well be- 122

low the ceiling. The performance in the Minecraft 123

Dialogue dataset is 0.63 accuracy for the CR class 124

(Shi et al., 2022). In the recent IGLU challenge 125

(Kiseleva et al., 2022), the best model in the leader- 126

board2 reaches 0.75 weighted average F1 Score. In 127

predicting underspecification for code generation, 128

the highest performance is 0.78 binary F1Score 129

(Li et al., 2023). In Codraw-iCR, the baseline 130

achieves a similarly suboptimal 0.34 average pre- 131

cision (Madureira and Schlangen, 2023b). These 132

policies are failing to fully capture the human be- 133

haviour from data. Specifically for CoDraw, many 134

reasons are plausible, which we address in §5. 135

Another open issue is how to collect high-quality 136

CR data in enough amounts for machine learn- 137

ing purposes. In the annotated Minecraft Dia- 138

logue Corpus (Narayan-Chen et al., 2019; Shi et al., 139

2022), TEACh dataset (Padmakumar et al., 2022; 140

Gella et al., 2022) and CoDraw (Kim et al., 2019; 141

Madureira and Schlangen, 2023b,a), CRs occur by 142

own initiative of the players in real, multi-turn in- 143

teraction, ranging from hundreds to less than ten 144

thousand identified CR utterances. Still in the same 145

size range, the IGLU dataset (Kiseleva et al., 2022; 146

Mohanty et al., 2022) has been collected in a set- 147

ting that avoids pairing up players, with a one-shot 148

opportunity to ask for clarification (and without a 149

partner to answer it and allow further actions). 150

Other procedures have been used to collect CR 151

data in larger amounts. Massive datasets are Dial- 152

FRED (Gao et al., 2022), created via crowdsourc- 153

ing with workers who are explicitly asked to gener- 154

ate a question, and answer it, for a situation they are 155

not actually involved with. In neighbour domains 156

like virtual assistance, conversational search and 157

code generation, large-scale datasets containing 158

2Reported in the NeurIPS 2022 IGLU challenge platform.
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CRs have been constructed with data augmentation159

methods (Aliannejadi et al., 2021), user simulation160

(Kottur et al., 2021), templates (Li et al., 2023) and161

crawling QA online forums (Rao and Daumé III,162

2018; Kumar and Black, 2020). These strategies163

can reflect CR form and facilitate data collection164

but abstract away the fundamental triggers of In-165

struction CRs (joint effort, real-time interaction166

and action-taking), being arguably not suitable for167

learning CR policies for instruction following.168

Evaluating CR mechanisms in dialogue models169

Acquiring more natural data alone is no silver bul-170

let; appropriate evaluation methods are also neces-171

sary. Weighted-average F1 Score is not the most172

suitable performance measure for when to ask poli-173

cies because the proportion of CRs is imbalanced,174

so high scores may rely mostly on the prediction175

of the negative class. Average precision is more ad-176

equate for imbalanced binary classification (Saito177

and Rehmsmeier, 2015) and bypasses the need for178

a fixed threshold, but still only captures a limited179

dimension of the problem.180

We need more evaluation campaigns and meth-181

ods to shed light on what a model has actually182

learnt with respect to CR strategies. Some ini-183

tiatives towards more detailed assessment are in184

progress. Chiyah-Garcia et al. (2023) evaluate the185

abilities of multimodal models to process CRs in186

coreference resolution by interpreting the differ-187

ence in the object-F1 score at turns before and after188

a CR as the improvement provided by incorporat-189

ing the clarification; they also analyse results by190

considering various CR properties. In the realm of191

LLMs, Kuhn et al. (2022) employ an evaluation192

technique to prompt LLMs to first detect whether193

a question is ambiguous and generate a CR before194

answering it, concluding that the models can detect195

ambiguity but even so do not generally attempt to196

repair it. Deng et al. (2023) use “proactive prompt-197

ing”, an intermediate step to first induce the LLM198

to predict whether the appropriate dialogue act is to199

ask for clarification or to directly answer a question.200

The best LLM achieves only 0.28 F1 Score.201

3 Definitions202

CoDraw (Kim et al., 2019) is a multimodal dia-203

logue game where an instruction follower must use204

a gallery of 28 (out of 58) cliparts to reconstruct205

a scene (Zitnick and Parikh, 2013) they cannot206

see. They exchange text messages in a turn-based207

fashion with an instruction giver, who sees the orig-208

inal scene but has no access to the state of the 209

reconstructed scene, except for one chance to peek 210

at it during the game. The available actions are 211

adding or deleting, moving, flipping and resizing 212

cliparts in a canvas. Game success is measured by 213

a scene similarity score. The authors collected 9.9k 214

such dialogues, containing around 8k iCRs (11.3% 215

of the game turns), annotated by Madureira and 216

Schlangen (2023b,a) both under CC BY-NC 4.0. 217

We can define types of instruction follower models 218

for this game regarding their CR capabilities: 219

1. Overhearer: A model that observes the current 220

game state (dialogue context and scene) to predict 221

when to ask iCRs, without any additional game- 222

play actions or linguistic decisions. 223

2. Action-Taker: A model that plays the game by 224

only taking clipart actions, without iCR decisions. 225

3. iCR-Action-Taker: An Action-Taker with the 226

extra decision of when to ask iCRs. 227

4. Full agent: A model that makes all game-play 228

decisions, including natural language generation. 229

The Overhearer is a common paradigm in which 230

models resemble an observer of the actual player, 231

deciding what to do as if it were in their shoes. It is 232

a rather rough simplification of a full-fledged agent, 233

for which Action-Takers are an intermediate step 234

examined in this work. 235

The task of when to ask for iCRs has been for- 236

malised by Madureira and Schlangen (2023b). In 237

short, given the game state up to the last instruction 238

giver utterance, the instruction follower has to de- 239

cide whether to ask for clarification. This policy is 240

modelled as a function fwhen that maps the game 241

state to a probability of asking an iCR at the current 242

turn. Additionally, once the decision to ask for clar- 243

ification has been made, a player should also know 244

what objects and possible actions or attributes are 245

subject to clarification at that point. We thus define 246

the subsequent task of what to ask about: at an iCR 247

turn, a function fwhat outputs the probability of 248

asking an iCR about each object in the gallery.3 249

4 Hypotheses 250

In this section, we motivate and state the three 251

hypotheses we test. 252

Chiyah-Garcia et al. (2023) argue that auxiliary 253

learning objectives of detecting objects’ attributes 254

in a scene, as implemented by Lee et al. (2022), 255

3We leave the decision of what attributes to mention and
which form to realise for ongoing work on iCR generation.
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are useful for referential CRs at Clark’s 3rd level.256

