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Abstract

Recent advancements in Machine Unlearning (MU) have introduced solutions to
selectively remove certain training samples, such as those with outdated or sen-
sitive information, from trained models. Despite these advancements, evaluation
of MU methods have been inconsistent, employing different trained models and
architectures, and sample removal strategies, which hampers accurate compari-
son. In addition, prior MU approaches have mainly focused on singular tasks or
modalities, which is not comprehensive. To address these limitations, we develop
MU-Bench, the first comprehensive benchmark for MU that (i) unifies the sets
of deleted samples and trained models, and (ii) provides broad coverage of tasks
and data modalities, including previously unexplored domains such as speech and
video classification. Our evaluation show that RANDLABEL (Graves et al., 2021)
and SALUN (Fan et al., 2024b) are the most effective general MU approaches on
MU-Bench, and BAD-T (Chundawat et al., 2023) and SCRUB (Kurmanji et al.,
2023) are capable of achieving random performance on the deletion set. We analyze
several under-investigated aspects of unlearning, including scalability, the impacts
of parameter-efficient fine-tuning and curriculum learning, and susceptibility to
dataset biases. MU-Bench provides an easy-to-use package that includes dataset
splits, models, and implementations, together with a leader board to enable unified
and scalable MU research.1.

1 Introduction

Machine Unlearning (MU) aims at selectively removing a small portion of training data–and the
influence of the samples–from a trained model. MU is essential for protecting sensitive information
and discarding outdated samples. Recent works have studied machine unlearning in various contexts,
including classification tasks on image (Guo et al., 2020; Tang et al., 2023) and graph (Chien et al.,
2023; Cheng et al., 2023) data, multimodal tasks (Cheng & Amiri, 2023), generation tasks (Chen &
Yang, 2023; Gandikota et al., 2023; Fan et al., 2024b), and federated learning (Wang et al., 2022).

Despite these advancements, existing approaches to machine unlearning face several challenges: (1):
MU systems are evaluated under inconsistent settings, using different trained models (from which
data is deleted) and metrics, which can lead to unfair comparisons and hinder the development of
robust unlearning approaches (Fan et al., 2024b); (2): evaluation tend to focus on specific tasks,
modalities, and architectures, which limits our understanding on the effectiveness of these models
across different settings (Wang et al., 2023; Chundawat et al., 2023).

To address these limitations, we introduce MU-Bench, a comprehensive machine unlearning bench-
mark consisting of multiple tasks, data modalities, base models, standardized evaluation metrics, all
compiled into an easy-to-use package with a leader board to enable robust and scalable MU research.

1Project page: https://clu-uml.github.io/MU-Bench-Project-Page.

38th Conference on Neural Information Processing Systems (NeurIPS 2024).

https://clu-uml.github.io/MU-Bench-Project-Page
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Figure 1: The MU-Bench benchmark for machine unlearning (MU) spans a comprehensive range
of tasks and modalities, including previously unexplored data types such as audio, video, and
biomedical data. The open-source package of MU-Bench provides standardized (unified) data
splits, implements a suite of commonly-used MU methods and their design choices, enables fast
experimentation and fair comparisons across MU methods, and is structured to easily incorporate
new datasets and tasks in future.

To the best of our knowledge, this benchmark represents the first effort to benchmark existing MU
approaches across a wide range of settings.

Our contributions are:

• constructing the first comprehensive MU benchmark with a wide coverage of tasks, domains,
and modalities, including previously unexplored areas, such as speech and video processing,
and biomedical applications, for systematic evaluation of unlearning algorithms;

• unifying (and perhaps democratizing) MU with uniformed deleted samples and a wide range
of trained models and architectures to enable fair comparisons between MU methods;

• identifying design choices that explain performance variations across tasks and modalities;
• investigating several overlooked aspects of unlearning, such as deletion capacity, parameter-

efficient fine-tuning (PEFT), and the impact of curriculum learning and dataset bias to
inform future research directions.

Extensive experiments show that RANDLABEL (Graves et al., 2021), BAD-T (Chundawat et al.,
2023), and SALUN (Fan et al., 2024b) are generally robust MU methods. When operating under a
fixed training budget of compute (FLOS), RANDLABEL and SALUN outperform BAD-T. We find
that existing MU methods benefit from PEFT but much less than other learning tasks, where below
is 50% of the entire parameters, below which the model cannot be trained. Moreover, Curriculum
Learning techniques can help models forget less and does not facilitate MU in most cases. In addition,
performance variations across different tasks and modalities suggest that specific design choices
within MU approaches significantly influence their effectiveness. In particular, certain tasks such as
audio and video classification, are challenging for existing MU methods.

By design, MU-Bench is structured to incorporate new datasets and tasks, and we will continue to
expand its resources in future.

2 MU-Bench

We outline the design of MU-Bench, covering tasks, datasets, models, and evaluation metrics.

