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Abstract: Semantic scene graph provides an effective way for intelligent agents
to better understand the environment and it has been extensively used in many
robotic applications. Existing work mainly focuses on generating the scene graph
from the sensory information collected from a pre-defined path, while the envi-
ronment should be exhaustively explored with a carefully designed path in order
to obtain a comprehensive semantic scene graph efficiently. In this paper, we pro-
pose a new task of Embodied Semantic Scene Graph Generation, which exploits
the embodiment of the intelligent agent to autonomously generate an appropriate
path to explore the environment for scene graph generation. To this end, a learning
framework with the paradigms of imitation learning and reinforcement learning is
proposed to help the agent generate proper actions to explore the environment and
the scene graph is incrementally constructed. The proposed method is evaluated
on the AI2Thor environment using both the quantitative and qualitative perfor-
mance indexes. Additionally, we implement the proposed method on a streaming
video captioning task and promising experimental results are achieved.

Keywords: Semantic Scene Graph, Embodied Exploration, Learning for Visual
Navigation

1 Introduction

new objects
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reference objects

Frame 1 Global Semantic Scene Graph

Video Caption: This is a room 
with a light switch embedded 
on the wall.

Frame 25 Global Semantic Scene Graph

Video Caption: This is a bedroom with a bed with a 
pillow on top of it and two chairs. Close to the second 
chair, there is a desk with three drawers. There is a 
laptop, a pencil, a cd, a cell phone, a key chain, a book 
and a bowl sitting on the desk. A credit card and a 
mug is close with the laptop, sitting on top of the 
desk. A pen is close with the pencil, on top of the desk. 
A shelf is supported by the desk, above the second 
chair. There is an alarm clock and a statue standing on 
top of the shelf. There is a mirror hanging on the wall. 
A light switch and a window is embedded on the wall.

Frame 8 Global Semantic Scene Graph

Video Caption: This is a bedroom with a bed 
with a pillow on top of it and two chairs. Close 
to the second chair, there is a desk. A laptop 
and a mug is sitting on top of the desk. A shelf 
is supported by the desk. There is an alarm 
clock and a statue standing on top of the shelf. 
There is a mirror hanging on the wall. A light 
switch and a window is embedded on the wall.

Figure 1: The illustration for the Embodied Se-
mantic Scene Graph Generation. The agent moves
around and always selects an appropriate action to
obtain better semantic scene graph. Further, the
generated semantic scene graph can be helpful to
generate the streaming video captioning.

The scene graph is a collection of nodes in a
graph structure where nodes usually represent
scene entities and edges represent geometrical
transformation between the nodes. It provides a
flexible way to track objects and their spatial re-
lations within the scene. Recently, the concept
of scene graph is successfully adapted in many
applications in computer vision and robotics
[1][2]. For example, the Visual Genome dataset
[3], which contains annotations of objects and
their relationships in images, has been exten-
sively utilized in various scene graph genera-
tion tasks [4][5][6]. In [1], the author proposes
to extract the knowledge graph from recorded
videos for better video understanding. Xu et al.
[2] provides an extensive survey on the recent
progress on the generation and applications of
the scene graph.

Furthermore, 3D semantic scene graph is of
great interest for robotic applications such as
navigation, mapping, and interaction [7]. To
understand the 3D environment, Kim et al. [8] proposes a 3D scene graph construction framework
using RGB-D data processing pipeline, which can be used for task planning and visual question
answering. Bozcan and Kalkan [9] develops a Boltzmann Machines-based generative scene model
bringing objects, their spatial relations and affordances together. Armeni et al. [10] presents a 3D
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scene graph, which unifies multi-modal semantic information in the 3D space. Recently, Rosinol
et al. [11] proposes a 3D dynamic scene graph which extends to represent dynamic scenes with
moving agents.

