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Abstract

We study stochastic Cubic Newton methods for solving general, possibly non-convex mini-
mization problems. We propose a new framework, the helper framework, that provides a
unified view of the stochastic and variance-reduced second-order algorithms equipped with
global complexity guarantees; it can also be applied to learning with auxiliary information.
Our helper framework offers the algorithm designer high flexibility for constructing and
analyzing stochastic Cubic Newton methods, allowing arbitrary size batches and using noisy
and possibly biased estimates of the gradients and Hessians, incorporating both the variance
reduction and the lazy Hessian updates. We recover the best-known complexities for the
stochastic and variance-reduced Cubic Newton under weak assumptions on the noise. A
direct consequence of our theory is the new lazy stochastic second-order method, which
significantly improves the arithmetic complexity for large dimension problems. We also
establish complexity bounds for the classes of gradient-dominated objectives that include
convex and strongly convex problems. For Auxiliary Learning, we show that using a helper
(auxiliary function) can outperform training alone if a given similarity measure is small.

1 Introduction

In many fields of machine learning, it is common to optimize a function f(x) that can be expressed as a
finite sum:

min
x∈Rd

{
f(x) = 1

n

n∑
i=1

fi(x)
}

, (1)

or, more generally, as an expectation over some given probability distribution: f(x) = Eζ

[
f(x, ζ)

]
. When f

is non-convex, this problem is especially difficult since finding a global minimum is NP-hard in general (Hillar
& Lim, 2013). Hence, the reasonable goal is to look for approximate solutions. The most prominent family of
algorithms for solving large-scale problems of the form (1) are the first-order methods, such as the Stochastic
Gradient Descent (SGD) (Robbins & Monro, 1951; Kiefer & Wolfowitz, 1952). They employ only stochastic
gradient information about the objective f(x) and guarantee the convergence to a stationary point, which is
a point with a small gradient norm.

Nevertheless, when the objective function is non-convex, a stationary point may be a saddle point or even a
local maximum, which might not be desirable. Another common issue is that first-order methods typically
have a slow convergence rate, especially when the problem is ill-conditioned. Therefore, they may not be
suitable when high precision for the solution is required.

To address these challenges, we can take into account second-order information (the Hessian matrix) and
apply Newton’s method (see, e.g., (Nesterov, 2018)). Among the many versions of this algorithm, the Cubic
Newton method (Nesterov & Polyak, 2006) is one of the most theoretically established. With the Cubic
Newton method, we can guarantee global convergence to an approximate second-order stationary point
(in contrast, the pure Newton method without regularization can even diverge when it starts far from a
neighborhood of the solution). For a comprehensive historical overview of the different variants of Newton’s
method, see Polyak (2007). Additionally, the convergence rate of the Cubic Newton is provably better than
those for the first-order methods.
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Therefore, the theoretical guarantees of the Cubic Newton method seem very appealing for practical
applications. However, the basic version of the Cubic Newton requires the exact gradient and Hessian
information in each step, which can be very expensive to compute in a large-scale setting; to overcome this
issue, several techniques have been proposed:

• One popular approach is to use inexact stochastic gradient and Hessian estimates with subsampling
(Xu et al., 2016; Kohler & Lucchi, 2017; Xu et al., 2017; Nilesh et al., 2018; Ghadimi et al., 2017; Cartis
& Scheinberg, 2018; Agafonov et al., 2020). This technique avoids using the full oracle information,
but it typically has a slower convergence rate compared to the exact Cubic Newton.

• Variance reduction techniques (Zhou et al., 2019; Wang et al., 2019) combine the advantages of
stochastic and exact methods, achieving an improved rate by recomputing the full gradient and
Hessian information at some iterations.

• Lazy Hessian updates (Shamanskii, 1967; Doikov et al., 2022) utilize a simple idea of reusing an
old Hessian for several iterations of a second-order scheme. Indeed, since the cost of computing one
Hessian is usually much more expensive than one gradient, it can improve the arithmetic complexity
of our methods.

• In addition, exploiting the special structure of the function f (if known) can also be helpful. For
instance, gradient dominated objectives (Nesterov & Polyak, 2006), a subclass of non-convex functions
that have improved convergence rates and can even be shown to converge to the global minimum.
Examples of such objectives include convex and star-convex functions, uniformly convex functions,
and functions satisfying the PL condition (Polyak, 1963) as a special case. Stochastic algorithms
with variance reduction for gradient-dominated functions were studied previously for the first-order
methods (see, e.g., Fatkhullin et al. (2022)) and for the second-order methods with cubic regularization
in Masiha et al. (2022).

In this work, we revise the current state-of-the-art convergence theory for the stochastic Cubic Newton
method and propose a unified and improved complexity guarantees for different versions of the method, which
combine the advanced techniques listed above.

Our developments are based on the new helper framework for second-order optimization that we present in
Section 3. For first-order optimization, a similar in-spirit technique called learning with auxiliary information
was developed recently in (Chayti & Karimireddy, 2022; Woodworth et al., 2023). Thus, our results can also
be seen as a generalization of the Auxiliary Learning paradigm to second-order optimization. However, note
that in our second-order case, we have more freedom for choosing the "helper functions" (namely, we use one
for the gradients and one for the Hessians). That brings more flexibility into our methods, and it allows, for
example, to use the lazy Hessian updates.

Our new helper framework provides us with a unified view of the stochastic and variance-reduced methods
and can be used by an algorithm designed to construct new methods. Thus, we show how to recover already
known versions of the stochastic Cubic Newton with some of the best convergence rates, as well as present
the new Lazy Stochastic Second-Order Method, which significantly improves the total arithmetic complexity
for large-dimension problems.

Contributions.

• We introduce the helper framework, which we argue encompasses multiple methods in a unified
way. Such methods include stochastic methods, variance reduction, Lazy methods, core sets, and
semi-supervised learning.

• This framework covers previous versions of the variance-reduced stochastic Cubic Newton methods
with known rates. Moreover, it provides us with new algorithms that employ Lazy Hessian updates
and significantly improves the arithmetic complexity (for high dimensions), by using the same Hessian
snapshot for several steps of the method.

• In the case of Auxiliary learning, we provably show a benefit from using auxiliary tasks as helpers in
our framework. In particular, we can replace the smoothness constant with a similarity constant,
which might be smaller.

• Moreover, our analysis works both for the general class of non-convex functions, as well as for
the classes of gradient-dominated problems, which include convex and uniformly convex functions.
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Hence, in particular, we justify new improved complexity bounds for the deterministic Cubic Newton
method with Lazy Hessian updates (Doikov et al. (2022)); as well as for the stochastic Cubic Newton
algorithms with variance reduction that take into account the total arithmetic cost of the operations
(see Table 1).

In the following table, we provide a comparison of the total complexities (in terms of the number of stoch.
gradient calls) for finding a point with small gradient norm E∥∇f(x̄)∥ ≤ ε (non-convex case), or a global
solution in terms of the functional residual Ef(x̄) − f⋆ ≤ ε (convex case, gradient dominated functions of
degree α = 1), by different first-order and second-order optimization algorithms. We take into account that
the cost of one stochastic Hessian is proportional to d times the cost of the stochastic gradient, where d is the
problem dimension, which holds for general dense problems.

Non-convex,
ε-local solution

Convex (α = 1),
ε-global solution Ref.

