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Abstract

While large reasoning models demonstrate strong performance on complex tasks,1

they lack the ability to adjust reasoning token usage based on task difficulty. This2

often leads to the “overthinking” problem—excessive and unnecessary reason-3

ing—which, although potentially mitigated by human intervention to control the4

token budget, still fundamentally contradicts the goal of achieving fully autonomous5

AI. In this work, we propose Adaptive Reasoning Model (ARM), a reasoning model6

capable of adaptively selecting appropriate reasoning formats based on the task at7

hand. These formats include three efficient ones—Direct Answer, Short CoT , and8

Code—as well as a more elaborate format, Long CoT . To train ARM, we introduce9

Ada-GRPO, an adaptation of Group Relative Policy Optimization (GRPO), which10

addresses the format collapse issue in traditional GRPO. Ada-GRPO enables ARM11

to achieve high token efficiency, reducing tokens by an average of ∼ 30%, and12

up to ∼ 70%, while maintaining performance comparable to the model that relies13

solely on Long CoT . All the resources will be released.14

1 Introduction15

The emergence of large reasoning models (LRMs) such as OpenAI-o1 [16] and DeepSeek-R1 [9]16

has advanced problem-solving via test-time scaling [3; 50], where Long Chain-of-Thought (Long17

CoT) boosts performance by generating more tokens. Yet, trained mainly on reasoning-heavy tasks,18

LRMs often apply Long CoT indiscriminately, causing “overthinking” [4; 37]—excessive token19

use with little gain and potential noise [46; 7]. Prior approaches reduce tokens through budget20

estimation [1; 41] or length-constrained training [13], but these rely heavily on human knowledge of21

the tasks. A more autonomous solution is adaptive token control, where the model itself employs22

concise reasoning for easy tasks and deliberate reasoning for hard ones.23

In this work, we propose Adaptive Reasoning Model (ARM), a reasoning model capable of adaptively24

selecting reasoning formats based on task difficulty, balancing both performance and computational25

efficiency. ARM supports four reasoning formats: three efficient ones—Direct Answer, Short CoT ,26

and Code—and one elaborate format, Long CoT . To train ARM, we adopt a two-stage training27

framework. In Stage 1, we apply supervised fine-tuning (SFT) to equip the language model with28

a foundational understanding of four reasoning formats. In Stage 2, we introduce Ada-GRPO, an29

adaptation of Group Relative Policy Optimization (GRPO) [33], which encourages efficient format30

selection while preserving accuracy as the primary objective. Ada-GRPO is designed to address two31

key issues: 1) The uniform distribution of reasoning formats regardless of task difficulty observed32

during the SFT stage; 2) The format collapse problem in GRPO, where Long CoT gradually dominates33

as training progresses, leading to the diminished use of other, more efficient formats. Extensive34

evaluations show that ARM trained with Ada-GRPO achieves comparable performance while using35

∼ 30% fewer tokens than GRPO, across both in-domain and out-of-domain tasks in commonsense,36

mathematical, and symbolic reasoning.37
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2 Method38

We propose Adaptive Reasoning Model (ARM), a reasoning model designed to optimize effectiveness39

and efficiency by adaptively selecting reasoning formats. Specifically, ARM is trained in two stages:40

1) Stage 1: Supervised Fine-tuning (SFT) for Reasoning Formats Understanding: In this stage,41

we use 10.8K diverse questions, each annotated with solutions in four distinct reasoning formats, to42

fine-tune the model and build a foundational understanding of different reasoning strategies. 2) Stage43

2: Reinforcement Learning (RL) for Encouraging Efficient Format Selection: We adopt an44

adapted version of the GRPO algorithm, named Ada-GRPO, to train the model to be capable of45

selecting more efficient reasoning formats over solely Long CoT , while maintaining accuracy.46

2.1 Stage 1: SFT for Reasoning Formats Understanding47

In this stage, we leverage SFT as a cold start to introduce the model to various reasoning formats48

it can utilize to solve problems. These formats include three efficient reasoning formats Direct49

Answer, Short CoT , and Code, as well as the elaborate reasoning format Long CoT . We use special50

tokens (e.g., <Code></Code>) to embrace thinking rationale. Specifically, 1) Direct Answer: This51

format provides a direct answer without any reasoning chain, making it the most efficient in terms52

of token usage. 2) Short CoT: This format begins with a short reasoning and then provides an53

answer, which has been proved effective in mathematical problems [43]. 3) Code: This format54

adopts code-based reasoning, which has proven effective across a variety of tasks due to its structured55

process [44; 45; 20]. 4) Long CoT: This format involves a more detailed, iterative reasoning process,56

thus incurs higher token usage. It is suited for tasks requiring advanced reasoning capabilities, such57

as self-reflection and alternative generation, where those more efficient formats fall short [27; 9; 49].58

2.2 Stage 2: RL for Encouraging Efficient Format Selection59

After SFT, the model learns to respond using various reasoning formats but lacks the ability to60

adaptively switch between them based on the task (see Section 3.2 for details). To address this, we61

propose Adaptive GRPO (Ada-GRPO), which enables the model to dynamically select appropriate62

reasoning formats according to the task difficulty through a format diversity reward mechanism.63

GRPO In traditional GRPO [33], the model samples a group of outputs O = {o1, o2, · · · , oG} for64

each question q, where G denotes the group size. For each oi, a binary reward ri is computed using a65

rule-based reward function that checks whether the prediction pred matches the ground truth gt:66

ri = 1passed(gt,pred). (1)

However, since traditional GRPO solely optimizes for accuracy, it leads, in our setting, to overuse67

of the highest-accuracy format while discouraging exploration of alternative reasoning formats.68

Specifically, if Long CoT achieves higher accuracy than other formats, models trained with GRPO69

tend to increasingly reinforce it, leading to an over-reliance on Long CoT and reduced exploration70

of more efficient alternatives. We refer to this phenomenon as Format Collapse, which ultimately71

hinders the model’s ability to develop adaptiveness. We further analyze this in Section 3.2.72

Ada-GRPO We introduce Ada-GRPO to mitigate format collapse by amplifying rewards for73

underrepresented reasoning formats, ensuring their persistence during training. Formally, we rescale74

the reward ri as75

r′i = αi(t) ri, αi(t) =
G

F (oi)
· decayi(t), decayi(t) =

F (oi)
G

+ 1
2

(
1− F (oi)

G

)(
1 + cos

(
π t

T

))
, (2)

where F (oi) denotes the number of times the reasoning format corresponding to oi appears within76

its group O, and t represents the training step. αi(t) is a format diversity scaling factor that gradually77

decreases from G
F (oi)

at the beginning of training (t = 0) to 1 at the end of training (t = T ).78

We introduce αi(t) to extend GRPO into Ada-GRPO, enabling models to adaptively select reasoning79

formats. Specifically, αi(t) consists of two components: 1) Format Diversity Scaling Factor G
F (oi)

:80

To prevent premature convergence on the highest-accuracy format (i.e., format collapse to Long CoT),81

we upweight rewards for less frequent formats to encourage exploration. 2) Decay Factor decayi(t):82

To avoid long-term misalignment caused by over-rewarding rare formats, this term gradually reduces83

the influence of diversity over time. For example, G
F (oi)

might make the model favor a lower-accuracy84
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Table 1: Performance of various models across evaluation datasets. “#Tokens” refers to the token cost
for each model on each dataset. For each model, k = 1 corresponds to pass@1, and k = 8 corresponds
to maj@8. When k = 8, the token cost is averaged over a single output to facilitate clear comparison.
“†” denotes in-domain tasks, while “‡” denotes out-of-domain tasks. “∆” represents the difference
between ARM and Qwen2.5SFT+GRPO, calculated by subtracting the accuracy of Qwen2.5SFT+GRPO
from that of ARM, with the token usage expressed as the ratio of tokens saved by ARM compared to
Qwen2.5SFT+GRPO, with all settings based on k = 8 to ensure a stable comparison. We also report
results for ARM-3B and ARM-14B in Appendix Table 3.

