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ABSTRACT

Fine-tuning pre-trained language models has become the prevalent paradigm for
building downstream NLP models. Oftentimes fine-tuned models are readily
available but their training data is not, due to data privacy or intellectual property
concerns. This creates a barrier to fusing knowledge across individual models
to yield a better single model. In this paper, we study the problem of merging
individual models built on different training data sets to obtain a single model
that performs well both across all data set domains and can generalize on out-of-
domain data. We propose a dataless knowledge fusion method that merges models
in their parameter space, guided by weights that minimize prediction differences
between the merged model and the individual models. Over a battery of evalua-
tion settings, we show that the proposed method significantly outperforms base-
lines such as Fisher-weighted averaging or model ensembling. Further, we find
that our method is a promising alternative to multi-task learning that can preserve
or sometimes improve over the individual models without access to the training
data. Finally, model merging is more efficient than training a multi-task model,
thus making it applicable to a wider set of scenarios.1

1 INTRODUCTION

The dominant paradigm for solving NLP tasks ranging from classification to sequence tagging in-
volves fine-tuning a pretrained language model (PLM) using task-specific labeled data (Devlin et al.,
2019; He et al., 2021). This results in specialized models that are explicitly trained to run inference
over a single domain and task. Multi-task learning has shown that leveraging information across do-
mains or tasks can be beneficial if the data sets, data set size and algorithms are well selected (Phang
et al., 2018; Pruksachatkun et al., 2020; Poth et al., 2021; Weller et al., 2022). Combining knowl-
edge of multiple data sets in a single model can lead to better overall performance on in-domain
data (Poth et al., 2021), can better generalize on out-of-domain data (Wang et al., 2020b) and results
in a model that is more practical and parameter efficient than maintaining specialized models.

However, the multi-task learning setup suffers from two practical limitations. First, the training
process requires access to the original labeled data, which may not be realistic as annotated data
may be private to the agent fine-tuning the model which can happen in order to ensure data or
annotation privacy or to guard intellectual property to annotations. Second, because a significant
amount of data or task combinations are not beneficial to performance (Poth et al., 2021), building
a single model requires training on all data set combinations to identify the optimal one, which can
be prohibitive especially if there are many available source data sets or models.

Model merging is defined as combining multiple models into a single one in parameter space with-
out access to data (Matena & Raffel, 2021). This technique provides an alternative to building a
single model while satisfying data privacy constraints. Weight merging algorithms usually also have
a closed-form solution, making them very efficient as no retraining is necessary, thus enabling us-
age even when a large number of data sets or model combinations are available. Merging can be
considered as an alternative to model ensembling (Opitz & Maclin, 1999; Rokach, 2010), where the

1The code is available at: https://github.com/bloomberg/dataless-model-merging
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Figure 1: Diagram containing the problem formation for model merging and its comparison to
other setups including multi-task learning, model ensembling and federated learning. Models f1..N
trained by individuals or organizations are released to the user (optionally with some statistics) but
the training data D1..N is kept private.

outputs of individual models are combined to produce the final prediction. Model merging algo-
rithms are a key step in federated learning (McMahan et al., 2017; Lin et al., 2022), where multiple
agents train their own model using private data and share only model updates with other models.
However, in federated learning, model merging happens in multiple rounds of updates, after which
the merged model is broadcast to all agents before the next round of training with private data.
This dataless model merging is thus an extreme case of federated learning, where a single round of
synchronization is admissible. Figure 1 provides an overview of the various related setups.

We thus aim to use model merging to build a single model that can be used for inference on multiple
domains or tasks and can generalize to new domains, in line with Wang et al. (2020b). In contrast,
simple averaging of weights for model merging was used by existing works such as Wortsman
et al. (2022) to improve the performance of a specific model, where weight averaging was done
over models fine-tuned using the same data set with different hyperparameters. Separately, Matena
& Raffel (2021) focus on improving performance over a single target task by leveraging models
trained on other donor tasks by merging models using Fisher-weighted averaging.

This paper focuses on merging fine-tuned models that originate from pre-trained language models
with the same architecture and pretrained weights. We introduce a novel model merging method
named Regression Mean (RegMean), which is computationally efficient and extendable to merg-
ing any number of models. The method is inspired by the optimal solution for linear models that
minimizes ℓ2 distance between merged and individual models and has a closed form solution. We
evaluate model merging algorithms in setups that range in complexity and type of fused knowledge.
The experimental results across multiple model types (e.g. RoBERTa, T5, DeBERTa) show that
our proposed method consistently and significantly outperforms other model merging and ensem-
bling baselines and achieves higher generalization performance than the best individual models on
out-of-domain data sets across several data collections.

Our contributions are three-fold: (1) A novel model merging algorithm (Regression Mean); (2)
an evaluation protocol for model merging algorithms that tests both in-domain and out-of-domain
generalization ability; (3) analysis of computation and parameter efficiency across setups.

2 DATALESS MODEL MERGING FOR KNOWLEDGE FUSION

We consider the problem formulation that there are two main roles in the framework: (1) the agents
(e.g., individuals or organizations) that train and release models; (2) the developers who aim to
build a single model by fusing knowledge of multiple available models. Each agent i ∈ {1..N}
fine-tunes a language model (LM) fi of pre-trained weights θLM over their private labeled dataset
Di = ⟨Xi, Yi⟩ to obtain fine-tuned model weights θi, where Xi ∈ RNi,∗ are inputs, Yi ∈ RNi,∗ are
labels and Ni is the number of annotated examples. The agents keep the labeled data set Di private.
In addition to the fine-tune model weights fi(·; θi), the agents can also optionally disseminate certain
statistics Si, as long as these do not leak information about the labeled data set Di.

