© ® N O g A~ W N =

ARM: Adaptive Reasoning Model

Anonymous Author(s)
Affiliation
Address

email

Abstract

While large reasoning models demonstrate strong performance on complex tasks,
they lack the ability to adjust reasoning token usage based on task difficulty. This
often leads to the “overthinking” problem—excessive and unnecessary reason-
ing—which, although potentially mitigated by human intervention to control the
token budget, still fundamentally contradicts the goal of achieving fully autonomous
Al In this work, we propose Adaptive Reasoning Model (ARM), a reasoning model
capable of adaptively selecting appropriate reasoning formats based on the task at
hand. These formats include three efficient ones—Direct Answer, Short CoT, and
Code—as well as a more elaborate format, Long CoT. To train ARM, we introduce
Ada-GRPO, an adaptation of Group Relative Policy Optimization (GRPO), which
addresses the format collapse issue in traditional GRPO. Ada-GRPO enables ARM
to achieve high token efficiency, reducing tokens by an average of ~ 30%, and
up to ~ 70%, while maintaining performance comparable to the model that relies
solely on Long CoT. All the resources will be released.

1 Introduction

The emergence of large reasoning models (LRMs) such as OpenAl-ol [16] and DeepSeek-R1 [9]
has advanced problem-solving via test-time scaling [3; 50], where Long Chain-of-Thought (Long
CoT) boosts performance by generating more tokens. Yet, trained mainly on reasoning-heavy tasks,
LRMs often apply Long CoT indiscriminately, causing “overthinking” [4; 37]—excessive token
use with little gain and potential noise [46; 7]. Prior approaches reduce tokens through budget
estimation [1; 41] or length-constrained training [13], but these rely heavily on human knowledge of
the tasks. A more autonomous solution is adaptive token control, where the model itself employs
concise reasoning for easy tasks and deliberate reasoning for hard ones.

In this work, we propose Adaptive Reasoning Model (ARM), a reasoning model capable of adaptively
selecting reasoning formats based on task difficulty, balancing both performance and computational
efficiency. ARM supports four reasoning formats: three efficient ones—Direct Answer, Short CoT,
and Code—and one elaborate format, Long CoT. To train ARM, we adopt a two-stage training
framework. In Stage 1, we apply supervised fine-tuning (SFT) to equip the language model with
a foundational understanding of four reasoning formats. In Stage 2, we introduce Ada-GRPO, an
adaptation of Group Relative Policy Optimization (GRPO) [33], which encourages efficient format
selection while preserving accuracy as the primary objective. Ada-GRPO is designed to address two
key issues: /) The uniform distribution of reasoning formats regardless of task difficulty observed
during the SFT stage; 2) The format collapse problem in GRPO, where Long CoT gradually dominates
as training progresses, leading to the diminished use of other, more efficient formats. Extensive
evaluations show that ARM trained with Ada-GRPO achieves comparable performance while using
~ 30% fewer tokens than GRPO, across both in-domain and out-of-domain tasks in commonsense,
mathematical, and symbolic reasoning.

Submitted to NeurIPS 2025 Workshop on Efficient Reasoning. Do not distribute.

39
40
41
42
43
44
45
46

47

48
49
50
51
52
53
54
55
56
57
58

59

60
61
62
63

64
65
66

67
68
69
70
71
72

73

74
75

76
77
78

79
80
81
82
83
84

2 Method

We propose Adaptive Reasoning Model (ARM), a reasoning model designed to optimize effectiveness
and efficiency by adaptively selecting reasoning formats. Specifically, ARM is trained in two stages:
1) Stage 1: Supervised Fine-tuning (SFT) for Reasoning Formats Understanding: In this stage,
we use 10.8K diverse questions, each annotated with solutions in four distinct reasoning formats, to
fine-tune the model and build a foundational understanding of different reasoning strategies. 2) Stage
2: Reinforcement Learning (RL) for Encouraging Efficient Format Selection: We adopt an
adapted version of the GRPO algorithm, named Ada-GRPO, to train the model to be capable of
selecting more efficient reasoning formats over solely Long CoT, while maintaining accuracy.

2.1 Stage 1: SFT for Reasoning Formats Understanding

In this stage, we leverage SFT as a cold start to introduce the model to various reasoning formats
it can utilize to solve problems. These formats include three efficient reasoning formats Direct
Answer, Short CoT, and Code, as well as the elaborate reasoning format Long CoT. We use special
tokens (e.g., <Code></Code>) to embrace thinking rationale. Specifically, /) Direct Answer: This
format provides a direct answer without any reasoning chain, making it the most efficient in terms
of token usage. 2) Short CoT: This format begins with a short reasoning and then provides an
answer, which has been proved effective in mathematical problems [43]. 3) Code: This format
adopts code-based reasoning, which has proven effective across a variety of tasks due to its structured
process [44; 45; 20]. 4) Long CoT: This format involves a more detailed, iterative reasoning process,
thus incurs higher token usage. It is suited for tasks requiring advanced reasoning capabilities, such
as self-reflection and alternative generation, where those more efficient formats fall short [27; 9; 49].

2.2 Stage 2: RL for Encouraging Efficient Format Selection

After SFT, the model learns to respond using various reasoning formats but lacks the ability to
adaptively switch between them based on the task (see Section 3.2 for details). To address this, we
propose Adaptive GRPO (Ada-GRPO), which enables the model to dynamically select appropriate
reasoning formats according to the task difficulty through a format diversity reward mechanism.

GRPO In traditional GRPO [33], the model samples a group of outputs O = {01, 09, - , 0} for
each question ¢, where GG denotes the group size. For each o;, a binary reward r; is computed using a
rule-based reward function that checks whether the prediction pred matches the ground truth gt:

Ty =]]-passed(gt,p'r'ed)- (1)

However, since traditional GRPO solely optimizes for accuracy, it leads, in our setting, to overuse
of the highest-accuracy format while discouraging exploration of alternative reasoning formats.
Specifically, if Long CoT achieves higher accuracy than other formats, models trained with GRPO
tend to increasingly reinforce it, leading to an over-reliance on Long CoT and reduced exploration
of more efficient alternatives. We refer to this phenomenon as Format Collapse, which ultimately
hinders the model’s ability to develop adaptiveness. We further analyze this in Section 3.2.

Ada-GRPO We introduce Ada-GRPO to mitigate format collapse by amplifying rewards for
underrepresented reasoning formats, ensuring their persistence during training. Formally, we rescale
the reward r; as

r=a;(t)ri, oi(t) = -decay;(t), decay;(t) = —F(gi) + %(1 — —F(g’)) (1+cos(nt)), (2

G
F (o)
where F'(0;) denotes the number of times the reasoning format corresponding to o; appears within
its group O, and ¢ represents the training step. «;(¢) is a format diversity scaling factor that gradually
decreases from % at the beginning of training (¢ = 0) to 1 at the end of training (¢ = T").

We introduce «;(t) to extend GRPO into Ada-GRPO, enabling models to adaptively select reasoning
formats. Specifically, cv;(t) consists of two components: /) Format Diversity Scaling Factor %
To prevent premature convergence on the highest-accuracy format (i.e., format collapse to Long CoT),
we upweight rewards for less frequent formats to encourage exploration. 2) Decay Factor decay; (t):
To avoid long-term misalignment caused by over-rewarding rare formats, this term gradually reduces
the influence of diversity over time. For example, % might make the model favor a lower-accuracy

85
86
87
88
89

90

91

92
93
94
95
96
97
98
99
100
101
102

104
105
106
107
108
109
110

111
112
113
114
115
116

Table 1: Performance of various models across evaluation datasets. “#Tokens” refers to the token cost
for each model on each dataset. For each model, k = 1 corresponds to pass@1, and & = 8 corresponds
to maj@8. When k = 8, the token cost is averaged over a single output to facilitate clear comparison.
“+” denotes in-domain tasks, while “}” denotes out-of-domain tasks. “A” represents the difference
between ARM and Qwen2.5spr.Grpo, Calculated by subtracting the accuracy of Qwen2.5sgr.GrPO
from that of ARM, with the token usage expressed as the ratio of tokens saved by ARM compared to
Qwen2.5srr4GRPO, With all settings based on k& = 8 to ensure a stable comparison. We also report
results for ARM-3B and ARM-14B in Appendix Table 3.

Accuracy (1) #Tokens (|)

Models Ee i ’ 4 i

asy Medium Hard Ave. Easy Medium Hard Ave.
k| CSQAT OBQA} GSM8KF MATHF SVAMPi BBHi AIME’25: CSQAT OBQA: GSM8SKT MATHf SVAMP: BBHji AIME’25%