Gradient Descent (GD) n / ε2 n / ε Nesterov (2018)

Stochastic
Gradient Descent (SGD) 1 / ε4 1 / ε2 Ghadimi & Lan (2013)

Stochastic Variance
Reduced Grad. (SVRG) n2/3 / ε2 n2/3 / ε Johnson & Zhang (2013)

Cubic Newton (CN) nd / ε3/2 nd / ε1/2 Nesterov & Polyak (2006)

Stochastic
Cubic Newton (SCN) 1 / ε7/2 + d / ε5/2 1 / ε5/2 + d / ε3/2 Kohler & Lucchi (2017)

Nilesh et al. (2018)

Variance Reduced Stoch.
Cubic Newton (VRCN) (nd)4/5 ∧ (n2/3d + n) / ε3/2 (nd)4/5 ∧ (n2/3d + n) / ε1/2 (new)

Zhou et al. (2019)
Wang et al. (2019)

(new) Variance Reduced
Stoch. CN with Lazy

Hessians (VRCN-Lazy)
(nd)5/6 ∧ n

√
d / ε3/2 (new) (nd)5/6 ∧ n

√
d / ε1/2 (new) This work

Table 1: The total number of stochastic gradient computations for solving the problem with ε accuracy. n is the
number of functions (the data size), and d is the dimension of the problem. We use x ∧ y to denote min(x, y).

We see that for d ≥ n2/3 (large dimension setting) it is better to use the new VRCN-Lazy method than
the VRCN algorithm. Moreover, note that both in the SCN and VRCN algorithms, we need to solve a
cubic subproblem with a new approximate Hessian matrix at each iteration. This means that, in case of the
exact steps, an expensive matrix factorization needs to be computed every iteration for these algorithms. At
the same time, our new VRCN-Lazy method benefits from utilizing a matrix factorization for many steps,
significantly improving the total arithmetical cost of the method.

2 Notation and Assumptions

For simplicity, we consider the finite-sum optimization problem (1), while it can be also possible to generalize
our results to functions represented as expectation over an arbitrary probability distribution. We assume
that our objective f is bounded from below, denoting f⋆ := inf

x
f(x), and use the following notation:

F0 := f(x0) − f⋆, for some initial x0 ∈ Rd. We denote by ∥x∥ := ⟨x, x⟩1/2, x ∈ Rd, the standard Euclidean
norm for vectors, and the spectral norm for symmetric matrices by ∥H∥ := max{λmax(H), −λmin(H)},
where H = H⊤ ∈ Rd×d. We will also use x ∧ y to denote min(x, y).

Throughout this work, we make the following smoothness assumption on the objective f :

Assumption 2.1 (Lipschitz Hessian). The Hessian of f is Lipschitz continuous, for some L > 0:

∥∇2f(x) − ∇2f(y)∥ ≤ L∥x − y∥, ∀x, y ∈ Rd

Our goal is to explore the potential of using the Cubically regularized Newton methods to solve problem (1).
At each iteration, being at a point x ∈ Rd, we compute the next point x+ by solving the subproblem of the
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form
x+ ∈ arg min

y∈Rd

{
ΩM,g,H(y, x) := ⟨g, y − x⟩ + 1

2 ⟨H(y − x), y − x⟩ + M

6 ∥y − x∥3
}

. (2)

Here, g and H are estimates of the gradient ∇f(x) and the Hessian ∇2f(x), respectively. Note that solving
(2) can be done efficiently even for non-convex problems (see Conn et al. (2000); Nesterov & Polyak (2006);
Cartis et al. (2011)). Generally, the cost of computing x+ is O(d3) arithmetic operations, which are needed
for evaluating an appropriate factorization of H. Hence, it is of a similar order as the cost of the classical
Newton’s step. Inexact first-order solvers for the cubic subproblem were studied in Carmon & Duchi (2020);
Nesterov (2022).

We will be interested to find a second-order stationary point to (1). We call (ε, c)-approximate second-order
local minimum a point x that satisfies:

∥∇f(x)∥ ≤ ε and λmin(∇2f(x)) ≥ −c
√

ε,

where ε, c > 0 are given tolerance parameters. Let us define the following accuracy measure (see Nesterov &
Polyak (2006)):

µc(x) := max
(

∥∇f(x)∥3/2, −λmin(∇2f(x))3

c3/2

)
.

Note that this definition implies that if µc(x) ≤ ε3/2 then x is an (ε, c)-approximate local minimum.

Computing gradients and Hessians. It is clear that computing the Hessian matrix can be much more
expensive than computing the gradient vector. We denote the corresponding arithmetic complexities of
computing one Hessian and gradient of fi(x), 1 ≤ i ≤ n by HessCost and GradCost. We will make and follow
the convention that HessCost = d × GradCost, where d is the dimension of the problem. For example, this
is known to hold for neural networks using the backpropagation algorithm (Kelley, 1960). However, if the
Hessian has a sparse structure, the cost of computing the Hessian can be cheaper Nocedal & Wright (2006).
Then, we can replace d with the effective dimension deff := HessCost

GradCost ≤ d.

3 Second-Order Optimization with Helper Functions

In this section, we extend the helper framework previously introduced in (Chayti & Karimireddy, 2022) for
first-order optimization methods to second-order optimization.

General principle. The general idea is the following: imagine that, besides the objective function f , we
have access to a helper function h that we think is similar in some sense (that we will define later) to f and
thus it should help to minimize it.

Note that many optimization algorithms can be framed in the following sequential way. For a current state x,
we compute the next state x+ as:

x+ ∈ arg min
y∈Rd

{
f̂x(y) + Mrx(y)

}
,

where f̂x(·) is an approximation of f around current point x, and rx(y) is a regularizer that encodes how
accurate the approximation is, and M > 0 is a regularization parameter. In this work, we are interested in
cubically regularized second-order models of the form (2) and we use rx(y) := 1

6 ∥y − x∥3.

Now, let us look at how we can use a helper h to construct the approximation f̂ . We notice that we can write

f(y) := h(y)︸︷︷︸
cheap

+ f(y) − h(y)︸ ︷︷ ︸
expensive

We discuss the actual practical choices of the helper function h below. We assume now that we can afford the
second-order approximation for the cheap part h around the current point x. However, approximating the
part f − h can be expensive (as for example when the number of elements n in finite sum (1) is huge), or even
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impossible (due to lack of data). Thus, we would prefer to approximate the expensive part less frequently.
For this reason, let us introduce an extra snapshot point x̂ that is updated less often than x. Then, we use
it to approximate f − h. Another question we still need to ask is what order should we use to approximate
f − h? We will see that order 0 (i.e., a constant) leads us to the basic stochastic methods, while for orders 1
and 2, our methods are akin to classical variance reduction techniques.

Combining the two approximations for h and f − h we get the following model of our objective f :

f̂x,x̃(y) = C(x, x̃) + ⟨G(h, x, x̃), y − x⟩ + 1
2 ⟨H(h, x, x̃)(y − x), y − x⟩, (3)

where C(x, x̃) is a constant, G(h, x, x̃) is a linear term, and H(h, x, x̃) is a matrix. Note that if x̃ ≡ x, then
the best second-order model of the form (3) is the Taylor polynomial of degree two for f around x, and that
would yield the exact Newton-type method. However, when the points x and x̃ are different, we obtain much
more freedom in constructing our models.

