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Abstract
Predicting the future trajectory of surrounding
objects is inherently uncertain and vital in the
safe and reliable planning of autonomous systems
such as in self-driving cars. Although trajectory
prediction models have become increasingly so-
phisticated in dealing with the complexities of
spatiotemporal data, the evaluation methods used
to assess these models have not kept pace. ”Mini-
mum of N” is a common family of metrics used
to assess the rich outputs of such models. We
critically examine the Minimum of N within the
proper scoring rules framework to show that it
is not strictly proper and demonstrate how that
could lead to a misleading assessment of multi-
modal trajectory predictions. As an alternative,
we propose using Energy Score-based evaluation
measures, leveraging their proven propriety for a
more reliable evaluation of trajectory distribution
predictions.

1. Introduction
Trajectory prediction is vital in various systems like au-
tonomous vehicles. To plan safely, an autonomous agent
has to forecast the future movements of surrounding ob-
jects amid inherent uncertainty. Traditional approaches
(Sadeghian et al., 2019; Gao et al., 2020) generate single
trajectory predictions, which are often deterministic point
estimates, failing to represent the uncertainty. On the con-
trary, Multimodal Trajectory Prediction (MTP) or scenario
forecasts (Morales et al., 2013) represent multiple plausible
future trajectories that can naturally be viewed as a probabil-
ity distribution over the forecast horizon, ideally capturing
and matching the uncertainty in the data.

While modeling and representation of MTP have
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Figure 1. Gaussian and Mixture of Gaussian toy example in 1D
that illustrates a suboptimal forecast (in red) performing better than
the optimal forecast according to MoN despite a mismatch in mean,
variance, and mixture weights. left: a unimodal example where the
expected minDE of optimal and suboptimal forecasts are 0.029
and 0.024, respectively. right: a bimodal example where similarly
the expected minDE is 0.024 and 0.021. Expected minDE
is calculated based on K = 100 trajectories, and minDE is
averaged across 2000 replicated experiments.

evolved (Gupta et al., 2018; Mangalam et al., 2020; Mo-
hamed et al., 2020; Mangalam et al., 2021; Salzmann et al.,
2020; Ma et al., 2021; Yue et al., 2022; Bae et al., 2022),
evaluating such predictions has not kept pace. Minimum of
N (MoN) is a common family of evaluation metrics inspired
by variety loss (Gupta et al., 2018) is used to evaluate MTPs.
As we demonstrate in our work, employing MoN is prob-
lematic as it can happen that a suboptimal prediction may
get the same or lower error than the Bayes-optimal predictor,
as shown in Fig. 1. Moreover, two models with comparable
errors could have considerably different predictive distribu-
tions.

Similarly, (Thiede & Brahma, 2019) provides theoretical
results that show MoN cannot be trusted as the only metric
to compare models with, and they encourage the usage of
the log-likelihood of the marginalized predictive distribution
as a complementary metric. Despite that, since then, the
literature has widely adopted MoN in various ways for the
evaluation (Rudenko et al., 2020; Huang et al., 2023). In
some instances, it is the main metric for evaluation. For
example, state-of-the-art papers in the human trajectory
prediction on the ETH/UCY dataset1 are ranked primarily
based on MoN. Many studies do accompany their evalu-
ation with complementary metrics such as cross-entropy-

1https://paperswithcode.com/sota/trajectory-prediction-on-
ethucy
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based metrics (Rhinehart et al., 2018) or collision avoidance
rate (Yue et al., 2022) and task-aware metrics (Ivanovic &
Pavone, 2021). Complementing the evaluation with other
metrics can be helpful if the new metric is able to identify
the optimal prediction uniquely. However, using comple-
mentary metrics has its own challenges. For example, their
use is often subjective to a particular downstream use case.
Since many recent developments are based on some form
of probabilistic modeling, it is prudent that we need eval-
uation metrics that are appropriate for assessing predicted
probability distributions produced by these models.

We build on top of the theoretical results of (Thiede &
Brahma, 2019) by studying MoN under the proper scor-
ing rules framework (Gneiting & Raftery, 2007), focusing
mainly on evaluating MTPs as probabilistic predictions.
They show that the optimal solution of MoN loss is asymp-
totically a distribution with the PDF equal to the squared
root of the ground truth’s distribution when the number of
trajectories is sufficiently large and propose a corrective pro-
cedure. Since the correction proposed by (Thiede & Brahma,
2019) does not eliminate the fact that MoN is not strictly
proper, evaluating the predictive distribution of trajectories
with MoN is problematic.

In summary, our contributions are threefold:

1. We critically examine MoN within the proper scoring
rules framework, highlighting its lack of strict propriety
and, therefore, being insufficient in assessing MTPs.

2. By that, we stress the need to introduce strictly proper
scoring rules for evaluating trajectory predictions and
propose the adoption of Energy Score-based metrics
as an alternative to MoN for evaluating MTPs.

3. We show how Energy Score can be employed in vari-
ous ways to evaluate MTPs for a more informed and
reliable assessment.

The code for our experiments is available at
https://github.com/novinsh/trajectory-
prediction-eval-with-energy-score.

2. Related work
Evaluation metrics for MTP can be categorized into Lower-
bound-based, Probability-aware, and Distribution-aware
metrics (Huang et al., 2023). The common lower-bound-
based instances of MoN are minimum displacement er-
ror (minDE) and minimum mean squared distance (min-
MSD). The first works to hint towards using such metrics
for evaluation were (Alahi et al., 2016; Gupta et al., 2018;
Sadeghian et al., 2019). Later, it got adopted and popular-
ized more in other works (Lee et al., 2017; Rhinehart et al.,
2018; Park et al., 2018; Bhattacharyya et al., 2018; Tang

& Salakhutdinov, 2019; Schöller et al., 2020). Extension
of lower-bound-based MoN to probability-aware variations
can be achieved by applying MoN on Most-likely or Top-
1-likely (Cui et al., 2019), TopN%-likely or else best-of-N
samples (Chen et al., 2021). TopN% is shown to be more
stable than Top1 by (Bhattacharyya et al., 2020). Lower-
bound metrics ignore the likelihood of the trajectories while
implicitly being less sensitive to low-density regions – an
indirect result of Theorem 1 from (Thiede & Brahma, 2019).
Simultaneously, probability-aware instances of MoN as-
sume that the ground-truth samples are realized from the
highest probability regions of the ground truth’s PDF.

Contrary to the previous categories, ”distribution-aware”
metrics are meant to evaluate the whole distribution. How-
ever, there is no agreed or formal notion of it. (Amirian
et al., 2019) creates a synthetic setup where multiple ob-
servations are available from the ground truth, and it is
possible to use Earth Mover’s Distance (EMD) to evalu-
ate models in a controlled environment. Others introduced
Coverage-based metrics (Dendorfer et al., 2021; Li et al.,
2022) that evaluate trajectories based on how close they fall
from the ground truth as a measure to determine whether
a sample is in- or out-of-distribution. They still employ
MoN as part of their coverage-based metric. Lastly, the
log-likelihood metric can be considered distribution-aware,
which has been employed in many works in one way or
the other (Rhinehart et al., 2018; Thiede & Brahma, 2019).
However, estimating the likelihood is often challenging be-
cause existing models typically do not directly model the
density, which means the likelihood function has to be es-
timated, which is often computationally expensive. More-
over, (Thiede & Brahma, 2019) in their Algorithm 1 rely
on a marginalized log-likelihood metric to compensate for
MoN’s dilation effect. The marginalization in their work
is due to computational considerations. More importantly,
using log-likelihood can be seen in a broader view in that
to employ log score as a strictly proper multivariate scoring
rule. So, we extend their suggestion to use complemen-
tary metrics by saying that using complementary metrics is
particularly beneficial if they are strictly proper. Also, our
proposal to use Energy score-based evaluation allows for
joint evaluation that might be relevant to many applications.

Many of the criticisms towards MoN in the literature, such
as ”only evaluating the best/most-likely sample” (Rhinehart
et al., 2018), ”robustness” (Bhattacharyya et al., 2020), ”pre-
ferring higher entropy prediction” (Schöller et al., 2020) can
be explained and studied more formally under the scoring
rules framework. Empirically and analytically, we show
why MoN is not desirable as an evaluation metric to as-
sess the predictive distribution of trajectories or to be used
as a loss function to issue probabilistic trajectory predic-
tions, especially in safety-critical applications. However,
its simplicity and lack of computational demand might be
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attractive for certain resource-constrained settings, given
that its lack of propriety is addressed, i.e., by compensating
similar to (Thiede & Brahma, 2019) or ensuring it is not
detrimental to the downstream use case.