2.1 Problem Formulation

Machine unlearning Let DTrain denotes the training dataset, Df ⊆ DTrain the subset to be
unlearned, and Dr = DTrain\Df the remaining dataset post-unlearning. Given a model f trained
on DTrain, machine unlearning seeks to remove the influence of Df from f without affecting the
knowledge it gained from Dr, without retraining from scratch. We term f as the original model and
f ′ as the model post-unlearning. A successful unlearned model f ′ should be minimally impacted by
Df , while maintaining the performance of f on the original downstream test set DTest.

Evaluation Metrics Evaluating the efficacy of unlearning is crucial for identifying models that
are more secure and retain no/less memory of deleted data. While previous studies have employed
different metrics, we propose a set of metrics that do not require model retraining: performance
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Table 1: Example datasets currently available in MU-Bench, covering a wide set of tasks and data
modalities from different domains. |D| denotes the size of training data. In MU-Bench, we set
the deletion ratio to a maximum of 10% of |D|. Rows labeled with * indicate new tasks and data
modalities introduced in MU-Bench for machine unlearning.

Dataset Task Domain Modality |D|
Discriminative Tasks

CIFAR-100 (Krizhevsky, 2009) Image classification General Image 50K
IMDB (Maas et al., 2011) Sentiment classification Movie review Text 25K
* DDI-2013 (Segura-Bedmar et al., 2013) Relation extraction Biomedical Text 25K
NLVR2

(Suhr et al., 2019) Visual reasoning General Image-Image-Text 62K
* Speech Commands (Warden, 2018) Keyword spotting Commands Speech 85K
* UCF101 (Soomro et al., 2012) Action classification General Video 9.3K

Generative Tasks

SAMSum (Gliwa et al., 2019) Text summarization Chat dialogue Text 14K
* BioFact (Min et al., 2023) Text generation Biography Text 183
Tiny ImageNet (Le & Yang, 2015) Text-to-Image generation General Image-Text 20K

on test set DTest (↑), performance on deletion set Df (↓), performance on remaining set Dr (↑),
unlearning time (↓), and success rate of membership inference attack (↓).

Toward a retrain-free evaluation Early works in machine unlearning research often considered
the model retrained from scratch on Dr as the gold standard for f ′, which is now recognized as an
inappropriate design choice due to several issues: First, evaluating f ′ based solely on its closeness
or similarity to the retrained model can lead to false negatives. This is because the parameters of f ′

may fall onto different distributions than the retrained model, but still achieve competitive unlearning
performance. On the other hand, the parameters of two models can match even with completely
different training datasets (Lamproudis et al., 2022). Second, retrained models cannot guarantee
the privacy of deleted data in practice, often maintaining undesired high performance on Df , as
demonstrated by previous work (Cheng et al., 2023). Third, obtaining a precise Dr can be impractical
in cases where the goal of unlearning is to remove toxic content (Zhang et al., 2023; Ilharco et al.,
2023) or abstract concepts (Gandikota et al., 2023). Such abstract concepts may not correspond
to identifiable data samples. Finally, retraining a model from scratch on Dr can be impractical or
even impossible due to confidentiality constraints, proprietary data concerns, or because the data
may no longer be available. In addition, retraining is often expensive, especially for large datasets
or complex tasks such as multimodal learning or large language models (LLMs). Based on the
above shortcomings, we advocate for a retrain-free evaluation of unlearning systems, a method that is
increasingly recognized in recent works (Chundawat et al., 2023).

2.2 Datasets and Tasks

We adopt nine publicly available datasets covering a diverse set of discriminative and generative tasks
and data modalities. As Table 1 shows, the discriminative tasks include CIFAR-100 (Krizhevsky,
2009) for image classification, IMDB (Maas et al., 2011) for sentiment classification, DDI (Segura-
Bedmar et al., 2013) for relation extraction in the biomedical domain, NLVR2 (Suhr et al., 2019) for
visual reasoning, Speech Commands (Warden, 2018) for keyword spotting, and UCF101 (Soomro
et al., 2012) for action classification. The generative tasks include SAMSum (Gliwa et al., 2019) for
text summarization, Biography (adapted from Min et al. (2023), see below) for text generation, Tiny
ImageNet (Le & Yang, 2015) for text-to-image generation.

We build a new dataset for evaluating machine unlearning in large language models (LLMs), focusing
on the removal of personal information, as a common unlearning request. This is a crucial tasks
because for example, on social media, user can choose to delete their accounts or privatize them,
resulting in a critical and perhaps legal impetus for machine unlearning. The dataset contains factual
descriptions of 183 celebrities, obtained from (Min et al., 2023), to enable machine unlearning of
personal data from LLMs.

These datasets were chosen for their relevance to practical machine unlearning tasks, their variety,
including both well-established and under-explored datasets, and their capacity to highlight differ-
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ences between unlearning methods across diverse tasks and modalities (as they have non-saturated
performance). This datasets allow for large scale and fair evaluation of unlearning methods, and
addresses gaps in current research in several unexplored areas in machine unlearning.

2.3 Unified Unlearning

To address inconsistencies in the evaluation of MU approaches, we unify critical aspects such as the
choice and size of deleted samples (Df ), and the baseline model (f ) from which data is removed. This
unification allows for meaningful comparison and democratizes access through open-source tools.