GPT-40 1| 89 94.2 95.9 75.9 91.3 84.7 10.0 76.8 192 165 287 663 156 278 984 389
ol-preview 1| 855 95.6 94.2 92.6 92.7 91.8 40.0 84.6| 573 492 456 1863 489 940 7919 1819
o4-mini-high 1| 847 96.0 96.9 97.7 94.0 92.2 96.7 94.0| 502 289 339 1332 301 755 9850 1910
DeepSeek-V3 1| 824 96.0 96.5 91.8 93.7 85.8 36.7 83.3| 231 213 236 887 160 400 2992 732
DeepSeek-R1 1| 833 94.8 96.4 97.1 96.0 85.0 70.0 889 918 736 664 2339 589 1030 9609 2270
DS-RI1-Distill-1.5B 1| 47.6 48.6 79.4 84.6 86.7 5315} 20.0 60.1 987 1540 841 3875 606 3005 13118 3425
DS-R1-Distill-7B 1| 649 77.4 90.0 93.6 90.3 72.1 40.0 755 792 928 574 3093 315 1448 12427 2797
DS-R1-Distill-14B 1| 80.6 93.2 94.0 955] 92.7 80.4 50.0 83.8| 816 750 825 2682 726 1292 11004 2585
DS-R1-Distill-32B 1| 832 94.6 93.5 93.0 92.0 86.3 56.7 85.6| 674 698 438 2161 283 999 11276 2361
Qwen2.5-78 1| 767 78.6 81.6 50.1 81.0 51.7 33 60.4 64 83 156 376 99 182 767 247
- 8| 82.0 86.4 89.9 64.7 89.7 62.0 33 68.3 66 74 156 370 92 183 881 260
Qwen2.5-TBger 1| 808 81.2 54.4 304 76.0 48.2 0 53.0 136 150 184 348 126 245 1239 347
- 8| 839 84.6 79.4 42.4 88.0 56.0 0 62.0 141 137 185 361 141 274 1023 323
Qwen2.5-TBsiriarro 1] 83.1 82.2 92.8 79.4 93.7 64.3 16.7 73.2| 491 651 739 1410 587 1133 3196 1173
: 8| 83.7 84.6 94.8 84.9 95.3 69.3 20.0 76.1 496 625 745 1415 586 1135 3145 1164
ARM-7B 1] 86.1 84.4 89.2 739 92.0 61.4 16.7 72.0 136 159 305 889 218 401 3253 766
8| 857 85.8 93.7 82.6 95.3 67.9 20.0 759 134 154 297 893 218 413 3392 786
A +2.0 +1.2 -1.1 -2.3 0 -14 0 -0.2 73.0% 75.4% 60.1% 36.9¢ 62.8¢ 63.6% +7.9% 32.56

format like Short CoT over Long CoT simply because it appears less frequently and thus receives a
higher reward. While such exploration is beneficial early in training, it can hinder convergence later.
The decay mechanism mitigates this by promoting diversity initially, then shifting focus to accuracy
again as training progresses. We adopt the traditional advantage formula in GRPO. Please refer to
Appendix C for more details.

3 Experiment

3.1 Experimental Setup

Training To assess the effectiveness of our method across models of different sizes, we select
Qwen2.5-Base as the backbone model. We use AQuA-Rat [22] as the SFT dataset, as its answers
can be naturally transformed into four distinct reasoning formats. In addition to the Direct Answer
and Short CoT rationales provided with the dataset, we utilize GPT-40 [26] and DeepSeek-R1 [9] to
supplement the Code and Long CoT rationales, resulting in a training set containing 3.0K multiple-
choice and 7.8K open-form questions. Appendix D provides further details on the generation
and filtering process. In Stage 2, to prevent data leakage, we employ three additional datasets
exclusively for the RL stage. These datasets cover a range of difficulty levels, from relatively
simple commonsense reasoning tasks to more complex mathematical reasoning tasks, including
CommonsenseQA (CSQA) [39], GSMS8K [6], and MATH [12], collectively comprising 19.8K
verifiable question-answer pairs. Please refer to Appendix E for dataset details, Appendix F for
implementation details, and Appendix G for inference.

Baselines In addition to backbone models, we compare ARM with models trained using alternative
algorithms that may enable adaptive reasoning capabilities. Specifically, Qwen2.5gpy refers to
the backbone model trained on the AQuA-Rat dataset used in Stage 1. In this setting, we explore
whether language models can master adaptive reasoning through a straightforward SFT strategy.
For Qwen2.5gp1.GrPO, We examine whether SFT models, further trained with GRPO, can better
understand different reasoning formats and whether this approach empowers them to select appropriate
reasoning formats based on rule-based rewards.

Evaluation Datasets To evaluate reasoning, we use in-domain and out-of-domain datasets spanning
commonsense, mathematical, and symbolic tasks. CommonsenseQA (CSQA) [39] and OpenBookQA
(OBQA) [25] represent intuitive commonsense tasks. Mathematical reasoning is assessed with
SVAMP [30], GSMS8K [6], MATH [12], and the competition-level AIME’25 [8]. For symbolic
reasoning, we adopt Big-Bench-Hard (BBH) [38]. We categorize datasets into three levels: easy
(commonsense), medium (math + symbolic), and hard (AIME’25).

117

118
119
120
121

122
123
124
125
126
127
128

129
130
131
132
133
134
135

136
137
138
139
140
141
142
143
144

145

146
147
148
149
150

151

152
153
154
155
156
157
158

Direct I Short CoT Code I Long CoT

SFT VT SR Y R R 104
SFT+GRPO L —
ARMW -lWA/ W —
O 20 80 100 O 20 0 10 0 20 80 100
(a) Easy Tasks (b) Medlum Tasks (c) Hard Tasks

Figure 1: Format distribution by task difficulty with Qwen2.5-7B. The hatched areas indicate the
percentage of correct answers that were generated using the selected reasoning format.

3.2 Main Results

Alongside our baselines, we include several state-of-the-art general models, including GPT-40 [26]
and DeepSeek-V3 [23], as well as reasoning models ol-preview [27], 0o4-mini-high [28], and
DeepSeek-R1 [9], along with several DeepSeek-R1-Distill-Qwen (DS-R1-Distill) models ranging
from 1.5B to 32B [9]. We report our results in Table 1, and we have the following findings:

SFT teaches models formats but not how to choose among them. We find that SFT improves
performance on easy commonsense tasks but hurts medium and hard ones. To analyze why, we
examine the distribution of reasoning formats at inference. Figure 1 shows that SFT models allocate
formats nearly uniformly, with most outputs in Direct Answer and few in Long CoT, regardless
of difficulty. This overuse of Direct Answer—which performs poorly on medium tasks (35.2%
accuracy)—undermines reasoning ability and overall performance. Thus, SFT teaches formats but
fails to promote adaptive selection as task complexity increases.

GRPO does improve reasoning capabilities, but it tends to rely on Long CoT to solve all tasks.
We observe that models trained with GRPO achieve significant improvements across all tasks, yet the
token cost remains substantial, especially for the two easier tasks. Further analysis reveals that Long
CoT is predominantly used in the inference stage, as shown in Figure 1. This behavior stems from the
nature of GRPO (i.e., format collapse discussed in Section 2.2), where models converge to the format
with the highest accuracy (i.e., Long CoT) early in training (~10 steps in our experiment). As a result,
GRPO also fails to teach models how to select a more efficient reasoning format based on the task.

ARM is able to adaptively select reasoning formats based on task difficulty, while achieving
comparable accuracy across all tasks compared to GRPO and using significantly fewer tokens.
As shown in Table 1, ARM experiences an average performance drop of less than 1% compared to the
model trained with GRPO, yet it saves more than 30% of the tokens. Specifically, ARM demonstrates
a clear advantage on easy tasks, saving over 70% of tokens while maintaining comparable accuracy.
This advantage extends to medium tasks as well. For the more challenging AIME’25 task, ARM
adapts to the task difficulty by increasingly selecting Long CoT, thereby avoiding performance
degradation on harder tasks. Figure 1 further confirms that ARM is able to gradually adopt more
advanced reasoning formats and discards simpler ones as task difficulty increases.

3.3 Further Analysis

We provide more features of ARM and further analysis in Appendix B, including /) ARM also
supports Instruction-Guided Mode, effective when specified formats are suitable for the tasks at hand,
and Consensus-Guided Mode, which maximizes performance at higher token cost; 2) Ada-GRPO
yields a ~ 2x training speedup over traditional GRPO; and 3) Ada-GRPO demonstrates robustness
across both instruction-tuned and reasoning backbones.

4 Conclusion

In this work, we propose Adaptive Reasoning Model (ARM), which adaptively selects reasoning
formats based on task difficulty. ARM is trained with Ada-GRPO, a GRPO variant that addresses
format collapse via a format diversity reward and achieves a ~ 2X training speedup. Experiments
show that ARM maintains performance comparable to the GRPO-trained model relying solely on
Long CoT, while significantly improving token efficiency. By adopting the adaptive reasoning format
selection strategy, ARM effectively mitigates the overthinking problem and offers a novel, efficient
approach to reducing unnecessary reasoning overhead.

159

160
161

162
163

164
165

167
168
169

170
171

172
173
174

175
176

177
178

179
180
181

182
183

184
185
186

187
188
189

191
192

193
194

196

197
198
199

200
201
202

204
205

References

[1] Pranjal Aggarwal and Sean Welleck. L1: Controlling how long a reasoning model thinks with
reinforcement learning. arXiv preprint arXiv:2503.04697, 2025.

[2] Daman Arora and Andrea Zanette. Training language models to reason efficiently. arXiv
preprint arXiv:2502.04463, 2025.

[3] Qiguang Chen, Libo Qin, Jinhao Liu, Dengyun Peng, Jiannan Guan, Peng Wang, Mengkang
Hu, Yuhang Zhou, Te Gao, and Wangxiang Che. Towards reasoning era: A survey of long
chain-of-thought for reasoning large language models. arXiv preprint arXiv:2503.09567, 2025.

[4] Xingyu Chen, Jiahao Xu, Tian Liang, Zhiwei He, Jianhui Pang, Dian Yu, Linfeng Song, Qiuzhi
Liu, Mengfei Zhou, Zhuosheng Zhang, et al. Do not think that much for 2+ 3=? on the
overthinking of ol-like llms. arXiv preprint arXiv:2412.21187, 2024.

[5] Jeffrey Cheng and Benjamin Van Durme. Compressed chain of thought: Efficient reasoning
through dense representations. arXiv preprint arXiv:2412.13171, 2024.

[6] Karl Cobbe, Vineet Kosaraju, Mohammad Bavarian, Mark Chen, Heewoo Jun, Lukasz Kaiser,
Matthias Plappert, Jerry Tworek, Jacob Hilton, Reiichiro Nakano, et al. Training verifiers to
solve math word problems. arXiv preprint arXiv:2110.14168, 2021.

[7] Chenrui Fan, Ming Li, Lichao Sun, and Tianyi Zhou. Missing premise exacerbates overthinking:
Are reasoning models losing critical thinking skill? arXiv preprint arXiv:2504.06514, 2025.

[8] Google. Aime problems and solutions, 2025. URL https://artofproblemsolving.com/
wiki/index.php/AIME_Problems_and_Solutions.