In turn, the developers use the fine-tuned model weights fi(·; θi) and statistics Si as inputs to a
merging function g. The merging function is applied to a subset of fine tuned models K ⊆ {1..N}
(of size K = |K|) to obtain parameters θMK of a merged model fMK , where θMK = g(θK, SK).
In general, we expect the function g to be computationally efficient and to produce θMK with a
closed-form formulation.
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Figure 2: Comparison between Simple, Fisher, and RegMean for merging transformer-based language models.
Fisher and RegMean require Fisher Information matrix or inner product matrices of layer inputs, but neither of
them requires training data. For linear models, RegMean produces optimal weights that minimize ℓ2-distance
to individual model predictions on the corresponding training sets.

3 REGRESSION MEAN FOR MODEL MERGING

The key role in the model merging setup is played by the merging function g. We start with briefly
introducing existing techniques for model merging, followed by the basic intuition for our proposed
method, which we then extend to transformer-based language models. The underlying assumption
is that the model architecture for all models fi is the same, allowing for element-wise operations
if needed and resulting in a merged model fMK of the same architecture and size as any individual
model. We also assume models are fine-tuned from the same pretrained LM checkpoint. The study
of methods that relax this constraint are outside the scope of this paper and are left for future work.

3.1 PRELIMINARIES

Simple Averaging (Simple) computes the merged weights as the element-wise arithmetic mean of
the weights of all other models: θMK = 1/K

∑i∈K
i θi. This technique was proved to be effective

when merging model weights that are already similar or in a similar space, such as checkpoints
generated after each epoch in a training process (Wortsman et al., 2022). We expect simple averaging
to under-perform when model weights live in a different space and are substantially different to each
other, such as when merging models trained with different data or when performing merging for
models fine-tuned after the entire training process, as opposed to synchronizing models after rounds
as in the federated learning setup.

Fisher-Weighted Averaging (Fisher) aims to address the limitation of simple averaging of weights
with potentially different importance. The method relies on computing per-weight importance Fi for
each individual model i, and reweighting the weights with this importance factor during merging as
follows: θMK =

∑i∈K
i Fiθi/

∑i∈K
i Fi. Here, Fi is the diagonal of the Fisher Information matrix,

where Fi = Ex∼Di
Ey∼pθ(y|x)∇θi(log pθi(y|xi))

2. Intuitively, Fi measures averaged gradient norm
of parameters w.r.t. log likelihood of each label, where parameters with high average norms are
considered important.

3.2 MERGING LINEAR MODELS

Next, we recast the problem of model merging as a straightforward optimization problem. We start
by inferring the optimal solution of merging two linear regression models trained on different data
distributions and analyze its relationship to Simple averaging.

Consider two linear models f1(x) = WT
1 x and f2(x) = WT

2 x, where x ∈ Rm, and W1,W2 ∈
Rm×n, that are trained on two different annotated datasets ⟨X1, y1⟩, ⟨X2, y2⟩ , where X1 ∈ RN1×m

and X2 ∈ RN2×m. Each row in Xi corresponds to a training example. Our goal is to obtain a single
merged model fM (x) = WT

Mx with outputs similar to f1 on X1 and f2 on X2. With ℓ2 distance as
the metric, the optimization problem can be formulated as:

min
W

∥WTX1 −WT
1 X1∥2 + ∥WTX2 −WT

2 X2∥2. (1)

Eq. 1 describes a linear regression problem, where the inputs are [X1;X2] (row concatenation of X1

and X2) and the targets are [WT
1 X1;W

T
2 X2], which has a closed form solution WM = (XT

1 X1 +
XT

2 X2)
−1(XT

1 X1W1 +XT
2 X2W2). The algorithm extends to merging K models Wi, i ∈ K with

little modifications to the optimization problem in Eq. 1:

WM = (

i∈K∑
i

XT
i Xi)

−1
i∈K∑
i

(XT
i XiWi). (2)
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We refer to Eq. 2 as Regression Mean (RegMean). To summarize, to merge a linear model fi
with other models, we pre-compute the inner product matrices of training data XT

i Xi; we do not
recompute XT

i Xi when merging with different models. The merger retrieves the weights and inner
product matrices of inputs of individual models and compute the weights as in Eq. 2.

Interpretation. RegMean can be also interpreted as reweighting and linearly combing rows in
weight matrices, where the diagonal items of XT

i Xi mainly reweight the rows, while non-diagonal
items linearly combine them. In an extreme case when XT

i Xi is diagonal, RegMean simply
reweights the rows in Wi by the importance of neurons. Besides, when all XT

i Xi (or all Xi) are the
same, Eq. 2 transforms into simple averaging, i.e., WM = 1/K

∑i∈K
i Wi.

3.3 REGMEAN FOR TRANSFORMER LANGUAGE MODELS

Transformer models consist of feed forward layers and attention heads where linear layers are im-
portant components. For all linear layers, we independently apply RegMean. We record X

(j)T
i X

(j)
i

of each linear layer f (j), where X
(j)
i is the input features of the linear layer. The other types of

weights, such as embeddings and bias terms, that represent a small portion of the overall parameter
set are merged using simple averaging.

Reducing Non-Diagonal Items of Inner Product Matrices. We empirically find that directly
applying Eq. 2 for merging yields degenerated models in case of some pre-trained LM architectures.
We therefore decrease the non-diagonal items of the inner product matrices by multiplying them
with a scalar α (set as 0.9 most of the times). This also corresponds to adding a regularization term
in the optimization objective in Eq. 1 that penalizes the Euclidean distance between the merged
weights WM and individual model weights W1..K .

We include a formal derivation and proof in Appendix A. We illustrate RegMean in Figure 2 and
summarize the complete RegMean method in Algorithm 1.

