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ABSTRACT

This paper studies stochastic contextual bandits with knapsack constraints (CBwK),
where a learner observes a context, takes an action, receives a reward, and incurs
a vector of costs at every round. The learner aims to maximize the cumulative
rewards across T rounds under the knapsack constraints with an initial budget of B.
We study CBwK in the small budget regime where the budget B “ Ωp

?
T q and

propose an Adaptive and Universal Primal–Dual algorithm (AUPD) that achieves
strong regret performance: 1) AUPD achieves Õpp1 ` ν˚

δb q
?
T q regret under the

strict feasibility assumption without any prior information, matching the best-
known bounds; 2) AUPD achieves Õp

?
T ` ν˚

?
b
T

3
4 q regret without strict feasibility

assumption, which, to the best of our knowledge, is the first result in the litera-
ture. Here, the parameter ν˚ represents the optimal average reward; b “ B{T
is the average budget and δb is the feasibility/safety margin. We establish these
strong results through the adaptive budget-aware design, which effectively balances
reward maximization and budget consumption. We provide a new perspective
on analyzing budget consumption using the Lyapunov drift method, along with
a refined analysis of its cumulative variance. Our theory is further supported by
experiments conducted on a large-scale dataset.

1 INTRODUCTION

Stochastic contextual bandits with knapsacks (CBwK) is a general framework for online decision-
making under resource-constrained applications and has been applied to a broad range of practical
scenarios (e.g., resource-constrained recommendation Balakrishnan et al. (2018); Yang et al. (2020),
clinic trials in healthcare Tewari & Murphy (2017); Tomkins et al. (2021), content moderation for
healthy social platform Lykouris & Weng (2024); Lee et al. (2024), online advertisement platform
Lucier et al. (2024); Feng et al. (2024); Gaitonde et al. (2022)). At each round t, the learner observes
a context xt P X and chooses an action at P A. The learner then receives a reward Rt and also
consumes K types of resources or costs Ct. The initial budget of the kth type of resource is Bk and
let B “ mink Bk and its average version be b “ B{T . The interaction with the environment stops
after T rounds or when one of the resource budgets has been exhausted. The goal of the learner is to
maximize the cumulative reward under the constrained resource budget.

CBwK is a contextual version of BwK, initially introduced in the literature Agrawal & Devanur
(2014); Badanidiyuru et al. (2018), and has been extensively studied in Slivkins et al. (2023); Agrawal
& Devanur (2016); Han et al. (2023); Chzhen et al. (2024). The work Slivkins et al. (2023) assumes
online learning oracles are accessed to estimate the rewards and costs and leverages an inverse gap
weighting method Abe & Long (1999); Foster & Rakhlin (2020) to balance exploration, reward
acquisition, and cost consumption. However, this work assumes a large initial budget (or in a large
budget regime) such that B “ ΩpT q. In many real-world applications, the budget is precious and
scarce (i.e., B ! T ). For example, a store with a limited supply of B items of a product provides
customized offers to T users in contextual dynamic pricing. Users arrive sequentially with different
contexts, and the number of users is much larger than the number of items, i.e., B ! T ; In task
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scheduling for the crowdsourcing platform, the tasks with different contexts arrive sequentially, and
the platform decides if a task is good to assign to an expert or an ordinary worker. In this setting, the
number of experts is much smaller than the number of tasks; In content moderation for healthy online
review platforms, reviews are constantly posted on the platform, and the platform is required to filter
out harmful reviews within a limited number of queries from human experts, where the query budget
is much smaller than the number of reviews.

To solve problems with limited total budgets, the work Agrawal & Devanur (2016); Han et al. (2023)
studied CBwK under either linear or general realizability assumptions on rewards/costs and attempt
to relax the large budget requirement. However, these work still assume B “ ΩpT

3
4 q due to the

proposed two-stage strategies where an initial warm-up stage with
?
T rounds is required in learning

the optimal value for the subsequent decision-making. A very recent work Chzhen et al. (2024) further
relaxed the budget requirement of B “ Ωp

?
T q by assuming the strict feasibility assumption (a.k.a

the Slater’s condition) and the prior knowledge of the feasibility/safety margin. However, obtaining
such information can be quite (if not impossible) challenging in real-world scenarios. Besides, the
work utilizes a double-tricking to learn the optimal stepsize in tracking the dual variable (the proxy
for budget consumption) to achieve a good balance between rewards and resource consumption,
which shares a similar flavor as the two-stage approach in Agrawal & Devanur (2016); Han et al.
(2023). This raises a natural open question:

Can we design an adaptive (ideally single-stage) algorithm to solve CBwK under the small budget
B “ Ωp

?
T q, achieving the universal and optimal performance regardless of the strict feasibility

assumption and any prior knowledge about it?

In this paper, we provide a positive answer to this question by introducing the Adaptive and Universal
Primal–Dual algorithm (AUPD). Our contributions can be summarized as follows:

Algorithm: AUPD is motivated by the primal-dual approach which has also been widely explored in
safe online learning Yu & Neely (2020); Slivkins et al. (2023); Guo & Liu (2024); Gangrade et al.
(2024), but with an adaptive budget-aware design and a novel perspective from Lyapunov optimization.
In the dual modular, we design the virtual queues tQ

pkq

t u, resemble scaled dual variables, to track the
cumulative over-used budget consumption. Unlike previous studies in Agrawal & Devanur (2016);
Han et al. (2023); Chzhen et al. (2024), we do not impose any upper bound or any conservative
factors in the dual update. In the primal decision modular, we explicitly incorporate the knowledge of
the initial budget V “ b

?
T , in addition to the virtual queues that capture the over-used resource, to

balance the reward and resource consumption. The scaled virtual queues tQ
pkq

t {V u can be regarded
as the estimators of the optimal dual variables, which avoids an explicit learning process used in
Agrawal & Devanur (2016); Han et al. (2023); Chzhen et al. (2024). The budget-aware strategy
and virtual queue design are the keys for AUPD to minimize regret and establish strong theoretical
performance under the small budget regime without any prior information on the problem instance.

Reference Regret Budget Strict Feasibility
SquareCBwK Han et al. (2023) Õpp1 ` ν˚

δb q
?
T q ΩpT

3
4 q Required and known safety margin

PGD Adaptive Chzhen et al. (2024) Õpp1 ` ν˚

δb q
?
T q Ωp

?
T q Required and known safety margin

AUPD Õpp1 ` ν˚

δb q
?
T q Ωp

?
T q Required

AUPD Õp
?
T ` ν˚

?
b
T

3
4 q Ωp

?
T q Not Required

Table 1: Our results and most related works.

Theoretical Results: AUPD achieves the strong regret performance for CBwK in the small budget
regime, regardless of the strict feasibility assumption (our results and most related work are summa-
rized in Table 1): (i) When the strict feasibility assumption holds, AUPD achieves Õpp1 ` ν˚

δb q
?
T q

in the small budget regime B “ Ωp
?
T q regret under the general realizability assumption of reward

and cost functions, where the parameter ν˚ is the average performance of an optimal static policy and
δb is the feasibility/safety margin. This result matches the regret guarantee in Agrawal & Devanur
(2016); Han et al. (2023); Chzhen et al. (2024). However, unlike in Agrawal & Devanur (2016);
Han et al. (2023); Chzhen et al. (2024), Lyapunov drift analysis establishes an upper bound on the
virtual queue (a proxy for the budget consumption process) without requiring any prior knowledge
of the safety margin nor the extra implement parameter search steps. (ii) When the strict feasibility
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assumption does not hold, AUPD achieves a worst-case regret of Õp
?
T ` ν˚

?
b
T

3
4 q in the small budget

regime B “ Ωp
?
T q. To the best of our knowledge, there are no existing results even in the large

budget regime B “ ΩpT q without the strict feasibility assumption.

Experiments: We evaluate AUPD using a real-world learning-to-rank dataset in the small budget
regime. Our experimental results demonstrate that AUPD outperforms baseline algorithms and
achieves the best performance under various initial budgets.

RELATED WORK

Contextual bandits and bandits with knapsacks have been studied extensively. We only focus on the
literature most related to ours.