Though great success has been achieved for semantic scene graph, all of the above work focuses
on generating scene graph from the sensory information collected from a pre-defined path. How-
ever, to obtain a comprehensive and informative semantic scene graph, the environment should be
exhaustively explored, which requires large time consumption. In many scenarios, the disconnec-
tion between the scene graph generation and the exploration path even results in unsatisfied results.
Therefore, it is necessary for the agent to have the ability to autonomously explore the environment
to generate a good semantic scene graph.

In this work, we adopt the embodied exploration framework to tackle the Embodied Semantic Scene
Graph Generation problem, which has never been addressed before. It combines the action and
perception abilities of the agent. The embodied agent generates actions to autonomously explore
the environment and then incrementally constructs a high-quality semantic scene graph using the
detected object instances and contextual information. The collected sensor data is continuously
processed and incorporated into the scene graph model along with the exploration process. The
illustration is demonstrated in Fig.1. Different from the existing work which focuses on generating
scene graphs from acquired sensor information, our work introduces the embodiment of the agent
to effectively combine the action, vision and language together for autonomous 3D semantic scene
graph generation. The main contributions are summarized as follows:

1. We propose a new framework for the Embodied Semantic Scene Graph Generation prob-
lem, which exploits the embodiment characteristic of the intelligent agent to find an appro-
priate path for scene graph generation in an embodied environment.

2. We develop a learning framework with paradigms of imitation learning and reinforcement
learning to help the agent acquire the intelligence to generate high-quality scene graph.

3. We test the proposed method on the AI2Thor dataset and evaluate its effectiveness using
the quantitative and qualitative performance indexes.

For the rest of the paper, Section II presents the related work. Problem formulation and architecture
are introduced in Section III. Sections IV and V give details about the scene graph generation and
navigation modules. Section VI presents the experimental results and Section VII closes this paper.

2 Related Work

This work falls into the intersection of the embodied exploration and semantic understanding. There-
fore, we present a brief review on both domains.

The embodied exploration lies in the intersection of the computer vision and robotics. The rep-
resentative work includes active sensing [12][13], embodied question answering [14], embodied
captioning [15], embodied amodal detection [16], multi-agent embodied exploration [17], etc. In
these works, one or multiple embodied agents equipped with visual perception modules can au-
tonomously explore the environment to perform various active sensing and perception tasks. Zhang
and Mei [18] proposes a constructive model for collective intelligence in which each agent would
explore and communicate to cooperate with each other. In recent years, researchers have combined
deep reinforcement learning with active vision sensing. Han et al. [19] builds an active vision system
based on DQN to guide the agent generate appropriate actions and get better images for detection.
Furthermore, Chaplot et al. [20] studies the task of embodied interactive learning for object detec-

tion. It should be noticed that in [15], the authors propose an embodied captioning task, which is
relevant to our work, while our work solves a more fundamental task of generating the 3D scene
graph, which provides more comprehensive contextual information of the environment. Actually,
the generated scene graph can be useful for many down-streaming tasks such as image captioning,
streaming video captioning, embodied Questions and Answering, etc.

On the other hand, the embodied exploration task can also benefit from the semantic scene graph.
Druon et al. [21] and Zeng et al. [22] study how to enhance the active object search using the spatial
context and semantic linking maps respectively. The hierarchical mechanical search also shows
performance improvement by using the semantic modeling [23]. Du et al. [24] proposes to learn
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Figure 2: The architecture of the Embodied Semantic Scene Graph Generation. At time instant t,
after taking one action, the agent comes to a new viewpoint and updates the local and global scene
graph, and further exploits the local and global scene graph to generate a new action. This process
iterates until a stop action is obtained.

object relation graph and tentative policy for visual navigation. Besides, the scene graph also plays
an important role in the visual question answering system for robot manipulation [25]. These works
illustrate the significance of semantic scene graph in embodied perception. However, they all use
existing scene graphs and do not address the generation of the scene graph.