Models
Accuracy (↑) #Tokens (↓)

Easy Medium Hard Avg. Easy Medium Hard Avg.
k CSQA† OBQA‡ GSM8K† MATH† SVAMP‡ BBH‡ AIME’25‡ CSQA† OBQA‡ GSM8K† MATH† SVAMP‡ BBH‡ AIME’25‡

GPT-4o 1 85.9 94.2 95.9 75.9 91.3 84.7 10.0 76.8 192 165 287 663 156 278 984 389
o1-preview 1 85.5 95.6 94.2 92.6 92.7 91.8 40.0 84.6 573 492 456 1863 489 940 7919 1819
o4-mini-high 1 84.7 96.0 96.9 97.7 94.0 92.2 96.7 94.0 502 289 339 1332 301 755 9850 1910
DeepSeek-V3 1 82.4 96.0 96.5 91.8 93.7 85.8 36.7 83.3 231 213 236 887 160 400 2992 732
DeepSeek-R1 1 83.3 94.8 96.4 97.1 96.0 85.0 70.0 88.9 918 736 664 2339 589 1030 9609 2270
DS-R1-Distill-1.5B 1 47.6 48.6 79.4 84.6 86.7 53.5 20.0 60.1 987 1540 841 3875 606 3005 13118 3425
DS-R1-Distill-7B 1 64.9 77.4 90.0 93.6 90.3 72.1 40.0 75.5 792 928 574 3093 315 1448 12427 2797
DS-R1-Distill-14B 1 80.6 93.2 94.0 95.5 92.7 80.4 50.0 83.8 816 750 825 2682 726 1292 11004 2585
DS-R1-Distill-32B 1 83.2 94.6 93.5 93.0 92.0 86.3 56.7 85.6 674 698 438 2161 283 999 11276 2361

Qwen2.5-7B 1 76.7 78.6 81.6 50.1 81.0 51.7 3.3 60.4 64 83 156 376 99 182 767 247
8 82.0 86.4 89.9 64.7 89.7 62.0 3.3 68.3 66 74 156 370 92 183 881 260

Qwen2.5-7BSFT
1 80.8 81.2 54.4 30.4 76.0 48.2 0 53.0 136 150 184 348 126 245 1239 347
8 83.9 84.6 79.4 42.4 88.0 56.0 0 62.0 141 137 185 361 141 274 1023 323

Qwen2.5-7BSFT+GRPO
1 83.1 82.2 92.8 79.4 93.7 64.3 16.7 73.2 491 651 739 1410 587 1133 3196 1173
8 83.7 84.6 94.8 84.9 95.3 69.3 20.0 76.1 496 625 745 1415 586 1135 3145 1164

ARM-7B 1 86.1 84.4 89.2 73.9 92.0 61.4 16.7 72.0 136 159 305 889 218 401 3253 766
8 85.7 85.8 93.7 82.6 95.3 67.9 20.0 75.9 134 154 297 893 218 413 3392 786

∆ +2.0 +1.2 -1.1 -2.3 0 -1.4 0 -0.2 −73.0% −75.4% −60.1% −36.9% −62.8% −63.6% +7.9% −32.5%

format like Short CoT over Long CoT simply because it appears less frequently and thus receives a85

higher reward. While such exploration is beneficial early in training, it can hinder convergence later.86

The decay mechanism mitigates this by promoting diversity initially, then shifting focus to accuracy87

again as training progresses. We adopt the traditional advantage formula in GRPO. Please refer to88

Appendix C for more details.89

3 Experiment90

3.1 Experimental Setup91

Training To assess the effectiveness of our method across models of different sizes, we select92

Qwen2.5-Base as the backbone model. We use AQuA-Rat [22] as the SFT dataset, as its answers93

can be naturally transformed into four distinct reasoning formats. In addition to the Direct Answer94

and Short CoT rationales provided with the dataset, we utilize GPT-4o [26] and DeepSeek-R1 [9] to95

supplement the Code and Long CoT rationales, resulting in a training set containing 3.0K multiple-96

choice and 7.8K open-form questions. Appendix D provides further details on the generation97

and filtering process. In Stage 2, to prevent data leakage, we employ three additional datasets98

exclusively for the RL stage. These datasets cover a range of difficulty levels, from relatively99

simple commonsense reasoning tasks to more complex mathematical reasoning tasks, including100

CommonsenseQA (CSQA) [39], GSM8K [6], and MATH [12], collectively comprising 19.8K101

verifiable question-answer pairs. Please refer to Appendix E for dataset details, Appendix F for102

implementation details, and Appendix G for inference.103

Baselines In addition to backbone models, we compare ARM with models trained using alternative104

algorithms that may enable adaptive reasoning capabilities. Specifically, Qwen2.5SFT refers to105

the backbone model trained on the AQuA-Rat dataset used in Stage 1. In this setting, we explore106

whether language models can master adaptive reasoning through a straightforward SFT strategy.107

For Qwen2.5SFT+GRPO, we examine whether SFT models, further trained with GRPO, can better108

understand different reasoning formats and whether this approach empowers them to select appropriate109

reasoning formats based on rule-based rewards.110

Evaluation Datasets To evaluate reasoning, we use in-domain and out-of-domain datasets spanning111

commonsense, mathematical, and symbolic tasks. CommonsenseQA (CSQA) [39] and OpenBookQA112

(OBQA) [25] represent intuitive commonsense tasks. Mathematical reasoning is assessed with113

SVAMP [30], GSM8K [6], MATH [12], and the competition-level AIME’25 [8]. For symbolic114

reasoning, we adopt Big-Bench-Hard (BBH) [38]. We categorize datasets into three levels: easy115

(commonsense), medium (math + symbolic), and hard (AIME’25).116
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Figure 1: Format distribution by task difficulty with Qwen2.5-7B. The hatched areas indicate the
percentage of correct answers that were generated using the selected reasoning format.

3.2 Main Results117

Alongside our baselines, we include several state-of-the-art general models, including GPT-4o [26]118

and DeepSeek-V3 [23], as well as reasoning models o1-preview [27], o4-mini-high [28], and119

DeepSeek-R1 [9], along with several DeepSeek-R1-Distill-Qwen (DS-R1-Distill) models ranging120

from 1.5B to 32B [9]. We report our results in Table 1, and we have the following findings:121

SFT teaches models formats but not how to choose among them. We find that SFT improves122

performance on easy commonsense tasks but hurts medium and hard ones. To analyze why, we123

examine the distribution of reasoning formats at inference. Figure 1 shows that SFT models allocate124

formats nearly uniformly, with most outputs in Direct Answer and few in Long CoT , regardless125

of difficulty. This overuse of Direct Answer—which performs poorly on medium tasks (35.2%126

accuracy)—undermines reasoning ability and overall performance. Thus, SFT teaches formats but127

fails to promote adaptive selection as task complexity increases.128

GRPO does improve reasoning capabilities, but it tends to rely on Long CoT to solve all tasks.129

We observe that models trained with GRPO achieve significant improvements across all tasks, yet the130

token cost remains substantial, especially for the two easier tasks. Further analysis reveals that Long131

CoT is predominantly used in the inference stage, as shown in Figure 1. This behavior stems from the132

nature of GRPO (i.e., format collapse discussed in Section 2.2), where models converge to the format133

with the highest accuracy (i.e., Long CoT) early in training (∼10 steps in our experiment). As a result,134

GRPO also fails to teach models how to select a more efficient reasoning format based on the task.135

ARM is able to adaptively select reasoning formats based on task difficulty, while achieving136

comparable accuracy across all tasks compared to GRPO and using significantly fewer tokens.137

As shown in Table 1, ARM experiences an average performance drop of less than 1% compared to the138

model trained with GRPO, yet it saves more than 30% of the tokens. Specifically, ARM demonstrates139

a clear advantage on easy tasks, saving over 70% of tokens while maintaining comparable accuracy.140

This advantage extends to medium tasks as well. For the more challenging AIME’25 task, ARM141

adapts to the task difficulty by increasingly selecting Long CoT , thereby avoiding performance142

degradation on harder tasks. Figure 1 further confirms that ARM is able to gradually adopt more143

advanced reasoning formats and discards simpler ones as task difficulty increases.144

3.3 Further Analysis145

We provide more features of ARM and further analysis in Appendix B, including 1) ARM also146

supports Instruction-Guided Mode, effective when specified formats are suitable for the tasks at hand,147

and Consensus-Guided Mode, which maximizes performance at higher token cost; 2) Ada-GRPO148

yields a ∼ 2× training speedup over traditional GRPO; and 3) Ada-GRPO demonstrates robustness149

across both instruction-tuned and reasoning backbones.150

4 Conclusion151

In this work, we propose Adaptive Reasoning Model (ARM), which adaptively selects reasoning152

formats based on task difficulty. ARM is trained with Ada-GRPO, a GRPO variant that addresses153

format collapse via a format diversity reward and achieves a ∼ 2× training speedup. Experiments154

show that ARM maintains performance comparable to the GRPO-trained model relying solely on155

Long CoT , while significantly improving token efficiency. By adopting the adaptive reasoning format156

selection strategy, ARM effectively mitigates the overthinking problem and offers a novel, efficient157

approach to reducing unnecessary reasoning overhead.158
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Appendix310