Our expectation is that action prediction should257

be equivalently relevant for 4th level iCRs, which258

emerge when deciding how to act. More concretely,259

an iCR-Action-Taker should have a more genuine260

motivation to decide to ask in comparison to an261

Overhearer. However, experiments in the Minecraft262

dataset point to the opposite direction: Generating263

action sequences slightly harmed the accuracy of264

the Overhearer on when to ask (Shi et al., 2022).265

To further investigate it, our first hypothesis is:266

Hypothesis 1: An iCR-Action-Taker can learn a267

more accurate policy for predicting when to ask268

an iCR than an Overhearer.269

Here, we can also test whether action detection270

has a similar effect, by letting the model learn to271

detect actions given the scene before and after, as272

in Rojowiec et al. (2020). It is a framing even more273

equivalent to Lee et al. (2022), since, in their model,274

the attributes are already available in the images.275

In the next step, we aim to investigate if an276

Action-Taker trained without any explicit iCR sig-277

nal still builds representations that encode the need278

for repair. The study done by Xiao and Wang279

(2019) on quantifying uncertainty in NLP tasks280

shows that the examined models output higher data281

uncertainties for more difficult predictions. Be-282

sides, Yao et al. (2019) propose the assumption283

that if a model is uncertain about a prediction, it is284

more likely to be an error. They use uncertainty as285

a score to decide whether the prediction requires286

user clarification in the context of semantic pars-287

ing. Based on that, we conjecture that the need288

for repair should manifest as less certainty in the289

Action-Taker’s decisions.4 Thus, we set the linking290

hypothesis that certainty is expressed in the proba-291

bility it assigns to taking action, or not, at a given292

turn. It is a reasonable assumption, because the293

objective function is expected to push the predic-294

tions to be either 0 or 1, so predictions close to 0.5295

can be seen as indecisive. Therefore, the second296

hypothesis we test is:297

Hypothesis 2: At iCR turns, an Action-Taker298

(trained with no explicit iCR signal) predicts ac-299

tions with less certainty than at other turns. Sim-300

ilarly, less certainty is expected for actions upon301

4A similar investigation of the predictive uncertainty of
instruction follower model in the Minecraft data has been done
by Naszad et al. (2022) using length-normalized log-likelihood
and entropy of generated action sequences. Negative results
are reported in an unpublished short manuscript concluding
that uncertainty is not a good signal for when to ask CRs.

objects that are subject to iCRs than for other ob- 302

jects. 303

Finally, iCR policies for when to ask should be 304

grounded in a fine-grained representation of what 305

exactly is unclear. Thus our last hypothesis is: 306

Hypothesis 3: A pre-trained iCR-Action-Taker 307

can learn a more accurate policy for predicting 308

what to ask about in iCR turns than an Overhearer. 309

5 Models 310

In this section, we present the model architecture 311

we propose for our experiments. It incorporates 312

techniques from top-flight models in recent multi- 313

modal dialogue challenges, namely IGLU (Kise- 314

leva et al., 2022) and SIMMC 2.0 (Kottur et al., 315

2021), to address five of the limitations of the 316

baseline model (iCR-baseline) by Madureira and 317

Schlangen (2023b), some of them already acknowl- 318

edged by the authors. We also refer to the origi- 319

nal CoDraw model (CoDraw-orig) by Kim et al. 320

(2019), which, however, did not include the instruc- 321

tion follower’s utterances in the game. The basic 322

architecture of the iCR-Action-Taker is illustrated 323

in Figure 2 (see Appendix for specifications). 324

…

28 objects 
in gallery or scene

…

dialogue context 
(pretrained) 

…

scene features 
(pretrained)

action 
decoder 
(flip)

action 
decoder 
(add/
delete)

action 
decoder 
(move)

action 
decoder 
(resize)

P(add/remove) P(flip) P(resize) P(move)

P(iCR)

iCR 
decoder

memory

target

…contextual embeddings for each object

Transformer 
(decoder)

Figure 2: The basic structure of our iCR policy models.
The Overhearer contains no action decoders, whereas
the Action-Taker contains no iCR decoder.

Incorporating the gallery The gallery is an in- 325

formative source in CoDraw (e.g. if it contains 326

just one of the three tree cliparts, it is less likely 327

that disambiguation is needed). iCR-baseline does 328

not include the available objects as input, whereas 329

CoDraw-orig uses a symbolic representation as- 330

suming all 58 objects are available at any time. 331
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Both approaches do not correspond to reality, as332