(Contextual) BwK: “large” budget regime and two-stage design. Bandits with knapsacks (BwK)
was initialized by Agrawal & Devanur (2014); Sankararaman & Slivkins (2018; 2021); Badanidiyuru
et al. (2018), where the well-known optimistic exploration with the primal-dual design has been
extensively studied in Agrawal & Devanur (2014; 2019); Agrawal et al. (2016); Badanidiyuru et al.
(2018); Immorlica et al. (2022) to reduce BwK to unconstrained bandits. BwK has been further
extended to the contextual version of BwK in Agrawal & Devanur (2016); Badanidiyuru et al. (2014);
Agrawal et al. (2016); Li & Stoltz (2022); Slivkins et al. (2023); Han et al. (2023) under different
realizability assumptions for rewards and costs, such as linear class, logistic function class or even
general function class. When the linear structure is imposed on the rewards and costs, the work
Agrawal & Devanur (2016) integrates the primal-dual design with LinUCB exploration and designs a
two-stage learning method to achieve the regret of Õpp1 ` ν˚

b q
?
T q when B “ ΩpT

3
4 q. Inspired by

the estimation-to-decision framework for contextual bandits in Foster & Rakhlin (2020), CBwK under
general realizability conditions is studied in Slivkins et al. (2023); Han et al. (2023) by assuming
access to online learning oracles. However, the work Slivkins et al. (2023) requires a large budget
assumption where B “ ΩpT q and the work Han et al. (2023) still assumes B “ ΩpT

3
4 q as it also

utilizes the two-stage method to search the optimal value Z “ ν˚{b as in Agrawal & Devanur (2016),
both of these works assume prior knowledge about the strict feasibility margin.

Contextual BwK: “small” budget regime and strict feasibility assumption. There exist two
recent work Kim et al. (2023); Chzhen et al. (2024) that attempt to break the barrier of B “ ΩpT

3
4 q,

where they achieve the regret of Õpp1 ` ν˚

b q
?
T q under the relaxed budget B “ Ωp

?
T q. However,

these works rely on specific assumptions: Kim et al. (2023) requires a null action (which is a more
stringent requirement), while Chzhen et al. (2024) assumes strict feasibility. Besides, Kim et al.
(2023) assumes linear rewards and costs, and Chzhen et al. (2024) presumes the safety margin is
known, allowing the learner to make conservative decisions. Although Chzhen et al. (2024) claims
that their proposed algorithm is a direct primal-dual approach (unlike the previous two-stage designs),
they still need to implement a doubling trick to search for the optimal dual variables, which shares a
similar spirit to the two-stage algorithm in Agrawal & Devanur (2016).

(Contextual) BwK: “flexible” budget regime and without hard-stopping. There exists another
line of literature where the interaction can continue even after the budget is exhausted Kumar &
Kleinberg (2022); Bernasconi et al. (2024a;b), which we call a “flexible” budget regime. Kumar &
Kleinberg (2022) consider non-monotonic or replenishable resource utilization for (non-contextual)
stochastic bandits with knapsacks, where a “null action” is introduced to allow the budgets to be
replenished. Bernasconi et al. (2024b) extended bandits with replenishable knapsack constraints into
adversarial scenarios and achieved “best-of-both-worlds” regret guarantees. Very recently, Bernasconi
et al. (2024a) studied stochastic and adversarial bandits with general constraints, where constraint
violations are allowed and no hard stopping is imposed. They proposed weakly adaptive primal and
dual algorithms that achieve tight regret bounds in both stochastic and adversarial settings. However,
extending these results to the hard stop setting might require additional and dedicated procedures.

2 STOCHASTIC CONTEXTUAL BANDITS WITH KNAPSACKS

In this section, we introduce Stochastic Contextual Bandits with Knapsacks (CBwK) defined by
tX ,A, r, c,Bu, where X is the context set (a countable set), A is the action set (a finite set),
r : X ˆ A Ñ r0, Rs is the reward function, c : X ˆ A Ñ r0, CsK are the cost functions, and
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B “ rB1, . . . , BKs is the initial total budget vector. Without loss of generality1, we assume the
uniform budget Bk “ B, @k P rKs. At the beginning of every round t P rT s, the learner observes a
context xt that is randomly generated from the context set X according to an unknown probability
distribution px. The learner takes an action at P A according to a policy defined by π : X Ñ A, and
then observes the noisy reward, i.e., Rtpxt, atq, and the noisy costs, denoted by Ctpxt, atq. Given the
initial budgets B, the interaction terminates once any type of resource is exhausted or it reaches the
end of time horizon T . Note that the context distribution, reward, and cost functions are all unknown
to the learner. We present the following assumption on them.
Assumption 1 The context tctu are i.i.d. across rounds. There exists reward function r : X ˆ A Ñ

r0, Rs and cost functions c : X ˆ A Ñ r0, CsK satisfy that rpx, aq “ ErRtpxt, aq|xt “ xs and
cpx, aq “ ErCtpxt, aq|xt “ xs, @x P X , a P A.

Let aπt
t be the action taken by the policy πtpxtq given context xt in round t. For the given instance

txtut drawn from a certain distribution, the learner’s objective is to design dynamic policies that
maximize the cumulative rewards over horizon T under the knapsack constraints:

max
T

ÿ

t“1

rpxt, a
πt
t q s.t.

T
ÿ

t“1

cpxt, a
πt
t q ď B. (1)

Note it could be quite challenging to solve (1) because the reward, cost, and context distributions are
all unknown to the learner. The budget constraint further complicates the problem because all actions
are coupled over the time horizon, making it difficult to balance the reward acquisition and budget
consumption. To evaluate the performance of a policy, we introduce the definition of regret.

Regret: We begin with an offline problem by assuming the full knowledge of rewards, costs, and
context distribution. Define b :“ B{T “ rb, . . . , bs with b “ B{T , the offline problem in (1) can be
reformulated as follows

max
π

ÿ

xPX ,aPA
pxrpx, aqπpx, aq (2)

s.t.
ÿ

xPX ,aPA
pxc

pkqpx, aqπpx, aq ď b, @k P rKs (3)

ÿ

aPA
πpx, aq “ 1, πpx, aq ě 0,@x P X , (4)

where πpx, aq can be viewed as the probability of taking action a on context x, and px is the
probability that context x is sampled in each round. The next lemma shows that the optimal value of
(2)–(4) serves as an upper bound on that of (1). The detailed proof can be found in Appendix A.
Lemma 1 Under Assumption 1, let ν˚ be the optimal value of the offline problem (2)–(4) and OPT
be the expected reward of the optimal dynamic policies to the problem (1), respectively. We have
OPT ď Tν˚.

Now we define (pseudo)-regret based on the baseline above for an algorithm as follows

RegretpT q “ Tν˚ ´ E

«

T
ÿ

t“1

rpxt, atq

ff

. (5)

The expectation is taken w.r.t. randomness from tatut drawn by the algorithm and the environment.

Before presenting our algorithm and analyzing the regret performance, we first introduce the modeling
and estimation of reward and cost functions.

Learning Oracles: We assume there exist online learning oracles for reward and cost func-
tions such that the corresponding estimators are either optimistic or pessimistic and the cumu-
lative estimation errors can be bounded. Specifically, given the historical feedback information
tRspxs, asq, Cspxs, asqu

t´1
s“1 at every round t, the online learning oracles will output the estimators

of reward and costs r̂t : X ˆ A Ñ r0, Rs and čt : X ˆ A Ñ r0, CsK that satisfy the following
assumptions.

1If the initial budgets tBku are different, we can always make them identical with the scaling factor
Bk{mink Bk for every type of resource.
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Assumption 2 There exist online learning oracles tOur,c such that the reward and cost estimators
r̂tpx, aq and č

pkq

t px, aq satisfy the following conditions with a high probability at least 1 ´ p:

E “

#

0 ď r̂tpx, aq ´ rpx, aq ď 2εtpx, a, pq,

0 ď cpkqpx, aq ´ č
pkq

t px, aq ď 2εtpx, a, pq, @k P rKs, x P X , a P A, t P rT s

+

,

where p “ 1{T 2, and UpT, pq :“
řT

t“1 εtpxt, at, pq “ Op
?
T logpT {pqq.