A Related Work311

A.1 Reinforcement Learning for Improving Reasoning312

Reinforcement Learning (RL) has demonstrated significant potential in enhancing the problem-313

solving abilities of large language models (LLMs) across various domains [29; 42; 17]. Recently,314

Reinforcement Learning with Verifiable Rewards (RLVR) has gained substantial attention for advanc-315

ing LLM capabilities [18; 9; 21], resulting in the development of large reasoning models (LRMs) [47]316

such as OpenAI-o1 [16] and DeepSeek-R1 [9]. Based on simple rule-based rewards, RLVR al-317

gorithms such as Group Relative Policy Optimization (GRPO) [33] enable models to use Long318

Chain-of-Thought (Long CoT) [49; 15]. This facilitates deep reasoning behaviors, such as searching,319

backtracking, and verifying through test-time scaling [3; 50]. However, these models also suffer from320

significant computational overhead due to extended outputs across all tasks, leading to inefficiency321

associated with the “overthinking” phenomenon [4; 31; 37]. Verbose and redundant outputs can322

obscure logical clarity and hinder the model’s ability to solve problems effectively [46; 7].323

A.2 Efficiency in Large Language Models324

Recently, many studies have focused on improving the reasoning efficiency in LLMs. Some prompt-325

guided methods [10; 48; 19] explicitly instruct LLMs to generate concise reasoning outputs by326

controlling input properties such as task difficulty and response length. Other approaches [11; 5; 34]327

explore training LLMs to reason in latent space, generating the direct answer without the need for328

detailed language tokens. Several techniques have also been proposed to reduce inference costs329

by controlling or pruning output length, either by injecting multiple reasoning formats during the330

pre-training stage [36] or by applying length penalties during the RL stage [40; 2; 1; 13]. Many331

of these methods aim to strike a trade-off between token budget and reasoning performance by332

shortening output lengths, often relying on clear estimations of the token budget for each task or333

requiring specialized, length-constrained model training. However, in reality, such estimations are not334

always accurate, and what we ultimately expect is for models to adaptively regulate their token usage335

based on the complexity of the task at hand. Therefore, in this work, we propose a novel training336

framework that enables models to adaptively select suitable reasoning formats for given tasks by337

themselves, optimizing both performance and computational efficiency.338

B Analysis339

B.1 Reasoning Mode Switching340

Table 2: Accuracy (Acc.) and token usage (Tok.) for the three reasoning modes supported by
ARM-7B. In the Consensus-Guided Mode, the percentage of Long CoT usage indicates how often the
model resorts to Long CoT when simpler reasoning formats fail to reach a consensus.

ARM-7B
Easy Medium Hard Avg.

CSQA† OBQA‡ GSM8K† MATH† SVAMP‡ BBH‡ AIME’25‡

Acc. Tok. Acc. Tok. Acc. Tok. Acc. Tok. Acc. Tok. Acc. Tok. Acc. Tok. Acc. Tok.

Adaptive 86.1 136 84.4 159 89.2 305 73.9 889 92.0 218 61.4 401 16.7 3253 72.0 766

InstDirect 84.1 10 81.8 10 22.9 11 23.1 13 67.0 11 44.7 21 0 12 46.2 13
InstShort CoT 81.3 33 77.4 35 85.0 124 70.9 633 86.7 66 49.7 101 10.0 2010 65.9 428

InstCode 84.4 140 81.6 147 84.2 285 65.9 559 88.3 182 57.9 344 10.0 1821 67.5 497
InstLong CoT 84.0 259 87.4 294 91.8 426 77.2 1220 94.3 340 66.9 660 20.0 4130 74.5 1047

Consensus 85.8 228 87.0 260 92.9 777 78.4 2281 95.7 433 66.4 1039 20.0 7973 75.2 1856
Long CoT Usage 12.9% 21.4% 79.8% 79.2% 36.3% 56.3% 100% 55.1%

ARM is capable of autonomously selecting appropriate reasoning formats (Adaptive Mode), while341

also supporting explicit guidance to reason in specified formats (Instruction-Guided Mode) or through342

consensus between different reasoning formats (Consensus-Guided Mode). Specifically, 1) Adaptive343
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of different models compared to their backbone
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and “TP” denotes THINKPRUNE [13]. “τ -
Accuracy” and “τ -#Tokens” are reported relative
to each model’s backbone after RL training.

Mode: In this mode, ARM autonomously selects the reasoning format for each task, which is also the344

default reasoning mode if not specified in this paper. 2) Instruction-Guided Mode: In this mode,345

a specific token (e.g., <Long CoT>) is provided as the first input, forcing ARM to reason in the346

specified format. 3) Consensus-Guided Mode: In this mode, ARM first generates answers using the347

three simpler reasoning formats (i.e., Direct Answer, Short CoT , and Code) and checks for consensus348

among them. If all formats agree, the consensus answer is adopted as the final result. Otherwise,349

ARM defaults to Long CoT for the final answer, treating the task as sufficiently complex.350

To evaluate the performance and effectiveness of the proposed reasoning modes, we conduct exper-351

iments across various evaluation datasets. Table 2 presents the results for ARM-7B. Specifically:352

1) Adaptive Mode strikes a superior balance between high accuracy and efficient token us-353

age across all datasets, demonstrating its ability to adaptively select the reasoning formats.354

2) Instruction-Guided Mode offers a clear advantage when the assigned reasoning format is355

appropriate. For example, Direct Answer is sufficient for commonsense tasks, while Code, due356

to its structured nature, performs better on symbolic reasoning tasks compared to Direct Answer357

and Short CoT . Furthermore, InstLong CoT achieves better performance (74.5%) than the same-sized358

model trained on GRPO (73.2% in Table 1). This demonstrates that Ada-GRPO does not hinder the359

model’s Long CoT reasoning capabilities. We further validate this by analyzing the reflective words360

used by ARM-7B and Qwen2.5-7BSFT+GRPO in Appendix H. 3) Consensus-Guided Mode, on the361

other hand, is performance-oriented, requiring more tokens to achieve better performance.362

This mode leverages consensus across multiple formats to mitigate bias and uncertainty present in363

any single format, offering greater reliability, particularly for reasoning tasks that demand advanced364

cognitive capabilities, where simpler formats may fall short. This is evidenced by the fact that Long365

CoT is less likely to be used for easy tasks, but is highly likely to be selected for medium tasks and366

even used 100% of the time for the most difficult AIME’25 task.367

B.2 Effectiveness of Adaptive Format Selection368

To verify that ARM’s format selection indeed adapts to the task at hand rather than relying on random369

selection, we compare ARM’s Adaptive Mode with Instruction-Guided Mode. In Instruction-370

Guided Mode, the reasoning format is fixed and manually specified, providing a strong baseline to371

test whether adaptive selection offers real benefits over using a uniform format across tasks. We372

report the accuracy of both modes in Figure 2. We observe that the accuracy of the reasoning formats373

selected in Adaptive Mode is higher than that in Instruction-Guided Mode. Specifically, Adaptive374

Mode improves accuracy by 4.7% on Direct Answer, by 2.7% on both Short CoT and Code, and even375

yields a slight improvement on Long CoT . These results confirm that ARM is not randomly switching376

formats but is instead learning to select an appropriate one for each task.377

B.3 Comparison of Ada-GRPO and GRPO378

We find that, compared to GRPO, ARM trained with Ada-GRPO achieves comparable performance on379

the evaluation dataset while achieving approximately a ∼ 2× speedup in training time. To understand380

the source of this efficiency, we compare the training dynamics of Ada-GRPO and GRPO across381

different model sizes, focusing on accuracy, response length, and training time, as shown in Figure 4.382

10



0 50 100 150
Step

30

50

70

90

A
cc

ur
ac

y(
%

)

0 50 100 150
Step

250

500

750

1000

R
es

po
ns

e 
Le

ng
th

0 50 100 150
Step

500

1500

2500

Ti
m

e 
(s

)

3B Ada-GRPO 3B GRPO 7B Ada-GRPO 7B GRPO 14B Ada-GRPO 14B GRPO

Figure 4: Performance on the training set across different model sizes trained with Ada-GRPO and
GRPO. Except for the implementation of the algorithm, all hyperparameters are kept the same.

60

75

90

A
cc

ur
ac

y(
%

)

(a) Easy Tasks 60

75

90

(b) Medium Tasks 0

20

40

(c) Hard Tasks0

256

256

512

2K

4K

# 
To

ke
ns

Qwen2.5-7B Qwen2.5-7B-Instruct DS-R1-Distill-Qwen-7B #Tokens
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similarly, while DS-R1-Distill improves on medium and hard tasks but struggles on easy ones.

