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Abstract
In this paper, we examine self-supervised learn-
ing methods, particularly VICReg, to provide
an information-theoretical understanding of their
construction. As a first step, we demonstrate how
information-theoretic quantities can be obtained
for a deterministic network, offering a possible
alternative to prior work that relies on stochastic
models. This enables us to demonstrate how VI-
CReg can be (re)discovered from first principles
and its assumptions about data distribution. Fur-
thermore, we empirically demonstrate the validity
of our assumptions, confirming our novel under-
standing of VICReg. Finally, we believe that the
derivation and insights we obtain can be gener-
alized to many other SSL methods, opening new
avenues for theoretical and practical understand-
ing of SSL and transfer learning.

1. Introduction
Self-Supervised Learning (SSL) algorithms (Bromley et al.,
1993) learn representations using a proxy objective (i.e.,
SSL objective) between inputs and self-defined signals. The
results indicate that the learned representations can general-
ize well to a wide range of downstream tasks (Chen et al.,
2020; Misra & Maaten, 2020), even when the SSL objective
does not use downstream supervision during training. In
SimCLR (Chen et al., 2020), for example, a contrastive loss
is defined between images with different augmentations (i.e.,
one as input and the other as a self-supervised signal). Then,
we take our pre-learned model as a feature extractor and
adopt the features to various applications, including image
classification, object detection, instance segmentation, and
pose estimation (Caron et al., 2021). However, despite the
success in practice, only a few works (Arora et al., 2019; Lee
et al., 2021a) provide theoretical insights into the learning
efficacy of SSL.

In recent years, information theory methods have played a
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key role in several notable deep learning achievements, from
practical applications in representation learning as the varia-
tional information bottleneck (Alemi et al., 2016), to theo-
retical investigations (e.g., the generalization bound induced
by mutual information (Xu & Raginsky, 2017; Steinke &
Zakynthinou, 2020; Shwartz-Ziv, 2022). Moreover, dif-
ferent deep learning problems have been successfully ap-
proached by developing and applying novel estimators and
learning principles derived from information-theoretic quan-
tities, such as mutual information estimation. Many works
have attempted to analyze SSL from an information theory
perspective. An example is the use of the mutual infor-
mation neural estimator (MINE) (Belghazi et al., 2018) in
representation learning (Hjelm et al., 2018) in conjunction
with the renowned information maximization (InfoMax)
principle (Linsker, 1988). However, looking at these works
may be confusing. Numerous objective functions are pre-
sented, some contradicting each other, as well as many
implicit assumptions. Moreover, these works rely on a cru-
cial assumption: a stochastic (often Gaussian) DN mapping,
which is rarely the case nowadays.

This paper presents a unified framework for SSL methods
from an information theory perspective which can be ap-
plied to deterministic DN training. We summarize our con-
tributions into two points: (i) Firdt, in order to study de-
terministic DNs from an information theory perspective,
we shift stochasticity to the DN input, which is a much
more faithful assumption for current training techniques.
(ii) Second, based on this formulation, we analyze how cur-
rent SSL methods that use deterministic networks optimize
information-theoretic quantities.

2. Background
Continuous Piecewise Affine (CPA) Mappings. A rich
class of functions emerges from piecewise polynomials:
spline operators. In short, given a partition Ω of a domain
RD, a spline of order k is a mapping defined by a polynomial
of order k on each region ω ∈ Ω with continuity constraints
on the entire domain for the derivatives of order 0,. . . ,k − 1.
As we will focus on affine splines (k = 1), we define this
case only for concreteness. An K-dimensional affine spline
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f produces its output via

f(z) =
∑
ω∈Ω

(Aωz + bω)1{z∈ω}, (1)

with input z ∈ RD and Aω ∈ RK×D, bω ∈ RK ,∀ω ∈ Ω
the per-region slope and offset parameters respectively, with
the key constraint that the entire mapping is continuous over
the domain f ∈ C0(RD). Spline operators and especially
affine spline operators have been widely used in function
approximation theory (Cheney & Light, 2009), optimal con-
trol (Egerstedt & Martin, 2009), statistics (Fantuzzi et al.,
2002), and related fields.
Deep Networks. A deep network (DN) is a (non-linear)
operator fΘ with parameters Θ that map a input x ∈ RD