3. Background
3.1. Definitions and notations

Trajectory A trajectory consists of a sequence of S-
dimensional vectors where S ∈ {1, 2, 3, . . . }, encoding
the coordinates of an agent throughout time. Let us con-
sider trajectories of N agents and denote these trajecto-
ries as yi where i is the index of the agent. The se-
quence can be divided into past ypast

i and future yτ
i , where

ypast
i = (y−Tobs+1

i , . . . , y0i ) is the observed trajectory with
Tobs time steps, and yi = (y1i , . . . , y

T
i ) is the future tra-

jectory with T time steps. In our work, typically yti ∈ R2

because we consider S = 2. A trajectory can be seen as a
multivariate time series, which, in our case, consists of two
time series coupled based on a spatial dependency. In order
to model uncertainties, we introduce spatiotemporal random
vectors Yi = (Y 1

i , . . . , Y
T
i ) for i = 1, . . . , N and assume

that the future trajectory yi of the i-th agent is a realization
of this random vector Yi.

Trajectory Distribution Prediction In this work, we con-
sider trajectory distribution prediction methods that for a
given observed trajectory ypast

i output K future trajectories
xi,1 . . . ,xi,K drawn from some explicit or implicit2 proba-
bility distribution FXi

. Note that each predicted trajectory
(also referred to as scenario) xi,k ∈ RT×S covers T time-
points and S spatial dimensions, and the point at time t is
denoted as xt

i,k ∈ RS .

Trajectory Distribution Evaluation Trajectory distribu-
tion evaluation is the process of assessing how well trajec-
tory distribution predictions Xi ∼ FXi

follow the ground
truth Yi ∼ FYi

. A distribution-aware evaluation aims at
calculating distance d(FXi

,FYi
), which is some measure

of distance between the predictive and ground truth distribu-
tions that informs on the quality of the predicted trajectory
distribution.

3.2. Proper Scoring Rules

Typically, we would like to compare our predictions to the
true generative distribution, but we do know the generative

2In general, the predictive distribution can be represented ex-
plicitly or implicitly. This choice has different computational and
approximation implications depending on the modeling technique.
For example, the sampling process itself could be costly, but this is
not within the scope of our work. Regardless of the representation,
in our work, the K trajectories are independent and identically
distributed (i.i.d.) samples of the predictive distribution, which
allows for a universal and non-parametric evaluation.

distribution, so a scoring rule allows us to instead compare
the predictive distribution against a sample drawn from the
generative distribution. A scoring rule provides a summary
measure for evaluating probabilistic predictions that reports
an empirical mean over the samples drawn from the ground
truth distribution. The score could be used to compare a
predictive distribution FXi

from a model with some ground
truth distribution FYi . The score is minimal when the pre-
diction reports the true set of probabilities, i.e., FXi = FYi .
A scoring rule is proper if it satisfies this property as de-
fined in Definition 3.1. We provide this definition based
on (Gneiting & Raftery, 2007).

Definition 3.1. A (negatively-oriented) strictly proper scor-
ing rule S maps a probability distribution FX and an obser-
vation y to a real number, i.e., S(FX,y) ∈ R. The expected
value of S(FX, .) under FY, is written as S(FX,FY) =
Ey[S(FX,y)] where y ∼ FY. A scoring rule is proper if
S(FX,FY) ≥ S(FY,FY) for all FX and FY, and strictly
proper when the equality holds if and only if FX = FY.

Because of this property, a strictly proper scoring rule is
not only useful for evaluation but also for learning and
optimization of a probabilistic model as it encourages the
model towards optimal prediction, i.e., a Bayes-optimal
prediction of FYi

that yields the best score.

3.3. Energy Score

Energy score is a measure used for evaluation of multivariate
forecasts and shown to be a generalization of Continuous
Ranked Probability Score (CRPS), which is a univariate
score for evaluation of probabilistic forecasts (Gneiting &
Raftery, 2007),

ES(FX,y) = E∥X− y∥βp − 1

2
E∥X− X̃∥βp

where ∥.∥p indicates the Lp-norm (the original formulation
has p = 2 but a generalization is provided in (Gneiting
& Raftery, 2007)). Intuitively, the first term encourages
the quality of individual predictions, while the second term
encourages diversity. In expectation over many ground truth
observations, the combination of these two terms achieves
a balance that ensures strict propriety. Readers may refer
to (Gneiting & Raftery, 2007; Székely & Rizzo, 2013) for
more elaborate details. For p = 2, the norm is Euclidean,
and the energy score is strictly proper for 0 < β < 2 with
smaller values suggested for heavy-tailed data to ensure
detection of β moments. Furthermore, the energy Score
is distantly related to permutational ANOVA (PANOVA)
(Anderson, 2005). If β = 2 and p = 2, it will give us
PANOVA with a minor difference that in PANOVA’s original
definition, the second term does not have the coefficient 1/2.
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3.4. Displacement Error Metrics

Minimum Average Displacement Error (minADE) and Min-
imum Final Displacement Error (minFDE) defined in Eqs. 4
and 5, which are both based on Displacement Error (DE),
are common instances of MoN.

DE(x, y) =∥x− y∥2 ∀x, y ∈ RS (1)

ADE(Xi,Yi) =E

[
1

T

T∑
t=1

DE(Xt
i , Y

t
i )

]
(2)

FDE(Xi,Yi) =E
[
DE(XT

i , Y
T
i )

]
(3)

minADE(Xi,Yi) =E

[
min
k

1

T

T∑
t=1

DE(Xt
i,k, Y

t
i )

]
(4)

minFDE(Xi,Yi) =E
[
min
k

DE(XT
i,k, Y

T
i )

]
(5)

where Xt
i and Xt

i,k are random variables distributed
identically to the timepoint t in Xi. By using either
ADE(Xi,Yi) or ADE(FXi ,FYi), we acknowledge that
the scoring rule is based on the underlying distributions of X
and Y, whether they are expressed directly as random vari-
ables or through their cumulative distribution functions. The
same applies to FDE, minADE, and minFDE. Here,
we observe one sample yi from the ground truth distribution,
while observing K trajectories/samples xi,1 . . . ,xi,K from
the predictive distribution FXi . The above equations can be
estimated as follows:

ÂDE(xi,yi) =
1

KT

K∑
k=1

T∑
t=1

DE(xt
i,k, y

t
i)

F̂DE(xi,yi) =
1

K

K∑
k=1

DE(xT
i,k, y

T
i )

̂minADE(xi,yi) = min
k

1

T

T∑
t=1

DE(xt
i,k, y

t
i)

̂minFDE(xi,yi) = min
k

DE(xT
i,k, y

T
i )

We define the ”L-lowest of N” (LoN) as a more general
form of ”Minimum of N”.

ADE(L)(Xi,Yi) =E min
{k1,...,kL}

ki ̸=kj

1

LT

L∑
l=1

T∑
t=1

DE(Xt
i,kl

, Y t
i )

(6)

FDE(L)(Xi,Yi) =E min
{k1,...,kL}

ki ̸=kj

1

L

L∑
l=1

DE(XT
i,kl

, Y T
i )

(7)

It is noteworthy that ADE(L=K) ≡ ADE and similarly
FDE(L=K) ≡ FDE, at the same time, ADE(L=1) ≡
minADE and similarly FDE(L=1) ≡ minFDE. In the
remainder of the paper, we use these notations interchange-
ably.

4. MoN as a Scoring Rule
The following propositions study ADE(L) as an instance
of MoN under the proper scoring rule framework and show
that these measures are not strictly proper.

Proposition 4.1. Average Displacement Error
ADE(Xi,Yi) is improper, meaning there exist dis-
tributions FXi

and FYi
, for which

ADE(Xi,Yi) < ADE(Yi,Yi).

Proof. The proofs are provided in Appendix A.

Because ADE is improper, FDE is improper too.

Proposition 4.2. L-lowest Average Displacement Error
ADE(L)(Xi,Yi) is improper for any values of L ≤ 2,
meaning there exist distributions FXi

and FYi
, for which

ADE(L)(Xi,Yi) < ADE(L)(Yi,Yi).

Because ADE(L) is improper, FDE(L) is improper too.

Since ADE and ADE(L) are improper, they are unsuitable
for identifying the optimal predictive distribution from the
suboptimal one. We also empirically show these results in
Section 6.1.