This assumption describes the performance of learning oracles, a common condition that can be
met in contextual bandits Abbasi-yadkori et al. (2011); Filippi et al. (2010); Foster et al. (2018);
Han et al. (2023); Chzhen et al. (2024). When the reward and cost functions belong to the linear
class, the classical online least-square regression oracle satisfy Assumption 2 and εtpx, a, pq is
simply the upper/lower confidence bound Abbasi-yadkori et al. (2011). When the reward and cost
functions belong to the generalized linear class, the online maximum-likelihood estimate oracles
satisfy Assumption 2 and εtpx, a, pq is the generalized upper/lower confidence bound Filippi et al.
(2010). When the reward and cost functions are general and do not have a good structure, the weighted
online regression estimators still satisfy Assumption 2 and εtpx, a, pq can be calculated efficiently
via binary search method Foster et al. (2018).

3 ADAPTIVE AND UNIVERSAL PRIMAL–DUAL ALGORITHM FOR CBWK

In this section, we introduce AUPD, an adaptive, single-stage algorithm for solving CBwK, designed
to achieve the universal regret guarantee under both the absence and presence of the Slater’s condition
in the small budget regime. AUPD does not require any prior knowledge except the initial budgets B
and the time horizon T . The design of AUPD is motivated by the primal-dual optimization approach
Wright (1997); Bertsimas & Tsitsiklis (1997), incorporating an adaptive budget-aware design with a
new perspective from Lyapunov optimization. We utilize the virtual queues to estimate the over-used
budget consumption and carefully choose the tradeoff parameter to balance the rewards and budget
consumption. AUPD algorithm comprises the following key components:

• Budget-Aware Decision-Making: At each round t, AUPD first obtains estimated reward and
cost functions from the learning oracles tOur,c, which are used to construct optimistic/pessimistic
estimators r̂t and čt. The action is chosen to maximize r̂t ´

ř

k Q
pkq

t č
pkq

t {V, inspired by “Reward -
Lyapunov Drift” in Lyapunov optimization, where the Lyapunov drift

ř

krpQ
pkq

t`1q2 ´ pQ
pkq

t q2s,

is approximated by
ř

k Q
pkq

t č
pkq

t {V according to the virtual queues update in (7). This resembles
the primal-dual method, where the primal modular is to maximize the approximated Lagrangian
function

Lpxt, aq :“ rpxt, aq ´
ÿ

k

λpkqpcpkqpxt, aq ´ bqq,

where the Lagrange multiplier λpkq is approximated by Q
pkq

t {V , and the reward and cost functions
are approximated by the optimistic/pessimistic estimators. The key design is the budget-aware
trade-off parameter V “ b

?
T (resembling an adaptive learning rate). It is different from the

traditional Lyapunov optimization method where the trade-off parameter is only related to the time
horizon T. Intuitively, when the budget is small, V is small, and it prompts more conservative
decisions; otherwise, it prompts relatively optimistic decisions.
Unlike the approaches in Agrawal & Devanur (2016); Han et al. (2023); Chzhen et al. (2024),
which require the extra parameter search stage, AUPD enjoys a single-stage and direct greedy
structure in decision-making. Besides, the primal decision module implicitly learns the context
distribution, as the decision in (6) tends to avoid overspending the resources on contexts with low
rewards and high costs.

• Oracles Update and Budget Pacing: After observing the noisy reward Rtpxt, atq and noisy costs
Ctpxt, atq, AUPD feeds them into learning oracles (e.g., online weighted regression oracles) to con-
struct estimators for future rounds. The other key design in AUPD is budget pacing, where we design
the virtual queues to track the cumulative over-used budget consumption

řt
s“1pč

pkq

t pxt, atq ´ bq.
The concept of virtual queues originates from queueing theory and is widely used in networking and
operations research in Hajek (1982); Neely (2010); Eryilmaz & Srikant (2012). In a real queueing
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system, customers arrive, receive service, and leave, with the queues capturing the carryover effect
and representing the number of waiting customers. The real queues motivate the design of virtual
queues Qpkq

t in our setting, it represents the cumulative overuse of a resource, where the “arrival”
corresponds to the current resource consumption and the “service” corresponds to the average
budget. When the virtual queues increase, it implies that we might have spent too many resources
so far, and it encourages a relatively conservative decision. The virtual queues can be regarded as
the scaled dual variables in the primal-dual design in Agrawal & Devanur (2016); Han et al. (2023);
Chzhen et al. (2024).
However, unlike these works, which either impose upper bounds or conservative factors in the dual
update that require a two-stage learning process, strict feasibility assumption, or the knowledge of
feasibility/safety margin, the virtual queues update in AUPD is again natural and direct. This is
the key reason we do not require strict feasibility assumptions or any prior information about the
feasibility/safety margin. Furthermore, by treating the virtual queues as Markovian processes, we
can use Lyapunov drift analysis to establish their upper bound, which can then be translated into a
strong lower bound on the stopping time.

Algorithm 1 Adaptive and Universal Primal–Dual Algorithm for CBwK

1: Initialization: λ “ 1, Q
pkq

1 “ 0, @k P rKs and V “ b
?
T , learning oracles set tOur,c.

2: for t “ 1, ¨ ¨ ¨ , T, do
3: Parameters Estimation: Given a context xt, estimate the reward functions r̂tpxt, aq and the

cost function čtpxt, aq from learning oracles tOur,c.
4: Budget-Aware Decision-Making: Take the action at such that

at “ argmax
aPA

V r̂tpxt, aq ´
ÿ

k

Q
pkq

t č
pkq

t pxt, aq. (6)

5: Feedback and Oracles Update: Observe noisy reward Rtpxt, atq and noisy costs Ctpxt, atq
and feed them to tOur,c.

6: Budget Pacing: Update virtual queues as follows

Q
pkq

t`1 “

”

Q
pkq

t ` č
pkq

t pxt, atq ´ b
ı`

, @k P rKs. (7)

7: end for

In summary, AUPD provides a novel algorithm design template and theoretical analysis for CBwK.
The budget-aware decision-making and virtual queue-based budget-pacing are crucial in developing
a fully adaptive algorithm to achieve a strong regret performance in the small budget regime.

4 MAIN RESULTS

In this section, we analyze the regret performance for AUPD in Algorithm 1. We begin by stating the
strict feasibility assumption for the performance analysis.
Assumption 3 There exists a constant δ P p0, 1s such that a feasible solution π to the optimization
problem (2)–(4) satisfies

ř

xPX ,aPA pxc
pkqpx, aqπpx, aq ď bp1 ´ δq, @k P rKs.

The term δb plays a similar role with the Slater’s constant in optimization. However, the term δb
differs from the traditional Slater’s constant because the definition b “ B{T implies it is both budget
and time horizon related. Note that the existence of null action is a special case of this assumption
with δ “ 1. This assumption has been used in the literature of BwK Agrawal & Devanur (2014;
2016); Badanidiyuru et al. (2014; 2018); Chzhen et al. (2024).

Now, we are ready to present the theoretical results of our algorithm, which are given in an order-wise
sense. The detailed proof and parameters are in the appendix.
Theorem 1 Under Assumptions 1 and 2, AUPD achieves the following regret in the small budget
regime B “ Ωp

?
T q that

RegretpT q “ Õ

ˆ

?
T `

ν˚

?
b
T

3
4

˙

.
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When the additional strict feasibility assumption in Assumption 3 holds, AUPD achieves the following
regret in the small budget regime

RegretpT q “ Õ

ˆ

p1 `
ν˚

δb
q
?
T

˙

.

Remark 1 When the strict feasibility assumption holds, AUPD achieves Õpp1 ` ν˚

δb q
?
T q “

Õ
´?