to a prediction y ∈ RK . The precise definitions of DNs
operators can be found in Goodfellow et al. (2016). We will
omit the Θ notation for clarity unless needed. The only as-
sumption we require for our study is that the non-linearities
present in the DN are CPA, as is the case with (leaky-)
ReLU, absolute value, and max-pooling. In that case, the
entire input-output mapping becomes a CPA spline with an
implicit partition Ω, the function of the weights and archi-
tecture of the network (Montufar et al., 2014; Balestriero
& Baraniuk, 2018). For smooth nonlinearities, our results
hold from a first-order Taylor approximation argument.
Self-Supervised Learning. Joint embedding methods learn
the DN parameters Θ without supervision and input recon-
struction. Due to this formulation, the difficulty of SSL is to
produce a good representation for downstream tasks whose
labels are not available during training —while avoiding a
trivially simple solution where the model maps all inputs to
constant output. Many methods have been proposed to solve
this problem. Contrastive methods learn representations by
contrasting positive and negative examples, e.g. SimCLR
(Chen et al., 2020) and its InfoNCE criterion (Oord et al.,
2018). Other recent work introduced non-contrastive meth-
ods that employ different regularization methods to prevent
collapsing of the representation. Several papers used stop-
gradients and extra predictors to avoid collapse (Chen & He,
2021; Grill et al., 2020) while Caron et al. (2020) uses an ad-
ditional clustering step. As opposed to contrastive methods,
noncontrastive methods do not explicitly rely on negative
samples. Of particular interest to us is the VICReg method
(Bardes et al., 2021) that considers two embedding batches
Z = [f(x1), . . . , f(xN )] and Z ′ = [f(x′

1), . . . , f(x
′
N )]

each of size (N ×K). Denoting by C the (K ×K) covari-
ance matrix obtained from [Z,Z ′] we obtain the VICReg
triplet loss

L=
1

K

K∑
k=1

αmax
(
0, γ −

√
Ck,k + ϵ

)
+β

∑
k′ ̸=k

(Ck,k′)
2


+γ∥Z −Z ′∥2F /N.

Our goal will now be to formulate SSL as an information-
theoretic problem from which we can precisely relate VI-
CReg to known methods even with a deterministic network.

Deep Networks and Information-Theory. Recently,
information-theoretic methods have played a key role in sev-
eral remarkable deep learning achievements (Alemi et al.,
2016; Xu & Raginsky, 2017; Steinke & Zakynthinou, 2020;
Shwartz-Ziv & Tishby, 2017). Moreover, different deep
learning problems have been successfully approached by
developing and applying information-theoretic estimators
and learning principles (Hjelm et al., 2018; Belghazi et al.,
2018; Piran et al., 2020; Shwartz-Ziv et al., 2018). There
is, however, a major problem when it comes to analyz-
ing information-theoretic objectives in deterministic deep
neural networks: the source of randomness. The mutual
information between the input and the representation in
such networks is infinite, resulting in ill-posed optimization
problems or piecewise constant, making gradient-based op-
timization methods ineffective (Amjad & Geiger, 2019). To
solve these problems, researchers have proposed several so-
lutions. For SSL, stochastic deep networks with variational
bounds could be used, where the output of the deterministic
network is used as parameters of the conditional distribution
(Lee et al., 2021b; Shwartz-Ziv & Alemi, 2020). Dubois
et al. (2021) suggested another option, which assumed that
the randomness of data augmentation among the two views
is the source of stochasticity in the network. For super-
vised learning, Goldfeld et al. (2018) introduced an auxil-
iary (noisy) DN framework by injecting additive noise into
the model and demonstrated that it is a good proxy for the
original (deterministic) DN in terms of both performance
and representation. Finally, Achille and Soatto (Achille &
Soatto, 2018) found that minimizing a stochastic network
with a regularizer is equivalent to minimizing cross-entropy
over deterministic DNs with multiplicative noise. However,
all of these methods assume that the noise comes from the
model itself, which contradicts current training methods. In
this work, we explicitly assume that the stochasticity comes
from the data, which is a less restrictive assumption and
does not require changing current algorithms.