Another problem when using ADE(L) is that it depends
on the number of trajectories K due to the minimum op-
eration. This means that each extra trajectory we sample
from the distribution only lowers the ADE(L) value, as we
demonstrate in the following proposition.

Proposition 4.3. Let X(K)
i ∼ FXi

be a random vector of
length K, X(K+1)

i ∼ FXi be a random vector of length
K + 1 and Yi ∼ FYi . Then

ADE(L)(X
(K)
i ,Yi) ≥ ADE(L)(X

(K+1)
i ,Yi)

We see that ADE(L) is decreasing as the sample size in-
creases, and we also need to consider the fact that ADE(L)

is bounded from below by zero. From this arises a question:
For which distributions does it converge to zero? As it turns
out, the ADE(L) converges to zero for all the distributions
where the support covers the true distribution’s support.

Proposition 4.4. Let Xi ∼ FXi
of length K and Yi ∼

FYi . If K → ∞, L is fixed and supp(FYi) ⊂ supp(FXi)
then ADE(L)(Xi,Yi) → 0.
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From the Proposition, we see that ADE(L) is a measure for
which the value is not comparable across different values
of K. As K increases, the value of ADE(L) decreases,
even if the model does not improve, as we also empirically
show in Section 6.2. From the interpretability point of view,
this is somewhat unintuitive as one would expect that the
scoring rule’s report becomes more robust if more samples
are available from the predictive distribution (K → ∞).

Therefore, following Propositions 4.2 and 4.4, we suggest
Energy Score as a strictly proper alternative for evaluating
trajectory distribution predictions.

5. Distribution-aware Evaluation with Energy
Score

Since trajectories are essentially a multivariate time series,
we can adopt energy score as a multivariate scoring rule to
evaluate the predicted probability distribution. 2D trajecto-
ries sampled from the predictive distribution are spatially
coupled time series as depicted in Fig. 2. Therefore, the tra-
jectories are multivariate in the temporal and spatial sense,
which means that the interaction between spatiotemporal
variables is of interest to be jointly assessed.

As far as we know, no other work has discussed the appli-
cation of energy score in MTP evaluation. To this end, we
introduce three variations of Energy Score for different use
cases of evaluation in the context of trajectory prediction,
which also applies to broader use cases in multivariate time
series evaluation. The energy score, defined in Eq. 8, is
applied to a probabilistic trajectory prediction with a pre-
dictive distribution FXi and a ground truth observation yi.
The overall performance is then the average performance of
all the instances in the dataset as shown in Eq. 9.

ES(FXi,yi) =

ED︷ ︸︸ ︷
E∥Xi − yi∥βp −

1

2

EI︷ ︸︸ ︷
E∥Xi − X̃i∥βp (8)

ES =
1

N

N∑
i=1

ES(FXi ,yi) (9)

For brevity, hereafter, we will omit the subscript i when
referring to each instance. The first term (ED) has a close
similarity to the displacement error that measures the dis-
tance of the prediction with the observation. The second
term (EI) is an intra-distance, which captures the uncertainty
of X by calculating its dispersion. EI will be zero when the
predictions are all the same, which is not attainable as long
as the ground truth distribution has a variation. Intuitively,
the ED term promotes each trajectory to be individually
as good as possible, whereas the subtracted EI term pro-
motes diversity. When averaged over many ground truth
observations, the combination of these terms provides a bal-
ance under which the predictor is incentivized to match the

ground truth distribution.

In a non-parametric case, the energy score operates on K
uniform trajectories sampled from the predictive joint dis-
tribution FX, whereas it can be calculated analytically in a
parametric case. Since X ∈ RK×T×S and y ∈ R1×T×S ,
there are many ways that distance between them can be cal-
culated. Our variations outline three ways to calculate such
a distance, and the difference is in how the Lp norm dis-
tance is calculated. For clarity, we provide the estimations
for each term separately.

Xt,s
k =

x11
k . . . x1S

k
...

. . .
...

xT1
k . . . xTS

k

 yt,s =

y11 . . . y1S

...
. . .

...
yT1 . . . yTS


Energy Score The distance between the matrices is an
entry-wise matrix norm. With p = 2, it would be equal
to Frobenius distance, and with p > 2, it would be equal
to entry-wise Minkowski distance. This score evaluates the
trajectories jointly on both temporal and spatial dimensions.

ES =

ED︷ ︸︸ ︷
Ek,t,s

(
∥X− y∥βp

)
−1

2

EI︷ ︸︸ ︷
Ek,t,s

(
∥X− X̃∥βp

)
(10)

The Eq. 10 is estimated as follows:

ÊD =
1

K

K∑
k=1

( T∑
t=1

S∑
s=1

|Xt,s
k − yt,s|p

)β/p

ÊI =
1

K2

K∑
k=1

K∑
l=1

( T∑
t=1

S∑
s=1

|xt,s
k − x̃t,s

l |p
)β/p

It is worth noting that the distance of each temporal and
spatial variable is under the norm calculation.

Energy Score Temporal (EST) is a spatially marginal-
ized energy score that calculates the distance column-wise,
marginalizing the spatial dimension while calculating the
distance jointly with respect to the temporal dimension.
This variation is more sensitive to the temporal discrepan-
cies. The distance calculation in this variation is akin to the
Minkowski column distance between the two matrices.

EST =

EDT︷ ︸︸ ︷
Ek,s

(
∥X− y∥βp

)
−1

2

EIT︷ ︸︸ ︷
Ek,s

(
∥X− X̃∥βp

)
(11)

ÊDT =
1

K

K∑
k=1

(
1

S

S∑
s=1

( T∑
t=1

|xt,s
k − yt,s|p

)β/p
)

ÊIT =
1

K2

K∑
k=1

K∑
l=1

(
1

S

S∑
s=1

( T∑
t=1

|xt,s
k − x̃t,s

l |p
)β/p

)
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Figure 2. Top: Toy examples of spatially and temporally indifferent cases respectively under (a) and (b) with their corresponding energy
scores as bar plots. Forecasts A and B each issue two 2D scenarios (color-coded) for two time steps t = {1, 2}. Bottom: a comparable
self-driving car demonstration for each case where the initial position of the target vehicle is marked by a solid black circle at t = 0.

Energy Score Spatial (ESS) is a temporally marginalized
energy score that is used to calculate the distances row-wise,
marginalizing over the temporal dimension while calculat-
ing the distance jointly with respect to the spatial dimension.
This variation is more sensitive to the spatial discrepancies.

ESS =

EDS︷ ︸︸ ︷
Ek,t

(
∥X− y∥βp

)
−1

2

EIS︷ ︸︸ ︷
Ek,t

(
∥X− X̃∥βp

)
(12)

ÊDS =
1

K

K∑
k=1

(
1

T

T∑
t=1

( S∑
s=1

|xt,s
k − yt,s|p

)β/p
)

ÊIS =
1

K2

K∑
k=1

K∑
l=1

(
1

T

T∑
t=1

( D∑
s=1

|xt,s
k − x̃t,s

l |p
)β/p

)

Figure 2 illustrates a toy example demonstrating the dif-
ference between the three variations. In this toy example,
T = 2 and S = 2, with two forecasts, A and B, where
forecast A matches the ground truth. Each forecast issues
two equally likely trajectories/scenarios (color-coded in or-
ange and blue) for the two time steps ahead in the two-
dimensional space. In the first example (a), the forecasts are
issued such that ESS would be indifferent between forecasts
A and B while EST detects the difference, and vice-versa in
the second example (b). ES detects the difference in both
examples since it is calculated jointly over the temporal and
spatial dimensions.

To illustrate the usefulness of EST and ESS, consider these
examples to be about a self-driving car where the ego vehicle
predicts the trajectory of a nearby car in a bird’s-eye view or
top-down view. In this context, case (a) exemplifies a lane-
changing behavior for t > 0 where forecast A predicts no
lane change while forecast B predicts a lane change. Despite
the fact that both forecasts have similar spatial positions
for each time step, that is {xt,s

k |k ∈ {1, 2} from A} =

{xt,s
k |k ∈ {1, 2} from B}, they exhibit different temporal

behavior. On the other hand, in case (b), forecasts A and
B predict mirror images of each other with respect to axis
s = 2, which exemplifies different longitudinal behavior.
Despite the same temporal behavior, forecasts are different
spatially. In this demonstration, if forecasts were governed
by a constant velocity motion model x = vt+ x0, then the
differences between each scenario arise as a consequence
of uncertainty about the initial position x0, the velocity v,
or both.