[9] Daya Guo, Dejian Yang, Haowei Zhang, Junxiao Song, Ruoyu Zhang, Runxin Xu, Qihao Zhu,
Shirong Ma, Peiyi Wang, Xiao Bi, et al. Deepseek-rl: Incentivizing reasoning capability in
IIms via reinforcement learning. arXiv preprint arXiv:2501.12948, 2025.

[10] Tingxu Han, Zhenting Wang, Chunrong Fang, Shiyu Zhao, Shiqing Ma, and Zhenyu Chen.
Token-budget-aware 1lm reasoning. arXiv preprint arXiv:2412.18547, 2024.

[11] Shibo Hao, Sainbayar Sukhbaatar, DiJia Su, Xian Li, Zhiting Hu, Jason Weston, and Yuandong
Tian. Training large language models to reason in a continuous latent space. arXiv preprint
arXiv:2412.06769, 2024.

[12] Dan Hendrycks, Collin Burns, Saurav Kadavath, Akul Arora, Steven Basart, Eric Tang, Dawn
Song, and Jacob Steinhardt. Measuring mathematical problem solving with the math dataset.
NeurlPS, 2021.

[13] Bairu Hou, Yang Zhang, Jiabao Ji, Yujian Liu, Kaizhi Qian, Jacob Andreas, and Shiyu Chang.
Thinkprune: Pruning long chain-of-thought of llms via reinforcement learning. arXiv preprint
arXiv:2504.01296, 2025.

[14] Edward J Hu, yelong shen, Phillip Wallis, Zeyuan Allen-Zhu, Yuanzhi Li, Shean Wang,
Lu Wang, and Weizhu Chen. LoRA: Low-rank adaptation of large language models. In
International Conference on Learning Representations, 2022. URL https://openreview.
net/forum?id=nZeVKeeFYf9.

[15] Jingcheng Hu, Yinmin Zhang, Qi Han, Daxin Jiang, Xiangyu Zhang, and Heung-Yeung Shum.
Open-reasoner-zero: An open source approach to scaling up reinforcement learning on the base
model. arXiv preprint arXiv:2503.24290, 2025.

[16] Aaron Jaech, Adam Kalai, Adam Lerer, Adam Richardson, Ahmed El-Kishky, Aiden Low, Alec
Helyar, Aleksander Madry, Alex Beutel, Alex Carney, et al. Openai ol system card. arXiv
preprint arXiv:2412.16720, 2024.

[17] Bowen Jin, Hansi Zeng, Zhenrui Yue, Dong Wang, Hamed Zamani, and Jiawei Han. Search-r1:
Training llms to reason and leverage search engines with reinforcement learning. arXiv preprint
arXiv:2503.09516, 2025.

https://artofproblemsolving.com/wiki/index.php/AIME_Problems_and_Solutions
https://artofproblemsolving.com/wiki/index.php/AIME_Problems_and_Solutions
https://artofproblemsolving.com/wiki/index.php/AIME_Problems_and_Solutions
https://openreview.net/forum?id=nZeVKeeFYf9
https://openreview.net/forum?id=nZeVKeeFYf9
https://openreview.net/forum?id=nZeVKeeFYf9

206
207
208

209
210

211
212

213
214
215

216
217
218
219

220
221
222

223
224
225

226
227
228

229

230
231

232
233

234
235
236
237

238
239
240
241

242
243
244

245
246
247
248

249
250
251

252
253
254

[18] Nathan Lambert, Jacob Morrison, Valentina Pyatkin, Shengyi Huang, Hamish Ivison, Faeze
Brahman, Lester James V Miranda, Alisa Liu, Nouha Dziri, Shane Lyu, et al. T\" ulu 3: Pushing
frontiers in open language model post-training. arXiv preprint arXiv:2411.15124, 2024.

[19] Ayeong Lee, Ethan Che, and Tianyi Peng. How well do llms compress their own chain-of-
thought? a token complexity approach. arXiv preprint arXiv:2503.01141, 2025.

[20] Junlong Li, Daya Guo, Dejian Yang, Runxin Xu, Yu Wu, and Junxian He. Codei/o: Condensing
reasoning patterns via code input-output prediction. arXiv preprint arXiv:2502.07316, 2025.

[21] Zhong-Zhi Li, Duzhen Zhang, Ming-Liang Zhang, Jiaxin Zhang, Zengyan Liu, Yuxuan Yao,
Haotian Xu, Junhao Zheng, Pei-Jie Wang, Xiuyi Chen, et al. From system 1 to system 2: A
survey of reasoning large language models. arXiv preprint arXiv:2502.17419, 2025.

[22] Wang Ling, Dani Yogatama, Chris Dyer, and Phil Blunsom. Program induction by rationale
generation: Learning to solve and explain algebraic word problems. In Proceedings of the 55th
Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers),
pages 158-167, 2017.

[23] Aixin Liu, Bei Feng, Bing Xue, Bingxuan Wang, Bochao Wu, Chengda Lu, Chenggang Zhao,
Chengqi Deng, Chenyu Zhang, Chong Ruan, et al. Deepseek-v3 technical report. arXiv preprint
arXiv:2412.19437, 2024.

[24] Yan Ma, Steffi Chern, Xuyang Shen, Yiran Zhong, and Pengfei Liu. Rethinking rl scaling for
vision language models: A transparent, from-scratch framework and comprehensive evaluation
scheme. arXiv preprint arXiv:2504.02587, 2025.

[25] Todor Mihaylov, Peter Clark, Tushar Khot, and Ashish Sabharwal. Can a suit of armor conduct
electricity? a new dataset for open book question answering. In Proceedings of the 2018
Conference on Empirical Methods in Natural Language Processing, pages 2381-2391, 2018.

[26] OpenAl. Hello GPT-40, 2024. URL https://openai.com/index/hello-gpt-4o/.

[27] OpenAl. Learning to reason with llms, 2024. URL https://openai.com/index/
learning-to-reason-with-1lms.

[28] OpenAl. Introducing openai 03 and o4-mini, 2025. URL https://openai.com/index/
introducing-o03-and-o04-mini/.

[29] Long Ouyang, Jeffrey Wu, Xu Jiang, Diogo Almeida, Carroll Wainwright, Pamela Mishkin,
Chong Zhang, Sandhini Agarwal, Katarina Slama, Alex Ray, et al. Training language models to
follow instructions with human feedback. Advances in neural information processing systems,

35:27730-27744, 2022.

[30] Arkil Patel, Satwik Bhattamishra, and Navin Goyal. Are nlp models really able to solve
simple math word problems? In Proceedings of the 2021 Conference of the North American
Chapter of the Association for Computational Linguistics: Human Language Technologies,
pages 2080-2094, 2021.

[31] Xiao Pu, Michael Saxon, Wenyue Hua, and William Yang Wang. Thoughtterminator: Bench-
marking, calibrating, and mitigating overthinking in reasoning models. arXiv preprint
arXiv:2504.13367, 2025.

[32] Jeff Rasley, Samyam Rajbhandari, Olatunji Ruwase, and Yuxiong He. Deepspeed: System
optimizations enable training deep learning models with over 100 billion parameters. In
Proceedings of the 26th ACM SIGKDD international conference on knowledge discovery &
data mining, pages 3505-3506, 2020.

[33] Zhihong Shao, Peiyi Wang, Qihao Zhu, Runxin Xu, Junxiao Song, Xiao Bi, Haowei Zhang,
Mingchuan Zhang, YK Li, Y Wu, et al. Deepseekmath: Pushing the limits of mathematical
reasoning in open language models. arXiv preprint arXiv:2402.03300, 2024.

[34] Zhenyi Shen, Hanqi Yan, Linhai Zhang, Zhanghao Hu, Yali Du, and Yulan He. Codi:
Compressing chain-of-thought into continuous space via self-distillation. arXiv preprint
arXiv:2502.21074, 2025.

https://openai.com/index/hello-gpt-4o/
https://openai.com/index/learning-to-reason-with-llms
https://openai.com/index/learning-to-reason-with-llms
https://openai.com/index/learning-to-reason-with-llms
https://openai.com/index/introducing-o3-and-o4-mini/
https://openai.com/index/introducing-o3-and-o4-mini/
https://openai.com/index/introducing-o3-and-o4-mini/

274

275
276

277
278
279

280
281
282

283
284
285
286

287
288
289
290

291
292
293

294
295
296
297

298
299

300
301
302

[35] Guangming Sheng, Chi Zhang, Zilingfeng Ye, Xibin Wu, Wang Zhang, Ru Zhang, Yanghua
Peng, Haibin Lin, and Chuan Wu. Hybridflow: A flexible and efficient rlhf framework. arXiv
preprint arXiv:2409.19256, 2024.

[36] DilJia Su, Sainbayar Sukhbaatar, Michael Rabbat, Yuandong Tian, and Qinqing Zheng. Dual-
former: Controllable fast and slow thinking by learning with randomized reasoning traces. In
The Thirteenth International Conference on Learning Representations, 2024.

[37] Yang Sui, Yu-Neng Chuang, Guanchu Wang, Jiamu Zhang, Tianyi Zhang, Jiayi Yuan, Hongyi
Liu, Andrew Wen, Hanjie Chen, Xia Hu, et al. Stop overthinking: A survey on efficient
reasoning for large language models. arXiv preprint arXiv:2503.16419, 2025.

[38] Mirac Suzgun, Nathan Scales, Nathanael Schirli, Sebastian Gehrmann, Yi Tay, Hyung Won
Chung, Aakanksha Chowdhery, Quoc V Le, Ed H Chi, Denny Zhou, et al. Challenging big-
bench tasks and whether chain-of-thought can solve them. arXiv preprint arXiv:2210.09261,
2022.

[39] Alon Talmor, Jonathan Herzig, Nicholas Lourie, and Jonathan Berant. Commonsenseqa: A
question answering challenge targeting commonsense knowledge. In Proceedings of the 2019
Conference of the North American Chapter of the Association for Computational Linguistics:
Human Language Technologies, Volume 1 (Long and Short Papers), pages 4149—-4158, 2019.