Deleted Samples For each dataset, we randomly sample 1-10% of the training data as Df , with
increments of 1% to covers both typical and extreme evaluation settings. This approach reflects typical
and realistic settings where a small portion of data is deleted (Golatkar et al., 2020; Chundawat et al.,
2023; Cheng et al., 2023), and challenges the limits of unlearning methods without fundamentally
altering the data distribution, as would be the case with more extensive data removal.

Original Model For each dataset, we train a set of commonly-used models on different architectures
and scales, from which Df is deleted, to allow for robust and relevant comparisons. We train a total of
20 architectures and 34 scales, such as ResNet (He et al., 2016) (18, 34, 50 layers), ViT (Dosovitskiy
et al., 2021) (Small, Base, Large), Swin-Transformer (Liu et al., 2021) (Tiny, Small, Base), MobilNet
V2 (Sandler et al., 2018) for image classification; and HuBERT (Hsu et al., 2021b) (Base, Large,
X-Large), Whisper (Radford et al., 2023) (Tiny, Small, Base), Wav2Vec2.0 (Baevski et al., 2020b)
(Base, Large) for the audio classification. Additional details are provided in Appendix A.3.

Example Usage We include the datasets, standardized data splits, evaluation scripts, and
unlearning methods within an easy-to-use Python package and integrate them with commonly-used
packages such as PyTorch (Paszke et al., 2019), Huggingface Transformers (Wolf et al., 2020), and
Diffusers (von Platen et al., 2022), containing pre-trained diffusion models for image and speech data.
Users can initiate an unlearning experiment with minimal adjustment to existing script. All original
model checkpoints are released for standardized unlearning and fair comparisons. We also host and
maintain a leaderboard to rank methods overall and on individual tasks and architectures. For example,
to remove 5% of training data from a BERT-base model trained on IMDB using BAD-T (Chundawat
et al., 2023), only a minimal script modification is required shown in code example 1. This setup
simplifies the unlearning process and enables rapid comparison against methods and architectures.

Taxonomy of Unlearning Techniques: A Teacher-Student Framework To provide a deeper
understanding of the design choices of existing MU approaches and their performance differences,
we introduce a taxonomy based on a unified teacher-student framework. In this framework, the
desired unlearned model f ′ seeks to selectively discard specific knowledge from the original model f
under the guidance of a “teacher.’ As shown in Table 2, the design choices of the teacher vary across
different methods mainly from three aspects:

• Knowledge Measurement (KM): the key question of how knowledge is quantified, which
is determined by task loss (Loss), representation (Rep.), or output logits (Logit) in existing
MU models;

• Knowledge Corruption on Df (Corrupt): the key question of how the knowledge associ-
ated with Df is degraded, which is currently determined using techniques such as reversing
gradients (NEGGRAD), using random data (RANDLABEL), or employing an incompetent
teacher (BAD-T); and

• Knowledge Retention on Dr (Retain): the key question of how to preserve knowledge
from Dr, which is typically achieved by treating the original model f as the teacher.

These elements combine differently across methods, influencing both the teacher’s role on Df and
Dr, as detailed in Table 2; specifically, (i) and (ii) lead to teacher on Df , and (ii) and (iii) lead to
teacher on Dr. In Addition, the trainable parameters can be dense or sparse and internal or external.
We utilize this taxonomy to categorize common and distinctive design elements in existing methods.
This categorization helps in understanding how different unlearning approaches function and enables
their transfer and adaptation to new contexts, such as generative tasks.
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Table 2: Taxonomy of unlearning techniques. Despite different formulations and loss functions,
existing approaches can be viewed in a unified teacher-student framework, with three design choices:
(i) knowledge measurement (KM), (ii) knowledge corruption on Df (Corrupt), and (iii) knowledge
retention on Dr (Retain). The combination of (i) and (ii) leads to teacher on Df , while combination
of (i) and (iii) leads to teacher on Dr. For teachers on Df and Dr, Loss represents the expected task
loss E(x,y)∈D

∑
L(f(x), y) on Df and Dr. Rep. denotes the KL Divergence of output distribution

E(x,y)∈D

∑
KL(f ′(x), f(x)) on Df and Dr. Trainable parameters are denoted as Dense or Sparse,

and Internal or External.

Method Teacher on Df Teacher on Dr ParametersKM Corrupt KM Retain
Exact unlearning – – Loss f Dense, Internal

NEGGRAD (Golatkar et al., 2020) Loss Grad – – Dense, Internal
RANDLABEL (Graves et al., 2021) Loss Data Loss f Dense, Internal
BAD-T (Chundawat et al., 2023) Logit Model Logit f Dense, Internal
SCRUB (Kurmanji et al., 2023) Loss Grad Loss + Rep. f Dense, Internal
SALUN (Fan et al., 2024b) Loss Data Loss f Sparse, Internal
l1-sparse FT (Jia et al., 2023) – – Loss f Sparse, Internal
MultiDelete (Cheng & Amiri, 2023) Rep. Data Rep. f Dense, Internal
EUL (Chen & Yang, 2023) Loss + Rep. Grad Loss + Rep. f Dense, External
UL (Jang et al., 2023) Loss Grad – – Dense, Internal
GNNDELETE (Cheng et al., 2023) Rep. Data Loss + Rep. f Dense, External
SGA-TAU (Barbulescu & Triantafil-
lou, 2024)