players only see 28 cliparts. We follow a simi-333

lar symbolic approach to represent the objects’ at-334

tributes (presence in the scene, orientation, position,335

size, pose, facial expression), but only for those at336

play. The cliparts’ features and bounding boxes are337

projected to a higher-dimensional space following338

Sadler and Schlangen (2023).339

Using contextual word embeddings iCR-340

baseline relies only on two sentence-level embed-341

dings, one to encode the whole dialogue context342

and one for the last utterance, both not optimised343

for the game. To allow the policy to access more344

fine-grained linguistic information, we make all345

token-level contextual embeddings available to the346

player, constructed by a pretrained language model.347

Enhancing scene representations iCR-baseline348

uses a pretrained image encoder. It is unlikely349

that off-the-shelf encoders fit well to clipart scenes350

without fine-tuning. Here, we follow the approach351

in DETR (Carion et al., 2020), employing a ResNet352

(He et al., 2015) backbone with learnable positional353

encodings to extract scene features, followed by a354

trainable convolutional layer to reduce the number355

of channels. The sequence of image features is356

then used as part of the input.357

Transforming The iCR predictions rely only on358

pretrained embeddings with a feed forward neu-359

ral network in iCR-baseline, and CoDraw-orig did360

not employ Transformers (Vaswani et al., 2017) as361

a trainable component. Given its leading perfor-362

mance in several scenarios, we bring them more363

explicitly to the scene, in an approach similar to364

DETR (Carion et al., 2020). We feed the clipart rep-365

resentations to the decoder, to allow self-attention366

to build up embeddings of the state of the gallery367

and scene, without positional encoding due to the368

arbitrary order of the cliparts. Here, we also rely369

on the findings by Chiyah-Garcia et al. (2023) that370

encoding relations between objects and their loca-371

tions is helpful for CRs. Then, it performs cross-372

attention with the scene and text. We make text373

and scene available as one sequence like Lee et al.374

(2022). Since cross-attention between modalities375

is a cornerstone in current CR models (Shi et al.,376

2022, 2023), we also run experiments using the377

encoder to let text and scene attend to each other.378

We then end up with a multimodal representation379

of each clipart in the current context, which is then380

passed to classifier layers for each prediction.381

Action-taking via multi-task learning iCR- 382

baseline is an Overhearer, modelling only the pol- 383

icy of when to ask iCRs. To test our hypotheses, 384

we implement (iCR-)Action-Takers that predict the 385

game actions (or detect them, if the updated image 386

is used) via multi-task learning. We take inspiration 387

from Shi et al. (2022) and train a joint encoding for 388

multiple classifiers.5 We let the action logits (or 389

the real actions via teacher forcing) be part of the 390

input to the iCR decoder. To facilitate evaluation, 391

we add an additional meta-action prediction which 392

is 1 whenever any action is made to a clipart. 393

6 Experiments 394

For our experiments, we implement variations of 395

Overhearers and (iCR-)Action-Takers, all trained 396

on the CoDraw dataset. We compare results by 397

varying the complexity of the input, which can be 398

comprised of the gallery G, the dialogue context 399

D with varying length, the scene before Sb and 400

after Sa the current actions, and the actual actions 401

A or their logits LA. To test H1, we compare Over- 402

hearers with iCR-Action-Takers and iCR-Action- 403

Detecters (which have access to both scenes), all 404

making predictions for when to ask iCRs at turn- 405

level. For H2, we examine the predictions of the 406

Action-Taker using the certainty measure we dis- 407

cuss next. Finally, we test H3 by a similar analysis 408

as in H1, but in the task of what to ask about, the 409

iCR prediction is done for each clipart and we only 410

use the turns where iCRs actually occurred in the 411

training data (i.e., we assume the decision to ask 412

for iCR has already been taken). Here, we compare 413

an Overhearer with an iCR-Action-Taker/Detecter 414

whose action modules’ parameters are initialised 415

with the best Action-Taker/Detecter checkpoint. 416

iCRs actions

when what any add/del move flip resize

train 11.24 14.32 5.43 3.11 2.13 0.23 0.42
val 11.84 14.43 5.47 3.11 2.17 0.24 0.39
test 11.26 14.69 5.40 3.12 2.11 0.21 0.39

Table 1: % of the positive labels in the dataset.

Table 1 shows the proportion of each type of 417

label in the dataset. Actions at each turn are sparse 418

(mean=1.65, std=1.69) because only a small subset 419

of the full action space is actually performed. 420

5This is not yet a full-fledged Action-Taker. It makes high
level binary decisions on which actions are needed (add/delete,
move, resize, flip); a full model would also make the subse-
quent fine-grained decision of exact positions and sizes.
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When to Ask What to Ask

posing iCRs taking actions posing iCRs taking actions

inputs AP bF1 mF1 AP bF1 mF1 AP bF1 mF1 AP bF1 mF1

Baseline D, Sa .347 - .645 - - - - - - - - -

Overhearer G .138 .000 .470 - - - .332 .289 .593 - - -
G, D .384 .349 .642 - - - .697 .665 .801 - - -
G, D, Sb .372 .267 .604 - - - .697 .666 .799 - - -
G, D, Sb, Sa .378 .304 .620 - - - .694 .660 .799 - - -
G, D, A .372 .404 .662 - - - .711 .683 .810 - - -
G, D, Sb, A .379 .377 .654 - - - .712 .675 .808 - - -
G, D, Sb, Sa, A .388 .377 .655 - - - .706 .674 .808 - - -

Action-Taker G - - - .149 .005 .498 - - - - - -
G, D - - - .769 .710 .853 - - - .571 .550 .770
G, D, Sb - - - .762 .708 .851 - - - .547 .530 .761

iCR-Action-Taker G, D .378 .393 .658 .755 .702 .848 .753 .688 .815 .652 .621 .807
G, D, LA .393 .372 .652 .764 .708 .851 .751 .683 .811 .657 .619 .806
G, D, Sb .384 .380 .655 .760 .702 .848 .739 .681 .810 .612 .592 .792
G, D, Sb, LA .378 .311 .625 .771 .709 .852 .743 .684 .812 .630 .600 .796

iCR-Action-Detecter G, D, Sb, Sa .416 .418 .676 .859 .763 .880 .733 .684 .811 .834 .730 .862
G, D, Sb, Sa, LA .409 .366 .652 .864 .777 .886 .739 .689 .813 .838 .738 .867

Table 2: Main results of average precision, binary F1 Score and macro-average F1 Score for all models in the test
set. The inputs are G: gallery, D: dialogue, Sb: scene before the actions, Sa: scene after the actions, A: last gold
actions, LA: predicted logits of the actions. Shaded cells means the models were pre-trained on actions.