3 Problem Formulation and Architecture

The goal of this work is to enable the agent to automatically generate a sequence of actions to
explore the environment and build the corresponding semantic scene graph incrementally. Con-
cretely speaking, the agent starts from any location of a scene with an initial empty global se-
mantic scene graph GSSG0. At time instant t, the agent could construct a local scene graph
LSSGt = {N (l)

t ,R(l)
t } from its observation st, which could be extracted from observed RGB

and depth images. The local scene graph LSSGt should be merged with the previous global scene
graph GSSGt−1 = {N (g)

t−1,R
(g)
t−1} to get the updated global scene graph GSSGt = {N (g)

t ,R(g)
t }.

Please note that we follow the conventional symbols with slight modifications [26], i.e. N (l)
t and

R(l)
t represent the node and semantic relationships for the local scene graph LSSGt, and N (g)

t and
R(g)
t represent the node and semantic relationships for the global scene graph GSSGt. After that,

a navigation module should produce an action at for the agent to obtain the next observation st+1.
The above procedure iterates until a satisfactory global semantic scene graph is achieved and the stop
action is triggered. The obtained semantic scene graph can then be used to describe the environment
comprehensively and solve some downstream tasks such as captioning, question answering, etc.

We call this problem as Embodied Semantic Scene Graph Generation, which exploits the embodi-
ment capability of the agent to collect data and construct high-quality scene graph. It is significantly
different from existing scene graph generation work such as [8][10]. To solve this problem, we
design an architecture as shown in Fig.2. It is mainly composed of the scene graph generation and
navigation module. For the scene graph generation, a 3D semantic point cloud is produced from
the RGB and depth images and is used for generating the local scene graph, which is then used to
incrementally update the global scene graph. For the navigation module, we utilize the RGB frame,
previous action and the scene graph as input and an action is generated for the next step.

3



4 Scene Graph Generation

The scene graph generation module can be divided into two parts: local scene graph prediction and
global scene graph generation, which are introduced as follows.

Local scene graph prediction: we mainly follow the graph convolution network based scene graph
generation method which is able to pass the information between objects. It is widely used in tasks
that utilize the scene graph to bridge the gap between semantic and visual information [26][27]. The
generated local semantic scene graph includes the current in-sight objects and their relations with
each other. We additionally introduce object class embedding and bounding box coordinates as the
input for each object node, and the training objective is to restore the bounding box coordinates and
labels for each object and edge. Please see the supplementary material for more details.

Global scene graph generation: At each time step, the agent takes an action to move, and the
equipped camera captures the RGB and depth frames of the scene to construct a local scene graph,
which is further merged into the global scene graph. During this period, the detected objects in the
local scene graph and the existing objects in the previous global scene graph are aligned.

Different from the multi-view consistency considered in [10], which has the 3D mesh and multi-view
visual information known in advance, we do not have any prior information about the scene and the
information of each object is incrementally updated. Considering this situation, we propose a point
cloud based weighted voting mechanism which utilizes the number of the pixels in the point cloud
to measure the confidence of the object category. In practice, for each detected object, we maintain a
score distribution across predefined classes. The score is incrementally accumulated by the weighted
value of the confidence provided by the detector and the size of the acquired point cloud.

G
lobal Scene G
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point cloud

Category Scores

、

RGB Frame

Depth Frame

Local Scene GraphSemantic Point Cloud 

Object Point Cloud List 

UPDATE ADD ADD

Local Scene G
raph

Edge UpdatingNode Updating

Figure 3: The alignments between objects and
edges of local scene graph and global scene graph.