[40] Kimi Team, Angang Du, Bofei Gao, Bowei Xing, Changjiu Jiang, Cheng Chen, Cheng Li,
Chenjun Xiao, Chenzhuang Du, Chonghua Liao, et al. Kimi k1. 5: Scaling reinforcement
learning with llms. arXiv preprint arXiv:2501.12599, 2025.

[41] Qwen Team. Qwen3 technical report, 2025. URL https://github.com/QwenLM/Qwen3/
blob/main/Qwen3_Technical_Report.pdf.

[42] Luong Trung, Xinbo Zhang, Zhanming Jie, Peng Sun, Xiaoran Jin, and Hang Li. Reft: Reason-
ing with reinforced fine-tuning. In Proceedings of the 62nd Annual Meeting of the Association
for Computational Linguistics (Volume 1: Long Papers), pages 7601-7614, 2024.

[43] Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten Bosma, Fei Xia, Ed Chi, Quoc V Le,
Denny Zhou, et al. Chain-of-thought prompting elicits reasoning in large language models.
Advances in neural information processing systems, 35:24824-24837, 2022.

[44] Nathaniel Weir, Muhammad Khalifa, Linlu Qiu, Orion Weller, and Peter Clark. Learning to
reason via program generation, emulation, and search. In The Thirty-eighth Annual Conference
on Neural Information Processing Systems, 2024. URL https://openreview.net/forum?
id=te6VagJf6G.

[45] Jiaxin Wen, Jian Guan, Hongning Wang, Wei Wu, and Minlie Huang. Codeplan: Unlocking
reasoning potential in large language models by scaling code-form planning. In The Thirteenth
International Conference on Learning Representations, 2025. URL https://openreview.
net/forum?id=dCPF1wlqj8.

[46] Siye Wu, Jian Xie, Jiangjie Chen, Tinghui Zhu, Kai Zhang, and Yanghua Xiao. How easily
do irrelevant inputs skew the responses of large language models? In First Conference on
Language Modeling, 2024. URL https://openreview.net/forum?id=S7NVV{uRv8.

[47] Fengli Xu, Qianyue Hao, Zefang Zong, Jingwei Wang, Yunke Zhang, Jingyi Wang, Xiaochong
Lan, Jiahui Gong, Tianjian Ouyang, Fanjin Meng, et al. Towards large reasoning models: A
survey of reinforced reasoning with large language models. arXiv preprint arXiv:2501.09686,
2025.

[48] Silei Xu, Wenhao Xie, Lingxiao Zhao, and Pengcheng He. Chain of draft: Thinking faster by
writing less. arXiv preprint arXiv:2502.18600, 2025.

[49] Weihao Zeng, Yuzhen Huang, Qian Liu, Wei Liu, Keqing He, Zejun Ma, and Junxian He.
Simplerl-zoo: Investigating and taming zero reinforcement learning for open base models in the
wild. arXiv preprint arXiv:2503.18892, 2025.

https://github.com/QwenLM/Qwen3/blob/main/Qwen3_Technical_Report.pdf
https://github.com/QwenLM/Qwen3/blob/main/Qwen3_Technical_Report.pdf
https://github.com/QwenLM/Qwen3/blob/main/Qwen3_Technical_Report.pdf
https://openreview.net/forum?id=te6VagJf6G
https://openreview.net/forum?id=te6VagJf6G
https://openreview.net/forum?id=te6VagJf6G
https://openreview.net/forum?id=dCPF1wlqj8
https://openreview.net/forum?id=dCPF1wlqj8
https://openreview.net/forum?id=dCPF1wlqj8
https://openreview.net/forum?id=S7NVVfuRv8

303
304
305

306
307
308
309

[50] Qiyuan Zhang, Fuyuan Lyu, Zexu Sun, Lei Wang, Weixu Zhang, Zhihan Guo, Yufei Wang,
Irwin King, Xue Liu, and Chen Ma. What, how, where, and how well? a survey on test-time
scaling in large language models. arXiv preprint arXiv:2503.24235, 2025.

[51] Yaowei Zheng, Richong Zhang, Junhao Zhang, Yanhan Ye, and Zheyan Luo. Llamafactory:
Unified efficient fine-tuning of 100+ language models. In Proceedings of the 62nd Annual
Meeting of the Association for Computational Linguistics (Volume 3: System Demonstrations),

pages 400410, 2024.

310

311

312

314
315
316
317
318
319
320
321
322
323

324

325

327
328
329
330
331
332
333
334
335
336
337
338

339

341
342
343

Appendix

A Related Work

A.1 Reinforcement Learning for Improving Reasoning

Reinforcement Learning (RL) has demonstrated significant potential in enhancing the problem-
solving abilities of large language models (LLMs) across various domains [29; 42; 17]. Recently,
Reinforcement Learning with Verifiable Rewards (RLVR) has gained substantial attention for advanc-
ing LLM capabilities [18; 9; 21], resulting in the development of large reasoning models (LRMs) [47]
such as OpenAl-ol [16] and DeepSeek-R1 [9]. Based on simple rule-based rewards, RLVR al-
gorithms such as Group Relative Policy Optimization (GRPO) [33] enable models to use Long
Chain-of-Thought (Long CoT) [49; 15]. This facilitates deep reasoning behaviors, such as searching,
backtracking, and verifying through test-time scaling [3; 50]. However, these models also suffer from
significant computational overhead due to extended outputs across all tasks, leading to inefficiency
associated with the “overthinking” phenomenon [4; 31; 37]. Verbose and redundant outputs can
obscure logical clarity and hinder the model’s ability to solve problems effectively [46; 7].

A.2 Efficiency in Large Language Models

Recently, many studies have focused on improving the reasoning efficiency in LLMs. Some prompt-
guided methods [10; 48; 19] explicitly instruct LLMs to generate concise reasoning outputs by
controlling input properties such as task difficulty and response length. Other approaches [11; 5; 34]
explore training LLMs to reason in latent space, generating the direct answer without the need for
detailed language tokens. Several techniques have also been proposed to reduce inference costs
by controlling or pruning output length, either by injecting multiple reasoning formats during the
pre-training stage [36] or by applying length penalties during the RL stage [40; 2; 1; 13]. Many
of these methods aim to strike a trade-off between token budget and reasoning performance by
shortening output lengths, often relying on clear estimations of the token budget for each task or
requiring specialized, length-constrained model training. However, in reality, such estimations are not
always accurate, and what we ultimately expect is for models to adaptively regulate their token usage
based on the complexity of the task at hand. Therefore, in this work, we propose a novel training
framework that enables models to adaptively select suitable reasoning formats for given tasks by
themselves, optimizing both performance and computational efficiency.

B Analysis
B.1 Reasoning Mode Switching

Table 2: Accuracy (Acc.) and token usage (Tok.) for the three reasoning modes supported by
ARM-7B. In the Consensus-Guided Mode, the percentage of Long CoT usage indicates how often the
model resorts to Long CoT when simpler reasoning formats fail to reach a consensus.

Easy Medium Hard A
ARM-TB Ve
CSQAT OBQAf GSMS8SKf MATHi SVAMP: BBHi AIME’25%
Acc. Tok. Acc. Tok. Acc. Tok. Acc. Tok. Acc. Tok. Acc. Tok. Acc. Tok. Acc. Tok.
Adaptive 86.1 136 84.4 159 89.2 305 739 889 92.0 218 61.4 401 16.7 3253 72.0 766

Instpire: 84.1 10 81.8 10 229 11 231 13 67.0 11 447 21 0 12 462 13
Instsporscor 81.3 33 774 35 85.0 124 709 633 86.7 66 49.7 101 10.0 2010 659 428
Instcose 84.4 140 81.6 147 842 285 659 559 883 182 57.9 344 10.0 1821 67.5 497
Instzong cor 84.0 259 87.4 294 91.8 426 77.2 1220 943 340 66.9 660 20.0 4130 74.5 1047

Consensus 85.8 228 87.0 260 929 777 784 2281 95.7 433 66.4 1039 20.0 7973 75.2 1856
Long CoT Usage 12.9% 21.4% 79.8% 79.2% 36.3% 56.3% 100% 55.1%

ARM is capable of autonomously selecting appropriate reasoning formats (Adaptive Mode), while
also supporting explicit guidance to reason in specified formats (Instruction-Guided Mode) or through
consensus between different reasoning formats (Consensus-Guided Mode). Specifically, /) Adaptive

344
345
346
347
348
349
350

351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367

368

369
370
371
372
373
374
375
376
377

378

379
380
381
382

I Adaptive Instruction-Guided

~80{ 749 75.274.5
= 70.2 70.2 -
- 68.6 5 o 675
<
560
3
<
40 Direct Short CoT Code Long CoT

Figure 2: Accuracy comparison between ARM’s
Adaptive and Instruction-Guided modes. The
figure shows average accuracy across evaluation
datasets, with Direct Answer applied only to
commonsense and symbolic tasks, as it does not
appear in mathematical tasks in Adaptive mode.

T-Accuracy Wz 1-#Tokens
_Backbone

g10 56 107 102
-

8091 0.93 S
:E 0.35 /0.34 0.31 &
& 7 / 7 03¢

L1 TP ARM 0

Figure 3: Relative accuracy and token usage
of different models compared to their backbone
models on CSQA. “L1” denotes L1-Exact [1],
and “TP” denotes THINKPRUNE [13]. “7-
Accuracy” and “7-#Tokens” are reported relative
to each model’s backbone after RL training.

Mode: In this mode, ARM autonomously selects the reasoning format for each task, which is also the
default reasoning mode if not specified in this paper. 2) Instruction-Guided Mode: In this mode,
a specific token (e.g., <Long CoT>) is provided as the first input, forcing ARM to reason in the
specified format. 3) Consensus-Guided Mode: In this mode, ARM first generates answers using the
three simpler reasoning formats (i.e., Direct Answer, Short CoT, and Code) and checks for consensus
among them. If all formats agree, the consensus answer is adopted as the final result. Otherwise,
ARM defaults to Long CoT for the final answer, treating the task as sufficiently complex.