For using this model in our cubically regularized method (2), we only need to define the gradient g = G(h, x, x̃)
and the Hessian estimates H = H(h, x, x̃), and we can also treat them differently (using two different helpers,
h1 and h2, correspondingly). Thus, we come to the following general second-order (meta)algorithm. We
perform S rounds, the length of each round is m ≥ 1, which is our key parameter:

Algorithm 1 Cubic Newton with helper functions
Require: x0 ∈ Rd, S, m ≥ 1, M > 0.

1: for t = 0, . . . , Sm − 1 do
2: if t mod m = 0 then
3: Update x̃t (using previous states xi≤t)
4: else
5: x̃t = x̃t−1

6: Form helper functions h1, h2
7: Compute the gradient gt = G(h1, xt, x̃t), and the Hessian Ht = H(h2, xt, x̃t)
8: Compute the cubic step xt+1 ∈ arg miny∈RdΩM,gt,Ht(y, xt)

return xout using the history (xi)0≤i≤Sm

In Algorithm 1 we update the snapshot x̃ regularly every m iterations. The two possible options are

x̃t = xt mod m (use the last iterate) (4)

or
x̃t = arg mini∈{t−m+1,...,t}f(xi) (use the best iterate). (5)

Clearly, option (5) is available only in case we can efficiently estimate the function values. However, we
will see that it serves us with better global convergence guarantees for the gradient-dominated functions. It
remains to specify how we choose the helpers h1 and h2. We need to assume that they are somehow similar
to f . Let us present several efficient choices that lead to implementable second-order schemes.

3.1 Basic Stochastic Methods

If the objective function f is very “expensive” (for example of the form (1) with n → ∞), one option is to
ignore the part f − h i.e. to approximate it by a zeroth-order approximation: f(y) − h(y) ≈ f(x̃) − h(x̃).
Since it is a constant, we do not need to update x̃. In this case, we have:

G(h1, x, x̃) := ∇h1(x), H(h2, x, x̃) := ∇2h2(x) . (6)

To treat this choice of the helpers, we assume the following similarity assumptions, which is motivated by the
form of the errors for one cubic step (see Theorem B.1):
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Assumption 3.1 (Bounded similarity). For G, H defined in (6), there exists δ1, δ2 ≥ 0 such that it
holds, ∀x, x̃ ∈ Rd:

Eh1 [∥G(h1, x, x̃) − ∇f(x)∥3/2] ≤ δ
3/2
1 ,

Eh2 [∥H(h2, x, x̃) − ∇2f(x)∥3] ≤ δ3
2 .

Under this assumption, we prove the following theorem:
Theorem 3.2. Under Assumptions 2.1 and 3.1, and M ≥ L, for an output of Algorithm 1 xout chosen
uniformly at random from (xi)0≤i≤Sm, we have:

E[µM (xout)] = O
( √

MF0
Sm + δ3

2
M3/2 + δ

3/2
1

)
.

We see that according to this result, we can get E[µM (xout)] ≤ ε3/2 only for ε > δ1. In other words, we
can converge only to a certain neighborhood around a stationary point, determined by the error δ1 of the
stochastic gradients.

However, as we will show next, this seemingly pessimistic dependence leads to the same rate of classical
subsampled Cubic Newton methods discovered in Kohler & Lucchi (2017); Xu et al. (2017; 2016).

At this point, let us discuss the specific case of stochastic optimization, where f has the form of (1), with n
potentially being very large. In this case, it is customary to sample batches at random and assume the noise
to be bounded in expectation. Precisely speaking, if we assume the standard assumption that for one index
sampled uniformly at random, we have Ei∥∇f(x) − ∇fi(x)∥2 ≤ σ2

g and Ei∥∇2f(x) − ∇2fi(x)∥3 ≤ σ3
h , ∀x,

then it is possible to show that for

h1 = 1
bg

∑
i∈Bg

fi and h2 = 1
bh

∑
i∈Bh

fi, (7)

where batches Bg, Bh ⊆ [n] sampled uniformly at random and of sizes bg and bh respectively, Assumption 3.1
is satisfied with (see, e.g., Tropp et al. (2015)): δ1 = σg√

bg

and δ2 = Õ( σh√
bh

). Note that according to this
result, we can use the same random subsets of indices Bg, Bh for all iterations of the method.
Corollary 3.3. In Algorithm 1, let us choose M = L and m = 1, with basic helpers (7). Then, according to
Theorem 3.2, for any ε > 0, to reach an (ε, L)-approximate second-order local minimum, we need at most
S =

√
LF0

ε3/2 iterations with bg =
( σg

ε

)2 and bh = σ2
h

ε . Therefore, the total complexity of the method in terms of
the gradient oracle calls is

O
(

σ2
g

ε7/2 + σ2
h

ε5/2 deff
)

× GradCost. (8)

Recall that deff ≤ d. Bound (8) improves upon the complexity O( 1
ε4 ) × GradCost of the first-order SGD for

non-convex optimization Ghadimi & Lan (2013), unless deff > 1
ε3/2 (high cost of computing the Hessians).

3.2 Let the Objective Guide Us

If the objective f is such that we can afford to access its gradients and Hessians from time to time (functions
of the form (1) with n < ∞ being “reasonable”), then we can do better than the previous chapter. In this
case, we can use a better approximation of the term f(y) − h(y). From a theoretical point of view, we can
treat the case when f is only differentiable once, and thus, we can only use a first-order approximation of
f − h; in this case, we will only be using the Hessian of the helper h but only gradients of f . However, in our
case, if we assume we have access to gradients, then we can also have access to the Hessians of f as well
(from time to time); for this reason, we consider a second-order approximation of the term f − h. If we follow
the procedure that we described above, we find:

G(h1, x, x̃) :=∇h1(x) − ∇h1(x̃) + ∇f(x̃) + (∇2f(x̃) − ∇2h1(x̃))(x − x̃), (9)
H(h2, x, x̃) :=∇2h2(x) − ∇2h2(x̃) + ∇2f(x̃). (10)
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We see that there is an explicit dependence on the snapshot x̃, and thus, we need to address the question
of how we should update this snapshot point in Algorithm 1. In general, we can update it with a certain
probability p ∼ 1

m , or we can use more advanced combinations of past iterates (e.g., a moving average).
However, for simplicity, we study option 4 (i.e., using the last iterate for updating the snapshot x̃); thus, it is
updated only once every m iterations.

We also need to address the question of measuring the similarity in this case. Since we are using a second-order
approximation of f − h, it is very logical to compare the function f and its helpers h1 and h2 by using the
difference between their third derivatives or, equivalently, the Hessian Lipschitz constant of their difference.
Precisely, we make the following similarity assumption:

Assumption 3.4 (Lipschitz similarity). For G, H defined in (9) and (10), there exists δ1, δ2 ≥ 0 such
that it holds, ∀x, x̃ ∈ Rd:

Eh1 [∥G(h1, x, x̃) − ∇f(x)∥3/2] ≤ δ
3/2
1 ∥x − x̃∥3,

Eh2 [∥H(h2, x, x̃) − ∇2f(x)∥3] ≤ δ3
2∥x − x̃∥3.

In particular, if f − h1 and f − h2 have Lipschitz Hessians (with constants δ1 and δ2 respectively) then h1
and h2 satisfy Assumption 3.4.