To emphasize, EST and ESS both assess temporal and spa-
tial aspects. However, the joint information is lost due to
marginalization over the spatial dimension for the EST and
the temporal dimension for the ESS, making each insen-
sitive to certain discrepancies. These variations of energy
scores allow for various ways to diagnose forecasts. ES can
be used as a primary evaluation metric and EST/ESS as a
secondary measure to determine whether a forecast is better
or worse than the other due to joint temporal or joint spatial
information. Moreover, such marginalization allows for the
different weighting of each dimension. For instance, in the
context of self-driving cars, one can put more weight on
s = 1 than s = 2 in the ESS, which emphasizes more on
the longitudinal movement than latitudinal.

6. Experiments
We conduct a series of experiments highlighting the im-
portance of adopting proper scoring rules as a distribution-
aware evaluation of trajectory distribution predictions. We
empirically demonstrate the consequence of adopting an
improper score for evaluation and how it can go wrong in
Section 6.1 through a showcase of propriety. We also em-
pirically demonstrate the effect of the trajectory size K in
Section 6.2. To see the energy score in action, we perform
a real data experiment on the ETH/UCY dataset (Ess et al.,
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2007) in Section 6.3. Additionally, we run a simulation to
support our theoretical results in Appendix B.

6.1. Propriety Showcase

We generate trajectories through an autoregressive process
with length T = 4 and set the second spatial dimension to all
zeros. The generating process is effectively one-dimensional
and can be summarized as follows:

yti,k = yt−1
i,k +N (µt + at, (σt + bt)2)

where t ∈ {1, 2, 3}, i = [0, N), k = [0,K), y0 = 0

at and bt are deviations from the parameters of the normal
distribution µt, and σt. This process mimics a motion dy-
namic where trajectories have varying velocities, as depicted
in Fig. 3 with five trajectories generated from this process.

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5
s = 1

s
=

2 
- a

ll 
ze

ro
s

Figure 3. Generated trajectories with the same origin at t = 0
marked by a black dot. The second spatial dimension is set to zero
for all, so they are plotted with a y-offset for visualization.

We set the ground truth parameters to be µt=1, σt=0.2,
at=0, and bt=0 for t={1, 2, 3}. Then, we generate N=
5000 observations and consider K={10, 20, 50, 100, 300}
to generate predictions from the same process. We cre-
ate sub-optimal predictions by creating deviations from the
same data-generating process, setting at=0 and using 21
equidistant values for bt in the range [−0.05, 0.05]. We
expect a metric to assign its lowest score to the prediction
closest to the true value of the ground truth’s parameter,
that is, b = 0. For |b| > 0, we expect the score to reflect
such discrepancy as predictions get further from the opti-
mal. Figure 4 compares minFDE, FDE(L), and FDE,
alongside with Final Energy Score (FES). Minimum of
minFDE, FDE(L), and FDE are realized at a distribu-
tion with higher variance than the true distribution. In con-
trast, the FES is minimized near the true value, with some
deviation for lower K due to noise. In the limit of the dataset
size N and trajectory size K, the optimum will be realized
by FES, as it is evident from the trend in Fig. 4(d), be-
cause it is a strictly proper score, whereas the other metrics
get farther from the optimum. Moreover, lower variance is
encouraged in the case of FDE since it evaluates the first
moment.

Empirical results from this experiment confirm our Proposi-
tions 4.1 and 4.2. Additional figures and extended results
can be found in Appendix C.

6.2. Effect of Sample Size

Similar to the experiment in Appendix F of (Bhattacharyya
et al., 2020), we demonstrate how each metric is sensitive
to the number of trajectories as shown in Table 1. Au-
thors in (Bhattacharyya et al., 2020) previously showed that
TopK% scores are more desirable over TopK since they
are more consistent. In this experiment, we show a similar
comparison between ADE(L>1) and ADE(L=1).

Table 1. Scores of an optimal prediction calculated over an expand-
ing window in the range t = [1, 3] for different values of K. All
the scores reported in the table were multiplied by 100 for easier
readability.

METRIC K t = 1 t = 2 t = 3

ADE(L=1) 20 1.20 4.00 6.50
50 0.50 2.60 4.70
100 0.30 1.90 3.70

ADE(L=0.1K) 20 1.70 5.00 7.70
50 1.40 4.60 7.20
100 1.40 4.50 7.00

ES 20 11.70 19.20 25.10
50 11.30 18.60 24.40
100 11.20 18.40 24.10

We use the same data-generating process as in Section 6.1.
Table 1 clearly shows that ADE(L=1) is not comparable
across different K. More precisely, it decreases by increas-
ing K while the prediction has not changed. On the other
hand, ADE(L>1) is more consistent across different val-
ues of K. Despite ADE(L>1) seems to be more consistent
than ADE(L=1), due to being improper, as we discussed
in Proposition 4.2 and showed empirically in Section 6.1,
in general, we do not recommend it. At the same time,
the ES defined in Eq. 10 is a measure where the score is
cross-comparable across different values of K because it
estimates the same expected value. For extended results of
this experiment, refer to the Appendix D.

6.3. Real Data

For the real data experiment, we adopt the pre-trained mod-
els from (Bae et al., 2022) and evaluate their models with
Energy Score (ES) alongside MoN alternatives such as mi-
nADE and minFDE. Table 2 partially reproduces Table
2 of (Bae et al., 2022). It contains two types of trajec-
tory prediction models, namely the Gaussian distribution-
based (STGCNN, SGCN) and CVAE-based (PECNET),
with three different sampling procedures: Monte-Carlo
(MC), Quasi-monte Carlo (QMC) and Non-probability Sam-
pling Network (NPSN). In total, we evaluated nine different
models. With this experiment, we wanted to show that
the ES ranks the models differently than its counterpart,
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Figure 4. Empirically showing how propriety manifests itself. The X-axis represents predictions with different deviations from the
optimal parameters. A strictly proper metric gets minimized at the optimal parameter (deviation=0) as K increases. As a reminder:
FDE(L=1) = minFDE and FDE(L=K) = FDE.

Table 2. baselines: *-mc. The reported numbers are ADE/FDE/ES, which are averages over instances within each dataset. The last column
is the average of all datasets. Bold: best model, underline: second best model

ETH HOTEL UNIV ZARA1 ZARA2 AVG

STGCNN-MC 0.65/1.10/1.44 0.50/0.86/1.05 0.44/0.80/0.96 0.34/0.53/0.77 0.30/0.48/0.67 0.45/0.75/0.98
PECNET-MC 0.61/1.07/1.64 0.22/0.39/0.70 0.33/0.56/0.89 0.25/0.45/0.74 0.19/0.33/0.65 0.32/0.56/0.92
SGCN-MC 0.57/1.00/1.34 0.31/0.53/0.73 0.37/0.67/0.85 0.29/0.51/0.68 0.22/0.42/0.53 0.35/0.63/0.82
STGCNN-QMC 0.61/1.03/1.30 0.34/0.52/0.98 0.36/0.63/0.89 0.32/0.53/0.74 0.29/0.50/0.65 0.38/0.64/0.91
PECNET-QMC 0.60/1.05/1.62 0.21/0.37/0.68 0.33/0.54/0.88 0.24/0.43/0.72 0.18/0.31/0.62 0.31/0.54/0.91
SGCN-QMC 0.49/0.81/1.23 0.21/0.31/0.66 0.31/0.56/0.78 0.25/0.45/0.63 0.19/0.36/0.49 0.29/0.50/0.76
STGCNN-NPSN 0.44/0.65/1.48 0.21/0.34/0.88 0.28/0.44/0.88 0.25/0.43/0.83 0.22/0.38/0.73 0.28/0.45/0.96
PECNET-NPSN 0.55/0.88/1.60 0.19/0.29/0.63 0.29/0.44/0.88 0.21/0.33/0.70 0.16/0.25/0.56 0.28/0.44/0.87
SGCN-NPSN 0.36/0.59/1.23 0.16/0.25/0.62 0.23/0.39/0.79 0.18/0.32/0.66 0.14/0.25/0.50 0.21/0.36/0.76

MoN. When taking the arithmetic average (AVG) across
five datasets, ES considers SGCN-NPSN to be equally
good as SGCN-QMC, while minADE/minFDE consid-
ers SGCN-NPSN alone to be the best model. At the same
time, ES and minADE/minFDE disagree on 3 out of 5
datasets (UNIV, ZARA1, ZARA2) on the best model while
agreeing on HOTEL and having a tie between best and
second best on ETH. Therefore, when it comes to a ma-
jority decision, ES favors SGCN-QMC over SGCN-NPSN,
in contrast to minADE/minFDE, which prefers SGCN-
NPSN consistently across all datasets. This implies that
there are aspects in which the predictions of SGCN-NPSN
are worse than SGCN-QMC on 3 out of 5 datasets. The
Energy Score captures these aspects, but minADE and
minFDE do not. Therefore, in a practical application,
one should not blindly use SGCN-NPSN but also consider
SGCN-QMC because it can be better in some scenarios,
depending on the downstream task. Therefore, whether to
consider SGCN-NPSN as the best depends on the down-
stream use case and objective. Moreover, the reason why
minADE/minFDE consistently ranks SGCN-NPSN as
the best method can be partially attributed to the fact that
the NPSN method optimizes for minADE as part of the
objective (Bae et al., 2022). Thus, it is expected that the
minADE/minFDE evaluations would show the lowest
scores for *-NPSN models. Further results and comparison

across other metrics can be found in Appendix E.