Then, we align the object point cloud with
the nodes in global scene graph by computing
the fraction of point cloud in the object point
cloud that is inside the node’s 3D bounding
box. We calculate this fraction between each
object point cloud and the node in the global
scene graph. If the highest fraction of object
point cloud of the corresponding node is higher
than the preset threshold and this fraction is
higher than those with other objects, the ob-
ject and the node are considered aligned. This
bidirectional alignment procedure could ensure
that each aligned object and the corresponding
node are in one-to-one correspondence. Fig.3
demonstrates the alignment process. Based
on the aligning result for each object and the
weighted voting mechanism, we could align the nodes and edges in the obtained Local Semantic
Scene Graph(LSSG) with those in the Global Semantic Scene Graph(GSSG). The updating opera-
tion could involve ADD, UPDATE and REPLACE for both nodes and edges in GSSG. Please see
the supplementary material for more details.

5 Navigation Model

5.1 Model Structure

The goal of the proposed navigation model is to guide the agent to take actions to explore the
environment and build the semantic scene graph incrementally. The action space considered in this
work includes Move, where the agent can take nine basic actions corresponding to 8 directions and
no move, and Rotate, where the agent can rotate clockwise or counterclockwise with a fixed angle
δr = 90° or no rotate. Especially, if no move and no rotate are selected, a stop action is triggered.

The design of the navigation model is a challenging problem since the agent is expected to build a
good semantic scene graph which contains the objects and their relationships accurately. To tackle
this problem, we construct a navigation architecture as shown in Fig.4. Considering that the LSSG
could represent the insight semantic observations for the agent, we use an LSTM to embed the

4



Action ResNet LSTM LSTMAction ResNet LSTM LSTM

Double 
Layer LSTM

MLP 
Network

𝑎1

h1
h1

Action ResNet LSTM LSTM

…

…

…

…

𝑎𝑇−1 𝐿𝑆𝑆𝐺𝑇RGB  𝐼𝑇

𝑎2

Double 
Layer LSTM

MLP 
Network

h2
h2

𝑎𝑇

“STOP”

Double 
Layer LSTM

MLP 
Network

𝑎1 𝐿S𝑆𝐺2RGB  𝐼2𝑎0 𝐿S𝑆𝐺1RGB  𝐼1

“START”

GSSG1 GSSG2

Action feature

RGB feature

LSSG feature

GSSG feature

GSSGT

Figure 4: The architecture of the navigation model. At each time step, the of action feature, RGB
feature, LSSG feature and GSSG feature are firstly extracted and concatenated and fed into a double-
layer LSTM to predict the next step action.

LSSG sequence to help the agent build connections over visited viewpoints on a semantic level.
Further, we introduce GSSG vector aiming at help the agent have a complete perception over the
global semantic information. Since the change of GSSG could reflect the adding and updating
of objects and semantic relations in the scene, we utilize an LSTM to make the agent capture this
dynamic process. Overall, we use a ResNet to extract the visual feature, two LSTMs to encode
the local scene graph and global scene graph sequence respectively, and an embedding module to
represent the previous action. The three feature vectors are concatenated and fed into a double-layer
LSTM model. Finally, an MLP network is used to generate the next step action.

5.2 Learning for Navigation

Since the direct learning for such an architecture is still challenging, we adopt the imitation learning
as the pre-training and the reinforcement learning for fine-tuning.

5.2.1 Imitation Learning

The goal of imitation learning for sequential prediction problem is to train the agent to mimic the
expert’s behaviors. In this work, it is important to generate some demonstration paths for the agent
to imitate. We adopt a two-stage method to deal with this problem. In the first stage, we try to obtain
a way-point set and in the second stage, we perform the interpolation between way-points to get
the whole demonstration path. To evaluate the way-points, we first count the visible object at each
viewpoint, and select the closest next way-point that has the most number of unseen new objects,
which can be expressed as:

v∗ = argmax
v∈O(vc,k∗)

new_object_num(v), k∗ = argmin
k

∑
v∈O(vc,k)

new_object_num(v) > 0

where O(vc, k) represents the feasible viewpoints that are k steps away from vc, and the way-point
set can be updated asW = W ∪ {v∗}. The above procedure is repeated until a maximum distance
is achieved. In the second step, we implement a beam search over the way-point sequence for
interpolation [28]. The loss function is defined as follows:

Lθ = −
1

K

K∑
k=1

Tk∑
t=1

log πθ(âk,t|ŝk,0, âk,0, ŝk,1, âk,1, · · · , ŝk,t) (1)

where K is the number of demonstration paths used for training in one batch, Tk is the length of the
k-th path, ŝk,t and âk,t are the annotated input visual state and action, and θ denotes the parameter
of the exploration policy π. The process of minimizing Lθ equals to maximize the probability of the
demonstration paths’ action sequence based on the annotated inputs.

5



5.2.2 Reinforcement Learning

After pre-training the exploration model with imitation learning, we then try to further improve its
performance using the REINFORCE algorithm.

Since our task aims at formulating a scene graph for the entire scene, we directly measure the
similarity between the generated scene graph and ground truth one, which can be obtained from the
ground truth information about the object and the relationships. Given a global scene graph GSSG
which is constructed from one path, the similarity score can then be calculated as a weighted sum of
the precision and recall rate of the nodes and edges:

Sim(GSSG) = λnode(Rnode + λpPnode) +Redge + λpPedge (2)

where Pnode and Pedge are the precision of the nodes and edges, respectively, while Rnode and
Redge are the recall rate of the nodes and edges, respectively.

On the other hand, we hope to encourage the observation diversity when constructing the scene
graph. The diversity can be characterized as the number of observation viewpoints of the detected
objects. Concretely speaking, given a global scene graph GSSG which is constructed from one path,
we use O to denote the set of the detected objects and calculate the diversity as:

Div(GSSG) =
∑
o∈O

num_viewpoints(o) (3)

where num_viewpoints(o) is the number of the viewpoints about the detected object instance o.
Therefore we may formulate the score at time instant t as:

pt = Sim(GSSG) + λdDiv(GSSG)− ρt. (4)
where the third term is used to penally the length of the path, and λd, ρ are the corresponding
weighting parameters. In practice, we set λnode = 0.1, λp = 0.5, and λd = ρ = 0.001.

According to the above definition, the immediate reward is designed to be the increment of the score
r(st, at) = pt − pt−1 and the cumulative reward can be computed as:

R(st, at) = r(st, at) +

T∑
t′=t+1

γt
′
−tr(st′ , at′ ), (5)

where R(st, at) represents the expected accumulated reward when agent takes action at at state st,
the discount parameter γ is set to 0.99, and T is the length of the action and state sequence with
upper bound of 40 steps, and we use SGD optimizer with a learning rate of 10−4.
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Figure 5: An illustration of the considered semantic relationships.

6 Experimental Validation

6.1 Dataset

We choose AI2THOR [29] to generate our dataset since it supports a continuous navigation while
MP3D[30] does not, and its has higher rendering quality of images and more accurate sensors com-
pared with Habitat[31]. We follow the guidelines in [26] to extract 16 semantic relationships, which
can be clustered into the following seven categories (Fig.5). Please refer to the supplementary ma-
terial for more details.
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Table 1: Performance Comparison
RelCls SGGen

Nos Pnode Rnode F1node Pedge Redge F1edge NoS Pnode Rnode F1node Pedge Redge F1edge
Random 27.367 1.0 0.311 0.474 0.705 0.144 0.239 27.367 0.550 0.223 0.317 0.278 0.097 0.144

PPO+Map 23.915 1.0 0.484 0.652 0.736 0.260 0.384 23.915 0.665 0.435 0.526 0.248 0.200 0.221
Frontier-based 24.597 1.0 0.547 0.707 0.717 0.289 0.412 24.597 0.643 0.425 0.512 0.253 0.194 0.220

LSTM+Act+Pose 22.815 1.0 0.563 0.720 0.689 0.300 0.418 22.815 0.567 0.526 0.546 0.235 0.208 0.221
LSSG+GSSG(Ours) 22.435 1.0 0.688 0.815 0.681 0.339 0.453 26.657 0.558 0.564 0.561 0.228 0.230 0.229

Traverse(Oracle) >500 1.0 0.858 0.924 0.576 0.384 0.461 >500 0.516 0.617 0.562 0.201 0.275 0.232

Table 2: Input Ablation Study: Baseline takes RGB and last step action as input, LSSG and GSSG
represent local and global semantic scene graph vector respectively.