Implementation Our implementation uses Py-421

Torch Lightning. We run hyperparameter search422

and other manual combinations, and then use the423

configuration that led to the best results in the val-424

idation set for the Overhearer-G+D model. The425

training objective is to minimise a sum of binary426

cross-entropy losses for each task. Optimisation re-427

lies on the Adam algorithm (Kingma and Ba, 2015),428

with early stopping. Pretrained word embeddings429

are retrieved from BERT (Devlin et al., 2019).6430

Evaluation We report test results for the best431

epoch in the validation set.7 H1 and H3 are anal-432

ysed based on the performance on iCR predictions.433

To facilitate comparison to existing works, we re-434

port Average Precision (AP) and binary and macro-435

average F1-Score (bF1 and mF1) for each model436

and task (i.e. one measure for iCR labels and one437

for all action labels). To inspect how much infor-438

mation can be extracted from clipart states alone439

(e.g. some cliparts are less often subject to iCRs),440

we report metrics for a model that only gets the441

gallery as input. For H2, we need an additional pre-442

6Details of the model, data processing and experiment
setup are in the Appendix. Our code is available at https:
//anonymous.4open.science/r/codraw-icr-B518/

7The full Transformer encoder-decoder was detrimental in
almost all cases, so we report results using only the decoder
component. We compared Overhearers using a context from 0
to 5 previous turns. 0 or 1 turns had worse results, but 2 to 5
were almost equivalent, so we report results using 3.

diction certainty metric. We adapt the classification 443

margin metric used for uncertainty sampling in ac- 444

tive learning (Settles, 2012), which is the difference 445

between the probability assigned to the first and the 446

second class, like in Chi et al. (2020). In our binary 447

task, we define it as |P (iCR)−P (¬iCR)|, which 448

is 0 when both are 0.5 (highest uncertainty) and 1 449

when one or the other is 1 (highest certainty). We 450

analyse whether we can derive a signal for when 451

to ask iCRs by finding a decision threshold upon 452

this metric, as in similar works (Yao et al., 2019; 453

Naszad et al., 2022; Khalid and Stone, 2023). 454

7 Results 455

Table 2 presents the main results for all experi- 456

ments. We begin with overall observations, and 457

then walk through the table to analyse the findings 458

for each hypothesis. In the next section, we discuss 459

the implications of these findings. 460

Firstly, for deciding when to ask an iCR, the 461

base Overhearer achieves 0.38 AP and the highest 462

performance comes from the iCR-Action-Detecter 463

with 0.41. This is noticeably higher than the 0.34 464

Overhearer baseline in Madureira and Schlangen 465

(2023b), but the gain is not as substantial as ex- 466

pected given the improvements in the architecture.8 467

8Note that we use the second released version of the anno-
tation, containing a marginally different proportion of iCRs.
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When the Overhearer is ablated to have no access468

to the dialogue, performance drops to close to ran-469

dom, as expected. The addition of scenes before470

and after the current actions and the inclusion of471

an explicit signal with the last actions, however,472

cause only marginal variation and do not really473

contribute to a better performance. The Action-474

Taker similarly does not profit from having access475

to the image. We have no precedent results for the476

task of what to ask about, but even the Overhearer477

achieves more than .70 AP. Given the imbalance478

of the labels, we consider it a favourable result,479

showing this task is easier to model. Introducing480

iCR decisions does not cause drastic changes to the481

performance on taking actions for when to ask, but482

fine-tuning on what to ask causes a drop, which is483

probably due to the fine-tuning occurring only on484

iCR turns. See Appendix for additional analysis.485

Hypothesis 1 In H1, we study the effect of action-486

taking on the decision of when to ask iCRs. To487

analyse it, we compare the results of the Over-488

hearer with the iCR-Action-Taker/-Detecter in the489

left block of Table 2. Integrating multi-task learn-490

ing for taking actions is slightly helpful for iCR491

prediction only if the action decision logits are492

passed to the iCR classifier. If instead of predict-493

ing actions we let the model learn the auxiliary494

task of just detecting them from the scenes, the495

results are better.9 Interestingly, the magnitude of496

the positive difference is comparable to the differ-497

ence (in accuracy) found in the Minecraft dataset498

(Shi et al., 2022), which was, however, negative.499

These effects are not large enough to provide us500

with definite evidence that H1 holds.501

Hypothesis 2 For H2, we examine the certainty502

scores assigned by the Action-Taker to performing503

any action upon each clipart. For the task of what to504

ask about, we compare two distributions: Scores of505

cliparts subject to iCRs versus scores of cliparts not506

subject to iCRs. For when to ask iCRs, we inspect507

the distributions of the lowest score at turns where508

iCRs occur versus turns where no iCR is made.509

Using the two-sample Kolmogorov-Smirnov test510

(Hodges Jr, 1958), we compare the underlying em-511

pirical cumulative distributions of the two samples,512

shown in Figure 1, under the null hypothesis that513

they are equal, and a two-sided alternative.514

Table 3 shows the statistically significant test515

9This is still plausible, because we can assume that the
actual player has taken actions before generating the iCR, as
discussed by Madureira and Schlangen (2023b).

clipart (what to ask) turn (when to ask)

iCR non-iCR iCR non-iCR

mean (std) .838 (.251) .952 (.147) .363 (.283) .525 (.328)

KS test .524* .219*
AP .009 .080

Table 3: Mean (std) of certainty scores for each sample,
results of the two-sided Kolmogorov-Smirnov test and
average precision. * means p-value < 0.001.

results. It means that, on the whole, Action-Takers 516

behave differently regarding action certainty for 517

cliparts or turns with iCRs. In Figure 3, we can 518

see that the certainty for non-iCR cliparts is more 519

concentrated around 1 than for cliparts subject to 520

iCRs. Similarly, the distribution of the minimum 521

certainty score at iCR turns is more concentrated 522

at lower values. In that sense, we find support for 523

H2. Still, using these scores directly as a signal 524

for iCR prediction does not result in high AP, in 525

line with the findings by Naszad et al. (2022). This 526

seems to occur because, although the distributions 527

are different, both samples have values in the whole 528

range, with overlap in their standard deviation. 5290 1certainty
0

1

e
c
d
f

turns

non-iCR iCR

0 1certainty
0

1

e
c
d
f

cliparts

non-iCR iCR

0 1certainty
0

1

e
c
d
f

turns

non-iCR iCR
Figure 3: Empirical cumulative distribution function of
the certainty of taking actions for each clipart (left) and
the minimum by turn (right).