The results highlight the following advantages of Ada-GRPO: 1) Comparable Accuracy. Although383

Ada-GRPO initially lags behind GRPO in accuracy due to suboptimal reasoning format selection in384

the early training steps, both methods converge to similar final accuracy across all model sizes. This385

demonstrates that Ada-GRPO does not compromise final performance. 2) Half Response Length.386

While GRPO uses Long CoT uniformly across all tasks, Ada-GRPO adaptively selects reasoning387

formats based on task difficulty. Due to the length efficiency of Direct Answer, Short CoT , and388

Code, Ada-GRPO ultimately reduces the average response length to roughly half that of GRPO.389

3) Half Training Time Cost. Since the majority of training time is spent on response generation390

during the roll-out stage, reducing response length directly translates into lower time cost. As a391

result, Ada-GRPO achieves approximately a ∼ 2× speedup compared to GRPO. Overall, Ada-GRPO392

maintains strong performance while significantly reducing computational overhead, underscoring its393

efficiency and reliability for training.394

B.4 Comparison of Backbone Models395

Beyond the base model, we further analyze the impact of different backbone models, including396

instruction-tuned and DS-R1-Distill variants. Figure 5 reports accuracy and token usage across397

easy, medium, and hard tasks. We observe that base and instruction-tuned models have a highly398

similar performance. This suggests that RL effectively bridges the gap left by instruction tuning,399

enabling base models to achieve comparable performance, consistent with findings from previous400

work [17]. In contrast, the DS-R1-Distill variant performs notably better on medium and hard tasks,401

benefiting from distilled knowledge from the stronger DeepSeek-R1 model, though at the expense of402

increased token cost. However, it performs significantly worse on easy tasks, even with excessive403

token usage, resulting from the overthinking phenomenon. For more discussion and case studies on404

the overthinking phenomenon, please refer to Appendix I.405

B.5 Comparison of ARM and Length-Penalty-Based Strategies406

To examine whether previously proposed length-penalty-based strategies—proven effective in com-407

plex reasoning—remain effective for easier tasks, we evaluate two representative methods, L1 [1]408

and THINKPRUNE[13], on the CSQA dataset. Since both methods are based on the DS-R1-Distill409

model, we ensure a fair comparison by also evaluating the version of ARM trained on the same410

backbone. We report the relative accuracy and token usage of all three models compared to their411

respective backbone models in Figure 3. When using the minimum allowed lengths specified in the412

official settings of L1 and THINKPRUNE, both methods exhibit performance drops. In contrast, ARM413

maintains strong performance while using relatively fewer tokens, demonstrating its ability to balance414

reasoning efficiency and effectiveness. Please refer to Appendix J for more details.415
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Table 3: Performance of ARM-3B and ARM-14B across evaluation datasets.

Models
Accuracy (↑) #Tokens (↓)

Easy Medium Hard Avg. Easy Medium Hard Avg.
k CSQA† OBQA‡ GSM8K† MATH† SVAMP‡ BBH‡ AIME’25‡ CSQA† OBQA‡ GSM8K† MATH† SVAMP‡ BBH‡ AIME’25‡

Qwen2.5-3B 1 66.5 65.8 66.9 37.7 71.3 38.4 0 49.5 97 120 150 419 76 232 1393 355
8 75.5 77.4 80.9 50.8 83.7 47.1 0 59.3 96 100 149 424 85 240 1544 377

Qwen2.5-3BSFT
1 72.8 72.4 35.7 20.9 62.3 37.4 0 43.1 99 108 145 229 126 311 694 245
8 75.5 77.4 56.0 27.6 74.7 43.5 0 50.7 97 103 132 231 108 309 537 217

Qwen2.5-3BSFT+GRPO
1 79.7 79.0 88.7 66.6 92.0 52.6 6.7 66.5 425 501 788 1586 630 994 3027 1136
8 80.3 80.0 91.4 74.0 94.7 56.2 6.7 69.0 429 506 802 1590 638 996 3247 1172

ARM-3B 1 79.8 78.0 83.8 62.9 89.7 50.0 6.7 64.4 118 156 346 1013 264 436 2958 756
8 80.1 78.0 90.8 72.8 95.0 53.8 6.7 68.2 123 169 359 1036 246 430 3083 778

∆ -0.2 -2.0 -0.6 -1.2 +0.3 -2.4 0 -0.8 -71.3% -66.6% -55.2% -34.8% -61.4% -56.8% -5.1% -33.6%

Qwen2.5-14B 1 79.9 83.8 84.9 52.7 84.7 56.8 3.3 63.7 56 60 132 335 77 139 611 201
8 83.8 90.2 92.3 68.4 91.7 67.4 3.3 71.0 55 60 131 325 81 131 735 217

Qwen2.5-14BSFT
1 81.8 88.0 62.6 37.4 84.0 53.5 0 58.2 155 140 161 276 152 254 527 238
8 85.0 91.4 86.4 48.8 91.7 64.4 3.3 67.3 149 141 165 288 140 247 493 232

Qwen2.5-14BSFT+GRPO
1 85.4 93.0 94.8 81.7 93.7 70.5 20.0 77.0 558 531 693 1805 565 945 4031 1304
8 85.8 94.2 96.1 87.1 95.3 77.0 20.0 79.4 552 537 696 1810 565 943 3723 1261

ARM-14B 1 85.3 91.8 92.5 79.1 93.3 66.6 20.0 75.5 146 128 294 903 212 420 3871 853
8 85.6 91.8 96.3 86.4 95.7 72.1 23.3 78.7 145 134 293 910 189 415 3996 869

∆ -0.2 -2.4 +0.2 -0.7 +0.4 -4.9 +3.3 -0.7 −73.7% −75.0% −57.9% −49.7% −66.5% −56.0% +7.3% −31.1%

C Details of Ada-GRPO416

C.1 Training Objective417

Following GRPO [33], the group advantage Âi,k for all tokens in each output is computed based on418

the group of reshaped rewards r′ = {r′1, r′2, · · · , r′G}:419

Âi,k =
r′i −mean({r′1, r′2, · · · , r′G})

std({r′1, r′2, · · · , r′G})
. (3)

We optimize the policy model π using the Ada-GRPO objective:420

JAda−GRPO(θ) =E
[
q ∼ P (Q), {oi}Gi=1 ∼ πθold(O|q)

] [ 1

G

G∑
i=1

1

|oi|

|oi|∑
k=1

{
min

[ πθ(oi,k|q, oi,<k)

πθold(oi,k|q, oi,<k)
Âi,k,

clip

(
πθ(oi,k|q, oi,<k)

πθold(oi,k|q, oi,<k)
, 1− ϵ, 1 + ϵ

)
Âi,k

]
− βKL [πθ ∥ πref ]

}]
,

(4)

where πref denotes the reference model, and the KL divergence term KL serves as a constraint to421

prevent the updated policy from deviating excessively from the reference. The advantage estimate422

Âi,k is computed based on a group of rewards {r′1, r′2, · · · , r′G} associated with the responses in O,423

as defined in equation 3.424

C.2 Decay Factor425
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Figure 6: Test set accuracy with
and without the decay mechanism.

In Ada-GRPO, the decay factor decayi(t) is introduced to reg-426

ulate the influence of the format diversity scaling factor during427

training. Without decay, the model may continue to overly428

reward less frequent reasoning formats even after sufficient429

exploration, misaligning with our objective. To evaluate the430

effectiveness of the decay mechanism, we track the test set per-431

formance across three in-domain datasets (CSQA, GSM8K, and432

MATH) using checkpoints saved every 25 training steps for mod-433

els trained with and without decay. As shown in Figure 6, models434

trained without decay exhibit larger performance fluctuations in435

test accuracy, indicating unstable exploration. In contrast, the436

decay mechanism stabilizes training, resulting in smoother and437

more consistent improvements in accuracy during the middle438

and later training stages.439
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Table 4: Dataset in each training stage.
Dataset Answer Format Size

Stage 1: Supervised Finetuning

AQuA-Rat Multiple-Choice 3.0K
Open-Form 7.8K

10.8K

Stage 2: Reinforcement Learning

CSQA Multiple-Choice 4.9K
GSM8K Open-Form 7.4K
MATH Open-Form 7.5K

19.8K

500 1000 1500
#Tokens

Direct (11.0)
Short CoT (100.3)
Code (244.6)
Long CoT (1151.1)

Figure 7: Token count distribution across reason-
ing formats in the SFT dataset AQuA-Rat, with
brackets indicating average counts.