Under this assumption, we show that the errors resulting from the use of the snapshot can be successfully
balanced by choosing M satisfying:

4
(

δ1
M

)3/2 + 73
(

δ2
M

)3 ≤ 1
24m3 . (11)

And we have the following theorem:
Theorem 3.5. Let f, h1, h2 verify Assumptions 2.1,3.4, and let the regularization parameter M is chosen
such that M ≥ L and (11) is satisfied. Then, for the output xout of Algorithm 1 chosen uniformly at
random from (xi)0≤i≤Sm:=T , we have:

E[µM (xout)] = O
( √

MF0
Sm

)
.

In particular, we can choose M = max(L, 32δ1m2, 16δ2m) which gives

E[µM (xout)] = O
( √

LF0
Sm +

√
δ2F0

S
√

m
+

√
δ1F0
S

)
. (12)

Based on the choices of the helpers h1 and h2, we can have many algorithms. We discuss particular
implementations in the following sections.

We start by presenting the variance reduction combined with the Lazy Hessian updates, which rely on
sampling batches randomly. Our new method will significantly improve complexity bound (8) obtained for the
basic helpers, and achieve the best overall performance among all known variants of stochastic second-order
methods (see Table 1).

Then we discuss other applications: the core sets, which try to intelligently find a weighted representative
batch describing the whole dataset; semi-supervised learning, engineering the helpers using unlabeled data;
and, more generally, auxiliary learning, which tries to leverage auxiliary tasks in training a given main task.
We show that the auxiliary tasks can naturally be treated as helpers.

3.3 Variance Reduction and Lazy Hessians

First, note that choosing h1 = h2 = f gives the classical Cubic Newton method (Nesterov & Polyak, 2006),
whereas choosing h1 = f and h2 = 0 gives the Lazy Cubic Newton (Doikov et al., 2022). In both cases, we
recuperate the known rates of convergence. However, these choices requires to compute the full gradients,
that can be expensive for solving problem (1) with large number n of components.

The following lemma demonstrates that we can create helper functions h with lower similarity to the main
function f by employing sampling and averaging.
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Lemma 3.6. Let f = 1
n

∑n
i=1 fi such that all fi are twice differentiable and have L-Lipschitz Hessians.

Let B ⊂ {1, · · · , n} be of size b and sampled with replacement uniformly at random, and define hB =
1
b

∑
i∈B fi, then hB satisfies Assumption 3.4 with δ1 = L√

b
and δ2 = O(

√
log(d)L√

b
).

Choice of the parameter m in Algorithm 1. Minimizing the total arithmetic cost, we will set

m = arg min
{

Grad(m, ε) + d · Hess(m, ε)
}

, (13)

where Grad(m, ε) and Hess(m, ε) denote the number of gradients and Hessians required to find an ε stationary
point. Now, we are ready to discuss several particular cases that are direct consequences from Theorem 3.5
and Lemma 3.6.

General variance reduction. If we sample batches Bg and Bh of sizes bg and bh consecutively at random
and choose

h1 = 1
bg

∑
i∈Bg

fi and h2 = 1
bh

∑
i∈Bh

fi,

and use these helpers along with the estimates (9), (10), we obtain the Variance Reduced Cubic Newton
algorithm (Zhou et al., 2019; Wang et al., 2019). According to Lemma 3.6, this choice corresponds to
δ1 = L/

√
bg and δ2 = Õ(L/

√
bh). For bg ∼ m4 ∧ n, bh ∼ m2 ∧ n and M = L, we obtain the non-convex

convergence rate of the order: E[µL(xout)] = O
( √

LF0
Sm

)
. This is the same rate as of the full Cubic Newton.

However, our cost per iteration is much smaller due to using stochastic oracles. Minimizing the total
arithmetic cost, we choose m according to (13), as to minimize the following expression: gV R(n, d) :=
min

m

{ dn+d(m3∧nm)+(m5∧nm)
m

}
. Then we reach an (ε, L)-approximate second-order local minimum in at most

O( gV R(n,d)
ε3/2 ) × GradCost (14)

gradient oracle calls.

Variance reduction with Lazy Hessians. We can also use lazy updates for Hessians combined with
variance-reduced gradients; this corresponds to choosing

h1 = 1
bg

∑
i∈Bg

fi and h2 = 0,

which implies (according to Lemma 3.6) that δ1 = L/
√

bg and δ2 = L. In this case, we need bg ∼ m2 to
obtain a convergence rate: E[µL(xout)] = O

( √
LF0

S
√

m

)
, which matches the convergence rate of the full version of

the Lazy Cubic Newton method (Doikov et al. (2022)), while in our method we use stochastic gradients. In
this case, the choice of m minimizes the following expression: gLazy(n, d) := min

m

{ nd+(m3∧mn)√
m

}
. Then we

guarantee to reach an (ε, mL)-approximate second-order local minimum in at most

O( gLazy(n,d)
ε3/2 ) × GradCost (15)

gradient oracle calls.

To be lazy or not to be? We can show that gLazy(n, d) ∼ (nd)5/6∧n
√

d and gV R(n, d) ∼ (nd)4/5∧(n2/3d+n).
In particular, for d ≥ n2/3 we have gLazy(n, d) ≤ gV R(n, d) and thus for d ≥ n2/3 it is better to use Lazy
Hessians along with the variance reduction, obtaining complexity (15) than becomes strictly better than (14).
We also note that for the Lazy approach, we can keep a factorization of the Hessian (this factorization induces
most of the cost of solving the cubic subproblem); thus, it is as if we only need to solve the subproblem once
every m iterations, so the Lazy approach has a big advantage compared to the general approach, and the
advantage becomes even bigger for the case of large dimensions.

Note that according to our theory, we could use the same random batches Bg, Bh ⊆ [n] generated once for all
iterations. However, using the resampled batches can lead to a more stable convergence.

8
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3.4 Other Applications

The result in (12) is general enough to include many other applications that are limited only by our imagination;
there are, to cite a few such applications :

Core sets. (Bachem et al., 2017) The idea of core sets is simple: can we summarize a potentially large data
set using only a few (potentially weighted) important examples? Many reasons, such as redundancy, make
the answer yes. Devising approaches to find such core sets is outside of the scope of this work, but in general,
we can see from (12) that if we have batches Bg, Bh such that they are δ1 and δ2 similar to f respectively,
then we can keep reusing the same batch Bg for at least

√
L
δ1

times, and Bh for L
δ2

all the while guaranteeing
an improved rate. So then, if we can design such small batches with small δ1 and δ2, we can keep reusing
them and enjoy the improved rate without needing large batches.

Auxiliary learning. (Baifeng et al.; Aviv et al.; Xingyu et al.) study how a given task f can be trained in
the presence of auxiliary (related) tasks; our approach can indeed be used for auxiliary learning by treating
the auxiliaries as helpers; if we compare (12) to the rate that we obtained without the use of the helpers:
O(

√
LF0
S ), we see that we have a better rate using the helpers/auxiliary tasks when 1

m +
√

δ2√
mL

+
√

δ1√
L

≤ 1.