Hypothesis 3 For the last hypothesis, we assess 530

the effect of taking actions in deciding what to ask 531

about. Here, we focus on the right columns of 532

Table 2, again comparing the Overhearer with the 533

pretrained iCR-Action-Takers/Detecters. We ob- 534

serve a positive effect of learning to take actions on 535

the iCR policy, with AP increasing from .69 to .75. 536

Differently from the task of when to ask, here pre- 537

dicting actions leads to better results than merely 538

detecting them. The difference is not negligible, 539

which is stronger support in favour of H3 in this 540

context. 541
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8 Discussion542

Our multi-task learning setting allowed us to differ-543

entiate between understandability and iCR policy.544

The first refers to learning a mapping from lin-545

guistic input to actions, the latter is an additional546

decision on top of action-taking that regards know-547

ing when the information available to the agent at548

a given moment is not enough for the current pur-549

poses of wanting to commit to an outcome. Learn-550

ing to take actions does not seem to be a signal551

informative enough for deciding when to ask for552

iCRs, although it has a more prominent effect on553

deciding what to ask about in iCR turns. Besides,554

we investigated whether there is a signal in the pure555

understanding models that predicts what to clarify.556

Indeed, a model trained without any explicit iCR557

signal makes predictions whose certainty distribu-558

tion differ at iCR turns and cliparts. Even though559

the score cannot be directly used as a predictor of560

human iCR behaviour, further investigation can be561

done on extracting an agent’s implicit iCR poli-562

cies, e.g. with probing or attribution methods and563

in-depth analysis of the model’s internal states.564

The integration of the gallery, the token-level565

representations, learnable scene features and at-566

tention mechanism to construct contextual embed-567

dings of the game state form together a conceptu-568

ally superior design for our model in relation to569

the baseline. We expected this more sophisticated570

architecture, aligned with the latest literature, to571

lead up to a clear-cut improvement in the task of572

when to ask iCRs. The fact that the gain is not573

more than 10% in our main metric compel us to574

join the ranks of works that question whether the575

current NLP paradigm (employing imitation learn-576

ing or behavioural cloning to learn with supervi-577

sion from limited human data) is the right way to578

go when it comes to meta-discursive acts (Hayes,579

1980; Nguyen et al., 2022; Min et al., 2022; Naszad580

et al., 2022; Bohg et al., 2023, inter alia).581

In a static dataset of human play, the underlying582

CR policies of each player may differ by nature583

and also in visibility in the data. We cannot know584

with certainty if other humans would have behaved585

differently at each point than what is realised in586

the data; consequently, it is hardly possible to set a587

standard against which to judge the trained model’s588

policy. We are, after all, trying to learn a “cus-589

tomary” policy from what is actually a mixture of590

policies with observations sampled from various591

players. It may be the case that we have reached592

the limits of the generalisable policies we can cap- 593

ture from this data, even though the actual metrics 594

are not close to the ceiling. As Hayes (1980) dis- 595

cussed, graceful interaction requires developers to 596

aim for non-literal aspects of communication that 597

are effective for the human-agent interaction, in- 598

stead of trying to imitate human patterns exactly. 599

This connects to the over confidence problem in 600

LLMs: In some situations, they should produce an 601

I don’t know or a CR, but their limited abilities in 602

meta-semantic communication often cause failures. 603

CRs are not a problem: They are a solution 604

emerging from joint effort. If many bits of informa- 605

tion are to be conveyed, the instruction giver may 606

produce minimally sufficient messages and leave it 607

to the addressee to identify gaps. The instruction 608

follower may also take actions that are only ap- 609

proximately good, since mistakes can normally be 610

fixed later. Moreover, crowdworkers seem to lack 611

incentive to try to build perfect reconstructions (see 612

Appendix). Therefore, the iCR signal may not be 613

“out there” in the data, but live in the internal state 614

of the agents. Treating the task as iid predictions 615

under supervised learning is also not ideal because 616

actions and iCR decisions are actually made se- 617

quentially. Like some works on learning when to 618

ask questions, modelling iCR policies may call 619

for reinforcement learning (see e.g. Khalid et al. 620

(2020)), with evaluation methods that capture the 621

effectiveness of the agent’s policy for the game, 622

beyond comparison with human behaviour. 623

9 Conclusion 624

We have examined the effects of performing ac- 625

tions on learning iCR policies in the CoDraw game. 626

The assumption that learning to take actions would 627

make the underlying when to ask policy emerge 628

does not fully hold. Still, we find that prediction 629

certainty of actions differs at iCR turns. Then, if 630

we assume that a given policy has informed us on 631

when iCRs have to be made, we show that it is 632

possible to predict what to ask about more success- 633

fully, with action-taking having a stronger positive 634

effect. Exploring larger datasets with CRs pro- 635

duced as a by-product of action-taking is desired. 636

Still, the suboptimal performance of various SOTA 637

models in deciding when to ask for clarification 638

speaks against approaches that seek to imitate hu- 639

man behaviour. We recommend more investigation 640

with RL and evaluation methods that capture the 641

effectiveness of iCR policies in dynamic contexts. 642
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10 Limitations643