T ` 1
δTν

˚T
1
2 ´α

¯

regret in the small budget regime B “ Tα “ Ωp
?
T q under the general

realizability assumption of reward and cost functions. The parameter ν˚{δb in the regret captures the
effect of knapsack constraints, where it could be large when the safety margin δb is small, indicating
the challenge of distinguishing the budget consumption among context-action pairs. The typical and
practical setting would have Tν˚ “ ΘpTαq (i.e., Tν˚ “ ΘpBq) because it represents “one unit of
reward earned by consuming one unit of cost”. In this setting, we can get the classical and optimal
Õp

?
T q regret. This result matches the regret guarantee in Han et al. (2023); Chzhen et al. (2024).

Unlike these works, AUPD does not require the doubling trick or other parameter search stages, thus
providing a more direct and adaptive structure.

When the strict feasibility assumption does not necessary to hold, AUPD achieves a worst-case
theoretical guarantee of Õp

?
T ` ν˚

?
b
T

3
4 q “ Õ

´?
T ` Tν˚T

1
4 ´ α

2

¯

in the small budget regime,
which, to be the best of our knowledge, is the first result for CBwK without strict feasibility assumption
even when B “ ΩpT q. Intuitively, the additional term ν˚

?
b
T

3
4 is due to the “hard” problem instance.

When Tν˚ “ ΘpTαq “ ΘpBq, i.e., one unit of reward for each unit of cost, AUPD achieves the
regret ÕpT

3
4 q performance, instead of the classical regret Õp

?
T q. This might imply that the CBwK

instance, without a strict feasibility assumption, is indeed challenging.

Finally, it is worth emphasizing that all these results are achieved with a single AUPD algorithm,
without any tailored adjustment or any prior knowledge of the problem instance. This demonstrates
that AUPD is quite adaptive and universal for CBwK.

Remark 2 The classical lower bound for CBwK is Ωp
?
T q in Agrawal & Devanur (2016) derived by

reducing the constrained contextual bandits into unconstrained ones. However, this lower bound did
not capture the effect of knapsack constraints. To our knowledge, the most relevant lower bound for
CBwK is from Chzhen et al. (2024). With the assumption of strict feasibility, Section E in Chzhen et al.
(2024) provides a problem-dependent lower bound of Ωpp1`ν˚{bq

?
T q for CBwK with B “ Ωp

?
T q.

Therefore, our regret bound is tight when the assumption of strict feasibility holds. However, no
existing lower bounds are reported without the assumption of strict feasibility, which is an interesting
direction for future work.

To establish these strong results, we need to carefully analyze the budget consumption processes. The
key is to identify when the interaction terminates/stops and how much cumulative rewards AUPD
gains during the process. When the strict feasibility assumption holds, we provide a new perspective
on the stopping time (i.e., the first time when any type of resource budget is exhausted) and a refined
analysis of the cumulative variance of budget consumption. Our analysis treats the virtual queue
update as a Markovian process and leverages the Lyapunov-drift analysis to establish the expected
upper bound on the virtual queues (i.e., the over-consumed budgets), which is translated to be the
lower bound of the stopping time. Without the strict feasibility assumption, we directly establish
the upper bound of the virtual queues. These bounds will be used to establish the regret bounds in
Theorem 1, as we detailed in the next section.

5 THEORETICAL ANALYSIS

In this section, we provide a detailed proof of Theorem 1. To state these results, we first decompose
the regret defined in (5) according to the stopping time τ . The stopping time is defined as the first
time when one of the resource budgets is exhausted

τ “ argmin
τ 1PrT s

#

τ 1 | Dk,
τ 1
ÿ

t“1

cpkqpxt, atq ě B

+

. (8)
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5.1 REGRET DECOMPOSITION

Let π˚ be the optimal solution to the baseline problem (2)–(4) and a˚
t be the optimal actions sampling

from it, i.e., a˚
t „ π˚. We decompose the regret as follows

RegretpT q ď E

«

T
ÿ

t“1

rpxt, a
˚
t q ´

T
ÿ

t“1

rpxt, atq

ff

(9)

ď ν˚ErT ´ τ s
looooomooooon

Regret after stopping

`E

«

τ
ÿ

t“1

rpxt, a
˚
t q ´ rpxt, atq

ff

looooooooooooooooomooooooooooooooooon

Regret before stopping: Regretpτq

The decomposition includes two parts: “regret after stopping” and “regret before stopping”. The
former one is simply bounded by the remaining rounds ˆ the optimal value ν˚; the latter one denoted
by ErRegretpτqs is the difference between our policy and the optimal one.

Regret via Lyapunov Drift Analysis: As discussed, we provide a new perspective on analyzing the
regret via Lyapunov drift analysis, which can be used to bound both “regret before stopping” and
“regret after stopping”. We view tQtu as a stochastic/Markovian process and study its connection
with regret. Let Lt “ }Qt}

2
2{2 “

ř

kpQ
pkq

t q2{2 be the Lyapunov function and ∆t “ Lt`1 ´ Lt be
its drift. Further let EHt

r¨s “ Er¨|Hts, where Ht “ rxt, r̂t, čt,Qts We establish the following key
lemma that bridges the one-step regret and Lyapunov drift. The detailed proof is in Appendix B.1.
Lemma 2 Under Assumptions 1 and 2, AUPD in Algorithm 1 establishes that for any feasible policy
π to (2)–(4) with a „ π that

EHt

«

Regretpxt, aq `
∆t

V
´

1

V

ÿ

k

Qpkqpcpkqpxt, aq ´ bq

ff

ď EHt

«

2

T 2
` 2εtpxt, at, pq `

1

2V

ÿ

k

´

č
pkq

t pxt, atq ´ b
¯2

`
ÿ

k

2Qpkqp1 ` bq

V

P pEcq

P pEq

ff

,

where Regretpxt, aq “ rpxt, aq ´ rpxt, atq and the event E is defined in Assumption 2.

This Lemma is the key lemma that establishes the bound of “one-step regret + Lyapunov drift”.
It bridges the analysis to bound both "regret before/after stopping" as we will demonstrate in the
following. Note that the lemma holds without strict feasibility assumption in Assumption 3.

5.2 REGRET BEFORE STOPPING

Letting a “ a˚
t „ π˚ in Lemma 2 and ignoring the low probability event Ec, then the inequality

suggests that “one-step regret + Lyapunov drift” is upper bounded by three related terms: the optimal
budget consumption

ř

kpcpkqpxt, a
˚
t q´bq, the single-step estimation error εtpxt, at, pq, the estimated

consumption resource
ř

kpč
pkq

t pxt, atq ´ bq2. Bounding “regret before stopping” E rRegretpτqs

requires establishing their cumulative counterparts: the expected optimal budget consumption is
always negative according to the definition; the cumulative estimation error is bounded by Assumption
2; the estimated consumption resource is the most important part and we provide a refined analysis
that bound this term by OppTb` Tb2q{V q, which is one of the key components in proving the strong
results in Theorem 1. The result of “regret before stopping” is summarized in the following lemma
and the detailed proof is in Appendix B.2.
Lemma 3 Under Assumptions 1 and 2, the budget-aware optimistic exploration algorithm in Algo-
rithm 1 achieves

E rRegretpτqs “ O

ˆ

?
T logpT q `

KpTb ` Tb2q

V

˙

.

5.3 REGRET AFTER STOPPING

In the regret decomposition, the “regret after stopping” is bounded by ν˚ErT ´ τ s. To minimize this
regret, it is crucial to establish a “large” lower bound on the stopping time τ , ideally depleting the

8
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budget only when it is very close to T . To (lower) bound the stopping time τ, we need to analyze the
behavior of the virtual queue because it captures the over-consumed budget against the average usage
b for the round t.

Recall we have the virtual queue update Q
pkq

t`1 “ maxpQ
pkq

t ` č
pkq

t pxt, atq ´ b, 0q. Let M pkq
τ “

řτ
t“1pcpkqpxt, atq ´ č

pkq

t pct, atqq, then for certain budget k1 that is first to be exhausted, we have

Q
pk1

q

τ`1 ` bτ ` M pk1
q

τ ě

τ
ÿ

t“1

cpk1
qpxt, atq. (10)

From learning oracle errors in Assumption 2, we already have a high probability upper bound
for M

pkq
τ ,@k P rKs, then we can consequently define a virtual stopping time such that τ0 “

argminτ 1PrT stτ
1 | Q

pk1
q

τ 1`1 ` bτ 1 ` Õp
?
τq ě Bu, where k1 denotes the resource that was first depleted.