Semi-supervised learning. (Yang et al., 2021) Semi-supervised learning is a machine learning approach
that uses both labeled and unlabeled data during training. In general, we can use the unlabeled data to
construct the helpers; we can start, for example, by using random labels for the helpers and improving
the labels with training. There are at least two special cases where our theory implies improvement by
only assigning random labels to the unlabeled data. In fact, for both regularized least squares and logistic
regression, we notice that the Hessian is independent of the labels (only depends on inputs). Indeed, let us
consider the classical logistic regression model (e.g., Murphy (2012)) for the set of labeled data {(ai, bi)}n

i=1,
where bi = ±1. Then fitting the model can be formulated as the following optimization problem:

min
x∈Rd

[
f(x) := 1

n

n∑
i=1

ℓ(−yia
⊤
i x)

]
, (16)

where ℓ(t) := ln(1+et). Note that ℓ′(t) = σ(t) := 1
1+e−t and ℓ′′(t) = σ(t) ·σ(−t). Hence, the second derivative

of the logistic loss is an even function. Computing the Hessian of f directly, we obtain

∇2f(x) = 1
n

n∑
i=1

ℓ′′(−bia
⊤
i x)(−biai)(−biai)⊤ = 1

n

n∑
i=1

ℓ′′(a⊤
i x)aia

⊤
i .

Thus, we see that the last expression does not depend on the input labels bi. Therefore, if the unlabeled data
comes from the same distribution as the labeled data, then we can use it to construct helpers which, at least
theoretically, have δ1 = δ2 = 0. Because the Hessian is independent of the labels, we can technically endow
the unlabeled data with random labels. Theorem 3.5 will imply in this case E[µL(xout)] = O(

√
LF0

Sm ), where S
is the number of times we use labeled data and S(m − 1) is the number of unlabeled data. See also Figure 2
for the empirical validation of this approach.

4 Gradient Dominated Functions

In this section, we consider the class of gradient-dominated functions defined below.
Assumption 4.1. (τ, α)-gradient dominated. A function f is called gradient dominated on set if it
holds, for some α ≥ 1 and τ > 0:

f(x) − f⋆ ≤ τ∥∇f(x)∥α, ∀x ∈ Rd. (17)

Examples of functions satisfying this assumption are convex functions (α = 1) and strongly convex functions
(α = 2); see Appendix E.1. For such functions, we can guarantee convergence (in expectation) to a global
minimum, i.e., we can find a point x such that f(x) − f⋆ ≤ ε.

9
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The gradient dominance property is interesting because many non-convex functions have been shown to
satisfy it (uanzhi & Yang, 2017; Hardt & Ma, 2016; Masiha et al., 2022). Furthermore, besides convergence
to a global minimum, we get improved rates of convergence.

We note that for α > 3/2 (and only for this case), we also need to assume the following (stronger) inequality:

Ef(xt) − f⋆ ≤ τE
[
∥∇f(xt)∥

]α
, (18)

where the expectation is taken with respect to the iterates (xt) of our algorithms; this is a stronger assumption
than (17). To avoid using (18), we can assume that the iterates belong to some compact set Q ⊂ Rd and
that the gradient norm is uniformly bounded: ∀x ∈ Q : ∥∇f(x)∥ ≤ G. Then, a (τ, α)-gradient dominated on
set Q function is also a (τGα−3/2, 3/2)-gradient dominated on this set for any α > 3/2.

In the following theorem, we extend the results of Theorem 3.2 to gradient-dominated functions, for the basic
stochastic helpers:

Theorem 4.2. Under Assumptions 2.1,3.1,4.1, for M ≥ L and T := Sm, we have
- For 1 ≤ α < 3/2:

E[f(xT )] − f⋆ = O
((

α
√

Mτ3/(2α)

(3−2α)T

) 2α
3−2α + τ

δ2α
2

Mα + τδα
1

)
. (19)

- For α = 3/2:
E[f(xT )] − f⋆ = O

(
F0 exp

( −T
1+

√
Mτ

)
+ τ

δ3
2

Mα + τδ
3/2
1

)
. (20)

- For 3/2 < α ≤ 2, let h0 = O(F0/(
√

Mτ
3

2α )
2α

3−2α ). Then for T ≥ t0 = O(h
2α−3

2α
0 log(h0)) we have:

E[f(xT )] − f⋆ = O
(

(
√

Mτ
3

2α ) 2α
3−2α

( 1
2
)( 2α

3 )T −t0
+ τ

δ2α
2

Mα + τδα
1

)
. (21)

Theorem 4.2 shows (up to the noise level) the global sublinear rate for 1 ≤ α < 3/2, the global linear rate for
α = 3/2 (which can also be seen as by taking the limit α → 3/2 in (19)) and the superlinear rate for α > 3/2,
after the initial phase of t0 iterations.

We would like to point that instead of Assumption 3.1 we only need to assume Eh1 [∥∇h1(x) − ∇f(x)∥α] ≤ δα
1

and Eh2 [∥∇2h2(x) − ∇2f(x)∥2α] ≤ δ2α
2 which might be weaker depending on the value of α.

We also prove the following theorem, which extends the results in Theorem 3.5 to the gradient-dominated
functions, for the advanced helpers. In this case, we set the snapshot line 3 in Algorithm 1) as in (5) i.e., the
snapshot corresponds to the state with the smallest value of f during the last m iterations.

Theorem 4.3. Under Assumptions 2.1,3.4,4.1, for M = max(L, 34δ1m2, 11δ2m), we have:
- For 1 ≤ α < 3/2:

E[f(xSm)] − f⋆ = O
((

α
√

Mτ3/(2α)

(3−2α)Sm

) 2α
3−2α

)
.

- For α = 3/2:
E[f(xSm)] − f⋆ = O

(
F0

(
1 + m√

Mτ

)−S
)

.

- For 3/2 < α ≤ 2, let h0 = O( F0

(
√

M
m τ

3
2α )

2α
3−2α

). Then for S ≥ s0 = O(h
2α−3

2α
0 log(h0)) we have:

E[f(xSm)] − f⋆ =
(

(
√

M
m τ

3
2α ) 2α

3−2α
( 1

2
)( 2α

3 )S−s0
)

Again, the same behavior is observed as for Theorem 4.2, but this time without noise (variance reduction
is working). To the best of our knowledge, this is the first time such an analysis has been made. As a
direct consequence of our results, we obtain new global complexities for the variance-reduced and lazy

10
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variance-reduced Cubic Newton methods on the classes of gradient-dominated functions. Note that in the
simplest case of the deterministic Lazy Cubic Newton (h1 = f and h2 = 0), we enhance the complexity
results from (Doikov et al., 2022) to the classes of convex and strongly convex functions, establishing faster
rates of convergence.

Let us compare the statements of Theorems 4.2 and 4.3, for convex functions (α = 1). Theorem 4.2
guarantees convergence to a ε−global minimum in at most O( 1

ε5/2 + d
ε3/2 )× GradCost gradient computations,

while Theorem 4.3 only needs O( g(n,d)√
ε

)× GradCost, where g(n, d) is either gLazy(n, d) = (nd)5/6 ∧ n
√

d or
gV R(n, d) = (nd)4/5 ∧ (n2/3d + n). See Appendix E.3 for more details.

5 Experiments

5.1 To Be Lazy or Not to Be

To verify our findings from Subsection 3.3, we consider a logistic regression problem (16) with ℓ2-regularization
on the “a9a” data set Chang & Lin (2011). We consider the variance-reduced cubic Newton method from
(Zhou et al., 2019) (referred to as “full VR”), its lazy version where we do not update the snapshot Hessian
(“Lazy VR”), the stochastic Cubic Newton method (“SCN”), the Cubic Newton algorithm (“CN”), Gradient
Descent with line search (“GD") and Stochastic Gradient Descent (“SGD”). We report the results in terms of
time and gradient arithmetic computations needed to arrive at a given level of convergence.