7. Conclusion
We extended the previous analysis on MoN (Thiede &
Brahma, 2019) by studying it under the proper scoring rules
framework. We showed that MoN is not strictly proper,
meaning it cannot uniquely identify the optimal predictive
distribution that matches the ground truth. If used for de-
veloping and tuning prediction methods, it gives wrong
incentives. We adopted the energy score as a strictly proper
alternative to evaluating the MTPs, which evaluates the dis-
tribution of the trajectory predictions. Moreover, Energy
Score can be used for both parametric and non-parametric
PDFs, making it more flexible than MoN, which is a non-
parametric approach and lacks an analytical derivation. We
also proposed three different ways to use the Energy Score
for the evaluation of multimodal trajectory predictions that
allow investigation of the impact of joint information by
looking at marginalized versions of the energy score and
comparing them with the joint energy score, which can be a
useful tool for diagnosing evaluation of trajectory distribu-
tion predictions.

In summary, we think that distribution-aware evaluation of
trajectory predictions can benefit from principles of proper
scoring rules, and it should be adopted as a more reliable
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alternative for evaluating trajectory distribution predictions.
However, the choice of the metric should ideally be in-
formed by the downstream task, and thus, there are surely
tasks where an MoN metric would be the right metric to
use. Therefore, making a final call about which forecast
or model to choose over another amidst different rankings
reported by different metrics requires further research with
a holistic view encompassing the downstream objectives.

8. Limitations and future work
Calculating Energy Score has a computational complexity
of O(K2); however, there exist estimations with the com-
plexity of O(K) that can be considered (Ziel & Berk, 2019).
Moreover, Energy Score has been successfully applied for
relatively large K, e.g., K = 100 in other application do-
mains (Dumas et al., 2022). In our work, we considered
K as low as 10 and 20 for the synthetic and real data, re-
spectively, which is common for the trajectory prediction
tasks. However, for applications that require even lower val-
ues, its impact on the variance of the scores merits further
investigation.
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Appendix

A. Theory
A.1. Proof of Proposition 4.1

Proof. We need to show that the Average Displacement Error is improper. For this, we need to find two distributions that
violate properness. For simplicity, we show it for one-dimensional random variables. Let Y = (Y 1, . . . , Y T ) be a random
vector, where Y t ∼ N(µY t , σ2

Y t) is distributed normally for t = 1, . . . , T . We need to show that there exists a random
vector X = (X1, . . . , XT ) such that ADE(X,Y) < ADE(Y,Y). From the definition of ADE, we know that

ADE(X,Y) = E

[
1

T

T∑
t=1

DE(Xt, Y t)

]
=

1

T

T∑
t=1

E[DE(Xt, Y t)]

Let’s choose Xt ∼ N(µXt , σ2
Xt), with values of µXt and σ2

Xt specified later. Then DE(Xt, Y t) = |Xt − Y t|. We
know that the difference of normally distributed random variables is also with normal distribution and Xt − Y t ∼
N(µXt − µY t , σ2

Xt + σ2
Y t). Also, we know that the absolute value of a normally distributed random variable is with the

folded normal distribution. By using the known formula for the mean of a folded normal distribution, we get that

E[DE(Xt, Y t)] = E[|Xt − Y t|] =
√
σ2
Xt + σ2

Y t

√
2√
π
e
−

(µ
Xt−µ

Y t )2

2(σ2
Xt+σ2

Y t ) + (µXt − µY t)

1− 2Φ

− µXt − µY t√
σ2
Xt + σ2

Y t


To construct an example where ADE(X,Y) < ADE(Y,Y) we pick X such that µXt = µY t and σ2

Xt → 0. Then

E[DE(Xt, Y t)] =
√
σ2
Xt + σ2

Y t

√
2√
π

→
√
σ2
Y t

√
2√
π

From this, we get that

ADE(X,Y) → 1

T

T∑
t=1

√
σ2
Y t

√
2√
π

<
1

T

T∑
t=1

√
σ2
Y t + σ2

Y t

√
2√
π

= ADE(Y,Y)

A.2. Proof of Proposition 4.2

Proof. Let’s look at a set of trajectories X = X1, . . . , XK
i.i.d∼ Ber(pX) and a random variable Y ∼ Ber(pY ) in one

dimensional space. We fix T = 1 for simplicity of proof. We define a new random variable Zi:K as i-th order statistic of
{|X1 − y|, . . . , |XK − y|}. Then

ADE(L)(X, Y ) = E min
{k1,...,kL}

ki ̸=kj

1

LT

L∑
l=1

T∑
t=1

DE(Xt
kl
, Y t) = E[E[

1

L

L∑
l=1

Zl:K |Y = y]] = E[
1

L

L∑
l=1

E[Zl:K |Y = y]]

To find the distribution of Zi:K , we must first consider the distribution of |Xi−y|. We get that |Xi−y| ∼ Ber(|y−pX |), ∀i ∈
{1, . . . ,K}. Since {|X1 − y|, . . . , |XK − y|} are independent and with the same Bernoulli distribution when y is fixed,
then we know what the expected value in this case is (Arnold et al., 2008):

µl:K = E[Zl:K |Y = y] =

K∑
r=K−l+1

(
K

r

)
|y − pX |r(1− |y − pX |)K−r
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From this, we get that

ADE(L)(X, Y ) = E[
1

L

L∑
l=1

E[Zl:K |Y = y]] = E[
1

L

L∑
l=1

K∑
r=K−l+1

(
K

r

)
|y − pX |r(1− |y − pX |)K−r] =

(1− pY )[
1

L

L∑
l=1

K∑
r=K−l+1

(
K

r

)
prX(1− pX)K−r] + pY [

1

L

L∑
l=1

K∑
r=K−l+1

(
K

r

)
(1− pX)rpK−r

X ] =

1

L

L∑
l=1

K∑
r=K−l+1

(
K

r

)
[(1− pY )p

r
X(1− pX)K−r + pY (1− pX)rpK−r

X ]

Using this formula, we can calculate the ADE(L) for different values of L and K. When we fix L = 1, which is minADE,
then

ADE(1)(X, Y ) = minADE(X, Y ) = (1− pY )p
K
X + pY (1− pX)K

Taking the derivative with respect to pX and setting it equal to zero, we can find the value of pX , which gives the optimal
result:

d

dpX
((1− pY )p

K
X + pY (1− pX)K) = 0

(1− pY )KpK−1
X − pY K(1− pX)K−1 = 0

(1− pX)K−1

pK−1
X

=
1− pY
pY

1− pX
pX

= K−1

√
1− pY
pY

pX =
1

K−1

√
1
pY

− 1 + 1

From the equation, we see that in Bernoulli’s case, it is strictly proper only when K = 2. When K = 1 and pX > 0.5,
then pX = 1 gives the lowest ADE. When pY < 0.5, then lowest ADE is obtained by pX = 0. When K >= 3 and
the pY ̸= 0.5, the lowest ADE is obtained by pX value that is between pY and 0.5. We also see that when K → ∞, the
optimal pX → 0.5.