Algorithm 1: RegMean for Transformer Language Models

Data: Individual Models f1..K , Number of linear layers J , inner product matrices G(j)
i = X

(j)T
i X

(j)
i for

all linear layers 1 ≤ j ≤ J and models 1 ≤ i ≤ K, Scaling factor of non-diagonal items α
Result: Merged model fM
for j in 1, 2, ..., J do

W
(j)
1 ,W

(j)
2 ...,W

(j)
K ← getLinearWeights(f1..K , j) ;

Reduce non-diagonal items of inner product matrices G(j)
i as G̃(j)

i ← αG
(j)
i + (1− α)diag(G(j)

i ) ;
W

(j)
M ← (

∑i∈K
i G̃

(j)
i )−1 ∑i∈K

i (G̃
(j)
i W

(j)
i ) and set the weight as W (j)

M in fM
end
Average weights as WM = 1

K

∑i∈K
i Wi for weights other than linear layer weights in fM

3.4 PROPERTIES OF REGMEAN

Computational Efficiency. Inner product matrices of all linear layer inputs can be computed within
one single forward pass over training data after individual models are trained. It is more efficient
than computing Fisher Information matrices, which requires an additional backward pass to compute
gradients.

Memory Overhead. The memory overhead of inner product matrices is
∑J

j=1 d
2
j , where J is the

number of linear layers in the model and dj is the input dimension of linear layers. For transformer
models, this overhead is comparable to the number of parameters and Fisher Information matrices.
Data Privacy. It should be noted that RegMean never requires training data Xi when merging;
instead, it only requires low-dimensional inner product matrices. The agents that release the models
can share the matrices without sharing the private training data and their labels.

4 EXPERIMENTAL SETUP

4.1 EVALUATION SETTINGS

We expect two major benefits of merging models for the developer. First, by combing knowledge
of individual models f1..N (or a subset K of them, fK) trained on D1..N , we expect the resulting

4
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merged model fM to achieve competitive test performance across all datasets D1..N . This model is
useful for example when the test distribution is a mixture of D1..N . In addition, a single model has
the additional advantage of being able to run inference across multiple domains when the user of
the model provides data from one of the domains, but is not aware of the domain label (Wang et al.,
2020b). In our case, D1..N can represent different non-i.i.d. partitions of the same dataset, different
domains for the same task or different tasks altogether.

Second, we expect the merged model to achieve higher out-of-domain (OOD) generalization ability.
Formally, we evaluate the performance of the merged model fM over the out-of-domain test sets
Do

1..No
where the data distributions are different from any of D1..N .

Datasets. We use the GLUE datasets (Wang et al., 2018) for studying merging models trained for
non-i.i.d. partitions and merging models trained for different tasks. We use emotion classification
and named entity recognition (NER) as base tasks for studying merging models trained on different
domains of the same task. For emotion classification, we use the collection of preprocessed datasets
from (Oberländer & Klinger, 2018). We choose 5 high-resource datasets for training individual
models and 5 low-resources datasets for evaluation of out-of-domain generalization ability. For
NER tasks, we use 6 domains in OntoNotes (Hovy et al., 2006) for training individual models, and
use CoNLL (Sang & De Meulder, 2003) and Twitter NER (Rijhwani & Preotiuc-Pietro, 2020) to
measure out-of-domain generalization performance. We include details of datasets in Apppendix B.

Metrics. In the case of merging models trained on non-i.i.d. partitions of the same dataset, we eval-
uate the merged models over a single test set with a joint distribution of all partitions. For merging
models trained on different domains or tasks, we measure the performance over all single domains
or tasks incorporated into merging and take their macro-average. For out-of-domain evaluation, we
similarly take macro-average over the performance over the out-of-domain test sets.

4.2 COMPARED METHODS

Model Merging. For model merging algorithms, we compare the performance of RegMean with
the previously introduced methods of simple averaging (Simple) (Wortsman et al., 2022) and Fisher-
weighted averaging (Fisher) (Matena & Raffel, 2021).

Model Ensembling. Model ensembling represents an alternative to model merging when access to
the original data is not available. We thus build an ensemble model (Ensemble) by obtaining all
logits from the individual model predictions and averaging them before doing an argmax.

Individual Models. To provide context into the benefits of merging, we report the performance of
individual models involved in merging. We thus report: (1) the average performance of all individual
models (Avg. f1..N ); (2) the performance of the best single individual model (Best. f1..N ), as
determined by using the validation set; (3) the performance of the individual models corresponding
to the training data set for each test set (Domain-Specific).

Multi-task Learning (MTL). We also consider MTL which trains a single model over the joint
training data sets D1..N . We note that the multi-task method should represent an upper-bound for
model merging, as multi-task learning has access to the original labeled data which it can leverage
to train a better model when compared to dataless approaches such as model merging. Depending
on the data sets, the task can be the same (e.g., emotion prediction) or different (e.g., GLUE tasks).

4.3 EXPERIMENT DETAILS

Pre-trained Models. We initialize all models fi using the same architecture and by using the
same pre-trained model weights θLM. We experiment with multiple pre-trained models as starting
points for merging. We experiment with both encoder-only models including the classic RoBERTa-
base (Liu et al., 2019) and state-of-the-art models like DeBERTa-large-v3 (He et al., 2021) and with
encoder-decoder models represented by T5-base-v1.1 (Raffel et al., 2020). We note that T5-base-
v1.1 is not applicable to sequence labelling tasks represented by our NER experiments. Further
training details are in Appendix B.

Model Initialization. It has been shown that model merging is more successful when individual
models share the same weight initialization (McMahan et al., 2017). In this paper, we focus on
merging fine-tuned language models of the same architectures and initialized from the same pre-
trained model weights θLM before fine-tuning. For new classification heads, we present the results
of both shared initialization (Same Head Init, SH) and different initialization (Diff Head Init,

5
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Figure 3: Relative performance drop (%) of pairwise merged models compared to the domain-specific models.
Positive values indicate performance improvement after merging. The boxplots summarize results over 10 (C25 )
or 15 (C26 ) combinations of 5 or 6 domain-specific models in Emotion and NER. The triangles denote the mean.
Note that y-axes are not in the same scale.

DH), as our proposed method is amenable to both. This does not apply to T5 where we fine-tune
the pretrained LM head for prediction.

Hyperparameters. We set the non-diagonal multiplier α in RegMean to 0.9, with the exception of
T5-base models, where it is 0.1. We compute inner product matrices with at most 1, 000 training
batches. Sensitivity analysis of hyperparameters is presented in Section 5.3 and Appendix C.