Loss Grad – – Sparse, Internal

Extension to generative tasks Even though many unlearning methods are designed for and
evaluated on classification tasks, they can be applied to generative tasks with minimal modifications.
For example, in case of RANDLABEL, data pairs (x, y) ∈ Df can be altered to (x, y′) where
y′ ∈ Dr, y

′ ̸= y. For BAD-T, the method can be adjusted to match the predictions of each token
when measuring the teacher-student divergence.

3 Experiments

Setup For each dataset, we first train the task-specific original model f long enough with hyperpa-
rameter optimization and select the best performing model. This is usually the practice for models
deployed for real world applications. For LLM and Text-to-Image generation tasks, we evaluate
unlearning from the pretrained models, since they are not fine-tuned for a specific task. In addition,
we limit the unlearning time so that it does not exceed the retraining time, otherwise unlearning
would not be practical. We repeat all experiments five times with different random seeds to account
for stochastic effects. We focus on the following MU models selected based their widespread usage
and unique characteristics: NEGGRAD (Golatkar et al., 2020), RANDLABEL (Graves et al., 2021),
BAD-T (Chundawat et al., 2023), SCRUB (Kurmanji et al., 2023), and SALUN (Fan et al., 2024b).
Details on the architectures used can be found in A.3 and the performance of the other MU models
will be available on the leaderboard.

3.1 Main Results on Discriminative Tasks

As Figure 2 illustrates, NEGGRAD typically results in low performance on Df , but severely compro-
mises the knowledge on DTest and Dr, indicating it is not an effective MU approach. In general, tasks
like audio classification, video classification, text summarization and generation consistently chal-
lenge existing MU algorithms, potentially due to strong correlations within the data, see Figure 11-12).
We report the average performance across all tasks as all metrics range from 0 to 100%.

For image classification on CIFAR-100, BAD-T achieves close-to-random performance on Df while
preserving 40% accuracy on DTest and Dr. Both RANDLABEL and SALUN effectively maintain
models’ capability on downstream test sets but fails to forget the deletion set. The original SALUN
paper reported slightly different results, which we hypothesize may be due to the class-balanced
sampling strategy and nuanced class hierarchy of CIFAR-100. Interestingly, SCRUB achieves very
similar performances on DTest, Df , and Dr, see Figure 7.
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Figure 2: Overall average accuracy across all discriminative tasks.
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Figure 3: Overall average performance across all generative tasks.

For sentiment classification on IMDB, RANDLABEL and SALUN show promising results in forget
Df with close-to-random performances, with minimal impact on DTest. BAD-T and SCRUB also
preserve strong performance on DTest but fail to unlearn Df . Since IMDB contains strong dataset
biases and shortcut features, corrupting the data labels implemented by RANDLABEL and SALUN
seems to be a more effective approach than corrupting gradient, see Figure 8.

For biomedical relation extraction on DDI, RANDLABEL, SCRUB, SALUN all succeed in forgetting
the deletion set Df , with SCRUB slightly impairing test performance more than others. Conversely,
BAD-T completely failed to unlearn Df , see Figure 9.

For visual reasoning on NLVR2, RANDLABEL and SALUN again are successful in unlearning Df ,
unlike BAD-T and SCRUB, which failed to unlearn Df . However, one potential issue with SALUN
is in the excessively low performance, almost close to zero performance, on Df , which may be too
low and prone to information leakage. This will be further discussed in §4, see Figure 10.

The speech keyword spotting on Speech Commands show that none of the existing methods can
forget Df without severely impacting knowledge retention. Either with minimal knowledge removed
(NEGGRAD, RANDLABEL, SALUN), or resulting in too much performance degradation on DTest

(BAD-T, SCRUB). This can potentially be due to the correlations between audio waves, for which
prior approaches do not have mechanisms to handle, see Figure 11.

For video action recognition on UCF101, all methods maintain original performance on DTest and
Dr, but all fail to forget Df , with 90+% accuracy. This can be attributed to the fact that current video
classification methods rely on inter-frame correlation, while existing MU methods lacks mechanisms
to remove such information, leading to failed unlearning, see Figure 12.

3.2 Main Results on Generative Tasks

In general, generation tasks present greater challenges for unlearning and evaluation. As Figure 3
shows, for text summarization on SAMSum and text generation on BioFact, existing general MU
approaches all fail to achieve unlearning. RANDLABEL and SALUN has limited influence over all
data including Df and Dr, while BAD-T and SCRUB remove knowledge of all data. In addition,
we find that NEGGRAD show very different performance pattern on generative tasks compared to
discriminative tasks, with non-random performance when a small portion of examples are deleted,
see Figure 13.