To evaluate the performance and effectiveness of the proposed reasoning modes, we conduct exper-
iments across various evaluation datasets. Table 2 presents the results for ARM-7B. Specifically:
1) Adaptive Mode strikes a superior balance between high accuracy and efficient token us-
age across all datasets, demonstrating its ability to adaptively select the reasoning formats.
2) Instruction-Guided Mode offers a clear advantage when the assigned reasoning format is
appropriate. For example, Direct Answer is sufficient for commonsense tasks, while Code, due
to its structured nature, performs better on symbolic reasoning tasks compared to Direct Answer
and Short CoT. Furthermore, Inst; ., cor achieves better performance (74.5%) than the same-sized
model trained on GRPO (73.2% in Table 1). This demonstrates that Ada-GRPO does not hinder the
model’s Long CoT reasoning capabilities. We further validate this by analyzing the reflective words
used by ARM-7B and Qwen2.5-7Bggrigrro in Appendix H. 3) Consensus-Guided Mode, on the
other hand, is performance-oriented, requiring more tokens to achieve better performance.
This mode leverages consensus across multiple formats to mitigate bias and uncertainty present in
any single format, offering greater reliability, particularly for reasoning tasks that demand advanced
cognitive capabilities, where simpler formats may fall short. This is evidenced by the fact that Long
CoT is less likely to be used for easy tasks, but is highly likely to be selected for medium tasks and
even used 100% of the time for the most difficult AIME’25 task.

B.2 Effectiveness of Adaptive Format Selection

To verify that ARM’s format selection indeed adapts to the task at hand rather than relying on random
selection, we compare ARM’s Adaptive Mode with Instruction-Guided Mode. In Instruction-
Guided Mode, the reasoning format is fixed and manually specified, providing a strong baseline to
test whether adaptive selection offers real benefits over using a uniform format across tasks. We
report the accuracy of both modes in Figure 2. We observe that the accuracy of the reasoning formats
selected in Adaptive Mode is higher than that in Instruction-Guided Mode. Specifically, Adaptive
Mode improves accuracy by 4.7% on Direct Answer, by 2.7% on both Short CoT and Code, and even
yields a slight improvement on Long CoT. These results confirm that ARM is not randomly switching
formats but is instead learning to select an appropriate one for each task.

B.3 Comparison of Ada-GRPO and GRPO

We find that, compared to GRPO, ARM trained with Ada-GRPO achieves comparable performance on
the evaluation dataset while achieving approximately a ~ 2 x speedup in training time. To understand
the source of this efficiency, we compare the training dynamics of Ada-GRPO and GRPO across
different model sizes, focusing on accuracy, response length, and training time, as shown in Figure 4.

10

383
384
385
386
387
388
389
390
391
392
393

395

396
397
398
399

401
402
403
404
405

406

407
408
409
410
411
412
413
414
415

3B Ada-GRPO 3B GRPO —+—7B Ada-GRPO 7B GRPO —+—14B Ada-GRPO 14B GRPO

=
3907 Tz Iz 21000 25001
570— 2 750 bt
£ z £ 15001 fooms
o | ¢ =) \M‘“
gs0 2 s /&'A\m@v* TN
0L, | | . e 250t | ‘ ‘ 5001 | ‘ ‘
0 50 100 150 0 50 100 150 0 50 100 150
Step Step Step

Figure 4: Performance on the training set across different model sizes trained with Ada-GRPO and
GRPO. Except for the implementation of the algorithm, all hyperparameters are kept the same.

Qwen2.5-7B] Q\Xét(:)n2.5—7B—Instruct Il DS-R1-Distill-Qwen-7B /75 #Tokens

O
(=1

2 40

s A L ”

275 % a 75 Y, " w3

< 4

5 7 / % 20 A / g

2 7 Z. 7 K
60 0 60 21256 0

(a) Easy Tasks (b) Medium Tasks (c) Hard Tasks

Figure 5: ARMs’ performance across different backbones. Base and instruction-tuned models perform
similarly, while DS-R1-Distill improves on medium and hard tasks but struggles on easy ones.

The results highlight the following advantages of Ada-GRPO: /) Comparable Accuracy. Although
Ada-GRPO initially lags behind GRPO in accuracy due to suboptimal reasoning format selection in
the early training steps, both methods converge to similar final accuracy across all model sizes. This
demonstrates that Ada-GRPO does not compromise final performance. 2) Half Response Length.
While GRPO uses Long CoT uniformly across all tasks, Ada-GRPO adaptively selects reasoning
formats based on task difficulty. Due to the length efficiency of Direct Answer, Short CoT, and
Code, Ada-GRPO ultimately reduces the average response length to roughly half that of GRPO.
3) Half Training Time Cost. Since the majority of training time is spent on response generation
during the roll-out stage, reducing response length directly translates into lower time cost. As a
result, Ada-GRPO achieves approximately a ~ 2x speedup compared to GRPO. Overall, Ada-GRPO
maintains strong performance while significantly reducing computational overhead, underscoring its
efficiency and reliability for training.

B.4 Comparison of Backbone Models

Beyond the base model, we further analyze the impact of different backbone models, including
instruction-tuned and DS-R1-Distill variants. Figure 5 reports accuracy and token usage across
easy, medium, and hard tasks. We observe that base and instruction-tuned models have a highly
similar performance. This suggests that RL effectively bridges the gap left by instruction tuning,
enabling base models to achieve comparable performance, consistent with findings from previous
work [17]. In contrast, the DS-R1-Distill variant performs notably better on medium and hard tasks,
benefiting from distilled knowledge from the stronger DeepSeek-R1 model, though at the expense of
increased token cost. However, it performs significantly worse on easy tasks, even with excessive
token usage, resulting from the overthinking phenomenon. For more discussion and case studies on
the overthinking phenomenon, please refer to Appendix I.

B.5 Comparison of ARM and Length-Penalty-Based Strategies

To examine whether previously proposed length-penalty-based strategies—proven effective in com-
plex reasoning—remain effective for easier tasks, we evaluate two representative methods, L1 [1]
and THINKPRUNE[13], on the CSQA dataset. Since both methods are based on the DS-R1-Distill
model, we ensure a fair comparison by also evaluating the version of ARM trained on the same
backbone. We report the relative accuracy and token usage of all three models compared to their
respective backbone models in Figure 3. When using the minimum allowed lengths specified in the
official settings of L1 and THINKPRUNE, both methods exhibit performance drops. In contrast, ARM
maintains strong performance while using relatively fewer tokens, demonstrating its ability to balance
reasoning efficiency and effectiveness. Please refer to Appendix J for more details.

11

416

417

418
419

420

421
422

423
424

425

426
427
428
429

431
432
433
434
435
436
437
438
439

Table 3: Performance of ARM-3B and ARM-14B across evaluation datasets.

Accuracy (1) #Tokens ()
Models Easy Medium Hard Av Easy Medium Hard Ave
k|CSQAT OBQA} GSM8K{ MATH+ SVAMPi BBH} AIME’25% CSQA7 OBQAf GSM8Ki MATHi SVAMPi BBHi AIME'25%
Qwen2.5-38 1| 66.5 65.8 66.9 37.7 71.3 38.4 0 49.5 97 120 150 419 76 232 1393 355
8| 755 714 80.9 50.8 83.7 47.1 0 59.3 96 100 149 424 85 240 1544 377
Qwen2.5-3Bger 1| 72.8 72.4 35.7 20.9 62.3 37.4 0 43.1 99 108 145 229 126 311 694 245
8| 755 774 56.0 27.6 74.7 435 0 507 97 103 132 231 108 309 537 217
Qwen2.5-3Bsrracreo 1| 797 79.0 88.7 66.6 92.0 52.6 6.7 66.5| 425 501 788 1586 630 994 3027 1136
SO 8| 803 80.0 91.4 74.0 94.7 56.2 6.7 69.0| 429 506 802 1590 638 996 3247 1172
ARM-3B 1| 79.8 78.0 83.8 62.9 89.7 50.0 6.7 64.4| 118 156 346 1013 264 436 2958 756
N 8| 80.1 78.0 90.8 72.8 95.0 538 6.7 68.2 123 169 359 1036 246 430 3083 778
A 0.2 2.0 0.6 1.2 +0. 2.4 0 0.8 | -71.3% -66.6% 55.2% 34.8% 61.4¢ 56.8% 5.1% 33.6%
Qwen2.5-14B 1 799 83.8 84.9 52.7 84.7 56.8 33 63.7| 56 60 132 335 77 139 611 201
8| 838 90.2 92.3 68.4 91.7 67.4 33 71.0| 55 60 131 325 81 131 735 217
Qwen2.5-14Bgpr 1| 81.8 88.0 62.6 37.4 84.0 535 0 58.2| 155 140 161 276 152 254 527 238
8| 85.0 91.4 86.4 48.8 91.7 64.4 33 67.3| 149 141 165 288 140 247 493 232
Qwen2.5-14Bgimacreo 1| 854 93.0 94.8 81.7 93.7 70.5 20.0 71.0 558 531 693 1805 565 945 4031 1304
SO 8| 858 94.2 96.1 87.1 95.3 71.0 20.0 794| 552 537 696 1810 565 943 3723 1261
ARM-14B 1| 853 91.8 92.5 79.1 93.3 66.6 20.0 75.5| 146 128 294 903 212 420 3871 853
8| 85.6 91.8 96.3 86.4 95.7 72.1 23.3 78.7| 145 134 293 910 189 415 3996 869
A -0.2 -24 +0.2 -0.7 +0.4 -4.9 +3.3 -0.7 73.7% 75.0% 57.9% 19.7% 66.5% 56.0¢ +7.3% 31.1¢

C Details of Ada-GRPO

C.1 Training Objective

Following GRPO [33], the group advantage /L-’ & for all tokens in each output is computed based on

the group of reshaped rewards r’ = {r},75,--- ,r}:
o vl —mean({rf,rh. - .15})
Ai — 9 ’ ;)
k std({r},rh, -+, 75 }) 3)
We optimize the policy model 7 using the Ada-GRPO objective:
[oil
1 1 o (0ik|q, 0i,<k) 7
Tada— 0) =E ~ P » 101 1G: ~ O |:7 — — 0D B Ak,
Ada—GRPO(0) [q (@), {oi}il1 ~ o4 (|q)] IE ; o] I;{mm |:7r<901d (Ot o) it
Chp (M’ 1- €, 1+ 6> Az,k:| - ﬂKL [71—9 H ﬂ—ref} }:|)
0014 (04,k[q, 04, <)
€]

where ¢ denotes the reference model, and the KL divergence term KL serves as a constraint to
prevent the updated policy from deviating excessively from the reference. The advantage estimate

A, . is computed based on a group of rewards {r},75, - - - ,r¢} associated with the responses in O,
as defined in equation 3.