Figure 1 shows that the lazy version saves both time and arithmetic computations without sacrificing the
convergence precision. In these graphs, Gradcost is computed using the convention that computing one
hessian is d times as expensive as computing one gradient.

0 1 2 3 4
Arith. comput. , (Gradcost) 1e8

10 7

10 5

10 3

10 1

f
f

0 10 20 30 40 50
Time, s

10 7

10 5

10 3

10 1

f
f GD

Lazy VR
full VR
CN
SCN
SGD

Logistic regression: a9a, d = 123, n = 32561, L2-regularization

Figure 1: Comparison of the convergence of different algorithms. We see that “Lazy VR”
has the same convergence speed as its full version “full VR” and the cubic Newton method “CN”, while it

needs less time and fewer arithmetic computations.

5.2 Auxiliary Learning

Our goal is to show that the helper framework is very general and that it goes beyond the variance reduction
and lazy Hessian computations. For the previously considered problem of training the logistic regression
(using the same “a9a” data set), we suppose that we also have access to unlabeled data (in this sense, this
becomes semi-supervised learning). Specifically, we have a labeled dataset Dl = {(ai, bi)}Nl

i=1 and an unlabeled
data set Du = {ai}Nl+Nu

i=Nl+1, we suppose that both data sets are sampled from the same distribution P(a,b).
Our goal is to minimize

f(x) = E(a,b)∼P(a,b) [log(1 + exp(−bx⊤a))].

A simple computation (see Section 3.4) shows that the Hessian of f only depends on Pa, and, for this reason,
we can use unlabeled data to construct a good approximation of the true Hessian (if we can sample from Pa,
we construct the exact Hessian and thus have a helper h with δ1 = δ2 = 0). Let

h(x) = Ea∼Pa,b∼Random{±1}[log(1 + exp(−bx⊤a))],

11
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0 100 200 300
Labeled data access, (calls of f)

10 10

10 7

10 4

10 1

f
f

Logistic regression with and without helpers
m=1 (CN)
m=10
m=20
m=30
m=60

Figure 2: Cubic Newton method with and without using the helper function h. For m = 1, this is simply the classic
Cubic Newton method. To give an intuitive meaning to the plot, 1

m
is the percentage of labeled data used during

training. We can clearly see that using our approach, we benefit a lot from the helper function h.

where Random{±1} is any distribution on labels. In our experiments, we use uniform distribution. Figure 2
shows that, indeed, we can benefit a lot from using this helper function. We note that this observed benefit
comes at the cost of performing more steps using gradients and Hessians of the helper function h.

5.3 Non-convex experiments

We go back to comparing the algorithms in 5.1. We consider, now, non-convex problems. First we consider
the logistic regression with a non-convex regularizer Reg(x) =

∑d
i=1

x2
i

1+x2
i
. Thus, we minimize

f(x) = 1
n

n∑
i=1

log(1 + exp(−bix
⊤ai)) + λReg(x).

Figure 3 shows the results in this case. Again, we see that “lazy VR” reduces both time and gradient
equivalent computations without sacrificing the convergence speed.

0 1 2 3 4
Arith. comput. , (Gradcost) 1e8

10 7

10 5

10 3

10 1

f
f GD
Lazy VR
full VR
CN
SCN
SGD

0 20 40
Time, s

10 7

10 5

10 3

10 1

f
f

Logistic regression: a9a, d = 123, n = 32561, Non-convex

Figure 3: Comparison of the convergence of different algorithms. We see that using our approach, we benefit a lot
from the helper function h.

Second, we consider a simple diagonal neural network with L2 loss with data generated from a normal
distribution. specifically, we want to minimize

f(x := (u, v)) = 1
n

n∑
i=1

∥a⊤
i u ◦ v − bi∥2 + λ

2 ∥x∥2 ,

where ◦ is the element-wise vector product.
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Figure 4: Comparison of the convergence of the different algorithms. Except for gradient descent (“GD"), which
performs very well in this case, again, the same conclusions as in Figure 2 with respect to “Lazy VR" can be said.

Figure 4 shows that compared to other second-order methods, “Lazy VR" has considerable time and
computation savings. It also has a close performance to gradient descent with line search, which performs
very well in this case.

5.4 Additional experiments

We consider, in this section, other datasets from the LibSVM library (Chang & Lin, 2011).

0 5 10 15 20
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Lazy VR
full VR
SGD

0 100 200 300 400 500
Time, s
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10 4

10 2
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0 25 50 75 100 125 150
Time, s
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10 3

10 2

10 1

w8a, Non-convex

0 200 400
Labeled data access

10 6

10 3

100
Auxiliary Learning, w8a

CN
Aux-CN

Figure 5: Experiments on Mushrooms (n = 8124, d = 112), Covtype (n = 581012, d = 54), w8a (n = 49749, d = 300)
datasets.

Figure 5 clearly shows how our method outperforms the baselines by saving time (or calls to the main function
in the case of auxiliary learning) without sacrificing performance.

6 Limitations and possible extensions

Estimating similarity between the helpers and the main function. While we show in this work
that we can have an improvement over training alone, this supposes that we know the similarity constants
δ1, δ2; hence, it will be interesting to have approaches that can adapt to such constants.

Engineering helper functions. Building helper task with small similarities is also an interesting idea.
Besides the examples in supervised learning and core-sets that we provide, it is not evident how to do it in a
generalized way.

Using the helper to regularize the cubic subproblem. We note that while we proposed to approximate
the “cheap" part as well in Section 3, one other theoretically viable approach is to keep it intact and
approximately solve a “proximal type" problem involving h; this will lead to replacing L by δ, but the
subproblem is even more difficult to solve. However, our theory suggests that we don’t need to solve this
subproblem exactly; we only need m ≥ L

δ ; we do not treat this case here.
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7 Conclusion

In this work, we proposed a general theory for using stochastic and auxiliary information in the context of
the Cubically regularized Newton method. Our theory encapsulates the classical stochastic methods, as well
as Variance Reduction and the methods with the Lazy Hessian updates.

Our new methods posses the best-known global complexity bounds for stochastic second-order optimization
in the non-convex case, and significantly benefit in terms of total arithmetic computations, by reducing the
number of computed Hessians and the required number of matrix factorizations.

For auxiliary learning, we demonstrate a provable benefit of using auxiliary data compared to training
alone. Besides investigating general non-convex functions for which we proved global convergence rates to a
second-order stationary point, we also studied the classes of gradient-dominated functions with improved
rates of convergence to the global minima.

References
Artem Agafonov, Dmitry Kamzolov, Pavel Dvurechensky, Alexander Gasnikov, and Martin Takáč. Inexact

tensor methods and their application to stochastic convex optimization. arXiv preprint arXiv:2012.15636,
2020.

Navon Aviv, Achituve Idan, Maron Haggai, Chechik Gal, and Fetay Ethan. Auxiliary learning by implicit
differentiation. ICLR 2021. URL https://arxiv.org/pdf/2007.02693.pdf.

Olivier Bachem, Mario Lucic, and Krause Andreas. Practical coreset constructions for machine learning.
arXiv:1703.06476 [stat.ML]https: // arxiv. org/ abs/ 1703. 06476 , 2017.