In this work, out models do not predict all fine-644

grained game actions. In preliminary experiments,645

we first attempted to model an agent that predicts646

all features of each clipart at each turn. However,647

since most of the 28 available cliparts remain un-648

changed from one turn to the other, the model could649

simply learn to output a copy of the current state.650

We thus opted to turn all tasks into binary predic-651

tions for our analysis, as we observed results that652

are good enough for our purposes, given the imbal-653

anced nature of the actions in the data. A full agent654

should include the subsequent tasks of deciding655

where to place cliparts and what exact (discrete)656

size to set (presence and orientation can be deduced657

in post-processing with the current version).658

Further investigation can be done to improve the659

performance of the Action-Takers. Since the ac-660

tions are very sparse, it may be the case that models661

just learn to detect mentioned cliparts in the utter-662

ances. A detailed error analysis should look closer663

at the predictions and also examine how good the664

scene similarity scores of the reconstructions are.665

Instead of predicting probabilities, the model could666

also output parameters of a distribution from which667

the actions would be sampled; we do not investi-668

gate that option here. Besides, we use a supervised669

learning approach that treats turns as iid. In reality,670

what the player does in one turn influences its next671

moves, so other methods like RL could be more672

appropriate, as we discussed.673

Although our models take several epochs to over-674

fit the training data, performance in the validation675

set saturates very early. The techniques we tried676

(for instance, dropout, variations of the architecture677

and filtering the training data) did not lead to better678

results. We performed a limited hyperparameter679

search that could be done more extensively in the680

future.681

For the task of what to ask about, we did not in-682

clude the utterances for which the annotation does683

not provide the reference cliparts due to ambiguity.684

Still, that happens for very few cases and should685

not have a considerable impact on the results.686

To conclude, we do not have human performance687

to compare our results to. It would be interesting to688

collect human data by letting humans decide when689

to ask for clarification and what to ask about, so that690

we can better understand to what extent the task691

itself is possible for humans acting as overhearers.692
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C Lawrence Zitnick and Devi Parikh. 2013. Bringing1088
semantics into focus using visual abstraction. In1089
Proceedings of the IEEE Conference on Computer1090
Vision and Pattern Recognition, pages 3009–3016.1091

A Additional Analysis1092

Here we present additional analysis. Figure 4 il-1093

lustrates the distribution of the number of actions1094

per turn. Table 4 presents the average precision for1095

each type of action, which are aggregated in Table1096

2. Figure 5 show the boxplots for the distribution1097

of certainty scores, to aid visualising that they have1098

different shapes in each sample.1099
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Figure 4: Empirical distribution of the number of actions
per turn in the CoDraw dataset.

add/del move flip resize

Action-Taker G, D .875 .617 .367 .531
iCR-Action-Taker G, D .865 .600 .398 .539

Action-Detecter G, D, Sa,b .976 .644 .414 .636
iCR-Action-Detecter G, D, Sa,b .974 .642 .423 .626

Table 4: Detailed performance of the Action-Takers
and Action-Detecters for when to ask. Values are the
average precision for each type of action in the test set.

B Reproducibility1100

In this section, we provide details of our data pre-1101

processing and implementation. For precise details,1102

please check the available code. Here, we provide1103

a brief overview of each component and the justifi-1104

cation of some decisions.1105

B.1 Data1106

We used the annotation released in the file1107

codraw-icr-v2.tsv10 to identify iCRs and men-1108

tioned cliparts. We followed the train-val-test splits1109

as in the original CoDraw data. The ambiguity1110

classes introduced by the authors were treated as1111

10https://osf.io/gcjhz/files/osfstorage
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Figure 5: Empirical distribution of the certainty of tak-
ing actions for each clipart (top) and the minimum by
turn (bottom).

follows: If an iCR was about an ambiguous but 1112

concrete class, we assigned the positive iCR label 1113

to all objects in the gallery that belong to that class. 1114

For instance, for hat_group, all hats in the gallery 1115

were treated as positive cases. The general ambigu- 1116

ity class, used for unclear cases, was ignored in our 1117

labelling. This occured in 318 iCRS. The whole 1118

dataset was used in all experiments, except for the 1119

tasks of what to ask about, for which only the turns 1120

containing iCRs were included for all splits. 1121

The gallery and scene representation was con- 1122

structed using features in a similar fashion as the 1123

original paper. Each clipart was assigned integers 1124

for its identifier, size (three categories), orientation 1125

(two categories), presence in the current scene (a 1126

binary feature), pose (seven categories) and facial 1127

expression (5 categories), as well as five features 1128

for its position (x and y coordinates of its centre, 1129

width, height and area in the canvas). We set fea- 1130

tures (except pose and facial expression) to a spe- 1131

cial category 0 for objects that are not in the scene. 1132

All cliparts for the boy and the girl were collapsed 1133

into one class for each, and their facial expressions 1134

and poses were turned into features in the symbolic 1135

representation, as in original paper. Other cliparts 1136

were assigned a “not-applicable” class for these two 1137

13
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features. To define the bounding boxes, rescaling1138

the sizes was done according to the AbstractScenes1139

documentation.1140

Actions were defined as either addition/deletion1141

or edits. Edits meant flip, resize and move. If a1142

clipart was added or deleted, we did not consider1143

changes to its orientation, position and size with re-1144

spect to the gallery (in order to avoid that the model1145

only learnt the edits that occur due to an addition1146

or deletion). Actions were defined by comparing1147

the state of the gallery in a turn in relation to its1148

state in the previous turn. For initial turns and1149

some cases where the scene string was not avail-1150

able in the dataset, we set the scene to empty and1151

use the gallery in adjacent turns (since the gallery1152

should remain the same across the game). We also1153

introduced an “acted upon” action that is positive1154

whenever any type of action occurs upon a clipart.1155

Text embeddings were retrieved from1156

bert-base-uncased, licensed under Apache 2.0.1157

Following Shi et al. (2022), we concatenate the1158

instruction giver and follower utterances using1159

special tokens before each speaker. Special tokens1160

<TELLER> and <DRAWER> were appended before1161

the instruction giver and follower, respectively.1162

The last utterance from the instruction follower1163

was appended to the beginning of the utterance1164

of the instruction giver, so that potential previous1165

iCRs are encoded with their responses, if given1166

immediately. Embedding sequences were padded1167

with zeros to the right to an empirical length of 801168

tokens. When context is used, the previous turns1169

are appended to the left of the last instruction and,1170

if necessary, padded with zeros to the left, so that1171

the most recent turn is always at the same position1172

in the input.1173

B.2 Implementation1174

The models were implemented with Python1175

(v3.10.12), PyTorch11 (v1.13.1) and Pytorch Light-1176

ning12 (v2.0.8), in Linux 5.4.0-99-generic with1177

processor x86_64 on an NVIDIA GeForce GTX1178

1080 Ti GPU with CUDA (v11.6). The pre-1179

trained ResNet model was retrieved from torchvi-1180

sion13 (v0.14.1) and the pre-trained BERT model1181

was loaded from HuggingFace transformers141182

(v4.29.2).1183

Optimisation was done with the Adam1184

11https://pytorch.org/
12https://lightning.ai/pytorch-lightning
13https://pytorch.org/vision/stable/models.html
14https://huggingface.co/bert-base-uncased