C.2 Decay Factor

In Ada-GRPO, the decay factor decay;(t) is introduced to reg-
ulate the influence of the format diversity scaling factor during
training. Without decay, the model may continue to overly
reward less frequent reasoning formats even after sufficient
exploration, misaligning with our objective. To evaluate the
effectiveness of the decay mechanism, we track the test set per-
formance across three in-domain datasets (CSQA, GSM8K, and
MATH) using checkpoints saved every 25 training steps for mod- /
els trained with and without decay. As shown in Figure 6, models
trained without decay exhibit larger performance fluctuations in
test accuracy, indicating unstable exploration. In contrast, the
decay mechanism stabilizes training, resulting in smoother and
more consistent improvements in accuracy during the middle
and later training stages.

w/ decay --*-- w/o decay

————a
- Cl

)
(=]
\\

\
/
/
)
/
%
\
\
\

(=N
(=}

Accuracy(%)

IS
(=)

50 100 150

Step

Figure 6: Test set accuracy with
and without the decay mechanism.

12

440

441

442
443
444
445
446
447
448
449
450
451
452
453
454

456
457
458

488

467

469
470
471
472

473

474

Table 4: Dataset in each training stage. [Direct (11.0)
Dataset Answer Format Size Short CoT (100.3)
[Code (244.6)
[Long CoT (1151.1)

Stage 1: Supervised Finetuning

Multiple-Choice ~ 3.0K

AQuA-Rat Open-Form 7.8K
10.8K
Stage 2: Reinforcement Learning 500 1000 1500
- - #Tokens
CSQA Multiple-Choice 4.9K
GSMSK Open-Form 7.4K Figure 7: Token count distribution across reason-
MATH Open-Form 7.5K ing formats in the SFT dataset AQuA-Rat, with
19.8K brackets indicating average counts.

D Details of Processing SFT Dataset

D.1 Prompt List

We use gpt-40-2024-11-20 to generate Code reasoning rationales. Following previous work [44], we
ask the model to return the output as a dictionary containing all intermediate and final outputs, which
is beneficial for emulating the generated program’s execution.

For the following questions and answers, generate a function that
solves the question. The function should return a dictionary with the
field ’answer’: <answer>, as well as the values for intermediate
decisions. Ensure that both the function and its call are wrapped in <

CODE>...</CODE>, and that the emulation of its execution is wrapped in
<OUTPUT >...</O0UTPUT>.

{examples}

Question:
{question}

Answer:

{rational}

{ground_truth}

We use Deepseek-R1 to generate Long CoT rationales.

Put the answer in format "<ANSWER>...</ANSWER>".

{question}

D.2 Filter Out Rationales

For Code rationales, we utilize a Python interpreter to execute each generated code snippet. We
apply the following filters: /) execution failure, 2) missing answer key, 3) inconsistencies between
intermediate steps and execution results, and 4) mismatches between the predicted and ground-truth

answers. For Long CoT rationales, we filter out those with incorrect answers. Token count distribution
across reasoning formats in the SFT dataset can be seen in Figure 7.

E Examples in Training

The question-answer format and size of the datasets in each training stage can be found in Table 4.

13

475

476
477
478
479
480
481
482
483
484

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533

535
536
537
538

E.1 Examples in SFT Stage

We provide four reasoning formats for the SFT dataset AQuA-Rat [22], including Direct Answer,
Short CoT, Code, Long CoT. Here is an example.

Question:

You collect baseball cards. Suppose you start out with 15. Maria takes
half of one more than the number of baseball cards you have. Since

you’re nice, you give Peter 1 baseball card. Since his father makes

baseball cards, Paul decides to triple your baseball cards. How many

baseball cards do you have at the end?

Direct Answer:
18

Code:

def calculate_baseball_cards():
Initial number of baseball cards
initial_cards = 15

Maria takes half of one more than the number of baseball cards
maria_takes = (initial_cards + 1) / 2
cards_after_maria = initial_cards - maria_takes

Peter takes 1 baseball card
cards_after_peter = cards_after_maria - 1

Paul triples the number of baseball cards
final_cards = cards_after_peter * 3

return {
maria_takes ’: maria_takes,
cards_after_maria’: cards_after_maria,
’cards_after_peter ’: cards_after_peter,
’answer ’>: final_cards

}
>>> calculate_baseball_cards ()

output = {
maria_takes’: 8.0,
’cards_after_maria’:
’cards_after_peter’:
>answer’: 18.0

o N
[eNe)

}

Short CoT:

Start with 15 baseball cards. Maria takes half of one more than the

number of baseball cards you have. So Maria takes half of 15 + 1 which
is 8, so you’re left with 15 - 8 = 7. Peter takes 1 baseball card

from you: 7 - 1 = 6 baseball cards. Paul triples the number of

baseball cards you have: 6 * 3 = 18 baseball cards. So you have 18 at

the end. The answer is 18.

Long CoT:

Okay, let me try to work through this problem step by step. So, the

question is about collecting baseball cards, and there are a series of
steps that happen. Let me read it again to make sure I understand

each part.

Alright, starting with 15 cards. Then Maria takes half of one more
than the number I have. Wait, that phrasing is a bit tricky. So Maria
takes half of (one more than my current number of cards). Let me parse
that. If I have N cards, Maria takes (N +1)/27 Hmm. Let me double-
check. The problem says: "Maria takes half of one more than the number

14

544

554

574

587

588

589
590

591
592
593
594
595
596

598
599
600
601

of baseball cards you have." So, the expression would be ((number
you have + 1)) / 2. Right. So that’s (current cards +1) divided by
two. Then after that, I give Peter 1 card. Then Paul triples my cards.
So, let’s break it down step by step.
Starting with 15 cards. Let’s note each step:
1. Initial cards: 15.
2. Maria takes half of one more than what I have. So, first, calculate
one more than my current count: 15 +1 =16. Then she takes half of
that. So 16 /2 =8. So Maria takes 8 cards. Wait, but when she takes
them, does that mean my total decreases by 8?7 Yes, I think so. Because
she’s taking them from me. So subtract 8 from my current count.
So after Maria takes them: 15 -8 =7. Now I have 7 cards left.
Wait a minute, wait. Wait, when Maria takes half of one more than the
number I have, which is (15+1)/2=8. So she’s taking 8 cards. So yes,

subtract 8 from my current 15. That leaves me with 7.

Then, the next step: since I’m nice, I give Peter 1 baseball card. So
subtract 1 more. 7 -1 =6.

Then Paul decides to triple my baseball cards. So multiply my current
count by 3. 6 *3 =18.

So the answer should be 18. Let me go through the steps again to check

Original: 15.

After Maria: (15 +1)/2 =8. So 15-8=7.
After giving Peter 1: 7-1=6.

After Paul triples: 6%*3=18.

Yes, that seems right. Did I misinterpret any step? Let’s double-check
each part.

"Maria takes half of one more than the number of baseball cards you
have." So when Maria takes, it’s (my current cards +1)/2. So when I
have 15, that’s (15+1)/2=8. She takes 8, so I have 7 left. Correct.

Then giving Peter 1: 7-1=6. Then Paul triples to 18. Yep. That seems
correct. So the final answer is 18.

E.2 Examples in RL Stage
The RL dataset includes CSQA [39], GSM8K [6], and MATH [12], with examples provided below.

<CommonsenseQA >

What is the base of a vase called?

(A)transistor (B)vessel (C)box (D)pie (E)seabase
ground truth: B

<GSM8K >

Natalia sold clips to 48 of her friends in April, and then she sold
half as many clips in May. How many clips did Natalia sell altogether
in April and May?

ground truth: 72

<MATH>

15

602
603

868

606

607
608

609

610
611
612
613
614
615

616

617
618
619
620

621

622
623
624
625
626
627
628

634

Table 5: Definitions and results of reflection-related ratios on AIME’25.

Ratio Name Formula Qwen2.5-7Bspri.grro0 ARM-7B
reflection_ratio % 93.8 95.0
correct_ratio_in_reflection_texts /X,Tieff* 14.2 13.9

Rationalize the denominator: $\frac{1}{\sqrt{2}-1}$. Express your
answer in simplest form.
ground truth: $\boxed{\sqrt{2}+1}$

F Implementation Details

Our training is performed using 8 NVIDIA A800 GPUs. The following settings are also applied to
other baselines for fair comparisons.

F.1 Stage1: SFT

We utilize the open-source training framework LLAMAFACTORY [51] to perform SFT. The training
is conducted with a batch size of 128 and a learning rate of 2e-4. We adopt a cosine learning rate
scheduler with a 10% warm-up period over 6 epochs. To enhance training efficiency, we employ
parameter-efficient training via Low-rank adaptation (LoRA) [14] and DeepSpeed training with the
ZeRO-3 optimization stage [32]. As a validation set, we sample 10% of the training data and keep
the checkpoint with the lowest perplexity on the validation set for testing and the second stage.