5 RESULTS

The main goal of our experiments is to benchmark the performance of different dataless model
merging methods and compare these with individual model performance before merging. In addi-
tion, we aim to situate these methods in context of other methods which represent upper bounds due
to having access to more information (i.e. data for fine-tuning) than model merging.

Our experiments examine knowledge fusion from two perspectives: (1) in-domain performance
over test data sets similar to those over which individual models are trained, and (2) out-of-domain
generalization performance over data sets from held-out domains or tasks. We study performance
dynamics in a range of scenarios ranging in difficulty. First, we study a simple scenario where
merging is performed on models are trained on non-i.i.d. partitions of the same data set. Next, we
study merging of models trained on different domains of the same task and lastly merging models
trained on different tasks.

5.1 MODEL MERGING FOR FUSING IN-DOMAIN KNOWLEDGE

Avg. f1..N Simple Fisher RegMean

SST-2 86.80 89.98 90.00 90.23
MRPC 79.34 80.44 80.39 81.96
STS-B 87.50 87.86 88.15 88.20
...
8-task Avg. 71.76 74.22 75.25 75.27

Table 1: Merging models trained on Non-i.i.d. parti-
tions of GLUE tasks. We compare the performance of
the merged models (Simple, Fisher, RegMean) and the
average performance of each pair of individual models
(Avg. f1..N ) over the joint validation sets.

Merging Models Trained on Non-i.i.d. Parti-
tions. We start with a setup in which we merge
models trained on non-i.i.d. partitions of the
same data set, which is simulated using syn-
thetic data splits over the 8 tasks in the GLUE
benchmark. For each task, we split training data
into two partitions with 1,000 training examples
with different label distributions (details in Ap-
pendix B). We then fine-tune 8 pairs of individ-
ual models over the two partitions and merge
each pair of the models. The merged models
are evaluated on the official validation sets (i.e.
with a joint distribution of both partitions). In Table 1, we find that model merging consistently im-
proves over average performance of individual models across the 8 tasks. This verifies that weight
merging allows combining knowledge from individual models and can lead to a more powerful
single model. We further note that RegMean outperforms simple averaging and is similar in perfor-
mance to Fisher-weighted averaging. This is a proof-of-concept that model merging and RegMean
work in a simple scenario.

Merging Models Trained on Different Domains. We next shift to a more challenging setup where
individual models are trained on data from different domains of the same task.

Pairwise Merging. We start by merging pairs of models trained on different domains. For emo-
tion classification and NER, we have 10 (C2

5 ) and 15 (C2
6 ) combinations of domain-specific mod-
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Emotion NER

Model (→)
Method (↓)

RoBERTa-base
Same / Diff Head Init. T5-base DeBERTa-large

Same / Diff Head Init. RoBERTa-base DeBERTa-large

Avg. f1..N 18.91 32.16 27.56 77.02 76.69
Best. f1..N 23.98 34.19 33.86 88.46 84.82
Ensemble 27.21 / 26.82 38.89 28.93 / 28.44 85.45 86.40

Simple 21.31 / 0.00 39.52 2.96 / 0.00 81.63 55.37
Fisher 28.27 / 24.36 39.28 10.88 / 20.16 76.75 51.01
RegMean 38.73 / 32.56 40.32 38.31 / 18.83 85.68 85.51
Domain-Specific 51.02 49.38 52.53 88.61 88.31
MTL 47.75 49.06 51.52 90.41 90.12

Table 2: In-domain performance when merging all 5 emotion classification models or 6 NER models. Sim-
ple, Fisher and RegMean are the model merging algorithms for comparison. Bold numbers indicate the best
performance across different model merging algorithms.

els respectively. The boxplots in Fig. 3 summarize the relative performance drop compared
to domain-specific models as 1

N(N−1)

∑N
i=1

∑N
j=1,j ̸=i[M(fMi,j

, Di) − M(fi, Di)]/M(fi, Di),
where M(f,D) denotes the metric score obtained by evaluating f on the test set of D. The per-
formance drop is reasonable as the merged model can run inference on both domains; when the test
set is a mixture of all domains, the merged model usually outperforms single individual models,
as we will see in the next paragraph. We see clear differences between model merging algorithms,
where RegMean performs the best. On RoBERTa-base and DeBERTa-large, RegMean reduces per-
formance drop on Emotion from 55% to 12% and 85% to 15% compared to simple average.
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Figure 4: Relative performance drop (%)
of merged models compared to task-specific
models in our pairwise model merging exper-
iments over GLUE.

Merging All Domain-Specific Models. We further exper-
iment in a setup of merging all 5 or 6 domain-specific
models on Emotion Classification and NER. Table 2
summarizes the results. Results show that merging all
models is a challenging setup. The large differences be-
tween the average and the best performance of individual
models (Avg. f1..N and Best f1..N) indicate the perfor-
mance of individual models have a high variance. As a
result, model ensembling suffers from poor individual
models: the improvements are mostly marginal com-
pared to Best f1..N, while on DeBERTa-large on Emo-
tion, the performance is actually lower. In contrast, MTL
improves performance significantly over Best f1..N and
achieves performance similar to or better than domain-
specific models, which implies a single model is capable
of encoding knowledge of all domains in our setup.

We then compare three different merging algorithms. RegMean achieves the best in-domain per-
formance on both Emotion and NER tasks, except for DeBERTa-large on Emotion, where Fisher
performs slightly better. Simple averaging performs poorly (except for T5), especially on RoBERTa-
base and DeBERTa-large in the emotion tasks. We note that Fisher clearly under-performs RegMean
in our previous pairwise merging experiments; Fisher-weighted averaging may actually produce a
merged model that is very similar to one of the individual model. RegMean also outperforms en-
sembling in all but one of the five scenarios.

RegMean also clearly outperforms Best f1..N on RoBERTa and T5-base on Emotion, which makes
model merging with RegMean useful for performance purposes, in addition to the practical conve-
nience of deploying and maintaining a single model for multiple domains.