D Details of Processing SFT Dataset440

D.1 Prompt List441

We use gpt-4o-2024-11-20 to generate Code reasoning rationales. Following previous work [44], we442

ask the model to return the output as a dictionary containing all intermediate and final outputs, which443

is beneficial for emulating the generated program’s execution.444 � �
445

For the following questions and answers , generate a function that446

solves the question. The function should return a dictionary with the447

field ’answer ’: <answer >, as well as the values for intermediate448

decisions. Ensure that both the function and its call are wrapped in <449

CODE >...</CODE >, and that the emulation of its execution is wrapped in450

<OUTPUT >...</OUTPUT >.451

452

{examples}453

454

Question:455

{question}456

Answer:457

{rational}458

#### {ground_truth}459 � �460

We use Deepseek-R1 to generate Long CoT rationales.461 � �
462

Put the answer in format "<ANSWER >...</ ANSWER >".463

464

{question}465 � �466

D.2 Filter Out Rationales467

For Code rationales, we utilize a Python interpreter to execute each generated code snippet. We468

apply the following filters: 1) execution failure, 2) missing answer key, 3) inconsistencies between469

intermediate steps and execution results, and 4) mismatches between the predicted and ground-truth470

answers. For Long CoT rationales, we filter out those with incorrect answers. Token count distribution471

across reasoning formats in the SFT dataset can be seen in Figure 7.472

E Examples in Training473

The question-answer format and size of the datasets in each training stage can be found in Table 4.474
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E.1 Examples in SFT Stage475

We provide four reasoning formats for the SFT dataset AQuA-Rat [22], including Direct Answer,476

Short CoT , Code, Long CoT . Here is an example.477 � �
478

Question:479

You collect baseball cards. Suppose you start out with 15. Maria takes480

half of one more than the number of baseball cards you have. Since481

you ’re nice , you give Peter 1 baseball card. Since his father makes482

baseball cards , Paul decides to triple your baseball cards. How many483

baseball cards do you have at the end?484

485

Direct Answer:486

18487

488

Code:489

def calculate_baseball_cards ():490

# Initial number of baseball cards491

initial_cards = 15492

493

# Maria takes half of one more than the number of baseball cards494

maria_takes = (initial_cards + 1) / 2495

cards_after_maria = initial_cards - maria_takes496

497

# Peter takes 1 baseball card498

cards_after_peter = cards_after_maria - 1499

500

# Paul triples the number of baseball cards501

final_cards = cards_after_peter * 3502

503

return {504

’maria_takes ’: maria_takes ,505

’cards_after_maria ’: cards_after_maria ,506

’cards_after_peter ’: cards_after_peter ,507

’answer ’: final_cards508

}509

510

>>> calculate_baseball_cards ()511

512

output = {513

’maria_takes ’: 8.0,514

’cards_after_maria ’: 7.0,515

’cards_after_peter ’: 6.0,516

’answer ’: 18.0517

}518

519

Short CoT:520

Start with 15 baseball cards. Maria takes half of one more than the521

number of baseball cards you have. So Maria takes half of 15 + 1 which522

is 8, so you ’re left with 15 - 8 = 7. Peter takes 1 baseball card523

from you: 7 - 1 = 6 baseball cards. Paul triples the number of524

baseball cards you have: 6 * 3 = 18 baseball cards. So you have 18 at525

the end. The answer is 18.526

527

Long CoT:528

Okay , let me try to work through this problem step by step. So, the529

question is about collecting baseball cards , and there are a series of530

steps that happen. Let me read it again to make sure I understand531

each part.532

533

Alright , starting with 15 cards. Then Maria takes half of one more534

than the number I have. Wait , that phrasing is a bit tricky. So Maria535

takes half of (one more than my current number of cards). Let me parse536

that. If I have N cards , Maria takes (N +1) /2? Hmm. Let me double -537

check. The problem says: "Maria takes half of one more than the number538
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of baseball cards you have." So, the expression would be ( (number539

you have + 1 ) ) / 2. Right. So that ’s (current cards +1) divided by540

two. Then after that , I give Peter 1 card. Then Paul triples my cards.541

So , let ’s break it down step by step.542

543

Starting with 15 cards. Let ’s note each step:544

545

1. Initial cards: 15.546

547

2. Maria takes half of one more than what I have. So , first , calculate548

one more than my current count: 15 +1 =16. Then she takes half of549

that. So 16 /2 =8. So Maria takes 8 cards. Wait , but when she takes550

them , does that mean my total decreases by 8? Yes , I think so. Because551

she ’s taking them from me. So subtract 8 from my current count.552

553

So after Maria takes them: 15 -8 =7. Now I have 7 cards left.554

555

Wait a minute , wait. Wait , when Maria takes half of one more than the556

number I have , which is (15+1) /2=8. So she ’s taking 8 cards. So yes ,557

subtract 8 from my current 15. That leaves me with 7.558

559

Then , the next step: since I’m nice , I give Peter 1 baseball card. So560

subtract 1 more. 7 -1 =6.561

562

Then Paul decides to triple my baseball cards. So multiply my current563

count by 3. 6 *3 =18.564

565

So the answer should be 18. Let me go through the steps again to check566

.567

568

Original: 15.569

570

After Maria: (15 +1)/2 =8. So 15 -8=7.571

572

After giving Peter 1: 7-1=6.573

574

After Paul triples: 6*3=18.575

576

Yes , that seems right. Did I misinterpret any step? Let ’s double -check577

each part.578

579

"Maria takes half of one more than the number of baseball cards you580

have." So when Maria takes , it ’s (my current cards +1)/2. So when I581

have 15, that ’s (15+1) /2=8. She takes 8, so I have 7 left. Correct.582

583

Then giving Peter 1: 7 -1=6. Then Paul triples to 18. Yep. That seems584

correct. So the final answer is 18.585 � �586

E.2 Examples in RL Stage587

The RL dataset includes CSQA [39], GSM8K [6], and MATH [12], with examples provided below.588 � �
589

<CommonsenseQA >590

What is the base of a vase called?591

(A)transistor (B)vessel (C)box (D)pie (E)seabase592

ground truth: B593

594

<GSM8K >595

Natalia sold clips to 48 of her friends in April , and then she sold596

half as many clips in May. How many clips did Natalia sell altogether597

in April and May?598

ground truth: 72599

600

<MATH >601
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Table 5: Definitions and results of reflection-related ratios on AIME’25.

Ratio Name Formula Qwen2.5-7BSFT+GRPO ARM-7B

reflection_ratio Nref

N 93.8 95.0

correct_ratio_in_reflection_texts Nref+

Nref
14.2 13.9

Rationalize the denominator: $\frac {1}{\ sqrt {2} -1}$. Express your602

answer in simplest form.603

ground truth: $\boxed {\sqrt {2}+1}$604 � �605

F Implementation Details606

Our training is performed using 8 NVIDIA A800 GPUs. The following settings are also applied to607

other baselines for fair comparisons.608

F.1 Stage 1: SFT609

We utilize the open-source training framework LLAMAFACTORY [51] to perform SFT. The training610

is conducted with a batch size of 128 and a learning rate of 2e-4. We adopt a cosine learning rate611

scheduler with a 10% warm-up period over 6 epochs. To enhance training efficiency, we employ612

parameter-efficient training via Low-rank adaptation (LoRA) [14] and DeepSpeed training with the613

ZeRO-3 optimization stage [32]. As a validation set, we sample 10% of the training data and keep614

the checkpoint with the lowest perplexity on the validation set for testing and the second stage.615

F.2 Stage 2: RL616

We utilize the open-source training framework VeRL [35] to perform RL. During training, we use a617

batch size of 1024 and generate 8 rollouts per prompt (G = 8), with a maximum rollout length of618

4096 tokens. The model is trained with a mini-batch size of 180, a KL loss coefficient of 1e-3, and a619

total of 9 training epochs. The default sampling temperature is set to 1.0.620

G Inference621

During inference, we set the temperature to 0.7 and top-p to 1.0. For all evaluation datasets, we use622

accuracy as the metric. In addition to pass@1, to reduce bias and uncertainty associated with single623

generation outputs and to enhance the robustness of the results [50], we further use majority@k624

(maj@k), which measures the correctness of the majority vote from k independently sampled outputs.625

For inference on the three backbone models, we use an example with a short-cot-based answer within626

the prompt to guide the model toward specific answer formats while preserving its original reasoning627

capabilities as much as possible.628

H Details of Reflective Words629

To evaluate models’ Long CoT reasoning capabilities, we focus on their use of specific reflective630

words that signal backtracking and verifying during the reasoning process. Following prior work [24],631

we consider a curated list of 17 reflective words: [“re-check”, “re-evaluate”, “re-examine”, “re-think”,632