The virtual stopping time is the first time when the upper bound of budget consumption in (10) is
greater than B. The inequality (10) indicates that the value Qpk1

q

t`1 reflects how soon the algorithm will
deplete the resource. Combined with the definition of the stopping time in (8), we immediately have
that the true stopping time is lower bounded by the virtual stopping time, i.e., τ ě τ0. Now we only
need to establish the lower bound on τ0, and the key is to prove an upper bound for the virtual queue
length at the stopping time, which can be provided through Lyapunov drift analysis.

Lyapunov drift analysis for establishing τ0: As discussed, we view tQtu as a stochastic/Markovian
process and study its convergence or upper bound via Lyapunov analysis. When the strict feasibility
assumption in Assumption 3 holds, from Lemma 2, we establish a “negative drift” of the Lyapunov
drift function, implying a “small” expected upper bound of the virtual queues in the following lemma.
Without Assumption 3, we establish a slightly worse upper bound.

Lemma 4 Under Assumptions 1 and 2, when B “ Ωp
?
T q, AUPD in Algorithm 1 achieves that

E

«

ÿ

k

Q
pkq

t

ff

“ Op
?
KV T q, @t P rT s,

with the additional Assumption 3, AUPD guarantees that

E

«

ÿ

k

Q
pkq

t

ff

“ Op
?
KV {δbq, @t P rT s. (11)

The above lemma demonstrates that the virtual queues are “stable” and relatively “small”, indicating
that our algorithm utilizes the resources effectively and does not terminate early. Intuitively, the
underlying reasons behind virtual queues staying within a “small” region because, upon detecting
over-consumption (the virtual queues increases), the algorithm would make conservative decisions to
reduce the queue length. Now, we are ready to establish the expected upper bound on the remaining
rounds in the following lemma, which is the key to establishing the regret performance.
Lemma 5 Under Assumptions 1 and 2, the expected remaining round in the small budget regime
B “ Ωp

?
T q under AUPD in Algorithm 1 satisfies that

ErT ´ τ s “ Õ
´?

KV T {b `
?
T {b

¯

,

with the additional Assumption 3, the expected remaining round under AUPD satisfies that

ErT ´ τ s “ Õ
´?

KV {δb2 `
?
T {b

¯

.

Proving Theorem 1: Lemma 3 demonstrates that the algorithm’s performance approaches the optimal
policy before stopping, while Lemma 5 ensures that the algorithm would not exhaust resources and
terminate prematurely. Combine them into (9), we immediately have the regret bound for two cases.
Specifically, for the worst-case without any feasibility assumptions, we have

RegretpT q ď ν˚ErT ´ τ s ` ErRegretpτqs

“ Õ
´?

KV Tν˚{b `
?
Tν˚{b `

?
T ` KpTb ` Tb2q{V

¯

.

9



Published as a conference paper at ICLR 2025

With the strict feasibility assumption in Assumption 3, we have

RegretpT q ď ν˚ErT ´ τ s ` ErRegretpτqs

“ Õ
´?

KV ν˚{δb2 `
?
Tν˚{b `

?
T ` KpTb ` Tb2q{V

¯

.

Let V “ b
?
T and we prove Theorem 1.

6 EXPERIMENTS

In this section, we validate our algorithm through numerical experiments using the large-scale learning-
to-rank dataset Qin & Liu (2013) in the small budget regime. We compare our algorithm AUPD with
SquareCBwK Han et al. (2023), an oracle–based primal–dual algorithm under B “ ΩpT

3
4 q, and PGD

Adaptive Chzhen et al. (2024), a primal–dual algorithm with doubling trick for learning the optimal
stepsize that claims to achieve optimal performance under B “ Ωp

?
T q. The large-scale learning-to-

rank dataset MSLR-WEB30k Qin & Liu (2013) contains 31, 278 queries. Each query includes various
document-query contexts, each with a dimensionality of 136, and there are 20 documents/arms. The
reward function rpx, aq is defined as the relevance of each document-context pair as collected in
the dataset. We construct the expected cost of each arm cpx, aq by uniformly drawing from the
interval r0, 5s, and these values remain fixed throughout each trial. The observations are corrupted
with Gaussian noise N p0, 0.05q. All the algorithms utilize gradient-boosted tree regression as the
learning oracle for the reward function and the empirical mean for the cost function. We set the
time horizon T “ 5000 and vary the budgets B “ t100, 600, 1000u to represent the budget regime
tΘp

?
T q, ΘpT

3
4 q, ΘpT qu, respectively. The interaction terminates once the budget is exhausted,

incurring zero reward and cost for the remaining rounds. The further details on the experiments and
hyperparameters can be found in Appendix D. Our experimental results are shown in Figure 1. These
results are obtained by averaging over 50 trials and are reported with a 95% confidence interval.

(a) Budget B “ Θp
?
T q. (b) Budget B “ ΘpT

3
4 q. (c) Budget B “ ΘpT q.

Figure 1: Experiments under different budget regimes.

From Figure 1, we observe our algorithm AUPD achieves the best performance compared to
SquareCBwK and PGD Adaptive under various budget regimes. Especially when the budget is
relatively small, as shown in Figures 1a, AUPD outperforms the baselines by a large margin. This
justifies that the joint design of budget-aware decision-making and virtual queue-based budget pacing
is very adaptive and effective to balance the reward and budget consumption.

7 CONCLUSIONS

In this paper, we studied stochastic contextual bandits with knapsack constraints under the small
budget regime. We introduced an Adaptive and Universal Primal–Dual Algorithm and provided a
new perspective of Lyapunov drift analysis to establish strong theoretical guarantees under the small
budget regime B “ Ωp

?
T q: AUPD achieves the best well-known regret under the strict feasibility

assumption; AUPD achieves the first regret result without the strict feasibility assumption. The
experiments further confirmed our theoretical results.
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A PROOF OF LEMMA 1

The proof is similar to that in Devanur et al. (2011). Recall the problem in (1) and let π̂˚
t be the

adaptive optimal solution:

max
T

ÿ

t“1

rpxt, a
πt
t q

subject to:
T

ÿ

t“1

cpxt, a
πt
t q ď B

Recall the context xt is i.i.d. across rounds and rpx, aq and cpx, aq are the expected functions given
x. We have

E

«

T
ÿ

t“1

ÿ

a

rpxt, aqπtpxt, aq

ff

“

T
ÿ

t“1

E

«

E

«

ÿ

a

rpxt, aqπtpxt, aq|Ht´1

ffff

“

T
ÿ

t“1

E

«

ÿ

x

ÿ

a

pxrpx, aqE rπtpx, aq|xt “ x,Ht´1s

ff

“E

«

ÿ

x

ÿ

a

pxrpx, aq

T
ÿ

t“1

E rπtpx, aq|xt “ x,Ht´1s

ff

“
ÿ

x

ÿ

a

pxrpx, aq

T
ÿ

t“1

E rπtpx, aq|xt “ xs

Similarly, we have

E

«

T
ÿ

t“1

ÿ

a

cpkqpxt, aqπtpxt, aq

ff

“
ÿ

x

ÿ

a

pxc
pkqpx, aq

T
ÿ

t“1

E rπtpx, aq|xt “ xs , @k P rKs.

Define π̂˚px, aq “ 1
T

řT
t“1 E r π̂˚

t px, aq|xt “ xs , where π̂˚
T is a feasible solution to (2)–(4) because

π̂˚ is a feasible solution to (1). Therefore, we have

E

«

T
ÿ

t“1

ÿ

a

rpxt, aqπ̂˚
t pxt, aq

ff

“ T
ÿ

x

ÿ

a

pxrpx, aqπ̂˚px, aq

ď Tν˚.

B REGRET ANALYSIS

For the sake of simplicity, we initially let the reward and cost upper bounds R “ C “ 1 in Assumption
1 before delving into detailed proofs.