Merging Models Trained on Different Tasks. We also experiment with merging models trained
on different tasks using DistilBERT-base and RoBERTa-base. We train individual models with full
training data of 8 GLUE tasks. We do not merge task-specific classification heads as these can have
different dimensions depending on the task and output space. We summarize the results in Figure 4.
We again see a similar pattern when comparing model merging techniques with RegMean clearly
improving over Simple averaging and Fisher-weighted averaging.

5.2 MODEL MERGING FOR OUT-OF-DOMAIN GENERALIZATION
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Emotion-Heldout NER-CoNLL NER-Twitter

Model (→)
Method (↓)

RoBERTa-base
Same / Diff Head Init.

T5
base

DeBERTa-large
Same / Diff Head Init.

RoBERTa
base

DeBERTa
large

RoBERTa
base

DeBERTa
large

Avg. f1..N 21.71 30.30 20.76 67.91 69.76 44.50 41.10
Best. f1..N 30.06 37.54 31.10 80.24 83.33 58.40 52.48
Ensemble 11.92 / 10.90 28.10 12.55 / 10.65 85.45 80.58 48.43 48.59

Simple 11.17 / 0.00 38.77 0.81 / 0.00 73.92 54.95 48.07 29.93
Fisher 20.67 / 18.76 37.84 5.80 / 32.04 68.68 42.13 45.81 26.05
RegMean 22.75 / 15.53 39.58 16.40 / 5.02 78.27 80.43 50.70 46.76
MTL 28.29 37.71 30.94 78.53 80.60 33.21 43.55

Table 3: Out-of-domain performance when merging all 5 emotion classification models or 6 NER models.
Bold numbers indicate the best performance across different model merging algorithms.

* 0 0.2 0.4 0.6 0.8 0.9 10

25

50

T5-base
DeBERTa-large

(a) Merging two models

* 0 0.2 0.4 0.6 0.8 0.9 10

25

50

In-Domain
OOD

(b) Merging all models, T5-base

Figure 5: Performance of RegMean with
different values of α in Emotion Classifica-
tion. ∗ denotes for Simple Average.

Out-of-Domain Generalization when Merging all
Domain-Specific Models. Table 3 summarizes OOD
generalization performance when merging all domain-
specific models. We see a similar pattern in OOD gen-
eralization performance where RegMean in general per-
forms the best across all model merging algorithms. The
performance is lower than Fisher only on RoBERTa-base
and DeBERTa-large with different head initialization. We
also see that RegMean outperforms model ensembling in
most cases, which is comparable in the amount of in-
formation it can use. Further, on the emotion classifica-
tion data sets, it is notable that RegMean achieves higher
OOD performance than the best f1..N on T5-base. We
also found that knowledge fusion itself can negatively im-
pact performance when there are poor individual models:
on NER, all merging algorithms and even MTL does not
achieve better OOD performance on CoNLL and Twitter
than picking the Best f1..N, as previously indicated in Wang et al. (2020b).

Incrementally Merging a Subset of Models. In a scenario where OOD performance of each indi-
vidual model is known (e.g., when the validation sets of the OOD data sets are provided), we can
mitigate the impact of having poor individual models by merging only a subset K ⊆ {1..N} of
models. We apply a similar technique as Wortsman et al. (2022); Ramé et al. (2022) which greedily
identifies new individual models to merge. We use their OOD performance on the validation sets
to incrementally add models and plot the results in Figure 6. In general, merging only a subset of
models is better than merging all models, e.g., on RoBERTa-base with the same head initialization,
RegMean outperforms Best f1..N by merging only two models.

5.3 DISCUSSION

Pre-trained Model Impact in Merging. Our results also show that the underlying pre-trained
model is an important factor that affects the performance of merged models. Overall, merging
T5-base models is successful even with simple averaging, while DeBERTa-large is hard to merge,
which hints to an interaction between merge-ability and pre-training objective. We believe a more
comprehensive study of such factors is an interesting direction of future work.

Impact of Scaling Non-Diagonal Values in Inner Product Matrices. We noticed when α =
1.0 (i.e., no scaling), RegMean yields degenerated performance on T5-base and DeBERTa when
merging two models, while slightly decreasing α to 0.9 eliminates the issue. In the other extreme
case when α = 0, the inner product matrices become diagonal and RegMean simply reweigh rows
of weight matrices, making the method similar to Simple Average. We plot the pairwise merging
performance of RegMean with 0 ≤ α ≤ 1 in Figure 5a for T5-base and DeBERTa-large, as well as
the performance of merging multiple T5 models in 5b. We observe that the performance of RegMean
is mostly stable between α = 0.1 and 0.9, but suddenly drops at α = 1.0. When merging multiple
T5-base models, both in-domain and OOD performs reaches maximum at α = 0.1 and slowly drops
with an increase in α, whereas OOD performance suffers a slightly larger drop.

Limitations. We note that the requirement of inner product matrices in RegMean (and Fisher Infor-
mation in Fisher-weighted averaging) can be a limitation. To merge existing models released online
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Figure 6: Examples of improved out-of-domain generalization performance when incrementally merging a
subset of individual models in the order of their OOD performance compared to merging all models. The main
comparison is against the best individual model f1..N (shown in the dashed line).

without these statistics, a few training examples (see Appendix C for the sensitivity to the number of
training examples) are needed to compute them. Besides, there is a risk that inner product matrices
may reveal information about training data. Quantitatively measuring information leakage in these
statistics should be a good direction of research in the area of privacy.