Let L = 2. Then

ADE(2)(X, Y ) =
1

2

2∑
l=1

K∑
r=K−l+1

(
K

r

)
[(1− pY )p

r
X(1− pX)K−r + pY (1− pX)rpK−r

X ] =

1

2
[2[(1− pY )p

K
X + pY (1− pX)K ] +K(1− pY )p

K−1
X (1− pX) +KpY (1− pX)K−1pX ]

To show that pY is not optimal (we assume that pY ̸= 0.5), we take pX = pY and show that the derivative is not equal to
zero. We get that

ADE(2)(Y, Y ) =
1

2
[2[(1− pY )p

K
Y + pY (1− pY )

K ] +K(1− pY )p
K−1
Y (1− pY ) +KpY (1− pY )

K−1pY ] =

1

2
[2[(1− pY )p

K
Y + pY (1− pY )

K ] +K(1− pY )
2pK−1

Y +Kp2Y (1− pY )
K−1]
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Taking the derivative with respect to pY , we get

d

dpY
[(1− pY )p

K
Y + pY (1− pY )

K + 0.5K(1− pY )
2pK−1

Y + 0.5Kp2Y (1− pY )
K−1] =

−pKY +K(1− pY )p
K−1
Y + (1− pY )

K −KpY (1− pY )
K−1 −K(1− pY )p

K−1
Y

+0.5K(K − 1)(1− pY )
2pK−2

Y +KpY (1− pY )
K−1 − 0.5K(K − 1)p2Y (1− pY )

K−2 =

−pKY + (1− pY )
K + 0.5K(K − 1)(1− pY )

2pK−2
Y − 0.5K(K − 1)p2Y (1− pY )

K−2 =

−pKY + (1− pY )
K + 0.5K(K − 1)((1− pY )

2pK−2
Y − p2Y (1− pY )

K−2)

Then, if K = 2, we get that

−pKY + (1− pY )
K + 0.5K(K − 1)((1− pY )

2pK−2
Y − p2Y (1− pY )

K−2) = 2− 4pY

From this, we see that pX = pY does not give the optimal value since the derivative is not zero. If K = 3, we get
4p3Y − 6p2Y + 1, which is positive, when pY < 0.5 and negative when pY > 0.5.

A.3. Proof of Proposition 4.3

Proof. Let FX be the predicted distribution of FY and X(K) is random vector containing K elements and X(K+1)

is random vector containing K + 1 elements. Y is a random vector from FY. Let’s fix L, so that L ≤ K, and
Y = y. First, we find the displacement error for each trajectory in X(K). We get that Z1 = 1

T

∑T
t=1 DE(Xt

1, y
t), Z2 =

1
T

∑T
t=1 DE(Xt

2, y
t), . . . , ZK = 1

T

∑T
t=1 DE(Xt

K , yt). If we order them, we obtain order statistics Z1:K ≤ Z2:K ≤
. . . ≤ ZK:K . We also do the same for X(K+1). To show that

ADE(L)(X
(K),Y) = E[E[

1

L

L∑
l=1

Zl:K |Y = y]] ≥ E[E[
1

L

L∑
l=1

Zl:K+1|Y = y]] = ADE(L)(X
(K+1),Y)

we need to show that E[ 1L
∑L

l=1 Zl:K |Y = y] ≥ E[ 1L
∑L

l=1 Zl:K+1|Y = y] for every y. Since we fixed y arbitrarily, we
achieve it by showing that E[Zi,K |Y = y] ≥ E[Zi,K+1|Y = y] ∀i ∈ [1,K]. It is known that for 1 ≤ i ≤ K

i · E[Zi+1:K+1|Y = y] + (K + 1− i) · E[Zi:K+1|Y = y] = (K + 1) · E[Zi:K |Y = y]

For proof, see ”A First Course in Order Statistics” Theorem 5.3.1 (Arnold et al., 2008). Due to the fact that expected values
are always non-negative, in our case, we get that

i · E[Zi+1:K+1|Y = y] + (K + 1− i)E[Zi:K+1|Y = y] = (K + 1) · E[Zi:K |Y = y] ⇔
i · E[Zi+1:K+1|Y = y]− i · E[Zi:K+1|Y = y] + (K + 1) · E[Zi:K+1|Y = y] = (K + 1) · E[Zi:K |Y = y] ⇒

E[Zi:K+1|Y = y] ≤ E[Zi:K |Y = y]

because i ·E[Zi+1:K+1|Y = y]−i ·E[Zi:K+1|Y = y] ≥ 0. This proves that ADE(L)(X
(K),Y) ≥ ADE(L)(X

(K+1),Y).

A.4. Proof of Proposition 4.4

Proof. Let FX be the predicted distribution of FY and X(K) is random vector containing K elements and Y is a random
vector from FY. We also know that supp(FY) ⊂ supp(FX). Similarly to the last proof, we obtain the order statistic Zi:K

from it. We need to show that

lim
K→∞

ADE(L)(X
(K),Y) = lim

K→∞
E[E[

1

L

L∑
l=1

Zl:K |Y = y]] → 0

We obtain it by showing that E[ZL:K |Y = y] → 0 for every y, because E[Zi:K |Y = y] ≤ E[Zi+1:K |Y = y] for every
i ∈ [1,K − 1]. Let us fix y. Let L = K · p, where 0 < p < 1. Then, in the limit, we know that

E[ZL:K |Y = y] = E[ZKp:K |Y = y] ≃ F−1(p)
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where F denotes the cumulative distribution function of the 1
T

∑T
t=1 DE(Xt, yt). For proof about the limit, see ”A First

Course in Order Statistics” (Arnold et al., 2008). When K → ∞, then p → 0, because L is fixed. Since supp(FY) ⊂
supp(FX) then F (ε) = P ( 1

T

∑T
t=1 DE(Xt, yt) < ε) > 0 for every y value and ε > 0. This means that F−1(p) → 0 and

we get that E[ZL:K |Y = y] → 0.

B. Bernoulli Simulation
In this section, we confirm our theoretical results empirically through a simulation. Ground truth variable Y ∼ Ber(py) and
prediction variable X ∼ Ber(px) are defined as follows:

PY (y) =

{
1− py y = 0

py y = 1
PX(x) =

{
1− px x = 0

px x = 1

We consider five prediction cases as depicted in Fig. 5. Each case represents a prototypical case of a probabilistically
optimal prediction that matches the ground truth, a random (uniform) prediction, and an overconfident or underconfident
prediction. We set the number of observations to N = 5000 and estimate ADE(L) under different values of L and K as
reported in Tables 3 to 5.

0 1
Outcome

0.001

0.100

0.200

0.500

0.800
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0.999

Pr
ob

ab
ilit

y

py = 0.1 (ground truth)
px = 0.1 (optimal)
px = 0.5 (uniform)
px = 0.9
px = 0.001
px = 0.2

Figure 5. Probability mass function of five different Bernoulli predictions px and ground truth py

Table 3. Results obtained for ADE(L=1)

K=1 K=2 K=3 K=10 K=20 K=50 K=100

px = 0.1 (GROUND TRUTH) 0.175 0.091 0.072 0.041 0.014 0.001 0.000
px = 0.5 (UNIFORM) 0.497 0.253 0.127 0.001 0.000 0.000 0.000
px = 0.9 0.824 0.728 0.663 0.317 0.108 0.005 0.000
px = 0.01 0.108 0.102 0.092 0.093 0.083 0.059 0.036
px = 0.2 0.264 0.101 0.059 0.011 0.002 0.000 0.000

Table 3 confirms the theoretical results from Appendix A.2. For the case of L = 1, when K = 1, prediction px = 0.001
yields the lowest error. This is expected as this prediction has a higher probability than the ground truth for the majority
class (or a lower probability for the minority class) – in other words, it has sharper mass. For K = 2, as expected, we see
that the optimal prediction was successfully detected, and as K increases, the uniform prediction yields the lowest ADE in
the limit. In our example, this is already realized for K = 10, but it would be higher values depending on how complicated
the distribution is. Also, yet again, we observe that as K increases, the error tends to converge to zero, which, besides our
other empirical results from Section 6.2, confirms our Proposition 4.4.
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Table 4. Results obtained for ADE(L=2)

K=2 K=3 K=10 K=20 K=50 K=100

px = 0.1 (GROUND TRUTH) 0.177 0.103 0.058 0.025 0.002 0.000
px = 0.5 (UNIFORM) 0.502 0.315 0.007 0.000 0.000 0.000
px = 0.9 0.819 0.766 0.487 0.230 0.018 0.000
px = 0.01 0.105 0.103 0.100 0.091 0.079 0.054
px = 0.2 0.256 0.125 0.025 0.005 0.000 0.000

Similar observations can be made in Tables 4 and 5 for cases L = 2 and L = 10. The minimum K in each case is 2 and
10, respectively. As a reminder, when L = K, we have ADE(L) ≡ ADE. Hence, the observation from Appendix A.1
and Section 6.1 that ADE prefers sharper predictions can be once more established, but for the Bernoulli example.