3. Information Maximization of Deep
Networks Outputs

This section first sets up notation and assumption on the
information-theoretic challenges in self-supervised learning
(Section 3.1) and on our assumptions regarding the data
distribution (Section 3.2) so that any training sample x can
be seen as coming from a single Gaussian distribution as in
x ∼ N(µx,Σx). From this we obtain that the output of any
deep network f(x) corresponds to a mixture of truncated
Gaussian (Section 3.3). In particular, it can fall back to a
single Gaussian under some small noise (det(Σ) → ϵ) as-
sumptions. These results will enable information measures
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to be applied to deterministic DNs. We then recover the
known SSL methods (Bardes et al., 2021) by making differ-
ent assumptions about the data distribution and estimating
their information.

3.1. SSL as an Information-Theoretic Problem
To better grasp the difference between key SSL methods,
we first formulate the general SSL goal from an information-
theoretical perspective.

We start with the MultiView InfoMax principle, i.e., maxi-
mizing the mutual information between the representations
of the two views. To do so, as shown in Federici et al.
(2020), we need to maximize I(Z;X ′) and I(Z ′;X). We
can do so by a lower bound using

I(Z,X ′)=H(Z)−H(Z|X ′)≥H(Z)+E[log q(z|x′)] (2)

where H(Z) is the entropy of Z. In supervised learn-
ing, where we need to maximize I(Z;Y ), the labels (Y )
are fixed, the entropy term H(Y ) is constant, and you
only need to optimize the log-loss E[log q(z|x)] (cross-
entropy or square loss). However, in SSL, the entropy
H(Z) and H(Z ′) are not constant and can be optimized
throughout the learning process. Therefore, only maximiz-
ing E[log q(z|x′)] will cause it to collapse to the trivial
solution of making the representations constant (where the
entropy goes to zero). To regularize these entropies, i.e., pre-
vent collapse, different methods utilize different approaches
to implicit regularizing information. To recover them in
Section 4, we must first introduce the notation and results
around the data distribution (Section 3.2) and how a DN
transforms that distribution (Section 3.3).

3.2. Data Distribution Hypothesis
Our first step is to assess how the output random variables of
the network are represented, assuming a distribution on the
data itself. Under the manifold hypothesis, any point can be
seen as a Gaussian random variable with a low-rank covari-
ance matrix in the direction of the manifold tangent space of
the data. Therefore, we will consider throughout this study
the conditioning of a latent representation with respect to the
mean of the observation, i.e., X|x∗ ∼ N(x∗,Σx∗) where
the eigenvectors of Σx∗ are in the same linear subspace than
the tangent space of the data manifold at x∗, which varies
with the position of x∗ in space.

Hence a dataset is considered to be a collection of {x∗
n, n =

1, . . . , N} and the full data distribution to be a sum of low-
rank covariance Gaussian densities as in

X ∼
N∑

n=1

N(x∗
n,Σx∗

n
)T=n, T ∼ Cat(N), (3)

with T the uniform Categorical random variable. To keep
things simple and without loss of generality, we consider

that the effective support of N(x∗
i ,Σx∗

i
) and N(x∗

j ,Σx∗
j
)

do not overlap. This keeps things general, as it is enough
to cover the domain of the data manifold overall, without
overlap between different Gaussians. Hence, in general, we
have that.

p(x) ≈ N
(
x;x∗

n(x),Σx∗
n(x)

)
/N, (4)

where N (x; ., .) is the Gaussian density at x and with
n(x) = argminn(x−x∗

n)
TΣx∗

n
(x−x∗

n). This assumption
that a dataset is a mixture of Gaussians with nonoverlapping
support will simplify our derivations below, which could
be extended to the general case if needed. Note that this
is not restrictive since, given a sufficiently large N , the
above can represent any manifold with an arbitrarily good
approximation.

3.3. Data Distribution After Deep Network
Transformation

Consider an affine spline operator f (Eq. 1) that goes from
a space of dimension D to a space of dimension K with
K ≥ D. The span, that we denote as image, of this mapping
is given by

Im(f) ≜ {f(x) : x ∈ RD} =
⋃
ω∈Ω

Aff(ω;Aω, bω) (5)

with Aff(ω;Aω, bω) = {Aωx + bω : x ∈ ω} the affine
transformation of region ω by the per-region parameters
Aω, bω , and with Ω the partition of the input space in which
x lives in. We also provide an analytical form of the per-
region affine mappings in Section 2. Hence, the DN map-
ping consists of affine transformations on each input space
partition region ω ∈ Ω based on the coordinate change
induced by Aω and the shift induced by bω .