RelCls SGGen
Nos Pnode Rnode F1node Pedge Redge F1edge NoS Pnode Rnode F1node Pedge Redge F1edge

Baseline 22.815 1.0 0.563 0.720 0.689 0.300 0.418 22.815 0.567 0.526 0.546 0.235 0.208 0.221
GSSG 17.254 1.0 0.577 0.732 0.694 0.309 0.428 22.942 0.524 0.460 0.490 0.228 0.200 0.213
LSSG 23.778 1.0 0.657 0.793 0.678 0.337 0.450 22.829 0.541 0.539 0.540 0.229 0.213 0.224

LSSG+GSSG 22.435 1.0 0.688 0.815 0.681 0.339 0.453 26.657 0.558 0.564 0.561 0.228 0.230 0.229

Table 3: Training Paradigm Ablation Study: IL represents imitation learning, RL represents rein-
forcement learning, IL+RL refers to our final training paradigm.

RelCls SGGen
Nos Pnode Rnode F1node Pedge Redge F1edge NoS Pnode Rnode F1node Pedge Redge F1edge

IL 32.477 1.0 0.632 0.774 0.663 0.323 0.434 25.731 0.550 0.556 0.553 0.229 0.214 0.221
RL 20.423 1.0 0.573 0.729 0.694 0.301 0.420 15.020 0.619 0.475 0.538 0.231 0.197 0.222

IL+RL 22.435 1.0 0.688 0.815 0.681 0.339 0.453 26.657 0.558 0.564 0.561 0.228 0.230 0.229

6.2 Method and Metrics

To verify the effectiveness of our framework and the influence of the input vectors, we introduce the
following methods for comparison:

1. Random The agent randomly selects an action from action space to perform scene exploration.

2. PPO+Map[32] The agent utilizes Resnet-18 to encode RGB frame, local map and global map
respectively and concatenates them as the input for the LSTM to predict the next action.

3. Frontier-based Exploration[33] A heuristic algorithm that guides the agent to detect and sweep
to the closest frontier with path planning.

4. LSTM+Act+Pose[14, 15] This model is widely used in embodied tasks, it encodes RGB frame,
agent position and last step action as the input of LSTM to predict the next step action for the agent.

5. LSSG+GSSG(Ours) Our framework that takes LSSG and GSSG vectors as the LSTM input.

6. Traverse(Oracle) Ask the agent to traverse every viewpoint in the scene.

To evaluate the quality of the semantic scene graph, we adopt the precision, recall rate and F1 score
of the nodes and edges compared to the ground truth scene graph, denoted as Pnode, Rnode, F1node,
Pedge, Redge and F1edge respectively, and the number of steps NoS as quantitative metrics. Note
that Rnode could be viewed as an object level coverage, and Redge could represent the semantic
richness of the generated GSSG.

We also propose the following two tasks for evaluation. RelCls: In this task, we align the detecting
result from Mask RCNN with ground truth to obtain the correctly detected objects at each viewpoint,
and offer the ground truth segmentation of each object to the agent. Since the detection results and
point cloud information are always correct, the precision of node is always 1.0. SGGen: In this
task, the agent utilizes the raw detecting result from Mask RCNN which is consistent with real-
world environment. The agent is expected to leverage both the global scene graph and navigation
policy to deal with the imperfection of Mask RCNN and the incompleteness of the collected point
cloud, incrementally generating an accurate and informative scene graph.