algorithm (Kingma and Ba, 2015), using 1185

BCEWithLogitsLoss with reduction set to sum 1186

and the argument pos_weight to 2 for each task. 1187

The total loss used for backpropagation was a sum 1188

of all task losses. 1189

Early stopping was implemented using a pa- 1190

tience of 8 epochs and the minimum delta of 0.001 1191

for maximisation of a monitored metric. Metrics 1192

were computed using torchmetrics15 (v0.11.4). The 1193

monitored metric varied according to the task: If 1194

iCRs were predicted, we tracked the binary average 1195

precision of iCR labels; otherwise, we tracked the 1196

binary average precision of the meta-action class. 1197

The maximum number of epochs was set to 30. 1198

The checkpoint that lead to best performance in the 1199

validation set was saved and loaded to run the tests. 1200

Comet16 was used to manage experiments and to 1201

perform hyperparameter search. 1202

Hyperparameter search was performed with the 1203

base model (i.e. an Overhearer that gets only the 1204

dialogue and the gallery representation as input and 1205

predicts only when to ask iCRs). We used comet’s 1206

Bayes algorithm as well as a few manual selections 1207

of hyperparameters, and opted for the model with 1208

highest iCR binary average precision in the valida- 1209

tion set. Table 5 shows the final hyperparameter 1210

configuration used in all experiments. 1211

We did not keep records of all experiments dur- 1212

ing development. For the final run, we run 43 1213

experiments during tuning and 102 for the analysis. 1214

The duration varied from 5 minutes (the random 1215

baseline) to 06h16m (the iCR-Action-Detecter us- 1216

ing the full Transformer), without including the 1217

time for data preparation. The number of param- 1218

eters varied according to the model. The turn- 1219

level Overhearer without scenes had 5,008,923 and 1220

with both scenes 29,054,299 (5,546,267 learnable). 1221

The turn-level iCR-Action-Taker without scenes 1222

had 5,339,168, and the iCR-Action-Detecter had 1223

29,384,544 (5,876,512 learnable). 1224

To enable reproducibility, we set the use of use 1225

deterministic algorithms to True in PyTorch and 1226

used Lightning’s seed_everything method with 1227

a fixed random seed. Despite this, according to the 1228

documentation, some methods cannot be forced to 1229

be deterministic in PyTorch when using CUDA.17 1230

15https://torchmetrics.readthedocs.io/en/
latest/

16https://www.comet.com
17https://pytorch.org/docs/1.13/generated/

torch.use_deterministic_algorithms.html#torch.
use_deterministic_algorithms
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hyperparameter type options selected

accumulate gradient discrete 1, 2, 5, 10, 25 1
batch size discrete 16, 32, 64, 128, 256 32
clipping discrete 0, 0.25, 0.5, 1, 2.5, 5 1
context length integer min=1, max=5 3
dropout discrete 0.1, 0.2, 0.3 0.1
d_model discrete 128, 256, 512 256
hidden_dim discrete 32, 64, 128, 256, 512, 1024 256
hidden_dim_trf discrete 256, 512, 1024 2048
learning rate discrete 0.1, 0.01, 0.001, 0.0001, 0.003, 0.0003, 0.00001, 0.0005 0.0001
lr scheduler bool True, False False
lr step integer min=1, max=10 -
n heads discrete 1, 2, 4, 8, 32 16
n layers float min=1, max=6 3
n reload datasets float min=1, max=10 1
pos weight float min=0.8, max=3 2
pre-trained text embeddings categorical bert-base-uncased, roberta-base, distilbert-base-uncased bert-base-uncased
random seed integer min=1, max=54321 12345
weight decay discrete 1, 0.1, 0.01, 0.001, 0.0001 0.
weighted loss bool True, False False

Table 5: Hyperparameters: Investigated options and selected values. Note that the search did not extensively cover
all possibilities for each hyperparameter.