B.1 PROOF OF LEMMA 2

In Algorithm 1, the action at is the optimal solution such that for any a P A,

r̂tpxt, aq ´
1

V

ÿ

k

Q
pkq

t č
pkq

t pxt, aq ď r̂tpxt, atq ´
1

V

ÿ

k

Q
pkq

t č
pkq

t pxt, atq.

Add Regretpxt, aq “ rpxt, aq ´ rpxt, atq on both sides and rearrange these terms, we have

Regretpxt, aq (12)

ďprpxt, aq ´ r̂tpxt, aqq ` pr̂tpxt, atq ´ rpxt, atqq `
1

V

ÿ

k

Q
pkq

t

´

č
pkq

t pxt, aq ´ č
pkq

t pxt, atq
¯

.
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According to the virtual queue update

Q
pkq

t`1 “ max
´

Q
pkq

t ` č
pkq

t pxt, atq ´ b, 0
¯

, @k.

The following inequality holds for the Lyapunov drift that

∆t :“
1

2

ÿ

k

´

Q
pkq

t`1

¯2

´
1

2

ÿ

k

´

Q
pkq

t

¯2

ď
1

2

ÿ

k

p2Q
pkq

t ` č
pkq

t pxt, atq ´ bqpč
pkq

t pxt, atq ´ bq

“
ÿ

k

Q
pkq

t

´

č
pkq

t pxt, atq ´ b
¯

`
ÿ

k

1

2

´

č
pkq

t pxt, atq ´ b
¯2

.

Combine this inequality with (12), we can establish the following key bound on the “Regret +
Lyapunov drift”:

Regretpxt, aq `
∆t

V
ďprpxt, aq ´ r̂tpxt, aqq ` pr̂tpxt, atq ´ rpxt, atqq

`
1

V

ÿ

k

Q
pkq

t

´

č
pkq

t pxt, aq ´ b
¯

`
1

2V

ÿ

k

´

č
pkq

t pxt, atq ´ b
¯2

. (13)

To proceed, we recall the following event defined in Assumption 2, which holds with a probability of
at least 1 ´ p:

E “

#

0 ď r̂tpx, aq ´ rpx, aq ď 2εtpx, a, pq,

0 ď cpkqpx, aq ´ č
pkq

t px, aq ď 2εtpx, a, pq, @k P rKs, x P X , a P A, t P rT s

+

.

Recall p “ 1{T 2, now taking the conditional expectation Er ¨ |Ht “ hs on (13), where h “

rx, f̂ , č,Qs, we obtain that

E rRegretpxt, aq|Ht “ hs ` E
„

∆t

V
|Ht “ h

ȷ

ďE rprpxt, aq ´ r̂tpxt, aqq ` pr̂tpxt, atq ´ rpxt, atqq|Ht “ h, Ecs ` 2εtpxt, at, pq

` E

«

1

V

ÿ

k

Q
pkq

t

´

č
pkq

t pxt, aq ´ b
¯

`
1

2V

ÿ

k

´

č
pkq

t pxt, atq ´ b
¯2

|Ht “ h

ff

ď
2

T 2
` 2εtpxt, at, pq ` E

«

1

2V

ÿ

k

´

č
pkq

t pxt, atq ´ b
¯2

|Ht “ h

ff

` E

«

1

V

ÿ

k

Q
pkq

t

´

č
pkq

t pxt, aq ´ b
¯

|Ht “ h

ff

ď
2

T 2
` 2εtpxt, at, pq ` E

«

1

2V

ÿ

k

´

č
pkq

t pxt, atq ´ b
¯2

|Ht “ h

ff

`
1

V

ÿ

k

QpkqE
”

pcpkqpxt, aq ´ bq | Ht “ h, E
ı

`
ÿ

k

Qpkqp1 ` bq

V
P pEcq

ď
2

T 2
` 2εtpxt, at, pq ` E

«

1

2V

ÿ

k

´

č
pkq

t pxt, atq ´ b
¯2

|Ht “ h

ff

`
1

V

ÿ

k

QpkqE
”

pcpkqpxt, aq ´ bq|Ht “ h
ı

`
ÿ

k

2Qpkqp1 ` bq

V

P pEcq

P pEq
, (14)

where the second and third inequalities hold because of the definition of event E . The last inequality
holds because the context is independent of Ht and the distribution of xt does not change conditioned
on Ht. Therefore, we have

P pxt “ x|Ht “ h, Eq “ P pxt “ x|Eq .
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Then we calculate that

P pxt “ x|Eq ´ P pxt “ xq “
Ppxt “ x, Eq ´ P pxt “ xqP pEq

PpEq

“
P pxt “ xq pPpE |xt “ xq ´ P pEqq

PpEq

ďP pxt “ xq
1 ´ P pEq

P pEq
,

which implies that
ÿ

k

QpkqE
”

pcpkqpxt, aq ´ bq|Ht “ h, E
ı

´
ÿ

k

QpkqE
”

pcpkqpxt, aq ´ bq|Ht “ h
ı

ď
ÿ

k

Qpkqp1 ` bq
1 ´ P pEq

P pEq
“

ÿ

k

Qpkqp1 ` bq
P pEcq

P pEq
.

B.2 PROOF OF LEMMA 3

Since the action a could be any action in A, we can let a “ a˚
t „ π˚ in (14) to obtain:

E rRegretpxt, a
˚
t q|Ht “ hs ` E

„

∆t

V
|Ht “ h

ȷ

ď
2

T 2
` 2εtpxt, at, pq ` E

«

1

2V

ÿ

k

´

č
pkq

t pxt, atq ´ b
¯2

|Ht “ h

ff

`
ÿ

k

2Qpkqp1 ` bq

V

P pEcq

P pEq

(15)

where the inequality holds because the action a˚
t satisfies the constraint in (3) such that

E
“

pcpkqpxt, a
˚
t q ´ bq|Ht “ h

‰

ď 0. We further take the expectation on both sides of the inequality
and then take summation from t “ 1 to τ that

E

«

τ
ÿ

t“1

Regretpxt, a
˚
t q

ff

` E

«

ÿ

k

pQ
pkq

τ`1q2

2V
´

ÿ

k

pQ
pkq

1 q2

2V

ff

ď
2τ

T 2
` 2

τ
ÿ

t“1

εtpxt, at, pq ` E

«

τ
ÿ

t“1

1

2V

ÿ

k

´

č
pkq

t pxt, atq ´ b
¯2

ff

` E

«

τ
ÿ

t“1

ÿ

k

2Qpkqp1 ` bq

V

P pEcq

P pEq

ff

.

Since Q
pkq

1 “ 0, @k P rKs, PpEcq ď 1{T 2 and Q
pkq

t ď Q
pkq

t´1 ` 1 ď T, @k P rKs, t P rT s, we
conclude that

E

«

τ
ÿ

t“1

Regretpxt, a
˚
t q

ff

ď
2

T
` 2

T
ÿ

t“1

εtpxt, at, pq ` 4Kp1 ` bq ` E

«

τ
ÿ

t“1

1

2V

ÿ

k

´

č
pkq

t pxt, atq ´ b
¯2

ff

ď
2

T
` 2UpT, pq ` 4Kp1 ` bq ` E

«

τ
ÿ

t“1

1

2V

ÿ

k

´

č
pkq

t pxt, atq ´ b
¯2

ff

,

where the first inequality holds since stopping time τ ď T , and the second inequality comes from the
learning oracle assumption. Finally, we complete the proof by providing a simple but refined analysis
on the cumulative budget consumption that

E

«

τ
ÿ

t“1

1

2V

ÿ

k

´

č
pkq

t pxt, atq ´ b
¯2

ff

ďE

«

τ
ÿ

t“1

ÿ

k

č
pkq

t pxt, atq
2 ` b2

V

ff

ď
1

V
E

«

τ
ÿ

t“1

ÿ

k

č
pkq

t pxt, atq

ff

`
τKb2

V
,

where the second inequality holds because čtpxt, atq is bounded by 1. Moreover, we have

E

«

τ
ÿ

t“1

č
pkq

t pxt, atq

ff

“ E

«

τ
ÿ

t“1

č
pkq

t pxt, atq ´ cpkqpxt, atq

ff

` E

«

τ
ÿ

t“1

cpkqpxt, atq

ff

ď 1 ` Bk “ 1 ` Tb,
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where the last inequality holds because of Assumption 2 and the definition of stopping time τ.
Therefore, we have

E

«

τ
ÿ

t“1

1

2V

ÿ

k

´

č
pkq

t pxt, atq ´ b
¯2

ff

ď
Kp1 ` Tb ` τb2q

V
ď

Kp1 ` Tb ` Tb2q

V
.