For text-to-image generation, we find all methods can effectively reduce the clip score between
image-prompt pairs on Df with limited impact on DTest and Dr, see Figure 15). To ensure the
generated images are not from the orginal classes, we use a trained image classifier to classify the
samples in Df . SALUN outperforms all other approaches by 5.1 in accuracy on average, see Table 4.

Additional results on training time and membership inference attack are shown in Appendix A.5.
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4 Discussion and Analysis

What is the deletion capacity of each method? We define deletion capacity as the amount of data
a model can forget without degrading performance on DT . RANDLABEL and SALUN have relatively
larger deletion capacity than SCRUB, while BAD-T has the smallest capacity. These results suggest
that task loss is a potentially better way of knowledge measurement than matching logits in BAD-T.
Another reason is the computation cost of BAD-T restricts its capability of forgetting more samples.
Furthermore, we find that the deletion capacity of the same MU method varies across different
tasks, modalities, and network architectures. SALUN has large deletion capacity on image and text
classification datasets, but much smaller capacity on multimodal tasks, shown in Figures 7–10.

Does unlearning amplify biases? A less explored aspect of unlearning in existing works is does
MU amplify or restrict the model’s dependence on biases in MU. To answer these questions, we
evaluate the zero-shot transfer performance of f and f ′ on test examples that are adversarial or
from shifted distributions, specifically, CIFAR100-C (Hendrycks & Dietterich, 2019) for CIFAR100,
Rotten Tomatoes (Pang & Lee, 2005) for IMDB, extra test set from (Suhr et al., 2019) for NLVR2,
UCF101-DS (Schiappa et al., 2023) for UCF101, and XSum (Narayan et al., 2018) for SAMSum.
The results show that NEGGRAD significantly affects models’ capability on transfer test sets, while
other methods we evaluated do not strongly influence models’ dependence on biases, see Figure 4.

Does unlearning follow scaling laws? Scaling is a critical aspect to understand the limitations
of an unlearning method. The results show that RANDLABEL, SALUN, NEGGRAD, and BAD-T
have a better predictability of performance on Df , given the amount of compute (FLOS), while
the performance of SCRUB depends on the switch between max steps and min steps. In addition,
NEGGRAD and SCRUB have faster speed in decreasing performance on Df . BAD-T has relatively
slower speed, due to the fact that it simultaneously iterate through Df and Dr at every optimization
step, which leads to more computing cost than other methods.

Does unlearning benefit from curriculum learning? The effect of curriculum learning (Bengio
et al., 2009; Sukhbaatar et al., 2018) (CL) in MU is an overlooked aspect in existing literature. MU
models often sample batches randomly with no specific order and treat inputs with equal weight. We
experiment with one common curriculum learning approach SuperLoss (Castells et al., 2020), which
implements the core principle of curriculum learning. Specifically, it weights training losses based on
sample difficulty, weighing down the contribution of samples with large training loss (potentially
hard examples) to allow the model to learn from easier samples. As through training, the loss of
the hard examples decreases, hard examples are gradually introduced for training. The results show
that overall SuperLoss results in a slightly larger performance on Df , indicating CL is likely to help
model forget less. One exception is that on Speech Commands, CL outperforms Non-CL by 25.4 in
accuracy. We defer further experiments with other CL techniques to future work.

Does unlearning benefit from parameter-efficient fine-tuning (PEFT)? Despite recent advance-
ments of parameter-efficient fine-tuning (He et al., 2022), most MU methods optimize the entire
network parameters, which results in significant cost. Only a few approaches have adopted a
parameter-efficient strategy (Chen & Yang, 2023; Cheng et al., 2023). Since PEFT only updates a
small portion of the model, it is intuitive to assume that PEFT can maximally retain the knowledge
from the original model without compromising unlearning. To validate this hypothesis in the context
of MU, we experiment with LoRA (Hu et al., 2022a). The results show that most methods can benefit
from PEFT, where the performance gap on Df is less than 10 points in accuracy. However, the amount
of trainable parameters in MU is much larger than that of fine-tuning. As the trainable parameters are
less than 50% of the original size, the performance on Df is close to that of Dr. Such performance
persists even with larger learning rate and longer training time, indicating unlearning Df cannot be
achieved below the threshold of 50%, see Figure 6. This minimum trainable threshold (Hu et al.,
2022b; Su et al., 2023) is much larger than non-MU tasks with as low as a few thousand parameters,
since selective knowledge removal is a more challenging task. Meanwhile, the performances on
DTest and Dr are not affected, indicating LoRA forgets less and slower in MU.

Which design choices are effective for machine unlearning? For discriminitive tasks, corrupting
gradient is a less effective approach compared to corrupting data (RANDLABEL, etc.) and model
(BAD-T). Corrupting gradients can discard learned knowledge and therefore we suggest not using
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it in isolation without other constraints. However, this approach has a greater potential for generative
tasks. It is generally more effective to simultaneously iterate through Df and Dr (BAD-T) or
randomly iterate through the training set (RANDLABEL, SALUN), than to clearly separate Df and
Dr. For example, SCRUB takes a few passes on Df to forget the deletion set before learning on
Dr to retain non-deleted data. On the other hand, simultaneous processing of Df and Dr lead to
higher computational cost.Using representation or task loss as a measurement of learned knowledge
can adapt to both discriminative and generative tasks, while using logits (BAD-T) has a much more
restricted application merely on classification tasks.