F.2 Stage2: RL

We utilize the open-source training framework VeRL [35] to perform RL. During training, we use a
batch size of 1024 and generate 8 rollouts per prompt (G = 8), with a maximum rollout length of
4096 tokens. The model is trained with a mini-batch size of 180, a KL loss coefficient of 1e-3, and a
total of 9 training epochs. The default sampling temperature is set to 1.0.

G Inference

During inference, we set the temperature to 0.7 and top-p to 1.0. For all evaluation datasets, we use
accuracy as the metric. In addition to pass@1, to reduce bias and uncertainty associated with single
generation outputs and to enhance the robustness of the results [50], we further use majority @k
(maj@k), which measures the correctness of the majority vote from k independently sampled outputs.
For inference on the three backbone models, we use an example with a short-cot-based answer within
the prompt to guide the model toward specific answer formats while preserving its original reasoning
capabilities as much as possible.

H Details of Reflective Words

To evaluate models’ Long CoT reasoning capabilities, we focus on their use of specific reflective
words that signal backtracking and verifying during the reasoning process. Following prior work [24],

9 <

we consider a curated list of 17 reflective words: [“re-check”, “re-evaluate”, “re-examine”, “re-think”,
“recheck”, “reevaluate”, “‘reexamine”, “reevaluation”, “rethink”, “check again”, “think again”, “try
again”, “verify”, “wait”, “yet”, “double-check”, “double check’]. We adopt two evaluation metrics:
reflection_ratio, measuring the proportion of outputs containing at least one reflective word,
and correct_ratio_in_reflection_texts, assessing the correctness within reflective outputs.
The formulas for these metrics are summarized in Table 5, where N denotes the total number of
responses, N,..s the number of responses containing reflective words, and A,y the number of

correct reflective responses.

16

640
641
642
643
644
645
646
647

648

649
650
651
652
653
654
655
656
657
658

660
661
662

663

664
665
666
667
668
669
670
671
672
673
674

675

676
677

692

Given its competition-level difficulty, we conduct our analysis on AIME’25 using ARM-7B and
Qwen2.5-7Bspr+grro. For ARM-7B, we use the Instruction-Guided Mode (Insty,, co7) to specifically
assess its Long CoT reasoning. The results, averaged over 8 runs, are reported in Table 5. As
shown, both models exhibit a high frequency of reflective word usage, with reflection_ratio
exceeding 93%, indicating that reflection behavior is well-integrated during Long CoT reasoning.
The correct_ratio_in_reflection_texts remains comparable for both models, and relatively
low due to the high complexity of the AIME’25 tasks. These results demonstrate that Ada-GRPO
does not hinder the model’s Long CoT reasoning capabilities.

I Details of the Overthinking Phenomenon

Overthinking refers to the phenomenon where

LLMs apply unnecessarily complex reasoning to —— SFT+GRPO —=- ARM

i i iminishi i _ (a) CSQA (b) BBH-TempSeq
simple tasks, leading to d1m1n1shlpg returns in per: 0 10 %0 300 o 300 e
formance [37]. As demonstrated in Table 1 and 2, \?90 60

. o . . < -
using Long CoT, despite incurring higher compu- 3 40
tation costs, significantly enhances model perfor- & 80 2
.. . Q
mance on tasks requiring complex mathematical 2 79
200 400 600 800 1000 800 1200 1600 2000

reasoning, such as MATH. However, as mentioned
in Section 3.2 and B.4, longer responses do not
consistently lead to better performance for all task ~ Figure 8: Overthinking in 7B model performance
types. In this section, we analyze the overthink- across two representative datasets. We remove
ing phenomenon in depth, focusing on how overly the extreme data points and ensure that sufficient
complex reasoning formats can hurt performance data points fall within the intervals.

when applied to certain tasks.

#Tokens #Tokens

LI.1 Analysis

We analyze the evaluation datasets and illustrate the “overthinking” phenomenon using two represen-
tative datasets: CSQA and TemporalSequences in BBH Benchmark. From Figure 8 (note that the
horizontal axis scales differ between SFT+GRPO and ARM.), we observe that SFT+GRPO, which
relies heavily on Long CoT, shows a significant drop in accuracy as the model generates lengthy
responses. It indicates that the model starts generating excessive information that does not contribute
to task resolution. In contrast, ARM achieves better performance with fewer tokens for simpler tasks.
This analysis reinforces the idea that longer reasoning does not equate to better performance [7; 37],
and the optimal reasoning format depends on task type. ARM provides a more flexible, task-specific
solution to avoid overthinking, ultimately improving performance. Please refer to Appendix 1.3 for a
detailed example of how Long CoT errs in CSQA, while a simpler reasoning format with lower token
usage successfully solves the problem.

L2 Data Examples

<BBH-Temporal Sequences>

Today, Ashley went to the bookstore. Between what times could they
have gone?

We know that: Ashley woke up at 5am. Jason saw Ashley buying lunch at
the deli from 1lam to 1pm. Emily saw Ashley driving to the water park
from 1pm to 3pm. Kimberly saw Ashley stretching at a yoga studio from
3pm to 6pm.

The bookstore was closed after 6pm. Between what times could Ashley
have gone to the bookstore?

(A) 1pm to 3pm

(B) 1lam to 1pm

(C) 3pm to 6pm

(D) 5am to 1lam

ground truth: D

LI.3 An Example of Overthinking in CSQA

17

693
694

695
696
697
698
699
700
701
702
703
704

706
707
708
709
710
71
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729

731
732
733
734
735

737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757

Where does a maid empty a trash can?
(A)bus stop (B)corner (C)hockey game (D)motel (E)alley

Long CoT used by +SFT+GRPO:

<LONG_COT>

Okay, let’s see. The question is where a maid would empty a trash can.
Hmm, pick one of the options given. Let’s break down the terms.

First, a maid is someone who works in a hotel or other environment,
such as cleaning. Their job might involve domestic duties for a
specific kind of client, perhaps upper class, but specific job would
involve handling various items. So having cleaning duties like trash
removal.

Now, traditionally, maid service might be focused on particular areas-
probably the rooms in a hotel, apartment, or maybe an individual
client if they work as an in-home maid. So for that_RESULTS, would
probably be... Alright. Let’s look at the choices:

(A) Bus stop. Seems like they shouldn’t dispose of anything there. A
bus stop would have trash cans, but personally I doubt a maid would
dump trash in a bus station. That’s probably not part of their
responsibilities.

(B) Corner. Hmm. A literal street cormner, perhaps maybe a public
restroom? Or other outdoor spot? But where tomorrow’s trash can? I can
’t imagine a location in caring for trash outside normal public areas.
Maybe mega cities and sanitation handling upgrades, but again not a
typical everyday task for a maid.

(C) Hockey Game. Hmm. Trash removal at a hockey game... Never heard of

a maid working at a hockey game. Probably no. The grounds might be

cleaned by different personnel, like stadium employees, most likely

more specialized. Hell, playerName duplication, maybe the trash cans

outside the arena get cleaned? That probably exclude maid’s work issue
So probably can be discounted.

(D) Motel. Hmm. Maybe the version of this? Or hotels. Wait, motel is
final answer. But wait, official work responsibility. The main point
here is where professional maid service has responsibilities. For
example, in hotels-motel rooms (though maybe not modern motels, which
had more community facilities?) The specific task is they probably
need to take trash cans to the disposal area-usually outside the room
in compilations. So perhaps dump it into a proper receptacle. That
would happen in backend trash can disposal, but Solutions associated
with cleaning, not directly in guest areas.

(E) Alley. Hmm. Alley avoids touristy trash? Wait, perhaps like
backstage scenario. Or alleyways can be garbage collection areas. But
how typical? Probably the communities are serviced by regular
collection with professionals. For same reasons as airliner (like
trash in the alley). The main thing is that probably would move trash
to the nearest dumpster, possibly in an alley. Though not a public
area of the house. Though again, problem is which alley. It’s not
nearly as common would be this responsibility. Probably more likely
that a maid would take the trash to a dumpster outside. So option E
probably can be considered.

Wait, not sure, but none of the options are obvious, but Zeeland E.
Because the equipment is usually moved from rooms to a centralized
dumpster. Probably near the alley. Although may not be the primary
course of action. However, this is what might be discussed. Because
depending on the structure. For example, perhaps motel rooms need to
dispose garbage in dumpster , making alley collection possible.

18

758

760
761
762
763
764

766
767
768
769
770
771
772
773

74

776

77
778
779

781

782
783
784

786
787
788
789
790
791

792
793
794
795
796
797
798
799
800

But options like motel and motel would probably be the right answer.
But museum? Not typical. So perhaps neither of the answers given. Wait
, maybe E.

</LONG_COT >

<ANSWER >

E

</ANSWER >

Short CoT used by ARM:

<SHORT_COT >

A maid works in a motel. A maid may empty a trash can in a motel.
The answer is D

</SHORT_COT >

<ANSWER >

D

</ANSWER >

J Details of Length-Penalty-Based Strategies

To ensure fair comparisons, we follow the official settings of L1 [1] and THINKPRUNE [13], adopting
their specified minimum allowed lengths when evaluating on easy tasks. We set the temperature to 0.6
and top-p to 0.95, consistent with both papers. Specifically, we use L.1-Qwen-1.5B-Exact' at 512
tokens for L1 and DeepSeek-R1-Distill-Quen-1.5B-thinkprune-iter2k’ for THINKPRUNE.

K Limitations

Dependency on Predefined Reasoning Formats In this work, we focus on four commonly
used reasoning formats that generalize well across a wide range of reasoning tasks. However, we
acknowledge that certain tasks may benefit from more specialized or nuanced reasoning strategies
beyond this predefined set. Our reliance on predefined formats is primarily due to the limited
capabilities of current models, which may struggle to autonomously identify or switch between
diverse reasoning formats, let alone new reasoning formats. As a result, we define the formats in
advance and introduce them through SFT to help the model establish a clear understanding of each
reasoning type. We believe that as model capabilities continue to improve, future work can explore
enabling models to autonomously select or even invent new reasoning formats without relying on
predefined structures.