By combining all these facts, we derive an upper bound for the regret incurred before stopping.

E rRegretpτqs ď
2

T
` 2UpT, pq ` 4Kp1 ` bq `

Kp1 ` Tb ` Tb2q

V

ď2 ` 2C0

?
T logpT {pq ` 4Kp1 ` bq ` K

ˆ

1

b
?
T

` 1 ` b

˙

?
T

ďp6K ` 4Kbq ` 2C0

?
T logpT {pq ` Kp2 ` bq

?
T

“C1 ` 2C0

?
T logpT {pq ` Kp2 ` bq

?
T ,

where C1 “ 6K ` 4Kb and the second inequality holds due to the value of V , while the third
inequality is a consequence of the fact that K ě 1.

B.3 PROOF OF LEMMA 4

B.3.1 LYAPUNOV DRIFT ANALYSIS

From (14), we have established the Lyapunov drift

E

«

ÿ

k

pQ
pkq

t`1q2

2
´

ÿ

k

pQ
pkq

t q2

2
|Ht

ff

ď
2V

T 2
` 2V εtpxt, at, pq ` E

«

´V Regretpxt, aq `
1

2

ÿ

k

´

č
pkq

t pxt, atq ´ b
¯2

| Ht

ff

`
ÿ

k

QpkqE
”

pcpkqpxt, aq ´ bq|Ht

ı

`
ÿ

k

2Qpkqp1 ` bq

V

P pEcq

P pEq

ď4V ` E

«

´V Regretpxt, aq `
1

2

ÿ

k

´

č
pkq

t pxt, atq ´ b
¯2

| Ht

ff

`
ÿ

k

QpkqE
”

pcpkqpxt, aq ´ bq|Ht

ı

`
ÿ

k

2Qpkqp1 ` bq

V

P pEcq

P pEq
(16)

ď6V ` E

«

1

2

ÿ

k

´

č
pkq

t pxt, atq ´ b
¯2

| Ht

ff

´
ÿ

k

Qpkqδb `
ÿ

k

2Qpkqp1 ` bq

V

P pEcq

P pEq

ď6V ` E

«

1

2

ÿ

k

´

č
pkq

t pxt, atq ´ b
¯2

| Ht

ff

´
ÿ

k

Qpkqδb `
ÿ

k

4Qpkqp1 ` bq

V T 2

ď6V ` E

«

1

2

ÿ

k

´

č
pkq

t pxt, atq ´ b
¯2

| Ht

ff

´
ÿ

k

Qpkqδb `
4Kp1 ` bq

V T
(17)

where the second inequality holds because εtpxt, at, pq ď 1 as specified by the estimators’ and the
function’s upper bounds; the third inequality holds because of the upper bounds of reward function
and cost estimators and the “Slater condition” in Assumption 3 that there exists a feasible policy such
that

E
”

cpkqpxt, aq ´ b | Ht “ h
ı

ď ´δb, @k P rKs.

B.4 CBWK WITHOUT STRICT FEASIBILITY ASSUMPTIONS

For CBwK without strict feasibility assumptions, we can set a “ a˚ „ π˚ in (16). This allows us
to obtain an inequality similar to (17), replacing ´

ř

k Q
pkqδb with 0, we can then directly take the
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expectation on both sides to obtain:

E

«

ÿ

k

pQ
pkq

t`1q2

2
´

ÿ

k

pQ
pkq

t q2

2

ff

ď6V ` E

«

1

2

ÿ

k

´

č
pkq

t pxt, atq ´ b
¯2

ff

`
4Kp1 ` bq

V T

ď6V ` E

«

1

2

ÿ

k

´

č
pkq

t pxt, atq ` b2
¯

ff

`
4Kp1 ` bq

V T
,

where the inequality holds since Qpkq, δ, b ě 0, pa ´ bq2 ď a2 ` b2 and the value of čpkq

t px, aq are
bounded. Sum this inequality from 1 to τ , then we have

E

«

ÿ

k

pQ
pkq

τ`1q2

2
´

ÿ

k

pQ
pkq

1 q2

2

ff

ď6V τ ` E

«

1

2

ÿ

k

τ
ÿ

t“1

´

č
pkq

t pxt, atq ` b2
¯

ff

`
4Kτp1 ` bq

V T
,

ď6V τ `
K

2
p
1

T
` B ` τb2q `

4Kτp1 ` bq

V T

ď6V T ` Kp1 ` B ` Tb2q `
4Kp1 ` bq

V

ď6V T ` 6KB ` KTb2 ` 4K
?
T ,

where the second inequality holds due to the high probability event E , the last inequality holds since
1{V ď

?
T and b{V ď

?
Tb ď B, Combine the facts that Qpkq

1 “ 0, @k and Cauchy-Schwarz
inequality, we have

E

»

—

–

´

ř

k Q
pkq

τ`1

¯2

2K

fi

ffi

fl

ď 6V T ` 6KB ` KTb2 ` 4K
?
T ,

Rearrange these terms, we obtain that

E

»

–

˜

ÿ

k

Q
pkq

τ`1

¸2
fi

fl ď 12KV T ` 12K2B ` 2K2Tb2 ` 8K2
?
T .

Then we have

E

«

ÿ

k

Q
pkq

τ`1

ff

ď 4
?
KbT

3
4 ` 4K

?
Tb ` 2Kb

?
T ` 3KT

1
4 .

B.4.1 CBWK WITH STRICT FEASIBILITY ASSUMPTION IN ASSUMPTION 3

We define the Lyapunov function L̄t “

b

ř

kpQ
pkq

t q2 “ }Qt}2. To establish the expected bound on
the virtual queue, we prove conditions (i) and (ii) in Lemma 6 for L̄t. From (17), we have

Er}Qt`1}22 ´ }Qt}
2
2s ď6V ` E

«

1

2

ÿ

k

´

č
pkq

t pxt, atq ´ b
¯2

| Ht

ff

´
ÿ

k

Qpkqδb `
4Kp1 ` bq

V T

ď6V ` p1 ` bq2 ´
ÿ

k

Qpkqδb `
4Kp1 ` bq

V T

ď6V ` 6Kp1 ` bq2 ´
ÿ

k

Qpkqδb.

Given Ht “ h and L̄t ě φt “
4p3V `3Kp1`bq

2
q

δb , the conditional expected drift of L̄t is

Er}Qt`1}2 ´ }Qt}2|Ht “ hs ď
1

2}Q}2
Er}Qt`1}22 ´ }Qt}

2
2|Ht “ hs

ď
6V ` 6Kp1 ` bq2 ´ }Q}1δb

2}Q}2
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ď ´
δb

2
`

3V ` 3Kp1 ` bq2

}Q}2

ď ´
δb

4
,

where the first inequality holds because 2p}Qt`1}2 ´ }Qt}2q}Qt}2 ď }Qt`1}22 ´ }Qt}
2
2; the second

inequality holds by the “negative drift” in (17) above; the third inequality holds since }Q}1 ě }Q}2;
and the last inequality holds given the condition }Qt}2 ě φt “

4p3V `3Kp1`bq
2

q

δb . Moreover, for
condition (ii) in Lemma 6, we have

}Qt`1}2 ´ }Qt}2 ď }Qt`1 ´ Qt}2 ď }Qt`1 ´ Qt}1 ď K,

where the last inequality holds because |Q
pkq

t`1 ´ Q
pkq

t | ď 1 ´ b, @k P rKs.