Is a lower performance on Df always better? Previous works focus on driving the performance
on Df to as low as possible. We suggest that excessively low score on Df might reveal information
or indicate its existence, which may be taken advantaged by adversary. Moreover, unlearning does
not mean a model should completely lose its capability of handling specific samples in Df . Instead,
a balanced approach where the unlearned model maintains a reasonably low performance on Df is
preferable. Recent works are focusing on this direction, such as zero-retrain evaluation (Chundawat
et al., 2023), knowledge gap on Df |DT (Wang et al., 2023; Cheng et al., 2023). We defer further
analysis on the desirable performance of Df to future work.

5 Conclusion

Conclusion We propose MU-Bench, the first comprehensive machine unlearning (MU) benchmark
that spans various tasks and data modalities, including those previously unexplored in MU. We
introduce a unified taxonomy of existing MU works, which highlights their unique design choices and
establishes connections between them. We also conduct extensive experiments with commonly-used
and recent MU algorithms using MU-Bench, discovering that audio and video tasks require
more focused development of MU techniques. In addition, we explore several overlooked yet
crucial aspects of unlearning, such as bias, parameter-efficiency, curriculum learning, and deletion
capacity. Finally, we develop an open-source package of MU-Bench to provide unified data splits,
and implement a suite of commonly-used MU methods and their design choices to enable fast
experimentation and fair comparisons across MU methods. The package along with a leaderboard
are structured to easily incorporate new datasets and tasks in future. We will continue to expand
MU-Bench by incorporating more datasets and tasks.

Future Works There are several venues for future work including: (a): MU methods for under-
investigated tasks and modalities: existing unlearning methods are primarily developed for text or
image data types. Our experiments on MU-Bench show that current models severely underperform in
audio and video contexts. A promising area of research is to extend MU to these data modalities and
tasks through focused development of MU techniques to ensures comprehensive MU capability. (b)
Efficient MU methods: existing unlearning methods require extensive training, either tuning the entire
model or training on large portions of the dataset. Meanwhile, most methods do not benefit from PEFT.
Future research can focus on developing more efficient MU methods using approaches like zero-shot
methods, sparse methods, and curriculum learning methods to speed up the unlearning process. (c)
Explainability: understanding why certain samples are more easily forgotten than others could shed
light on inner working of MU methods and improve MU performance. Therefore, investigating the
complexities of samples that affect their retention or deletion is a promising area of research. (d) Evalu-
ation: current evaluation of MU is still in its early stage and demands more attention. Refining current
evaluation strategies and metrics will be crucial for advancing the field. (e) Theoretical guarantee of
MU: most current non-DP-based MU approaches do not provide theoretical guarantees. A critical fu-
ture directions is to develop theoretical frameworks that provide bounds performance bounds for MU.

Limitations While our work marks significant progress, it has the following limitations: (a): Not
all MU algorithms are evaluated: due to the significant cost and resource constraints, we focused on a
selection of recent, well-performing and representative approaches rather than an exhaustive examina-
tion of all MU models. (b): Breadths of experiments. Our investigation into parameter-efficient fine-
tuning and curriculum learning were limited to specific methods like LoRA and SuperLoss, though
other more effective approaches exist. (c): Not all tasks are included. There are some relevant tasks
that are not currently included in MU-Bench, such as those related to graphs, recommendation, or re-
trieval tasks. We plan to expand the range of tasks and datasets in ongoing development of MU-Bench.
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Broader Impact Statement

Our work lays a foundation for fair and consistent evaluation of machine unlearning techniques
and its applications, including the Right To Be Forgotten (RTBF) in AI models, which ensures the
protection of personal data and the integrity of AI systems.
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A Appendix

A.1 Related work

Categorization of unlearning methods Exact unlearning methods divide the remaining data into
several shards and train a separate model on each subset of data. Then all models are combined to
make a prediction. They work under different scenarios, including on images (Bourtoule et al., 2021;
Wu et al., 2020b,a; Liu et al., 2022b; Dukler et al., 2023; Lin et al., 2023), on graphs (Chen et al.,
2021). Differential Privacy-based methods adopt a one-shot weight update followed by added noise
to model weights, whose probability distribution is indistinguishable from that of a model retrained
from scratch with theoretical guarantee Golatkar et al. (2020); Guo et al. (2020); Neel et al. (2021);
Brophy & Lowd (2021); Wu et al. (2023); Izzo et al. (2021); Suriyakumar & Wilson (2022); Liu et al.
(2023a). Teacher-student unlearning methods formulates unlearning as selectively transferring the
knowledge into the unlearned model (student). Usually, the teacher on the non-deleted data is the
original model, while the teacher on deleted data is opposite to the original model Wang et al. (2023);
Kurmanji et al. (2023); Chundawat et al. (2023); Cheng et al. (2023); Fan et al. (2024b); Tarun et al.
(2023a).