6 RELATED WORK

Model Merging and Weight Averaging. Past research studied model merging for different end
goals. Izmailov et al. (2018); Gupta et al. (2020); Wortsman et al. (2022) aim to improve model
performance by averaging weights across different checkpoints or different runs. Cha et al. (2021);
Arpit et al. (2021); Ramé et al. (2022) study domain-generalization by averaging weights of models
trained over the same datasets with different configurations. Matena & Raffel (2021) study merging
using Fisher-weighted averaging with the aim of improving performance on a single target task by
leveraging other ‘donor’ tasks. Choshen et al. (2022) show fusing fine-tuned models with simple
weight-averaging creates a better starting point of fine-tuning for new tasks. Weight averaging was
also used by Li et al. (2022) for building language models with multi-domain capabilities where
new domain ‘experts’ are initialized using weight averaging from the existing experts. Wang et al.
(2022) use weight averaging to fuse knowledge learned when training multiple adapters with the
aim of obtaining better few-shot capabilities and increased model robustness. Merging updates of
private models is a crucial intermediate step in federated learning (McMahan et al., 2017; Li et al.,
2019). However, key in federated learning algorithms is that the joint model is iteratively updated
in multiple rounds, which is not allowed for model merging. The success of simple arithmetic mean
for model merging has been explained from the perspective of loss landscapes and linear mode
connectivity (Frankle et al., 2020; Neyshabur et al., 2020; Draxler et al., 2018; Ainsworth et al.,
2022). Further, improved merging algorithms aim to match permutations between the weights of
different models (Singh & Jaggi, 2020; Nguyen et al., 2021; Ainsworth et al., 2022; Wang et al.,
2020a), which is a complementary line of effort to our work. We experiment with permutation
matching algorithms and present our analysis in Appendix D.

Knowledge Fusing via Distillation. Recent work has used the knowledge distillation framework to
fuse the capabilities of multiple teacher models by distilling them into a smaller student model at
fine-tuning or pre-training stage (Khanuja et al., 2021), albeit requiring full access to data for distil-
lation. Dataless distillation, although for computer vision architectures and not using Transformer-
based approaches, was attempted in (Lopes et al., 2017; Nayak et al., 2019). These have the addi-
tional disadvantage of not having a closed form solution and are thus not computationally efficient.

7 CONCLUSIONS AND FUTURE WORK

This paper studied the problem of fusing knowledge of multiple fine-tuned language models by
model merging without access to training data. We proposed a new method inspired by linear models
named Regression Mean (RegMean). We introduced a series of experimental setups in which we
demonstrated that our method outperforms other alternatives to dataless merging or ensembling.
Further, in non-i.i.d. and out-of-domain experiments, we showed that model merging can outperform
individually trained models. Merged models are also very practical, especially when compared to
hosting multiple models, as the merging algorithm is very efficient, adds a minimal number of
additional parameters and has a similar inference speed to any individual model.

The implications of model merging are wide ranging from efficient intermediary-task selection to
improve performance to combining models trained with private data in a federated learning setup.
Future work can focus on merging models with different initialization or architectures, merging
models sequentially at scale or merging pre-trained models before the fine-tuning stage.
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A DERIVATION OF THE COMPLETE FORMULATION OF REGMEAN

Consider merging of K linear models. We have the optimization problem formulation,

min
W

i∈K∑
i

∥WTXi −WT
i Xi∥2 +

i∈K∑
i

(W −Wi)
TΛi(W −Wi) (3)

where for all i, W,Wi ∈ Rm×n, Xi ∈ RNi×m, and Λi = diag(λi1, λi2, ..., λiK) ⪰ 0. The second
term is a regularization term that encourages W to be close to Wi, where λij is the regularization
strength for j-th row of Wi. Here, λij can be set as any non-negative values. The optimal solution
for this problem is,

WM = [

i∈K∑
i

(XT
i Xi + Λi)]

−1
i∈K∑
i

[(XT
i Xi + Λi)Wi] (4)

Proof. We compute the gradient of the objective function (noted as L) w.r.t the merged weight W .

∂L

∂W
=

i∈K∑
i

(−2XT
i XiWi + 2XT

i XiW ) +

i∈K∑
i

(−2ΛWi + 2ΛW ) (5)

We see L is convex w.r.t. W . Therefore, we may find minizer of L by letting ∂L
∂W = 0.

i∈K∑
i

(XT
i XiWi + ΛWi) =

i∈K∑
i

(XT
i Xi + Λ)W ∗ (6)

W ∗ = [

i∈K∑
i

(XT
i Xi + Λi)]

−1
i∈K∑
i

[(XT
i Xi + Λi)Wi] (7)

Usually, in linear regression, the regularization strength Λi is manually specified as a constant value.
However, in our case, the scale of XT

i Xi may differ a lot across models, layers, or datasets. There-
fore, we let Λi to scale with XT

i Xi, and set Λi = γ diag(XT
i Xi), where γ is a fixed scalar, so

that,

WM = [

i∈K∑
i

(XT
i Xi + γ diag(XT

i Xi))]
−1

i∈K∑
i

[(XT
i Xi + γ diag(XT

i Xi))Wi] (8)

This formulation is equivalent to increasing the scale of diagonal items of inner product matrices
XT

i Xi. Decreasing all non-diagonal items of inner product matrices by multiplying α = 1
1+γ has

the same effect, as we have done in Sec. 3.3.

WM = [

i∈K∑
i

(
1

1 + γ
XT

i Xi+
γ

1 + γ
diag(XT

i Xi))]
−1

i∈K∑
i

[(
1

1 + γ
XT

i Xi+
γ

1 + γ
diag(XT

i Xi))Wi]

(9)
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B DETAILS FOR DATASETS, PREPROCESSING, METRICS, AND TRAINING

GLUE. For GLUE (Wang et al., 2018) experiments, we use CoLA (Warstadt et al., 2019), SST-
2 (Socher et al., 2013), MRPC (Dolan & Brockett, 2005), STS-B (Cer et al., 2017), MNLI (Williams
et al., 2018),QNLI (Rajpurkar et al., 2016), QQP, and RTE (Giampiccolo et al., 2007) datasets the
GLUE task collections. We run evaluation on the official development sets because test labels are
hidden. We compute Matthews Correlation for CoLA, Pearson Correlation for STS-B, and accuracy
for all other tasks.