“recheck”, “reevaluate”, “reexamine”, “reevaluation”, “rethink”, “check again”, “think again”, “try633

again”, “verify”, “wait”, “yet”, “double-check”, “double check”]. We adopt two evaluation metrics:634

reflection_ratio, measuring the proportion of outputs containing at least one reflective word,635

and correct_ratio_in_reflection_texts, assessing the correctness within reflective outputs.636

The formulas for these metrics are summarized in Table 5, where N denotes the total number of637

responses, Nref the number of responses containing reflective words, and Nref+ the number of638

correct reflective responses.639
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Given its competition-level difficulty, we conduct our analysis on AIME’25 using ARM-7B and640

Qwen2.5-7BSFT+GRPO. For ARM-7B, we use the Instruction-Guided Mode (InstLong CoT) to specifically641

assess its Long CoT reasoning. The results, averaged over 8 runs, are reported in Table 5. As642

shown, both models exhibit a high frequency of reflective word usage, with reflection_ratio643

exceeding 93%, indicating that reflection behavior is well-integrated during Long CoT reasoning.644

The correct_ratio_in_reflection_texts remains comparable for both models, and relatively645

low due to the high complexity of the AIME’25 tasks. These results demonstrate that Ada-GRPO646

does not hinder the model’s Long CoT reasoning capabilities.647

I Details of the Overthinking Phenomenon648
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Figure 8: Overthinking in 7B model performance
across two representative datasets. We remove
the extreme data points and ensure that sufficient
data points fall within the intervals.

Overthinking refers to the phenomenon where649

LLMs apply unnecessarily complex reasoning to650

simple tasks, leading to diminishing returns in per-651

formance [37]. As demonstrated in Table 1 and 2,652

using Long CoT , despite incurring higher compu-653

tation costs, significantly enhances model perfor-654

mance on tasks requiring complex mathematical655

reasoning, such as MATH. However, as mentioned656

in Section 3.2 and B.4, longer responses do not657

consistently lead to better performance for all task658

types. In this section, we analyze the overthink-659

ing phenomenon in depth, focusing on how overly660

complex reasoning formats can hurt performance661

when applied to certain tasks.662

I.1 Analysis663

We analyze the evaluation datasets and illustrate the “overthinking” phenomenon using two represen-664

tative datasets: CSQA and TemporalSequences in BBH Benchmark. From Figure 8 (note that the665

horizontal axis scales differ between SFT+GRPO and ARM.), we observe that SFT+GRPO, which666

relies heavily on Long CoT , shows a significant drop in accuracy as the model generates lengthy667

responses. It indicates that the model starts generating excessive information that does not contribute668

to task resolution. In contrast, ARM achieves better performance with fewer tokens for simpler tasks.669

This analysis reinforces the idea that longer reasoning does not equate to better performance [7; 37],670

and the optimal reasoning format depends on task type. ARM provides a more flexible, task-specific671

solution to avoid overthinking, ultimately improving performance. Please refer to Appendix I.3 for a672

detailed example of how Long CoT errs in CSQA, while a simpler reasoning format with lower token673

usage successfully solves the problem.674

I.2 Data Examples675 � �
676

<BBH -Temporal Sequences >677

Today , Ashley went to the bookstore. Between what times could they678

have gone?679

We know that: Ashley woke up at 5am. Jason saw Ashley buying lunch at680

the deli from 11am to 1pm. Emily saw Ashley driving to the water park681

from 1pm to 3pm. Kimberly saw Ashley stretching at a yoga studio from682

3pm to 6pm.683

The bookstore was closed after 6pm. Between what times could Ashley684

have gone to the bookstore?685

(A) 1pm to 3pm686

(B) 11am to 1pm687

(C) 3pm to 6pm688

(D) 5am to 11am689

ground truth: D690 � �691

I.3 An Example of Overthinking in CSQA692
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693

Where does a maid empty a trash can?694

(A)bus stop (B)corner (C)hockey game (D)motel (E)alley695

696

Long CoT used by +SFT+GRPO:697

<LONG_COT >698

Okay , let ’s see. The question is where a maid would empty a trash can.699

Hmm , pick one of the options given. Let ’s break down the terms.700

701

First , a maid is someone who works in a hotel or other environment ,702

such as cleaning. Their job might involve domestic duties for a703

specific kind of client , perhaps upper class , but specific job would704

involve handling various items. So having cleaning duties like trash705

removal.706

707

Now , traditionally , maid service might be focused on particular areas -708

probably the rooms in a hotel , apartment , or maybe an individual709

client if they work as an in -home maid. So for that_RESULTS , would710

probably be... Alright. Let ’s look at the choices:711

712

(A) Bus stop. Seems like they shouldn ’t dispose of anything there. A713

bus stop would have trash cans , but personally I doubt a maid would714

dump trash in a bus station. That ’s probably not part of their715

responsibilities.716

717

(B) Corner. Hmm. A literal street corner , perhaps maybe a public718

restroom? Or other outdoor spot? But where tomorrow ’s trash can? I can719

’t imagine a location in caring for trash outside normal public areas.720

Maybe mega cities and sanitation handling upgrades , but again not a721

typical everyday task for a maid.722

723

(C) Hockey Game. Hmm. Trash removal at a hockey game ... Never heard of724

a maid working at a hockey game. Probably no. The grounds might be725

cleaned by different personnel , like stadium employees , most likely726

more specialized. Hell , playerName duplication , maybe the trash cans727

outside the arena get cleaned? That probably exclude maid ’s work issue728

. So probably can be discounted.729

730

(D) Motel. Hmm. Maybe the version of this? Or hotels. Wait , motel is731

final answer. But wait , official work responsibility. The main point732

here is where professional maid service has responsibilities. For733

example , in hotels -motel rooms (though maybe not modern motels , which734

had more community facilities ?) The specific task is they probably735

need to take trash cans to the disposal area -usually outside the room736

in compilations. So perhaps dump it into a proper receptacle. That737

would happen in backend trash can disposal , but Solutions associated738

with cleaning , not directly in guest areas.739

740

(E) Alley. Hmm. Alley avoids touristy trash? Wait , perhaps like741

backstage scenario. Or alleyways can be garbage collection areas. But742

how typical? Probably the communities are serviced by regular743

collection with professionals. For same reasons as airliner (like744

trash in the alley). The main thing is that probably would move trash745

to the nearest dumpster , possibly in an alley. Though not a public746

area of the house. Though again , problem is which alley. It ’s not747

nearly as common would be this responsibility. Probably more likely748

that a maid would take the trash to a dumpster outside. So option E749

probably can be considered.750

751

Wait , not sure , but none of the options are obvious , but Zeeland E.752

Because the equipment is usually moved from rooms to a centralized753

dumpster. Probably near the alley. Although may not be the primary754

course of action. However , this is what might be discussed. Because755

depending on the structure. For example , perhaps motel rooms need to756

dispose garbage in dumpster , making alley collection possible.757
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758

But options like motel and motel would probably be the right answer.759

But museum? Not typical. So perhaps neither of the answers given. Wait760

, maybe E.761

</LONG_COT >762

<ANSWER >763

E764

</ANSWER >765

766

Short CoT used by ARM:767

<SHORT_COT >768

A maid works in a motel. A maid may empty a trash can in a motel.769

The answer is D770

</SHORT_COT >771

<ANSWER >772

D773

</ANSWER >774 � �775

J Details of Length-Penalty-Based Strategies776

To ensure fair comparisons, we follow the official settings of L1 [1] and THINKPRUNE [13], adopting777

their specified minimum allowed lengths when evaluating on easy tasks. We set the temperature to 0.6778

and top-p to 0.95, consistent with both papers. Specifically, we use L1-Qwen-1.5B-Exact1 at 512779

tokens for L1 and DeepSeek-R1-Distill-Qwen-1.5B-thinkprune-iter2k2 for THINKPRUNE.780