Unlearning for discriminative tasks Unlearning works in discriminative tasks covers image
classification (Foster et al., 2023; Lin et al., 2023; Jia et al., 2023; Zhang et al., 2022b), text
classification Li & Liu (2023); Mehta et al. (2022); Cha et al. (2024); Kang et al. (2024), node / edge
classification on graph-structured data (Chen et al., 2022b; Chien et al., 2023; Cong & Mahdavi,
2023; Cheng et al., 2023; Wu et al., 2023; Cheng et al., 2023; Sinha et al., 2023), regression (Tarun
et al., 2023b), image retrieval (Zhang et al., 2022a), multimodal classification tasks (Cheng & Amiri,
2023; Poppi et al., 2024; Li et al., 2024b), Bayesian models Nguyen et al. (2020), recommender
systems Chen et al. (2022a); Li et al. (2022, 2023), k-means (Pan et al., 2023), and intelligent
agents (Liu et al., 2022a). Many other works focus on class unlearning, i.e. removing all samples
with a specific class (Chen et al., 2023a). However, discriminative tasks on audio and video have
been limitedly studied, which this work bridge the gap.
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Unlearning for generative tasks Unlearning for generation models centers on removing copy-
righted, private, NSFW, or biased content from generative models, including diffusion mod-
els (Gandikota et al., 2023; ?, 2024; Liu et al., 2024; Fuchi & Takagi, 2024; Fan et al., 2024b),
image-to-image models (Li et al., 2024a), text summarization models (Chen & Yang, 2023), trans-
lation models (Wang et al., 2023), and text generation models (Lu et al., 2022; Jang et al., 2023;
Kassem et al., 2023; Chen & Yang, 2023).

Unlearning in LLMs Recently, more attention has been paid to unlearning in LLMs. Most
works focus on gradient ascent to forget copyrighted content (Eldan & Russinovich, 2023). Yao
et al. (2024) designed two additional losses: 1) predicting if answer is gramatically correct, and 2)
maintaining performance. SOUL (Jia et al., 2024) leverages second-order optimization techniques.
Other approaches include sparsity Ma et al. (2023) and operations on gradient Ullah et al. (2021);
Hoang et al. (2024). Applications of unlearning include removing bias Setlur et al. (2022); Chen
et al. (2023b), alleviating backdoor attack Wei et al. (2023), conducting data poinson attack Di et al.
(2023).

Unlearning evaluation Evaluation of MU include the effectiveness of exact / DP-based unlearn-
ing (Thudi et al., 2022), adversarially trained models Liu et al. (2023b), adversarially evaluation (Goel
et al., 2022), red-teaming tool for concept removal Tsai et al. (2024), verification Sommer et al.
(2022), sequential deletion (Gupta et al., 2021), vulnerability to attack ZHAO et al. (2023), trade-off
with reverting decisions Pawelczyk et al. (2023), different choices of deleted points (Fan et al., 2024a),
theoretical capacity of deletion (Liu et al., 2023a), under shallow models Schelter et al. (2021); Ginart
et al. (2019), under zero-shot setting Chundawat et al. (2022).

Task-specific MU benchmarks In general, datasets and benchmarks for unlearning is under-
explored. Most works draw samples as deleted data from existing datasets and choose different subsets
from paper to paper. UnlearnCanvas is a benchmark for unlearning for diffusion models (Zhang
et al., 2024). TOFU (Maini et al., 2024) is a benchmark for unlearning fictitious author profiles in
LLMs. Conversely, we test LLMs with unlearning real profiles, as such information appears in the
pretraining corpus of the LLMs, which aligns with the unlearning setting.

A.2 Implementation details

For all methods, we adopt a batch size of 32 and Adam optimizer. We search for the best learning
rate in [1e− 5, 5e− 5, 1e− 4, 5e− 4]. All experiments are conducted on NVIDIA A100 GPUs.

A.3 Original models

We release the following 20 network architectures and 34 different scales to serve as original models
in our benchmark.

For CIFAR-100, we train ResNet (He et al., 2016) (18, 34, 50 layers), MobileNet V2 (Sandler
et al., 2018), ConvNext (Liu et al., 2022c), ViT (Dosovitskiy et al., 2021) (Base, Large), and
Swin-Transformer (Tiny, Base). For IMDB, we train BERT (Devlin et al., 2019) (base and large), Dis-
tilBERT (Sanh et al., 2020), and Electra (Clark et al., 2020) (Base). For DDI, we train BioBERT (Lee
et al., 2019), PubMedBERT (Gu et al., 2021) (abstract only and full text). For NLVR2, we directly
take the Vilt (Kim et al., 2021) model finetuned on NLVR2 from the original paper. For Speech
Commands, we train HuBERT (Hsu et al., 2021a) (Base, Large, X-Large), Wav2Vec2.0 (Baevski
et al., 2020a) (Base, Large), Whisper (Radford et al., 2022) (Tiny, Base). For UCF101, we train
VideoMAE (Tong et al., 2022) (Base, Large). For SAMSum, we train T5-V1.1 (Lester et al., 2021)
(Small, Base, Large, X-Large). For Biography, we directly take the instruction tuned Alpaca (Taori
et al., 2023) (7B, 13B), Vicuna V1.3 (Zheng et al., 2023) (7B, 13B). For Tiny ImageNet, we directly
take the Stable Diffusion V1.4 (Rombach et al., 2022) from the original paper.