Details of the models’ components Let d_model1231

be the dimension used for the Transformer. First1232

of all, an embedding of the gallery and scene state1233

is constructed. Embedding layers are used for a1234

clipart’s identifier, orientation, presence, size, face1235

and pose states with dimensions d_model-100, 10,1236

10, 10, 20 and 20, respectively. The position is em-1237

bedded with a linear layer that maps its centre co-1238

ordinates, area, width and height to 30 dimensions.1239

All embedded features are concatenated so as to1240

create a representation with dimensions 28 (number1241

of cliparts) by d_model. We used only the decoder1242

of the Transformer, which gets the gallery represen-1243

tation as “target” and the instruction tokens (whose1244

dimensions were reduced with a linear layer and,1245

if applicable, the sequence was concatenated to the1246

scene features) summed to positional encodings as1247

“memory”. The decoder performs self-attention in1248

the gallery and then cross-attention with the mem-1249

ory. Scenes are encoded following Carion et al.1250

(2020)’s implementation, but we first preprocess1251

the scene according to the pretrained model’s docu-1252

mentation. The scene is then fed into a pre-trained1253

ResNet50 followed by a trainable convolutional1254

layer that reduces the number of channels to the1255

same dimension used for the Transformer. Then,1256

the height and width dimensions are flattened and1257

the result is added to learnable position embed-1258

dings, with a dropout layer. The probabilities (for1259

iCRs or actions) are predicted by taking each out-1260

put of the Transformer (i.e. one representation for1261

each clipart in the gallery) and passing it through a1262

feed-forward network with the following sequential 1263

layers: leaky ReLU, dropout, linear, leaky ReLU 1264

and linear. For predicting turn-level iCRs, the repre- 1265

sentations of all cliparts are averaged. If the action- 1266

taking logits or teacher forcing is used, they are 1267

appended to the input. The outputs are logits that 1268

are converted to probabilities using the sigmoid 1269

function. 1270

Evaluation The threshold for the F1-Scores was 1271

set to 0.5. We did not include the meta-action label 1272

in the main results for taking actions to avoid inflat- 1273

ing the performance; it was only used for the analy- 1274

sis for H2, done on the Action-Taker+G, D. Metrics 1275

for the evaluation were computed with sklearn18 1276

(v1.0.2) and the plots were generated with seaborn 1277

(v0.12.2) and matplotlib19 (v3.7.1). The hypoth- 1278

esis test was performed with SciPy20 (v1.11.1) 1279

stats.ks_2samp method with a two-sided alter- 1280

native. 1281

C CoDraw Examples 1282

Figures 6-9 exemplify strategies of crowdworkers, 1283

showing various levels of commitment to playing 1284

the game well.21 Scenes at the top are the state of 1285

the reconstructions at the highlighted turns. 1286

18https://scikit-learn.org/stable/index.html
19https://matplotlib.org/
20https://docs.scipy.org/doc/scipy/reference/

generated/scipy.stats.ks_2samp.html
21The images are generated with the CoDraw Dataset Vi-

sualizer, developed by @jnhwkim at https://github.com/
facebookresearch/CoDraw.
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← Older (?session=train_00487) Newer → (?session=test_00489)

Score: 3.94/5.00

Original Scene

CoDraw Dataset Visualizer
Rollover on messages to check the abstract scene at that moment!

val_00488

Random (?session=train_00401)

Developed by @jnhwkim (https://github.com/jnhwkim) as a reserach intern at Facebook AI Research (http://facebook.com/fair).

ready when you are

small rocket on right

ok

small sun on left corner big boy on left facing right
running position in from bottom

smiling or teeth ?

big girl running facing right shocked in center

ok need to know what expression boy has

small basketball up front beach ball right corner

Chance to peek is used by Teller

great job

Fin.

ok

Figure 6: Even peeking, the instruction giver does not
inform the instruction follower that the reconstruction
is not totally correct: The orientation of the rocket is
wrong, as well as the position of the basketball and the
size of the two balls. From: CoDraw dialogue game 488,
CC BY-NC 4.0, scene from Zitnick and Parikh (2013).

← Older (?session=train_00197) Newer → (?session=test_00199)

Score: 3.90/5.00

Original Scene

CoDraw Dataset Visualizer
Rollover on messages to check the abstract scene at that moment!

val_00198

Random (?session=val_02488)

Developed by @jnhwkim (https://github.com/jnhwkim) as a reserach intern at Facebook AI Research (http://facebook.com/fair).

ok

medium sun left corner cut off . boy frowning with leg
out to your right

ok

he 's wearing sunglasses and kicking yellow frisbee

so he is standing and where is his eyes to skyline

medium pine tree on right top and a little of side cut
off orange cat below tree looking at boy

so boy and pine on the right ? ? ?

his eyes are barely below the skyline

check my question

boy is on left but to the right of the sun

ok

are you finished ? will use chance .

ok

make sun bigger and top left cut off , move glasses
onto boys eyes , and frisbee touches his foot

ok

shrink the tree and the cat is more to the left of it

ok

Fin.

Chance to peek is used by Teller

Figure 7: A more careful instruction giver uses two
turns to try to repair even minor details after the peek,
like the slightly wrong position of the sunglasses. From:
CoDraw dialogue game 198, CC BY-NC 4.0, scene from
Zitnick and Parikh (2013).

← Older (?session=train_03834) Newer → (?session=train_03836)

Score: 2.91/5.00

Original Scene

CoDraw Dataset Visualizer
Rollover on messages to check the abstract scene at that moment!

train_03835

Random (?session=train_06961)

Developed by @jnhwkim (https://github.com/jnhwkim) as a reserach intern at Facebook AI Research (http://facebook.com/fair).

hi and ready .

med cloud on left sky , small apple tree on left , then
frowny boy sitting in sandbox with bucket , bear to
right

Chance to peek is used by Teller

make tree and bear smaller , cloud closer to middle ,
make boy and box bucket bigger , and you got it

tree will not go smaller .

oh , and flip direction of boy

fixed everything but tree .

were good !

thanks !

Fin.

ok

Figure 8: The instruction follower gets underspecified
instructions at the first turn (for instance, nothing is said
about the orientation of the boy and his position with
respect to the bucket), but acts even so without asking
for clarification. From: CoDraw dialogue game 3835,
CC BY-NC 4.0, scene from Zitnick and Parikh (2013).

← Older (?session=train_04285) Newer → (?session=train_04287)

Score: 0.364/5.00

Original Scene

CoDraw Dataset Visualizer
Rollover on messages to check the abstract scene at that moment!

train_04286

Random (?session=train_05320)

Developed by @jnhwkim (https://github.com/jnhwkim) as a reserach intern at Facebook AI Research (http://facebook.com/fair).

ready !

a tree , with a girl in front with shades on a swing set ,
a guy in a pirate hat . a cat you bounce on . a sun and

thanks .

that 's left to right

medium to the left

what position is the girl and what is she doing ?

standing up smiling on the left side of the swing

where is the swing set ? what position is the boy ?

sad and to the right of the swing

where is the bee ?

to the farthest right

where is the swing ?

on horizon sun above

Fin.

what size tree where is the tree ?

Figure 9: The instruction giver provides underspeficied
instructions at the first turn. Instead of taking all actions
immediately, the instruction follower does many rounds
of clarification. From: CoDraw dialogue game 4286,
CC BY-NC 4.0, scene from Zitnick and Parikh (2013).

16

https://creativecommons.org/licenses/by-nc/4.0/
https://creativecommons.org/licenses/by-nc/4.0/
https://creativecommons.org/licenses/by-nc/4.0/
https://creativecommons.org/licenses/by-nc/4.0/

	Introduction
	Related Work
	Definitions
	Hypotheses
	Models
	Experiments
	Results
	Discussion
	Conclusion
	Limitations
	Additional Analysis
	Reproducibility
	Data
	Implementation

	CoDraw Examples