K Limitations781

Dependency on Predefined Reasoning Formats In this work, we focus on four commonly782

used reasoning formats that generalize well across a wide range of reasoning tasks. However, we783

acknowledge that certain tasks may benefit from more specialized or nuanced reasoning strategies784

beyond this predefined set. Our reliance on predefined formats is primarily due to the limited785

capabilities of current models, which may struggle to autonomously identify or switch between786

diverse reasoning formats, let alone new reasoning formats. As a result, we define the formats in787

advance and introduce them through SFT to help the model establish a clear understanding of each788

reasoning type. We believe that as model capabilities continue to improve, future work can explore789

enabling models to autonomously select or even invent new reasoning formats without relying on790

predefined structures.791

Lack of Hard Task Data in Training Unlike some length-penalty-based strategies, our training792

setup does not include hard datasets such as prior AIME tasks, which may place our model at a793

disadvantage on hard tasks compared to methods like L1 [1] and THINKPRUNE [13] that incorporate794

such data. Nevertheless, ARM still shows clear improvements on base models and maintains stable795

performance on R1-distilled models on AIME 2025, demonstrating its potential on hard tasks. We796

expect that incorporating harder data into training would further enhance performance. However, due797

to the high computational cost of reinforcement learning—and the current version of ARM being798

an early exploration aimed at evaluating generalization across tasks while improving token cost799

efficiency—we leave this extension to future work.800

1https://huggingface.co/l3lab/L1-Qwen-1.5B-Exact
2https://huggingface.co/Shiyu-Lab/DeepSeek-R1-Distill-Qwen-1.5B-thinkprune-iter2k
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NeurIPS Paper Checklist801

1. Claims802

Question: Do the main claims made in the abstract and introduction accurately reflect the803

paper’s contributions and scope?804

Answer: [Yes]805

Justification: Our main contributions are detailed in Section 1. See Section 3 and Section B806

for more experimental evidence and analysis.807

Guidelines:808

• The answer NA means that the abstract and introduction do not include the claims809

made in the paper.810

• The abstract and/or introduction should clearly state the claims made, including the811

contributions made in the paper and important assumptions and limitations. A No or812

NA answer to this question will not be perceived well by the reviewers.813

• The claims made should match theoretical and experimental results, and reflect how814

much the results can be expected to generalize to other settings.815

• It is fine to include aspirational goals as motivation as long as it is clear that these goals816

are not attained by the paper.817

2. Limitations818

Question: Does the paper discuss the limitations of the work performed by the authors?819

Answer: [Yes]820

Justification: We discuss the limitations of the work in Appendix K.821

Guidelines:822

• The answer NA means that the paper has no limitation while the answer No means that823

the paper has limitations, but those are not discussed in the paper.824

• The authors are encouraged to create a separate "Limitations" section in their paper.825

• The paper should point out any strong assumptions and how robust the results are to826

violations of these assumptions (e.g., independence assumptions, noiseless settings,827

model well-specification, asymptotic approximations only holding locally). The authors828

should reflect on how these assumptions might be violated in practice and what the829

implications would be.830

• The authors should reflect on the scope of the claims made, e.g., if the approach was831

only tested on a few datasets or with a few runs. In general, empirical results often832

depend on implicit assumptions, which should be articulated.833

• The authors should reflect on the factors that influence the performance of the approach.834

For example, a facial recognition algorithm may perform poorly when image resolution835

is low or images are taken in low lighting. Or a speech-to-text system might not be836

used reliably to provide closed captions for online lectures because it fails to handle837

technical jargon.838

• The authors should discuss the computational efficiency of the proposed algorithms839

and how they scale with dataset size.840

• If applicable, the authors should discuss possible limitations of their approach to841

address problems of privacy and fairness.842

• While the authors might fear that complete honesty about limitations might be used by843

reviewers as grounds for rejection, a worse outcome might be that reviewers discover844

limitations that aren’t acknowledged in the paper. The authors should use their best845

judgment and recognize that individual actions in favor of transparency play an impor-846

tant role in developing norms that preserve the integrity of the community. Reviewers847

will be specifically instructed to not penalize honesty concerning limitations.848

3. Theory assumptions and proofs849

Question: For each theoretical result, does the paper provide the full set of assumptions and850

a complete (and correct) proof?851

Answer: [NA]852
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Justification: The paper does not include theoretical results.853

Guidelines:854

• The answer NA means that the paper does not include theoretical results.855

• All the theorems, formulas, and proofs in the paper should be numbered and cross-856

referenced.857

• All assumptions should be clearly stated or referenced in the statement of any theorems.858

• The proofs can either appear in the main paper or the supplemental material, but if859

they appear in the supplemental material, the authors are encouraged to provide a short860

proof sketch to provide intuition.861

• Inversely, any informal proof provided in the core of the paper should be complemented862

by formal proofs provided in appendix or supplemental material.863

• Theorems and Lemmas that the proof relies upon should be properly referenced.864

4. Experimental result reproducibility865

Question: Does the paper fully disclose all the information needed to reproduce the main ex-866

perimental results of the paper to the extent that it affects the main claims and/or conclusions867

of the paper (regardless of whether the code and data are provided or not)?868

Answer: [Yes]869

Justification: We explain our settings as well as the hyperparameters in Section 3, Ap-870

pendix F, and Appendix J for all our experiments.871

Guidelines:872

• The answer NA means that the paper does not include experiments.873

• If the paper includes experiments, a No answer to this question will not be perceived874

well by the reviewers: Making the paper reproducible is important, regardless of875

whether the code and data are provided or not.876

• If the contribution is a dataset and/or model, the authors should describe the steps taken877

to make their results reproducible or verifiable.878

• Depending on the contribution, reproducibility can be accomplished in various ways.879

For example, if the contribution is a novel architecture, describing the architecture fully880

might suffice, or if the contribution is a specific model and empirical evaluation, it may881

be necessary to either make it possible for others to replicate the model with the same882

dataset, or provide access to the model. In general. releasing code and data is often883

one good way to accomplish this, but reproducibility can also be provided via detailed884

instructions for how to replicate the results, access to a hosted model (e.g., in the case885

of a large language model), releasing of a model checkpoint, or other means that are886

appropriate to the research performed.887

• While NeurIPS does not require releasing code, the conference does require all submis-888

sions to provide some reasonable avenue for reproducibility, which may depend on the889

nature of the contribution. For example890

(a) If the contribution is primarily a new algorithm, the paper should make it clear how891

to reproduce that algorithm.892

(b) If the contribution is primarily a new model architecture, the paper should describe893

the architecture clearly and fully.894

(c) If the contribution is a new model (e.g., a large language model), then there should895

either be a way to access this model for reproducing the results or a way to reproduce896

the model (e.g., with an open-source dataset or instructions for how to construct897

the dataset).898

(d) We recognize that reproducibility may be tricky in some cases, in which case899

authors are welcome to describe the particular way they provide for reproducibility.900

In the case of closed-source models, it may be that access to the model is limited in901

some way (e.g., to registered users), but it should be possible for other researchers902

to have some path to reproducing or verifying the results.903

5. Open access to data and code904

Question: Does the paper provide open access to the data and code, with sufficient instruc-905

tions to faithfully reproduce the main experimental results, as described in supplemental906

material?907
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Answer: [Yes]908

Justification: We will release our data and code to facilitate reproduction and future research.909

Guidelines:910

• The answer NA means that paper does not include experiments requiring code.911

• Please see the NeurIPS code and data submission guidelines (https://nips.cc/912

public/guides/CodeSubmissionPolicy) for more details.913

• While we encourage the release of code and data, we understand that this might not be914

possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not915

including code, unless this is central to the contribution (e.g., for a new open-source916

benchmark).917

• The instructions should contain the exact command and environment needed to run to918

reproduce the results. See the NeurIPS code and data submission guidelines (https:919

//nips.cc/public/guides/CodeSubmissionPolicy) for more details.920

• The authors should provide instructions on data access and preparation, including how921

to access the raw data, preprocessed data, intermediate data, and generated data, etc.922

• The authors should provide scripts to reproduce all experimental results for the new923

proposed method and baselines. If only a subset of experiments are reproducible, they924

should state which ones are omitted from the script and why.925

• At submission time, to preserve anonymity, the authors should release anonymized926

versions (if applicable).927

• Providing as much information as possible in supplemental material (appended to the928

paper) is recommended, but including URLs to data and code is permitted.929

6. Experimental setting/details930

Question: Does the paper specify all the training and test details (e.g., data splits, hyper-931

parameters, how they were chosen, type of optimizer, etc.) necessary to understand the932

results?933

Answer: [Yes]934

Justification: We explain our settings as well as the hyperparameters. Details are summarized935

in Section 3, Appendix F, and Appendix J for all our experiments.936

Guidelines:937

• The answer NA means that the paper does not include experiments.938

• The experimental setting should be presented in the core of the paper to a level of detail939

that is necessary to appreciate the results and make sense of them.940

• The full details can be provided either with the code, in appendix, or as supplemental941

material.942

7. Experiment statistical significance943

Question: Does the paper report error bars suitably and correctly defined or other appropriate944

information about the statistical significance of the experiments?945

Answer: [Yes]946

Justification: We use some strategies such as “majority@k” to reduce bias and uncertainty947

to enhance the robustness of the results.948

Guidelines:949

• The answer NA means that the paper does not include experiments.950

• The authors should answer "Yes" if the results are accompanied by error bars, confi-951

dence intervals, or statistical significance tests, at least for the experiments that support952

the main claims of the paper.953

• The factors of variability that the error bars are capturing should be clearly stated (for954

example, train/test split, initialization, random drawing of some parameter, or overall955

run with given experimental conditions).956

• The method for calculating the error bars should be explained (closed form formula,957

call to a library function, bootstrap, etc.)958

• The assumptions made should be given (e.g., Normally distributed errors).959
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• It should be clear whether the error bar is the standard deviation or the standard error960

of the mean.961

• It is OK to report 1-sigma error bars, but one should state it. The authors should962