Let ρ “ δb
4 , νmax “ K and recall Qpkq

1 “ 0, @k P rKs. We are ready to apply Lemma 6 for L̄ptq
and obtain

E
”

eζ}Qt}2

ı

ď 1 `
2eζpνmax`φtq

ζρ
with ζ “

ρ

ν2max ` νmaxρ{3
. (18)

Then according to Cauchy-Schwarz inequality, we have

E
”

e
ζ

?
K

}Qt}1
ı

ď 1 `
2eζpνmax`φtq

ζρ
,

Applying Jensen’s inequality, we obtain that

e
ζ

?
K

Er}Qt}1s
ď E

”

e
ζ

?
K

}Qt}1
ı

ď 1 `
2eζpνmax`φtq

ζρ
,

Finally, for any t P rT s

E

«

ÿ

k

Q
pkq

t

ff

ď

?
K

ζ
log

ˆ

1 `
2eζpνmax`φtq

ζρ

˙

ď

?
K

ζ
log

ˆ

1 `
8ν2maxe

ζpνmax`φtq

3ρ2

˙

ď

?
K

ζ
log

ˆ

11ν2maxe
ζpνmax`φtq

3ρ2

˙

ď
2

?
K

ζ
log p2νmax{ρq ` K

3
2 `

?
Kφt

“
2

?
K

ζ
log p8K{δbq ` K

3
2 `

4
?
Kp3V ` 3Kp1 ` bq2q

δb

“
2

?
K

ζ
log p8K{δbq ` K

3
2 `

12K2p1 ` bq2

δb
`

12
?
KT

δ
,

where the second, the third and the fourth inequality comes from the definition of ζ and the fact that
0 ă ρ ď νmax and νmax “ K, the last two equalities comes from the definition of φt and V .

B.5 PROOF OF LEMMA 5 UNDER ALGORITHM 1

Recall the definition of virtual stopping time

τ0 “ argminτ 1PrT s

!

τ 1 | Q
pkq

τ 1`1 ` bτ 1 ` M
pkq

τ 1 ě B, Dk
)

,

where M
pkq
τ “

řτ
t“1pcpkqpxt, atq ´ č

pkq

t pxt, atqq. Divide both sides of the stopping time definition
inequality by b and take the expectation, we have

E rT ´ τ s ďE rT ´ τ0s
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ďE
”

Q
pk1

q

τ`1{b
ı

` ErM pk1
q

τ {bs

ďE r}Qτ`1}1{bs ` ErM pk1
q

τ {bs,

where the first inequality holds since τ ď τ0 according to the definition (8). From Assumption 2, for
any k

M pkq
τ ď 2

τ
ÿ

t“1

εtpxt, at, pq ď 2
T

ÿ

t“1

εtpxt, at, pq ď 2C0

?
T logpT {pq,

then the stopping time bound can be established by

E rT ´ τ s ď Er}Qτ`1}1{bs `
2C0

?
T logpT {pq

b

We first consider the case without strict feasibility assumption, then we can establish the bound
through Lemma 4 such that:

E rT ´ τ s ď 4

c

K

b
T

3
4 ` 4K

c

T

b
` 2K

?
T `

3KT
1
4

b
`

2C0

?
T logpT {pq

b
.

We can then get a refined result with the Slater condition in Assumption 3. Since we have established
an upper bound in Lemma 4, the stopping time can be bounded by

E rT ´ τ s ď
2

?
K

ζb
log p8K{δbq ` K

3
2 b´1 `

12K2p1 ` bq2

δb2
`

12
?
KT

δb
`

2C0

?
T logpT {pq

b
.

B.6 PROOF OF THEOREM 1 UNDER ALGORITHM 1

Now we aggregate the regret after stopping and before stopping as follows. For the general case, we
have

RegretpT q ď ν˚ErT ´ τ s
looooomooooon

regret after stopping

`E

«

τ
ÿ

t“1

rpxt, a
˚
t q

ff

´ E

«

τ
ÿ

t“1

rpct, atq

ff

looooooooooooooooooooooomooooooooooooooooooooooon

regret before stopping

ďC1 ` 2C0

?
T logpT {pq ` Kp2 ` bq

?
T

`

˜

4

c

K

b
T

3
4 ` 4K

c

T

b
` 2K

?
T `

3KT
1
4

b
`

2C0

?
T logpT {pq

b

¸

ν˚. (19)

With the Slater condition in Assumption 3, we have

RegretpT q ď ν˚ErT ´ τ s
looooomooooon

regret after stopping

`E

«

τ
ÿ

t“1

rpxt, a
˚
t q

ff

´ E

«

τ
ÿ

t“1

rpct, atq

ff

looooooooooooooooooooooomooooooooooooooooooooooon

regret before stopping

ďC1 ` 2C0

?
T logpT {pq ` Kp2 ` bq

?
T

`

˜

2
?
K

ζb
log p8K{δbq ` K

3
2 b´1 `

12K2p1 ` bq2

δb2
`

12
?
KT

δb
`

2C0

?
T logpT {pq

b

¸

ν˚.

(20)

which proves the regret bounds in Theorem 1.

C SUPPORTING LEMMAS

C.1 LYAPUNOV DRIFT LEMMA

We present a lemma that will be used to derive the high probability of tQtu. The lemma is from Liu
et al. (2021), which is a minor variation of Lemma 4.1 Neely (2016; 2022) and the results in Hajek
(1982), where the radius of φt could be time dependent.
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Lemma 6 Let Sptq be a random process, Φptq be its Lyapunov function with Φp0q “ Φ0 and
∆ptq “ Φpt ` 1q ´ Φptq be the Lyapunov drift. Given an increasing sequence tφtu, ρ and νmax with
0 ă ρ ď νmax, if the expected drift Er∆ptq|Sptq “ ss satisfies the following conditions:

(i) There exists constants ρ ą 0 and φt ą 0 such that Er∆ptq|Sptq “ ss ď ´ρ when
Φptq ě φt, and

(ii) |Φpt ` 1q ´ Φptq| ď νmax holds with probability one;

then we have

EreζΦptqs ď eζΦ0 `
2eζpνmax`φtq

ζρ
, (21)

where ζ “
ρ

ν2
max`νmaxρ{3 .

D EXPERIMENTAL DETAILS AND ADDITIONAL EXPERIMENTS

D.1 EXPERIMENTAL DETAILS

In this section, we provide the experimental details of our evaluations. We first discuss the learning-
to-rank dataset we use as the reward functions: Microsoft Learning to Rank. We use the MSLR-
WEB30K dataset Qin & Liu (2013) which is available at https://www.microsoft.com/
en-us/research/project/mslr/. This dataset has 31,278 arrivals, and the contextual di-
mension is 136. We extract |A| “ 20 documents (arms) per query and the reward is defined as the
relevance judgments in the dataset which take 5 values from 0 (irrelevant) to 4 (perfectly relevant).
We set the time horizon T “ 5000 and randomly draw an arrival from the 31,278 data points.

We then provide the hyperparameters of tested algorithms in our experiments.

Algorithm Parameters
AUPD Algorithm V “ 0.1b

?
T

PGD Adaptive Chzhen et al. (2024) MT “ 4
?
T ` 2

?
T log T , δb “ 1{

?
T

SquareCBwK Han et al. (2023) U “
?
T log T , γ “ 0.1

a

T {U

Table 2: Parameters in the experiment.

Figure 2: Budget B “ 30.
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Table 3: Average cumulative rewards under various budgets.

B = 30 B = 100 B = 600 B = 1000
Our Algorithm (AUPD) 0.105 0.233 0.238 0.344

PGD Adaptive 0.012 0.051 0.230 0.336
SquareCBwK 0.007 0.028 0.174 0.298

D.2 EXPERIMENTS UNDER OTHER BUDGET REGIMES

Recall the previous experiments with budgets B “ t100, 600, 1000u to represent different budget
regimes tΘp

?
T q,ΘpT 3{4q,ΘpT qu. We consider the same setting and vary the budget with smaller

budgets, where B “ t30u. The experimental results are shown in Figure 2, which suggests that our
algorithm adapts effectively to varying budget regimes and achieves much better performance as the
budget decreases or the constraints become tight. A summary of average cumulative rewards can be
found in Table 3, where the values for B “ t100, 600, 1000u are from Figure 1.
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