Shi Baifeng, Hoffman Judy, Saenko Kate, Darrell Trevor, and Xu Huijuan. Auxiliary task reweighting for
minimum-data learning. 34th Conference on Neural Information Processing Systems (NeurIPS 2020),
Vancouver, Canada. URL https://arxiv.org/pdf/2010.08244.pdf.

Yair Carmon and John C Duchi. First-order methods for nonconvex quadratic minimization. SIAM Review,
62(2):395–436, 2020.

Coralia Cartis and Katya Scheinberg. Global convergence rate analysis of unconstrained optimization methods
based on probabilistic models. Mathematical Programming, 169:337–375, 2018.

Coralia Cartis, Nicholas IM Gould, and Philippe L Toint. Adaptive cubic regularisation methods for uncon-
strained optimization. Part I: motivation, convergence and numerical results. Mathematical Programming,
127(2):245–295, 2011.

Chih-Chung Chang and Chih-Jen Lin. Libsvm: a library for support vector machines. ACM transactions on
intelligent systems and technology (TIST), 2(3):1–27, 2011.

El Mahdi Chayti and Sai Praneeth Karimireddy. Optimization with access to auxiliary information.
arXiv:2206.00395 [cs.LG], 2022.

Andrew R Conn, Nicholas IM Gould, and Philippe L Toint. Trust region methods. SIAM, 2000.

Nikita Doikov and Yurii Nesterov. Minimizing uniformly convex functions by cubic regularization of newton
method. Journal of Optimization Theory and Applications 189:317–339, 2021.

Nikita Doikov, El Mahdi Chayti, and Martin Jaggi. Second-order optimization with lazy hessians.
arXiv:2212.00781 [math.OC], 2022.

Ilyas Fatkhullin, Jalal Etesami, Niao He, and Negar Kiyavash. Sharp analysis of stochastic optimization
under global Kurdyka-Lojasiewicz inequality. Advances in Neural Information Processing Systems, 35:
15836–15848, 2022.

14

https://arxiv.org/pdf/2007.02693.pdf
https://arxiv.org/abs/1703.06476
https://arxiv.org/pdf/2010.08244.pdf


Under review as submission to TMLR

Saeed Ghadimi and Guanghui Lan. Stochastic first-and zeroth-order methods for nonconvex stochastic
programming. SIAM Journal on Optimization, 23(4):2341–2368, 2013.

Saeed Ghadimi, Han Liu, and Tong Zhang. Second-order methods with cubic regularization under inexact
information. arXiv preprint arXiv:1710.05782, 2017.

Moritz Hardt and Tengyu Ma. Identity matters in deep learning. arXiv preprint arXiv:1611.04231, 2016.

C. J. Hillar and L.-H. Lim. Most tensor problems are np-hard. Journal of the ACM (JACM) 60 45., 2013.

Rie Johnson and Tong Zhang. Accelerating stochastic gradient descent using predictive variance reduction.
In Advances in Neural Information Processing Systems, pp. 315-323, 2013.

Henry J Kelley. Gradient theory of optimal flight paths. Ars Journal, 30(10):947–954, 1960.

J. Kiefer and J. Wolfowitz. Stochastic estimation of the maximum of a regression function. Ann. Math.
Statist. Volume 23, Number 3, 462-466, 1952.

Jonas Moritz Kohler and Aurelien Lucchi. Sub-sampled cubic regularization for non-convex optimization. In
International Conference on Machine Learning, pp. 1895–1904. PMLR, 2017.

Saeed Masiha, Saber Salehkaleybar, Niao He, Negar Kiyavash, and Patrick Thiran. Stochas-
tic second-order methods improve best-known sample complexity of sgd for gradient-dominated
functions. In NeurIPS 2022 - Advances in Neural Information Processing Systems, volume 35,
pp. 10862–10875, 2022. URL https://proceedings.neurips.cc/paper_files/paper/2022/file/
46323351ebc2afa42b30a6122815cb95-Paper-Conference.pdf.

Kevin P Murphy. Machine learning: a probabilistic perspective. MIT press, 2012.

Yurii Nesterov. Lectures on convex optimization, volume 137. Springer, 2018.

Yurii Nesterov. Inexact basic tensor methods for some classes of convex optimization problems. Optimization
Methods and Software, 37(3):878–906, 2022.

Yurii Nesterov and Boris Polyak. Cubic regularization of Newton’s method and its global performance.
Mathematical Programming, 108(1):177–205, 2006.

Tripuraneni Nilesh, Stern Mitchell, Jin Chi, Regier Jeffrey, and Jordan Michael I. Stochastic cubic regular-
ization for fast nonconvex optimization. Part of Advances in Neural Information Processing Systems 31,
2018.

Jorge Nocedal and Stephen Wright. Numerical optimization. Springer Science & Business Media, 2006.

Boris T Polyak. Newton’s method and its use in optimization. European Journal of Operational Research,
181(3):1086–1096, 2007.

Boris Teodorovich Polyak. Gradient methods for minimizing functionals. Zhurnal Vychislitel’noi Matematiki
i Matematicheskoi Fiziki, 3(4):643–653,, 1963.

Herbert Robbins and Sutton Monro. A stochastic approximation method the annals of mathematical statistics.
Vol. 22, No. 3. pp. 400-407, 1951.

VE Shamanskii. A modification of Newton’s method. Ukrainian Mathematical Journal, 19(1):118–122, 1967.

Joel A Tropp et al. An introduction to matrix concentration inequalities. Foundations and Trends® in
Machine Learning, 8(1-2):1–230, 2015.

Li uanzhi and Yuan Yang. Convergence analysis of two-layer neural networks with relu activation. Advances
in neural information processing systems, 30, 2017.

Zhe Wang, Zhou Yi, Liang Yingbin, and Lan Guanghui. Stochastic variance-reduced cubic regularization for
nonconvex optimization. AISTATS, 2019.

15

https://proceedings.neurips.cc/paper_files/paper/2022/file/46323351ebc2afa42b30a6122815cb95-Paper-Conference.pdf
https://proceedings.neurips.cc/paper_files/paper/2022/file/46323351ebc2afa42b30a6122815cb95-Paper-Conference.pdf


Under review as submission to TMLR

Blake Woodworth, Konstantin Mishchenko, and Francis Bach. Two losses are better than one: Faster
optimization using a cheaper proxy. arXiv preprint arXiv:2302.03542, 2023.

Lin Xingyu, Singh Baweja Harjatin, Kantor George, and Held David. Adaptive auxiliary task weighting
for reinforcement learning. 33rd Conference on Neural Information Processing Systems (NeurIPS 2019),
Vancouver, Canada. URL https://openreview.net/pdf?id=rkxQFESx8S.

P. Xu, J. Yang, F. Roosta-Khorasani, and M. W. Mahoney. Sub-sampled newton methods with non-uniform
sampling. 2016.

P. Xu, F. Roosta-Khorasani, and M. W. Mahoney. Newton-type methods for non-convex optimization under
inexact Hessian information. arXiv preprint arXiv:1708.07164 ., 2017.

Xiangli Yang, Zixing Song, Irwin King, and Zenglin Xu. A survey on deep semi-supervised learning. Technical
report, 2021.