Lack of Hard Task Data in Training Unlike some length-penalty-based strategies, our training
setup does not include hard datasets such as prior AIME tasks, which may place our model at a
disadvantage on hard tasks compared to methods like L1 [1] and THINKPRUNE [13] that incorporate
such data. Nevertheless, ARM still shows clear improvements on base models and maintains stable
performance on R1-distilled models on AIME 2025, demonstrating its potential on hard tasks. We
expect that incorporating harder data into training would further enhance performance. However, due
to the high computational cost of reinforcement learning—and the current version of ARM being
an early exploration aimed at evaluating generalization across tasks while improving token cost
efficiency—we leave this extension to future work.

"https://huggingface.co/13lab/L1-Qwen-1.5B-Exact
*https://huggingface.co/Shiyu-Lab/DeepSeek-R 1-Distill-Qwen-1.5B-thinkprune-iter2k

19

801

802

803
804

805

806
807

808

809
810

811
812
813

814
815

816
817

818

819

820

821

822

824

834

844

849

850
851

852

NeurlIPS Paper Checklist

1. Claims

Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes]

Justification: Our main contributions are detailed in Section 1. See Section 3 and Section B
for more experimental evidence and analysis.

Guidelines:

* The answer NA means that the abstract and introduction do not include the claims
made in the paper.

* The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

* The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

* It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

. Limitations

Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]

Justification: We discuss the limitations of the work in Appendix K.

Guidelines:

* The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

* The authors are encouraged to create a separate "Limitations" section in their paper.

* The paper should point out any strong assumptions and how robust the results are to
violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

* The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

* The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

* The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

* If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

* While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs

Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?

Answer: [NA]

20

853

854

855
856

858
859
860
861
862
863
864

865

866
867
868

869

870
871

872

874
875
876
877
878
879
880
881

883
884
885
886
887
888

890
891
892
893
894
895
896

898
899
900
901
902
903

904

905
906
907

Justification: The paper does not include theoretical results.
Guidelines:

* The answer NA means that the paper does not include theoretical results.

* All the theorems, formulas, and proofs in the paper should be numbered and cross-
referenced.

* All assumptions should be clearly stated or referenced in the statement of any theorems.

* The proofs can either appear in the main paper or the supplemental material, but if
they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

¢ Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

* Theorems and Lemmas that the proof relies upon should be properly referenced.

4. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: We explain our settings as well as the hyperparameters in Section 3, Ap-
pendix F, and Appendix J for all our experiments.

Guidelines:

* The answer NA means that the paper does not include experiments.

* If the paper includes experiments, a No answer to this question will not be perceived
well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

* If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

* Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

* While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.

(b) If the contribution is primarily a new model architecture, the paper should describe
the architecture clearly and fully.

(c) If the contribution is a new model (e.g., a large language model), then there should
either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code

Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

21

908

909

910

911

912
913

914
915
916
917

918
919
920

921
922

923
924
925

926
927

928
929
930

931
932
933

934

935
936

937

938

939
940

941
942
943

944
945

946

947
948

949

950
951
952
953
954
955
956
957
958

959

Answer: [Yes]
Justification: We will release our data and code to facilitate reproduction and future research.
Guidelines:

* The answer NA means that paper does not include experiments requiring code.

* Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

* While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

* The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

* The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

* The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

* At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

* Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLSs to data and code is permitted.

6. Experimental setting/details

Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]

Justification: We explain our settings as well as the hyperparameters. Details are summarized
in Section 3, Appendix F, and Appendix J for all our experiments.

Guidelines:

* The answer NA means that the paper does not include experiments.

* The experimental setting should be presented in the core of the paper to a level of detail
that is necessary to appreciate the results and make sense of them.

 The full details can be provided either with the code, in appendix, or as supplemental
material.

. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [Yes]

Justification: We use some strategies such as “majority @k” to reduce bias and uncertainty
to enhance the robustness of the results.

Guidelines:

* The answer NA means that the paper does not include experiments.

* The authors should answer "Yes" if the results are accompanied by error bars, confi-
dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

* The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

* The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

* The assumptions made should be given (e.g., Normally distributed errors).

22

https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy

960
961

962
963
964

965
966
967

968
969
970

971
972
973

974

975

976

977

978
979

980
981

982
983

985

986
987

988

989

990

991

992
993

994
995
996

997
998

999

1000

1001

1002

1003
1004

1005
1006
1007
1008

8.

10.

« It should be clear whether the error bar is the standard deviation or the standard error
of the mean.

It is OK to report 1-sigma error bars, but one should state it. The authors should
preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

* For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

* If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.
Experiments compute resources

Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]
Justification: Details are provided in Section B.3 and Appendix F.
Guidelines:

» The answer NA means that the paper does not include experiments.

* The paper should indicate the type of compute workers CPU or GPU, internal cluster,
or cloud provider, including relevant memory and storage.

* The paper should provide the amount of compute required for each of the individual
experimental runs as well as estimate the total compute.

* The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

. Code of ethics

Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]
Justification: We followed the NeurIPS Code of Ethics.
Guidelines:

¢ The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.

* If the authors answer No, they should explain the special circumstances that require a
deviation from the Code of Ethics.

* The authors should make sure to preserve anonymity (e.g., if there is a special consid-
eration due to laws or regulations in their jurisdiction).
Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [NA]
Justification: There is no societal impact of the work performed.
Guidelines:

» The answer NA means that there is no societal impact of the work performed.

e If the authors answer NA or No, they should explain why their work has no societal
impact or why the paper does not address societal impact.

» Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

23

https://neurips.cc/public/EthicsGuidelines

1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023

1024

1025
1026
1027

1028

1029
1030

1031

1032
1033
1034
1035
1036
1037
1038
1039
1040
1041

1042

1043
1044
1045

1046

1047
1048
1049

1050

1051
1052

1053
1054
1055
1056
1057
1058
1059
1060
1061

11.

12.

» The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

* The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

« If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

Safeguards

Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]

Justification: The research involves publicly available datasets and standard models, posing
no significant misuse risks, thus no specific safeguards were necessary.

Guidelines:

* The answer NA means that the paper poses no such risks.

* Released models that have a high risk for misuse or dual-use should be released with
necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

 Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

* We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

Licenses for existing assets

Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]
Justification: We credit the owners of all code, models and data used in this work. All

relevant papers are cited, and we have adhered to the licenses and terms of use associated
with these assets.

Guidelines:

* The answer NA means that the paper does not use existing assets.

* The authors should cite the original paper that produced the code package or dataset.

* The authors should state which version of the asset is used and, if possible, include a
URL.

* The name of the license (e.g., CC-BY 4.0) should be included for each asset.

* For scraped data from a particular source (e.g., website), the copyright and terms of
service of that source should be provided.

* If assets are released, the license, copyright information, and terms of use in the
package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

24

paperswithcode.com/datasets

1062
1063

1064
1065
1066

1067
1068

1069

1070
1071

1072

1073
1074
1075
1076
1077
1078
1079
1080

1081

1082
1083
1084

1085

1086

1087

1088

1089

1090
1091
1092
1093
1094
1095

1096
1097

1098
1099
1100
1101

1102

1103

1104

1105

1106

1107
1108
1109
1110
1111
1112

13.

14.

15.

* For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

* If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.
New assets

Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [Yes]

Justification: We provide the detailed documentation alongside the new assets for repro-
ducibility.

Guidelines:

» The answer NA means that the paper does not release new assets.

* Researchers should communicate the details of the dataset/code/model as part of their
submissions via structured templates. This includes details about training, license,
limitations, etc.

* The paper should discuss whether and how consent was obtained from people whose
asset is used.

* At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

Crowdsourcing and research with human subjects

Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]
Justification: This work does not involve crowdsourcing nor research with human subjects.
Guidelines:
* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

* Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

* According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

Institutional review board (IRB) approvals or equivalent for research with human
subjects

Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA]
Justification: The paper does not involve crowdsourcing nor research with human subjects.
Guidelines:

* The answer NA means that the paper does not involve crowdsourcing nor research with

human subjects.

* Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

* We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

25

1113 * For initial submissions, do not include any information that would break anonymity (if

1114 applicable), such as the institution conducting the review.

1115 16. Declaration of LLM usage

1116 Question: Does the paper describe the usage of LLMs if it is an important, original, or
1117 non-standard component of the core methods in this research? Note that if the LLM is used
1118 only for writing, editing, or formatting purposes and does not impact the core methodology,
1119 scientific rigorousness, or originality of the research, declaration is not required.

1120 Answer: [NA]

1121 Justification: The core method development in this research does not involve LLMs as any
1122 important, original, or non-standard components.

1123 Guidelines:

1124 * The answer NA means that the core method development in this research does not
1125 involve LLMs as any important, original, or non-standard components.

1126 * Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
1127 for what should or should not be described.

26

https://neurips.cc/Conferences/2025/LLM

	Introduction
	Method
	Stage 1: SFT for Reasoning Formats Understanding
	Stage 2: RL for Encouraging Efficient Format Selection

	Experiment
	Experimental Setup
	Main Results
	Further Analysis

	Conclusion
	Related Work
	Reinforcement Learning for Improving Reasoning
	Efficiency in Large Language Models

	Analysis
	Reasoning Mode Switching
	Effectiveness of Adaptive Format Selection
	Comparison of Ada-GRPO and GRPO
	Comparison of Backbone Models
	Comparison of Arm and Length-Penalty-Based Strategies

	Details of Ada-GRPO
	Training Objective
	Decay Factor

	Details of Processing SFT Dataset
	Prompt List
	Filter Out Rationales

	Examples in Training
	Examples in SFT Stage
	Examples in RL Stage

	Implementation Details
	Stage 1: SFT
	Stage 2: RL

	Inference
	Details of Reflective Words
	Details of the Overthinking Phenomenon
	Analysis
	Data Examples
	An Example of Overthinking in CSQA

	Details of Length-Penalty-Based Strategies
	Limitations