6.3 Results

6.3.1 Quantitative results

The experimental results are shown in Table I and II, from which we have the following observations:
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1. In both RelCls and SGGen, LSSG+GSSG outperforms other baselines on the recall rate and F1-
score of both the node and edge, and achieves a performance close to Traverse, which demonstrates
the effectiveness of our framework. Note that Traverse asks the agent to traverse every viewpoint in
the unseen scene which always requires manual assistance in reality. While our method fully exploits
the embodied capacity of the robot to explore the scene automatically and reaches a comparable
performance with much fewer NoS.

2. The increase in recall rate is often accompanied by a decrease in precision. This is mainly caused
by the imperfection of the Mask RCNN and Local Scene Graph Prediction Network(LSGPN) since
the errors at some specific viewpoints could be hard to update and would accumulate as the agent
increasingly covers the scene. Our method achieves the highest F1-score on both tasks, which
illustrates that our framework handles the balance of precision and recall rate well.

3. SGGen is much more difficult than RelCls since both the label and the mask of the detecting result
could be wrong, and the detecting error could further affect the generated LSSG and GSSG. This
explains the drop of all metrics in SGGen compared with those in RelCls. No matter how difficult
the task is, the baseline methods only implement spatial exploration and adopt the same exploring
path. While our method explores the scene at a semantic level indicating that the agent is aware of
GSSG and would try to update and add the semantic information of GSSG in subsequent steps.

4. From table II we could discover that in RelCls, both LSSG and GSSG benefit the task, and the
improvement of introducing LSSG is more obvious. This may be because the LSSG sequence en-
coded by LSTM contains a certain amount of GSSG information. While in SGGen, adding GSSG
vectors is worse than Base method. We think this could be caused by the more frequently changing
frequency on GSSG and its vector is very different from that in the training. LSSG + GSSG
performs best on both tasks, which illustrate the effectiveness and robustness of our framework.

5. Table III shows the performance of our LSSG + GSSG method under different training
paradigm. We can see that IL performs better than RL in RelCls. In SGGen, the performance
has an obvious drop as the behaviour cloning based method utilized by IL has poor generalization
ability. In unseen testing scene, especially the ones in SGGen that have huge differences in aspect
of room layout and point cloud accuracy with training scenes, IL trained model tends to perform
much worse. Meanwhile, while RL trained model has a smaller performance drop in SGGen, it has
the lowest recall rate over nodes and edges in RelCls and SGGen, which demonstrates that the scene
has not been completely explored. Therefore, we design the mix training paradigm that utilizes im-
itation learning to first pre-train the model, and then finetunes it with reinforcement learning. Our
method (IL+RL) achieves the highest score over the recall rate and f1 score of nodes and edges on
both two tasks, demonstrating its efficiency.

6.3.2 Qualitative Analysis and Applications

The generated semantic scene graph can be used for various downstream tasks. And we have
applied the generated semantic scene graph in a streaming video captioning task in this paper.
The caption of the video is incrementally enriched with the generated scene graph while the
agent exploring the environment. Experiment results show that the quality of the generated cap-
tion is superior to that generated with a Random exploration policy. The detailed results and
further discussion are presented in the supplementary document. Please also visit our website
https://embodiedscenegraph.vercel.app/ for more information.

7 Conclusion

In this paper, a novel embodied semantic scene graph generation framework is established and the
hybrid imitation reinforcement learning method is developed to address this new task. With the
learned policy, the agent is able to autonomously explore the environment and then incrementally
generate a high-quality semantic scene graph. This research exploits the important embodiment
characteristic of the intelligent agent and paves a new path for the agent to semantically describe the
environment. Additionally, it provides a fundamental component for some challenging downstream
tasks such as streaming video captioning, robotic manipulation, visual navigation, etc. We would
also like to extend this work to large-scale scene graph generation in more complicated scenarios.
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