When the input space is equipped with a density distribution,
this density is transformed by the mapping f . In general,
finding the density of f(X) is an intractable task. How-
ever, given our disjoint support assumption provided in
Section 3.2, we can arbitrarily increase the representation
power of the density by increasing the number of prototypes
N . In doing so, the support of each Gaussian is included
with the region ω in which its means lie in, leading to the
following result.

Theorem 1. Given the setting of Equation (4) the uncon-
ditional DN output density denoted as Z is a mixture of
the affinely transformed distributions x|x∗

n(x) e.g. for the
Gaussian case

Z∼
N∑

n=1

N
(
Aω(x∗

n)
x∗
n + bω(x∗

n)
,AT

ω(x∗
n)
Σx∗

n
Aω(x∗

n)

)T=n

,

where ω(x∗
n) = ω ∈ Ω ⇐⇒ x∗

n ∈ ω is the partition
region in which the prototype x∗

n lives in.
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The proof of the above involves the fact that if∫
ω
p(x|x∗

n(x))dx ≈ 1 then f is linear within the effective
support of p. Therefore, any sample from p will almost
surely lie within a single region ω ∈ Ω and therefore the
entire mapping can be considered linear with respect to p.
Thus, the output distribution is a linear transformation of the
input distribution based on the per-region affine mapping.

4. Information Optimization and Optimality
Based on our analysis, we now show how specific SSL
algorithms can be derived. According to Section 3.1, we
want to maximize I(Z;X ′) and I(Z ′;X). When our input
noise is small, we can reduce the conditional output density
pz|x∗ to a single Gaussian.

(Z ′|X ′ = xn) ∼ N (µn,Σn) ,

where we abbreviated the parameters. Using that, and the
result from Section 3.1, we see that one should optimize
both H(Z|X ′) and H(Z). As in a standard regression task,
we assume a Gaussian observation model, which means
p(z|z′) ∼ N(z′,Σr). Using the mean square error as a loss
function in regression tasks is a particular application of this
assumption, where Σr = I . To compute the expected loss,
we need to marginalize out the stochasticity in Z ′, which
means that the conditional decoding map is a Gaussian:

q(z|X ′ = x∗
n)=

∫
q(z|z′)p(z′|x∗

n)dz
′, (6)

which gives the distribution N(µn′ ,Σr +Σn′) meaning that
we can lower bound the mutual information with

I(Z;X ′) ≥ H(Z) + E[log(q(z|x′)]=H(Z)− d

2
log 2πΣr

−
N∑

n=1

1

2
(zn − z′n)

TΣ−1
r (zn − z′n)− log |Σn|. (7)

What happens if we attempt to optimize this objective?
The only intractable component is the entropy of Z. We
will begin by examining Z itself. It is natural to ask why
the entropy of Z will not increase to infinity. Intuitively,
the answer is that H(Z) and H(Z|X ′) are tied together,
and one cannot increase without the other. Now, recalling
that under our distribution assumption, Z is a mixture of
Gaussian (recall Thm. 1), we can see how the existing upper
and lower bounds could be used for this case; for example,
the ones in Moshksar & Khandani (2016).

4.1. Deriving VICReg From First Principles
We now propose to recover VICReg from the first principles
per the above information-theoretic principle.

Recall that our goal is to estimate the entropy H(Z) in Equa-
tion (7), where Z is a Gaussian mixture. This quantity is not

Figure 1. The network output with VICReg training is more
gaussian for small input noise. The P-value of the normality test
for different SSL models trained on CIFAR-10 for different input
noise levels. The x-axis is the coefficient that multiplies the data
distribution standard deviation to obtain the Gaussian standard
deviation that samples around each image. The dashed line repre-
sents the point at which the null hypothesis (Gaussian distribution
of the network output) can be rejected with 99% confidence.

known for a mixture of Gaussians due to the logarithm of a
sum of exponential functions, except for the special case of a
single Gaussian density. There are, however, several approx-
imations in the literature that include both upper and lower
bounds. Among the methods, some use the logarithmic sum
of the probability (Kolchinsky & Tracey, 2017), and some
use entropy-adjusted logarithmic probabilities (Huber et al.,
2008).