1from t r a n s f o r m e r s i m p o r t Tra in ingArgumen t s , AutoToken ize r , A u t o M o d e l F o r S e q u e n c e C l a s s i f i c a t i o n
2
3# A d d i t i o n a l code f o r u n l e a r n i n g
4from benchmark i m p o r t U n l e a r n i n g T r a i n e r , Un lea rn ingArgumen t s
5u n l e a r n _ c o n f i g = Unlea rn ingArgumen t s (
6u n l e a r n _ m e t h o d =" b a d _ t e a c h i n g " , # MU method
7backbone =" b e r t − base " , # Network a r c h i t e c t u r e
8data_name=" imdb " , # D a t a s e t
9d e l _ r a t i o =5 # S t a n d a r d i z e d s p l i t s
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Table 3: Contribution of curriculum learning in MU.

Dataset CIFAR-100 IMDB DDI-2013 NLVR2 Speech Commands UCF101 SAMSum BioFact Tiny ImageNet Ave

Non-CL 55.5 68.6 53.4 58.1 42.8 76.6 28.5 17.4 21.1 46.9
CL 56.4 68.6 61.9 58.2 17.4 77.0 19.2 17.3 20.9 44.1
Gap -0.9 0 -8.5 -0.1 25.4 -0.4 9.3 0.1 0.2 2.8
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Figure 4: Transfer performances.
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Figure 5: Scaling of Df performance.

10)
11
12# S t a n d a r d HuggingFace code
13a r g s = T r a i n i n g A r g u m e n t s ( o u t p u t _ d i r =" tmp " )
14o r i g i n a l _ m o d e l _ n a m e = f "mu−bench / { u n l e a r n _ c o n f i g . backbone }−{ u n l e a r n _ c o n f i g . da ta_name } "
15r a w _ d a t a s e t s = l o a d _ d a t a s e t ( u n l e a r n _ c o n f i g . da ta_name )
16t o k e n i z e r = Au toToken i ze r . f r o m _ p r e t r a i n e d ( o r i g i n a l _ m o d e l _ n a m e )
17o r i g i n a l _ m o d e l = A u t o M o d e l F o r S e q u e n c e C l a s s i f i c a t i o n . f r o m _ p r e t r a i n e d ( o r i g i n a l _ m o d e l _ n a m e )
18
19# Rep lace o r i g i n a l HF t r a i n e r wi th our new t r a i n e r
20t r a i n e r = U n l e a r n i n g T r a i n e r ( model= o r i g i n a l _ m o d e l , a r g s = a rgs , u n l e a r n _ c o n f i g = u n l e a r n _ c o n f i g , r a w _ d a t a s e t s =

r a w _ d a t a s e t s , t o k e n i z e r = t o k e n i z e r )
21
22# S t a r t u n l e a r n i n g and e v a l u a t i o n
23t r a i n e r . u n l e a r n ( )

Listing 1: Example usage of MU-Bench: deleting 5% data from BERT-base trained on IMDB.
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Figure 6: MU training with LoRA.

A.4 Dataset level performance

We present the performance for each dataset in Figure 7-15.

A.5 More results

We present the performance on LoRA in Figure 6, membership inference attack in Table 5 and
unleanring time in Table 6.
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Figure 7: Performance on CIFAR-100.
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Figure 8: Performance on IMDB.
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Figure 9: Performance on DDI-2013.
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Figure 10: Performance on NLVR2.
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Figure 11: Performance on Speech Commands.

Table 4: Accuracy on Df for image generation task.

Method Acc (↓)

NEGGRAD 3.7
RANDLABEL 64.6
BAD-T 69.1
SCRUB 75.8
SALUN 48.2
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Figure 12: Performance on UCF101.
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Figure 13: Performance on SAMSum.
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Figure 14: Performance on BioFact.
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Figure 15: Performance on Tiny Imagenet.

Table 5: Success rate of membership inference attack.

Method Success Rate (%) (↓)

NEGGRAD 8.6
RANDLABEL 10.7
BAD-T 14.7
SCRUB 10.8
SALUN 11.5

Table 6: Average unlearning time across all datasets.

Method Unlearning time (hrs) (↓)

NEGGRAD 8.6
RANDLABEL 10.7
BAD-T 14.7
SCRUB 10.8
SALUN 11.5

22


	Introduction
	MU-Bench
	Problem Formulation
	Datasets and Tasks
	Unified Unlearning

	Experiments
	Main Results on Discriminative Tasks
	Main Results on Generative Tasks

	Discussion and Analysis
	Conclusion
	Appendix
	Related work
	Implementation details
	Original models
	Dataset level performance
	More results