Train Dev Test

In-domain
DialyDialog 72,085 10,298 20,596
CrowdFlower 27,818 3,974 7,948
TEC 14,735 2,105 4,211
Tales-Emotion 10,339 1,477 2,955
ISEAR 5,366 766 1,534

Out-of-domain
Emoint 7,102
SSEC 4,868
ElectoralTweets 4,056
GroundedEmotions 2,585
AffectiveText 1,250

Table 4: Statistics of emotion classification datasets.

To study merging models trained on non-i.i.d.
partitions, we construct two partitions for each
of the GLUE tasks. We first randomly sample a
“key class” from the task and draw 80% of data
of the class from the training set and put them
into one partition. The rest of the data constitute
the other partition. We uniformly draw exam-
ples that do not belong to the “key class” from
one partition to the other so that two partitions
have the same number of examples. We uni-
formly sub-sample each partition so that each
partition has 1,000 training examples.

Emotion. For emotion classification, we use
the preprocessed datasets by Oberländer &
Klinger (2018). We use DailyDialogs (Li
et al., 2017), CrowdFlower, TEC (Mohammad,
2012), Tales-Emotion (Alm et al., 2005), and
ISEAR (Scherer & Wallbott, 1994) for training domain-specific models. We use Emoint (Moham-
mad & Bravo-Marquez, 2017), SSEC (Schuff et al., 2017), ElectoralTweets (Mohammad et al.,
2015), GroundedEmotions (Liu et al., 2017), and AffectiveText (Strapparava & Mihalcea, 2007)
as held-out datasets for evaluating out-of-domain generalization. All the selected datasets have the
classes anger, disgust, fear, joy, sadness, surprise in their label space, while some of them have more
classes (e.g. guilt). For in-domain performance of each dataset, we compute Macro-F1 of all classes
that present in the dataset. For out-of-domain performance, we only compute Macro-F1 over anger,
disgust, fear, joy, sadness, surprise. In some of the datasets, inputs may be associated with multiple
emotion labels. We therefore formulate the emotion classification task as a multi-label classification
task for all datasets. Table 4 summarizes statistics of the datasets.

Train Dev Test

In-domain
OntoNotes:bc 12,719 2,269 2,355
OntoNotes:bn 13,233 1,598 1,666
OntoNotes:mz 7,793 729 877
OntoNotes:nw 40,466 6,778 2,702
OntoNotes:tc 13,162 1,671 1,403
OntoNotes:wb 39,140 5,117 5,103

Out-of-domain
CoNLL 3,684
Twitter 2,395

Table 5: Statistics of NER datasets.

On RoBERTa and DeBERTa, we create a binary classifi-
cation head for each class. We exclude the classification
heads that are not learned in the training process when
merging the weights of classification heads – e.g. if one
dataset has the class “guilt” but the other does not, the
weights of the classification head for “guilt” of the other
model will not be used for merging.

For T5, we reformulate the task into a sequence-to-
sequence format with the template: does the sentence ex-
press {class name}? {sentence}. with possible outputs
yes or no. Such an example will be created for each class
that present in the dataset. During evaluation, we treat the
exact match yes as the the prediction of the positive label,
and otherwise treat as prediction of the negative label.

NER. We use 6 domains (newswire, broadcast news,
broadcast conversation, magazine, telephone conversa-
tion and web data) in OntoNotes (Hovy et al., 2006) for training 6 domain-specific individual
models. For testing out-of-domain generalization, we use CoNLL Sang & De Meulder (2003) and
a Twitter NER data set Rijhwani & Preotiuc-Pietro (2020). Table 5 summarizes statistics of the
datasets.
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DailyDialog CrowdFlower TEC Tales-Emotion ISEAR

DailyDialog 8.22 13.95 16.68 13.38 14.69
CrowdFlower 22.11 28.52 22.78 26.26
TEC 29.90 26.55 31.21
Tales-Emotion 18.28 24.19
ISEAR 30.06

Table 7: OOD performance when merging two RoBERTa-base emotion classification models (with same head
initialization) with RegMean. Diagonal items represent OOD performance of individual models. We show
OOD performance is dependent on the models used for merging.

Implementation. We use huggingface’s transformer library (Wolf et al., 2019) to download pre-
trained LM checkpoints and fine-tune the models. We specifically note that we use the forward
function hook feature in PyTorch (Paszke et al., 2019) to obtain the inputs of all linear layers in
order to compute inner product matrices. It makes the code implementation of RegMean agnostic to
the model architecture.

N In-domain OOD

1 37.42 20.55
10 40.09 22.09
100 40.62 22.64
1,000 38.73 22.61
5,000 40.56 22.78

Table 6: Enumerating different setups of N (numbers
of batches of size 16 for computing inner product ma-
trices) in merging all five RoBERTa-base models fine-
tuned on emotion classification datasets. We report av-
erage performance over in-domain and out-of-domain
(OOD) datasets.

Training Details. We fine-tune DistilBERT-
base, RoBERTa-base, and DeBERTa-large with
an initial learning rate 1e-5, and fine-tune T5-
base with an initial learning rate 1e-4. We use
AdamW optimizer throughout the experiments.
The learning rate gradually warms up in the first
6% of training steps and linearly decay to 0. We
train models with a batch size of 16 and for 10
epochs on GLUE, 30 epochs on emotion clas-
sification and 20 epochs on NER. We evaluate
the performance of the model after each epoch
and resume the best performing checkpoint at
the end of training.

C SENSITIVITY ANALYSIS

Number of batches for computing inner product matrices. In our main experiments, we use
N = 1, 000 batches (of size 16) for computing inner product matrices. We present additional
analysis about the effect of N and summarize results in Table 6. In general, performance improves
as we increase N , but the performance soon saturates around N = 100.

In-domain F1

Adding a constant to diagonals
β = 0.01 28.24
β = 0.1 33.74
β = 0.2 39.13
β = 0.5 34.70

Relative scaling of non-diagonals
α = 0.1 40.32

Table 8: Comparison of performing regularization by
adding a constant to diagonals or relative scaling of
non-diagonals of inner product matrices. We merge T5-
base Emotion Classification models and evaluate aver-
age in-domain F1.