An even simpler solution is to approximate the entire mix-
ture as a single Gaussian by capturing only the first two
moments of the mixture distribution. Since the Gaussian
distribution maximizes the entropy for a given covariance
matrix, this method provides an upper bound approximation
of our entropy of interest H(Z). In this case, denoting by
ΣZ is the covariance matrix of Z, we find that we should
maximize the following objective:

max
Z,Z′

N∑
n=1

log
|ΣZ |
|Σn|

−1

2
(zn − z′n)

TΣ−1
r (zn − z′n)−

d

2
log 2πΣr

where Σr is constant with respect to our optimization pro-
cess, and the second term is the prediction performance of
one representation from the other. A key result from Shi et al.
(2009) connects the eigenvectors and eigenvalues of ΣZ and
those of each component Σi,∀i, and showed that under the
assumption that the separation (µi − µj)Σ

−1
i (µi − µj)

T

between the different components is large enough —which
holds true in our case as per our data distribution model—
the eigenfunctions of Σi,∀i are approximately the eigen-
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functions of ΣZ . Therefore, in our case, this means that
since all those eigenvalues are tied, we only need to find the
most efficient way to maximize |ΣZ |.

We know that the determinant of the matrix is the product
of its eigenvalues. For every positive matrix, the maximum
eigenvalue is greater than or equal to each diagonal element.
Therefore, under the constraint of the eigenvalues of the
matrix, the most efficient way is to decrease the off-diagonal
terms and increase the diagonal terms. By setting Σr = I ,
we therefore fully recover the VICReg objective.

4.2. SimCLR vs VICReg
Lee et al. (2021b) connected the SimCLR objective (Chen
et al., 2020) to the variational bound on the information
between representations (Poole et al., 2019), by using the
von Mises-Fisher distribution as the conditional variational
family. Based on our analysis in Section 4.1, we can identify
two main differences between SimCLR and VICReg: (i)
The conditional distribution pz|x′. SimCLR assumes a
von Mises-Fisher distribution for the encoder, while VICReg
assumes a Gaussian distribution. (ii) (Entropy estimation).
The entropy term in SimCLR, H(Z) =

∫
p(z|x′)p(x′)dx′,

is approximate based on the finite sum of the samples. VI-
CReg, however, uses a different approach and estimates the
entropy of Z only from the first second moments. Creating
self-supervised methods that combine these two differences
would be an interesting future research direction. In the-
ory, none of these assumptions is more valid than the other,
and it depends on the specific task and our computational
constraints.

4.3. Empirical Evaluation
The next step is to verify the validity of our assumptions.
Based on the theory presented in Section 3.3, the conditional
output density pz|T=i reduces to a single Gaussian with de-
creasing input noise. We validated it using a ResNet-18
model trained with SimCLR or VICReg on the CIFAR-10
dataset (Krizhevsky, 2009). From the test dataset, we sam-
ple 512 Gaussian samples for each image and analyzed
whether these samples remain Gaussian (for each image)
at the penultimate layer of the DN, that is, before the lin-
ear classification layer, independently for each output di-
mension. Then, we employ D’Agostino and Pearson’s test
(D’Agostino, 1971) to compute the p-value of the normality
test under the null hypothesis that the sample represents
a normal distribution. In this test, the deviation from nor-
mality is measured, and the test aims to determine whether
the sample represents a normally distributed population. A
kurtosis and skewness transformation is used to perform the
test. The process is repeated for different noise standard
deviations. Figure 1 shows the p-value as a function of the
normalized standard deviation. We can observe that the
network’s output is indeed Gaussian with a high probability

for small input noise. As we increase the input noise, the
network’s output becomes less Gaussian until the noise dis-
tribution can be rejected with 99% confidence. Moreover,
we can see that VICReg is, interestingly, more ”Gaussian”
than SimCLR, which may have to do with the fact that it op-
timizes only the second moments of the density distribution
to regularize H(Z).

5. Conclusions
In this study, we examine SSL’s objective function from an
information-theoretic perspective. Our analysis, based on
transferring the required stochasticity to the input distribu-
tion, shows how to derive SSL objectives. Therefore, it is
possible to obtain an information-theoretic analysis even
when using deterministic DNs. In the second part, we re-
discovered VICReg’s loss function from first principles and
showed its implicit assumptions. In short, VICReg performs
a crude lower bound estimate of the output density entropy
by approximating this distribution with a Gaussian matching
the first two moments. Finally, we empirically validated that
our assumptions are valid in practice, thus confirming the
validity of our novel understanding of VICReg. Our work
opens many new paths for future research; A better estima-
tion of information-theoretic quantities fits our assumptions.
Another exciting research direction is to identify which SSL
method is preferred based on data properties.
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