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis963

of Normality of errors is not verified.964

• For asymmetric distributions, the authors should be careful not to show in tables or965

figures symmetric error bars that would yield results that are out of range (e.g. negative966

error rates).967

• If error bars are reported in tables or plots, The authors should explain in the text how968

they were calculated and reference the corresponding figures or tables in the text.969

8. Experiments compute resources970

Question: For each experiment, does the paper provide sufficient information on the com-971

puter resources (type of compute workers, memory, time of execution) needed to reproduce972

the experiments?973

Answer: [Yes]974

Justification: Details are provided in Section B.3 and Appendix F.975

Guidelines:976

• The answer NA means that the paper does not include experiments.977

• The paper should indicate the type of compute workers CPU or GPU, internal cluster,978

or cloud provider, including relevant memory and storage.979

• The paper should provide the amount of compute required for each of the individual980

experimental runs as well as estimate the total compute.981

• The paper should disclose whether the full research project required more compute982

than the experiments reported in the paper (e.g., preliminary or failed experiments that983

didn’t make it into the paper).984

9. Code of ethics985

Question: Does the research conducted in the paper conform, in every respect, with the986

NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?987

Answer: [Yes]988

Justification: We followed the NeurIPS Code of Ethics.989

Guidelines:990

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.991

• If the authors answer No, they should explain the special circumstances that require a992

deviation from the Code of Ethics.993

• The authors should make sure to preserve anonymity (e.g., if there is a special consid-994

eration due to laws or regulations in their jurisdiction).995

10. Broader impacts996

Question: Does the paper discuss both potential positive societal impacts and negative997

societal impacts of the work performed?998

Answer: [NA]999

Justification: There is no societal impact of the work performed.1000

Guidelines:1001

• The answer NA means that there is no societal impact of the work performed.1002

• If the authors answer NA or No, they should explain why their work has no societal1003

impact or why the paper does not address societal impact.1004

• Examples of negative societal impacts include potential malicious or unintended uses1005

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations1006

(e.g., deployment of technologies that could make decisions that unfairly impact specific1007

groups), privacy considerations, and security considerations.1008
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• The conference expects that many papers will be foundational research and not tied1009

to particular applications, let alone deployments. However, if there is a direct path to1010

any negative applications, the authors should point it out. For example, it is legitimate1011

to point out that an improvement in the quality of generative models could be used to1012

generate deepfakes for disinformation. On the other hand, it is not needed to point out1013

that a generic algorithm for optimizing neural networks could enable people to train1014

models that generate Deepfakes faster.1015

• The authors should consider possible harms that could arise when the technology is1016

being used as intended and functioning correctly, harms that could arise when the1017

technology is being used as intended but gives incorrect results, and harms following1018

from (intentional or unintentional) misuse of the technology.1019

• If there are negative societal impacts, the authors could also discuss possible mitigation1020

strategies (e.g., gated release of models, providing defenses in addition to attacks,1021

mechanisms for monitoring misuse, mechanisms to monitor how a system learns from1022

feedback over time, improving the efficiency and accessibility of ML).1023

11. Safeguards1024

Question: Does the paper describe safeguards that have been put in place for responsible1025

release of data or models that have a high risk for misuse (e.g., pretrained language models,1026

image generators, or scraped datasets)?1027

Answer: [NA]1028

Justification: The research involves publicly available datasets and standard models, posing1029

no significant misuse risks, thus no specific safeguards were necessary.1030

Guidelines:1031

• The answer NA means that the paper poses no such risks.1032

• Released models that have a high risk for misuse or dual-use should be released with1033

necessary safeguards to allow for controlled use of the model, for example by requiring1034

that users adhere to usage guidelines or restrictions to access the model or implementing1035

safety filters.1036

• Datasets that have been scraped from the Internet could pose safety risks. The authors1037

should describe how they avoided releasing unsafe images.1038

• We recognize that providing effective safeguards is challenging, and many papers do1039

not require this, but we encourage authors to take this into account and make a best1040

faith effort.1041

12. Licenses for existing assets1042

Question: Are the creators or original owners of assets (e.g., code, data, models), used in1043

the paper, properly credited and are the license and terms of use explicitly mentioned and1044

properly respected?1045

Answer: [Yes]1046

Justification: We credit the owners of all code, models and data used in this work. All1047

relevant papers are cited, and we have adhered to the licenses and terms of use associated1048

with these assets.1049

Guidelines:1050

• The answer NA means that the paper does not use existing assets.1051

• The authors should cite the original paper that produced the code package or dataset.1052

• The authors should state which version of the asset is used and, if possible, include a1053

URL.1054

• The name of the license (e.g., CC-BY 4.0) should be included for each asset.1055

• For scraped data from a particular source (e.g., website), the copyright and terms of1056

service of that source should be provided.1057

• If assets are released, the license, copyright information, and terms of use in the1058

package should be provided. For popular datasets, paperswithcode.com/datasets1059

has curated licenses for some datasets. Their licensing guide can help determine the1060

license of a dataset.1061
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• For existing datasets that are re-packaged, both the original license and the license of1062

the derived asset (if it has changed) should be provided.1063

• If this information is not available online, the authors are encouraged to reach out to1064

the asset’s creators.1065

13. New assets1066

Question: Are new assets introduced in the paper well documented and is the documentation1067

provided alongside the assets?1068

Answer: [Yes]1069

Justification: We provide the detailed documentation alongside the new assets for repro-1070

ducibility.1071

Guidelines:1072

• The answer NA means that the paper does not release new assets.1073

• Researchers should communicate the details of the dataset/code/model as part of their1074

submissions via structured templates. This includes details about training, license,1075

limitations, etc.1076

• The paper should discuss whether and how consent was obtained from people whose1077

asset is used.1078

• At submission time, remember to anonymize your assets (if applicable). You can either1079

create an anonymized URL or include an anonymized zip file.1080

14. Crowdsourcing and research with human subjects1081

Question: For crowdsourcing experiments and research with human subjects, does the paper1082

include the full text of instructions given to participants and screenshots, if applicable, as1083

well as details about compensation (if any)?1084

Answer: [NA]1085

Justification: This work does not involve crowdsourcing nor research with human subjects.1086

Guidelines:1087

• The answer NA means that the paper does not involve crowdsourcing nor research with1088

human subjects.1089

• Including this information in the supplemental material is fine, but if the main contribu-1090

tion of the paper involves human subjects, then as much detail as possible should be1091

included in the main paper.1092

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,1093

or other labor should be paid at least the minimum wage in the country of the data1094

collector.1095

15. Institutional review board (IRB) approvals or equivalent for research with human1096

subjects1097

Question: Does the paper describe potential risks incurred by study participants, whether1098

such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)1099

approvals (or an equivalent approval/review based on the requirements of your country or1100

institution) were obtained?1101

Answer: [NA]1102

Justification: The paper does not involve crowdsourcing nor research with human subjects.1103

Guidelines:1104

• The answer NA means that the paper does not involve crowdsourcing nor research with1105

human subjects.1106

• Depending on the country in which research is conducted, IRB approval (or equivalent)1107

may be required for any human subjects research. If you obtained IRB approval, you1108

should clearly state this in the paper.1109

• We recognize that the procedures for this may vary significantly between institutions1110

and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the1111

guidelines for their institution.1112
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• For initial submissions, do not include any information that would break anonymity (if1113

applicable), such as the institution conducting the review.1114

16. Declaration of LLM usage1115

Question: Does the paper describe the usage of LLMs if it is an important, original, or1116

non-standard component of the core methods in this research? Note that if the LLM is used1117

only for writing, editing, or formatting purposes and does not impact the core methodology,1118

scientific rigorousness, or originality of the research, declaration is not required.1119

Answer: [NA]1120

Justification: The core method development in this research does not involve LLMs as any1121

important, original, or non-standard components.1122

Guidelines:1123

• The answer NA means that the core method development in this research does not1124

involve LLMs as any important, original, or non-standard components.1125

• Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)1126

for what should or should not be described.1127
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