Alternative methods for regularization. As
we mentioned in Sec. 3.3 and Appendix A, we
reduce non-diagonal items of inner product ma-
trices by a fixed scale α, which has a regular-
ization effect of encouraging merged weights to
be closer to individual model weights. Here we
present analysis of an alternative regularization
method, which adds a fixed scalar β to diagonal
items instead of relatively scaling them.

We experiment with emotion classification on
T5 where regularization seems to be most nec-
essary. We merge each pair of models on 5
emotion classification datasets and report the
average performance over all pairs (a setting
similar to Figure. 3) in Table 8. We see rela-
tive scaling achieves clearly better performance
than adding a constant to diagonals. As we mentioned in Appendix A, this may be caused by differ-
ences in the scale of inputs in different layers, models, and datasets, which makes it difficult to find
a single additive regularizer.
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Layer 0 Layer 1 Layer 2 Layer 3 Layer 4 Layer 5

Layer 6 Layer 7 Layer 8 Layer 9 Layer 10 Layer 11

(a) Intermediate layers (roberta.encoder.layer.*.intermediate.dense) of transformer blocks
Layer 0 Layer 1 Layer 2 Layer 3 Layer 4 Layer 5

Layer 6 Layer 7 Layer 8 Layer 9 Layer 10 Layer 11

(b) Output layers (roberta.encoder.layer.*.output.dense) of transformer blocks
Figure 7: Visualizing ℓ2 distance between pairs of n weight vectors in WA ∈ Rm×n and WB ∈ Rm×n.
Smaller values are highlighted in the heatmaps. We fine-tune RoBERTa-base models on two different emotion
classification datasets. The resulting matrix T is used as ground metrics for computing optimal transport in
weight-based matching in (Singh & Jaggi, 2020).

Choice of models to merge and its effect on OOD performance. Table 7 summarizes OOD per-
formance when merging each pair of RoBETa-base emotion classification models with same head
initialization with RegMean. We see the OOD performance is clearly dependent on the models cho-
sen for merging. Merging TEC and ISEAR models, which correspond to two individual models that
achieve best OOD performance, produces a model that achieves best OOD performance.

D PERMUTATION MATCHING ALGORITHMS FOR MERGING LANGUAGE
MODELS

Several existing works (Singh & Jaggi, 2020; Ainsworth et al., 2022) propose algorithms to match
weight permutations in two models before merging, as models with similar outputs may involve dis-
tinct permutations in their weights. However, experiments in these works do not cover transformers
LMs. In this section, we present an analysis to address two research questions about permutation
matching algorithms in the setup of merging language models fine-tuned from shared pretrained
weights: (1) does the issue of weight permutation exist in this setup? (2) do existing permutation
matching algorithms improve the performance of model merging?

We experiment with merging two RoBERTa-base models fine-tuned on emotion classification
datasets. We visualize results on merging models trained on Tales-Emotion and ISEAR in Figures 7
and 8.

Weight-Based Matching. We apply weight-based matching in OTFusion (Singh & Jaggi, 2020). To
find permutations between weight matrices WA and WB in the same layer of two different models,
the algorithm computes a ground metrics matrix M ∈ Rn×n, where n is the dimension of the output.
Each element Mij ∈ M measures ℓ2 distance between a pair of weight vectors W :,i

A and W :,j
B .
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Layer 0 Layer 1 Layer 2 Layer 3 Layer 4 Layer 5

Layer 6 Layer 7 Layer 8 Layer 9 Layer 10 Layer 11

(a) Intermediate layers (roberta.encoder.layer.*.intermediate.dense) of transformer blocks
Layer 0 Layer 1 Layer 2 Layer 3 Layer 4 Layer 5

Layer 6 Layer 7 Layer 8 Layer 9 Layer 10 Layer 11

(b) Output layers (roberta.encoder.layer.*.output.dense) of transformer blocks
Figure 8: Visualizing ZT

AZB , where ZA = gelu(WT
AXA) and ZB = gelu(WT

BXB) are the activations of
the layers. We fine-tune RoBERTa-base models on two different emotion classification datasets. The resulting
ZT

AZB is used for computing activation-based matching in (Ainsworth et al., 2022)
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Assuming no permutations in weights, we should expect the diagonal items of M (distance of weight
vectors in the corresponding positions) to be much smaller than non-diagonal items. Otherwise, we
may obtain non-trivial permutations by solving an optimal transport problem with M .

In Figure 7, we visualize the matrix M on the two-layer MLP after each transformer block, which is
the only place where linear layers are stacked without residual connections in transformers, making
weight permutations most likely to happen. However, in Figure 7, we see a clear picture that the
diagonal items of M are significantly smaller than non-diagonals. The results imply there is no
permutations in weights. In this case, the permutation matrix we obtain by solving optimal transport
is a trivial identity matrix.

We conjecture that sharing the same pretrained LM weight initialization contributes to stability in
training, resulting in no permutations in weights. The residual connections in transforms may further
prevent weights in other modules from getting permuted.

Activation-Based Matching. We apply activation-based matching in Git Re-Basin (Ainsworth
et al., 2022). The algorithms relies on a similarity matrix C ∈ Rn×n that measures pairwise simi-
larity of activations over N training examples in a certain layer. More formally, C is computed as
ZT
AZB , where ZA, ZB ∈ RN×n are activations at a given layer in the models fA and fB . The algo-

rithm solves a linear assignment problem with C to obtain permutations in activations. Similarity, if
there is no permutation, we expect the diagonal items of C to be large.

We visualize the matrix C in Figure 8. We see a different picture from weight-based matching that C
is far from being diagonal. This allows activation-based matching algorithms to produce non-trivial
permutation matrices. However, as we apply these permutations, we obtain performance that is far
below simple average without matching. We conjecture that in our setup permutations of activations
could not faithfully represent permutations in weights. Though we just present empirical findings in
this paper, we consider figuring out the reasons for such discrepancy as an interesting future work.
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