Table 5. Results obtained for ADE(L=10)

K=10 K=20 K=50 K=100

px = 0.1 (GROUND TRUTH) 0.178 0.079 0.053 0.012
px = 0.5 (UNIFORM) 0.498 0.086 0.000 0.000
px = 0.9 0.823 0.721 0.447 0.104
px = 0.01 0.104 0.096 0.100 0.092
px = 0.2 0.259 0.058 0.012 0.000

C. Propriety Showcase – Extended Results
We provide the results for the same setup as in Section 6.1 but for all the other metrics as depicted in Fig. 6.

As we can see in Figures 6(c) and 6(f), FDE and ADE are not proper as they assign a lower error to a prediction that
has a lower variance (solid circles) compared to the optimal prediction (crosses). They encourage lower variance to the
extent of mode collapse. Comparing three FDE variations in Figures 6(a) to 6(c), they clearly exhibit signs of impropriety.
ADE variations in Figures 6(d) to 6(f) show subtle signs of impropriety for this particular example. At the same time, all
ES variations become closer to the truth as the sample size K increases. Due to randomness and our limited number of
repetitions, they still do not match the optimal parameter value.

Please note that the y-axis scale differs across all the metrics in Figure 6. In this experiment, we wanted to show that by
increasing K, the energy scores identify the optimum asymptotically while MoN variations do not. This fact does not
depend on the scale of the y-axis.

D. Effect of Sample Size – Extended Results
Effect of trajectory size K reported across all metrics in Tables 6 and 7. Since in our synthetic setup S = 1, the only
difference between EST and ESS is the marginalization of the temporal dimension. In Table 7, we can see that both
metrics are the same at t = 1 but as the horizon expands, i.e., t = 2, 3, EST reports larger errors than ESS since ESS
marginalizes over the temporal steps. These experiments are run with N = 5000.

Figures 7 and 8 empirically demonstrate the theoretical results from Proposition 4.4 in that as K → ∞ the MoN-based
measures converge to zero. In contrast, in the case of energy score, the score has faster convergence with higher K. Another
important observation is that MoN-based measures with different values of K are not cross-comparable, meaning that one
has to treat each as a separate metric.
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Table 6. The error for each step is calculated based on an expanding window over the horizon (temporal steps). DE(L=1) metrics are
sensitive to the trajectory size K. Their error decreases as K increases, while DE(L>1) and energy-score-based metrics are stable with
respect to the increase of K. All the scores reported in the table were multiplied by 100 for better readability.

METRIC K t = 0 t = 1 t = 2 t = 3

FDE(L=1) 10 0.00 4.20 5.90 7.30
20 0.00 2.30 3.30 4.10
50 0.00 1.00 1.50 1.80
100 0.00 0.60 0.80 1.00
300 0.00 0.20 0.30 0.40

FDE(L=0.1K) 10 0.00 4.20 5.90 7.30
20 0.00 3.40 4.80 6.00
50 0.00 2.90 4.10 5.10
100 0.00 2.70 3.90 4.80
300 0.00 2.60 3.70 4.50

FES 10 0.00 12.20 17.40 21.40
20 0.00 11.70 16.60 20.30
50 0.00 11.30 16.10 19.70
100 0.00 11.20 15.90 19.50
300 0.00 11.20 15.90 19.40

METRIC K t = 0 t = 1 t = 2 t = 3

ADE(L=1) 10 0.00 2.10 5.50 8.30
20 0.00 1.20 4.00 6.50
50 0.00 0.50 2.60 4.70
100 0.00 0.30 1.90 3.70
300 0.00 0.10 1.10 2.60

ADE(L=0.1K) 10 0.00 2.10 5.50 8.30
20 0.00 1.70 5.00 7.70
50 0.00 1.40 4.60 7.20
100 0.00 1.40 4.50 7.00
300 0.00 1.30 4.40 6.90

ES 10 0.00 12.20 20.00 26.30
20 0.00 11.70 19.20 25.10
50 0.00 11.30 18.60 24.40
100 0.00 11.20 18.40 24.10
300 0.00 11.20 18.30 24.00

Table 7. Similar table as in Table 6 but for ESS and EST

METRIC K t = 0 t = 1 t = 2 t = 3

EST 10 0.00 6.10 10.60 13.90
20 0.00 5.90 10.10 13.20
50 0.00 5.70 9.80 12.80
100 0.00 5.60 9.70 12.70
300 0.00 5.60 9.70 12.60

ESS 10 0.00 6.10 9.90 12.70
20 0.00 5.90 9.50 12.20
50 0.00 5.70 9.20 11.80
100 0.00 5.60 9.10 11.70
300 0.00 5.60 9.00 11.60
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Figure 7. Estimated minFDE values for different distributions when the number of trajectories increases. In the figure, the second plot is
the same as the first, but the y-axis is changed to better illustrate the differences for lower values. The same is true for the third and fourth
plots.
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Figure 8. Estimated energy score values for different distributions when the number of trajectories increases. In the figure, the second plot
is the same as the first, but the y-axis is changed to better illustrate the differences for lower values. The same is true for the third and
fourth plots.

E. Real Data – Extended Results
We report an extension of the results reported earlier for cross-comparison between minFDE and FES in Table 8,
minADE and ES in Table 9, ES, EST , and ESS in Table 10 and finally minADE, EST and ESS in Table 12. From
Table 8, we see that except on ZARA1, minFDE and minFES agree on the best model, and while minFDE chooses
NPSN variations of STGCNN and PECNET as the second best model, the FES picks SGCN-QMC as the second best
consistently.

Table 8. Reported values: minFDE/FES, which are averages over instances within each dataset. AV G is the arithmetic average over all
datasets. Bold: best model, underline: second best model. Baselines: *-MC.

ETH HOTEL UNIV ZARA1 ZARA2 AVG

STGCNN-MC 1.10/1.51 0.86/1.22 0.80/1.07 0.53/0.84 0.48/0.73 0.75/1.07
PECNET-MC 1.07/1.69 0.39/0.76 0.56/0.96 0.45/0.81 0.33/0.70 0.56/0.99
SGCN-MC 1.00/1.40 0.53/0.82 0.67/0.94 0.51/0.75 0.42/0.58 0.63/0.90
STGCNN-QMC 1.03/1.44 0.52/1.08 0.63/0.98 0.53/0.83 0.50/0.73 0.64/1.01
PECNET-QMC 1.05/1.67 0.37/0.74 0.54/0.95 0.43/0.79 0.31/0.68 0.54/0.97
SGCN-QMC 0.81/1.30 0.31/0.71 0.56/0.87 0.45/0.71 0.36/0.55 0.50/0.83
STGCNN-NPSN 0.65/1.54 0.34/0.95 0.44/0.95 0.43/0.90 0.38/0.78 0.45/1.02
PECNET-NPSN 0.88/1.64 0.29/0.68 0.44/0.94 0.33/0.76 0.25/0.61 0.44/0.93
SGCN-NPSN 0.59/1.29 0.25/0.68 0.39/0.85 0.32/0.72 0.25/0.54 0.36/0.82

Table 9 is the same table as in the body of the paper. In three out of five cases (UNIV, ZARA1, ZARA2), ES ranks
SGCN-QMC as the best model, while in one case (ETH), there is a tie between SGCN-QMC and SGCN-NPSN, and finally
on average (AV G), these two models do not seem to be that different according to ES. At the same time, minADE picks
SGCN-NPSN as the best model, and similar to minFDE, it chooses between STGCNN-NPSN and PECNET-NPSN as the
second best model.

Table 9. Reported values: minADE/ES, which are averages over instances within each dataset. AV G is the arithmetic average over all
datasets. Bold: best model, underline: second best model. Baselines: *-MC.

ETH HOTEL UNIV ZARA1 ZARA2 AVG

STGCNN-MC 0.65/1.44 0.50/1.05 0.44/0.96 0.34/0.77 0.30/0.67 0.45/0.98
PECNET-MC 0.61/1.64 0.22/0.70 0.33/0.89 0.25/0.74 0.19/0.65 0.32/0.92
SGCN-MC 0.57/1.34 0.31/0.73 0.37/0.85 0.29/0.68 0.22/0.53 0.35/0.82
STGCNN-QMC 0.61/1.30 0.34/0.98 0.36/0.89 0.32/0.74 0.29/0.65 0.38/0.91
PECNET-QMC 0.60/1.62 0.21/0.68 0.33/0.88 0.24/0.72 0.18/0.62 0.31/0.91
SGCN-QMC 0.49/1.23 0.21/0.66 0.31/0.78 0.25/0.63 0.19/0.49 0.29/0.76
STGCNN-NPSN 0.44/1.48 0.21/0.88 0.28/0.88 0.25/0.83 0.22/0.73 0.28/0.96
PECNET-NPSN 0.55/1.60 0.19/0.63 0.29/0.88 0.21/0.70 0.16/0.56 0.28/0.87
SGCN-NPSN 0.36/1.23 0.16/0.62 0.23/0.79 0.18/0.66 0.14/0.50 0.21/0.76
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Table 10 compares reports marginalized versions of ES namely the EST and ESS alongside ES itself. The rankings
do not always agree across the three. Recall that EST marginalizes over spatial dimensions and ESS marginalizes over
temporal dimension. Hence, they ignore some spatial and temporal information, respectively. We listed possible cases
of agreement or disagreement between the three together with a possible explanation for each case in Table 11. For the
top-ranked model, in two datasets ETH and HOTEL, we have ALL three agreeing, while for the second-ranked model, in
two datasets ZARA1 and ZARA2 we have a case where the three disagree. For the first- and second-ranked models, we do
not have a case where ES & EST agree while ESS disagrees. However, we have ES and ESS agree while EST disagrees
on the second-ranked model on AVG and similarly but less strongly on the first-ranked model on ZARA1 and ZARA2. We
have numerous instances in which EST and ESS agree while ES disagrees. For the top-ranked model, that is the case
under datasets UNIV, ZARA1 and ZARA2 and similarly for the second-ranked model under datasets ETH, HOTEL, and
UNIV.

Table 10. Reported values: ES/EST/ESS, which are averages over instances within each dataset. AV G is the arithmetic average over all
datasets. Bold: best model, underline: second best model. Baselines: *-MC.

ETH HOTEL UNIV ZARA1 ZARA2 AVG

STGCNN-MC 1.44/1.02/0.75 1.05/0.83/0.61 0.96/0.72/0.52 0.77/0.57/0.41 0.67/0.49/0.36 0.98/0.73/0.53
PECNET-MC 1.64/1.11/0.79 0.70/0.52/0.36 0.89/0.66/0.46 0.74/0.54/0.37 0.65/0.47/0.31 0.92/0.66/0.46
SGCN-MC 1.34/0.93/0.66 0.73/0.55/0.39 0.85/0.63/0.44 0.68/0.50/0.34 0.53/0.39/0.26 0.82/0.60/0.42
STGCNN-QMC 1.30/1.04/0.72 0.98/0.74/0.55 0.89/0.68/0.49 0.74/0.58/0.41 0.65/0.52/0.36 0.91/0.71/0.51
PECNET-QMC 1.62/1.09/0.78 0.68/0.50/0.35 0.88/0.65/0.46 0.72/0.52/0.36 0.62/0.45/0.30 0.91/0.64/0.45
SGCN-QMC 1.23/0.90/0.63 0.66/0.48/0.35 0.78/0.61/0.42 0.63/0.49/0.33 0.49/0.37/0.25 0.76/0.57/0.39
STGCNN-NPSN 1.48/1.03/0.73 0.88/0.64/0.49 0.88/0.66/0.48 0.83/0.60/0.45 0.73/0.52/0.39 0.96/0.69/0.51
PECNET-NPSN 1.60/1.08/0.77 0.63/0.46/0.33 0.88/0.64/0.45 0.70/0.51/0.34 0.56/0.41/0.27 0.87/0.62/0.43
SGCN-NPSN 1.23/0.89/0.62 0.62/0.46/0.33 0.79/0.58/0.41 0.66/0.48/0.33 0.50/0.36/0.25 0.76/0.55/0.39

Table 11. Possible explanations for different cases of agreement or disagreement between ES, EST, and ESS
AGREEMENT POSSIBLE EXPLANATION

ALL Joint spatiotemporal aspects evaluated by ES make little difference.
NONE Spatial and temporal aspects, individually as well as jointly, make a significant difference.

ES & EST Temporal aspects dominate the joint evaluation by ES.
ES & ESS Spatial aspects dominate the joint evaluation by ES.

EST & ESS There are aspects captured by ES that EST and ESS are not able to capture, i.e., the interaction between space and
time.

Overall, followed by the fact that the three scores ALL agree on the top-ranked model, we can conclude that the joint
spatiotemporal aspects of the predictions are not that different on the ETH and HOTEL datasets. The same could be said
about AVG but less strongly since there is a tie between the top two models SGCN-NPSN and SGCN-QMC. NONE
agreeing, in other words, the disagreement between all three scores occurring on limited cases of the second-ranked model,
under ZARA1, ZARA2 and AVG suggest that the spatial and temporal aspects are such that they individually or jointly
can make a difference. Which score to rely on is subjective, depending on the downstream use case. Since we do not
observe agreement between ES & EST, for the first- and second-best models, the temporal aspects do not seem to have
affected the joint evaluation by ES. At the same time, the agreement between ES & ESS suggests that spatial aspects seem
to dominate evaluation by ES for the top two models under AVG and less strongly under datasets ZARA1 and ZARA2.
Lastly, numerous instances for the case EST & ESS suggest that there are aspects captured by ES that could not be captured
by either EST or ESS. Since EST and ESS agree, these aspects must be related to the interaction between space and time. In
summary, the analysis of these results highlights the use of EST and ESS alongside ES and underlies the importance of a
joint evaluation with ES.

In Table 12 we provide a similar comparison between minADE, EST and ESS. There is more agreement between
minADE and its ES counterparts on the top-ranked model, while there is more disagreement on the second-based model.
We attribute the former partly to the fact that minADE is marginalized over the temporal dimension similar to the ESS
and the latter to the lack of propriety. From the marginalization point of view, minADE is comparable with ESS since
both are averaged over the temporal steps. However, their ranking is considerably different, which we attribute to the fact
that one is proper and the other is not.
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Table 12. Reported values: minADE/EST/ESS, which are averages over instances within each dataset. AV G is the arithmetic average
over all datasets. Bold: best model, underline: second best model. Baselines: *-MC.

ETH HOTEL UNIV ZARA1 ZARA2 AVG

STGCNN-MC 1.10/1.02/0.75 0.86/0.83/0.61 0.80/0.72/0.52 0.53/0.57/0.41 0.48/0.49/0.36 0.75/0.73/0.53
PECNET-MC 1.07/1.11/0.79 0.39/0.52/0.36 0.56/0.66/0.46 0.45/0.54/0.37 0.33/0.47/0.31 0.56/0.66/0.46
SGCN-MC 1.00/0.93/0.66 0.53/0.55/0.39 0.67/0.63/0.44 0.51/0.50/0.34 0.42/0.39/0.26 0.63/0.60/0.42
STGCNN-QMC 1.03/1.04/0.72 0.52/0.74/0.55 0.63/0.68/0.49 0.53/0.58/0.41 0.50/0.52/0.36 0.64/0.71/0.51
PECNET-QMC 1.05/1.09/0.78 0.37/0.50/0.35 0.54/0.65/0.46 0.43/0.52/0.36 0.31/0.45/0.30 0.54/0.64/0.45
SGCN-QMC 0.81/0.90/0.63 0.31/0.48/0.35 0.56/0.61/0.42 0.45/0.49/0.33 0.36/0.37/0.25 0.50/0.57/0.39
STGCNN-NPSN 0.65/1.03/0.73 0.34/0.64/0.49 0.44/0.66/0.48 0.43/0.60/0.45 0.38/0.52/0.39 0.45/0.69/0.51
PECNET-NPSN 0.88/1.08/0.77 0.29/0.46/0.33 0.44/0.64/0.45 0.33/0.51/0.34 0.25/0.41/0.27 0.44/0.62/0.43
SGCN-NPSN 0.59/0.89/0.62 0.25/0.46/0.33 0.39/0.58/0.41 0.32/0.48/0.33 0.25/0.36/0.25 0.36/0.55/0.39
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Figure 6. Plot of different metrics across different predictions that deviate on the variance parameter. The lowest reported score versus the
unbiased prediction is depicted in the circle and cross, respectively.
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