Dongruo Zhou, Pan Xu, and Quanquan Gu. Stochastic variance-reduced cubic regularization methods.
Journal of Machine Learning Research 20 1-47, 2019.

16

https://openreview.net/pdf?id=rkxQFESx8S


Under review as submission to TMLR

A Reproducibility

Our code is available with all the details necessary for reproducing our results in https://anonymous.4open.
science/r/Unified-Convergence-Theory-of-Cubic-Newton-s-method-E4C0/README.md.

B Theoretical Preliminaries

We consider the general problem
min
x∈Rd

f(x)

Where f is twice differentiable with L-Lipschitz Hessian i.e.:

∥∇2f(x) − ∇2f(y)∥ ≤ L∥x − y∥, ∀x, y ∈ Rd. (22)

As a direct consequence of (22) (see (Nesterov & Polyak, 2006; Nesterov, 2018)) we have for all x, y ∈ Rd:

∥∇f(y) − ∇f(x) − ∇2f(x)(y − x)∥ ≤ L

2 ∥x − y∥2, (23)

|f(y) − f(x) − ⟨∇f(x), y − x⟩ − 1
2 ⟨∇2f(x)(y − x), y − x⟩| ≤ L

6 ∥y − x∥3. (24)

For x and x+ defined as in Equation (2) i.e.

x+ ∈ arg miny∈Rd

{
ΩM,g,H(y, x) := ⟨g, y − x⟩ + 1

2 ⟨H(y − x), y − x⟩ + M
6 ∥y − x∥3

}
. (25)

The optimality condition of (25) ensures that :

⟨g, x+ − x⟩ + ⟨H(x+ − x), x+ − x⟩ + M

2 r3 = 0 , (26)

where we denoted r = ∥x+ − x∥.

It is also known that the solution to (25) verifies:

H + M

2 rI ⪰ 0 (27)

We start by proving the following Theorem
Theorem B.1. For any x ∈ Rd, let x+ be defined by (2). Then, for M ≥ L we have:

f(x) − f(x+) ≥ 1
1008

√
M

µM (x+) + M∥x−x+∥3

72 − 4∥∇f(x)−g∥3/2
√

M
− 73∥∇2f(x)−H∥3

M2 .

Using (24) with y = x+ and x = x and for M ≥ L we have:

f(x+)
(24)
≤ f(x) + ⟨∇f(x), x+ − x⟩ + 1

2 ⟨∇2f(x)(x+ − x), x+ − x⟩ + L
6 r3

(26)+(27)
≤ f(x) − 6M−4L

24 r3 + ⟨∇f(x) − g, x+ − x⟩

+ 1
2 ⟨(∇2f(x) − H)(x+ − x), x+ − x⟩

M≥L

≤ f(x) − M
12 r3 + ⟨∇f(x) − g, x+ − x⟩

+ 1
2 ⟨(∇2f(x) − H)(x+ − x), x+ − x⟩.

17
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Using Young’s inequality xy ≤ xp

p + yq

q ∀x, y ∈ R ∀p, q > 1 s.t 1
p + 1

q = 1 we have:

⟨∇f(x) − g, x+ − x⟩ ≤ M

36 r3 + 2
√

12
3
√

M
∥∇f(x) − g∥3/2 ,

and
1
2 ⟨(∇2f(x) − H)(x+ − x), x+ − x⟩ ≤ M

36 r3 + 72
M2 ∥∇2f(x) − H∥3 .

Mixing all these ingredients, we get
Lemma B.2. For any M ≥ L, it holds

f(x) − f(x+) ≥ M

36 r3 − 3√
M

∥∇f(x) − g∥3/2 − 72
M2 ∥∇2f(x) − H∥3. (28)

Using (23) we have:

∥∇f(x+) − g − H(x+ − x) + g − ∇f(x) + (H − ∇2f(x))(x+ − x)∥ ≤ L

2 r2,

applying the triangular inequality we get for M ≥ L :

∥∇f(x+)∥ ≤ L
2 r2 + ∥g + H(x+ − x)∥ + ∥∇f(x) − g∥ + ∥∇2f(x) − H∥r

≤ L+2M
2 r2 + ∥∇f(x) − g∥ + 1

2M ∥∇2f(x) − H∥2

≤ 3M
2 r2 + ∥∇f(x) − g∥ + 1

2M ∥∇2f(x) − H∥2.

By the convexity of x 7→ x3/2 we have for any (ai) ≥ 0 : (
∑

i aixi)3/2 ≤ (
∑

i ai)1/2 ∑
i aix

3/2
i , applying this

to the above inequality we get
Lemma B.3. For any M ≥ L, it holds

1√
M

∥∇f(x+)∥3/2 ≤ 3Mr3 + 2√
M

∥∇f(x) − g∥3/2 + 1
M2 ∥∇2f(x) − H∥3 (29)

We can also bound the smallest eigenvalue of the Hessian. Using the smoothness of the Hessian we have:

∇2f(x+) ⪰ ∇2f(x) − L∥x+ − x∥I

⪰ H + ∇2f(x) − H − LrI

⪰ H − ∥∇2f(x) − H∥I − LrI

(27)
⪰ − Mr

2 I − ∥∇2f(x) − H∥I − LrI.

Which means for M ≥ L we have:

−λmin(∇2f(x+)) ≤ 3Mr
2 + ∥∇2f(x) − H∥.

Then the convexity of x 7→ x3 leads to the following lemma:
Lemma B.4. For any M ≥ L, it holds

−λmin(∇2f(x+))3

M2 ≤ 14Mr3 + 4
M2 ∥∇2f(x) − H∥3 (30)

18
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Now the quantity µM (x) = max(∥∇f(x)∥3/2, −λmin(∇2f(x+))3

M3/2 ) which we can be bounded using Lemmas B.3
and B.4:

1√
M

µ(x+) ≤ 14Mr3 + 2√
M

∥∇f(x) − g∥3/2 + 4
M2 ∥∇2f(x) − H∥3. (31)

Combining Lemma B.2 and (31) we get the inequality given in Theorem B.1:

f(x) − f(x+) ≥ 1
1008

√
M

µM (x+) + M

72 r3 − 4√
M

∥∇f(x) − g∥3/2 − 73
M2 ∥∇2f(x) − H∥3.

C More on Section 3.1

C.1 Better Similarity using Sampling

One common approach for constructing gradient and Hessian estimates is sub-sampling. The idea behind
sub-sampling is simple: for an objective of the form in (1), we randomly sample two batches Bg and Bh of
sizes bg and bh consecutively from the distribution D and define:

gt,Bg = 1
bg

∑
i∈Bg

∇fi(xt) and Ht,Bh
= 1

bh

∑
i∈Bh

∇2fi(xt). (32)

In this particular scenario, the “elementary" estimates ∇f(xt, ζ) and ∇2f(xt, ζ) are unbiased, and we will
assume that they satisfy Ei∥∇f(x) − ∇fi(x)∥2 ≤ σ2

g and Ei∥∇2f(x) − ∇2fi(x)∥3 ≤ σ3
h.

Lemma C.1. For the estimators defined in (32) we have1:

E∥∇f(xt) − gt,Bg
∥2 ≤

σ2
g

bg
and E∥∇2f(xt) − Ht,Bh

∥3 ≤ O
(

log(d)3/2 σ3
h

b
3/2
h

)
.

Lemma C.1 demonstrates how the utilization of batching can decrease the noise. To simplify things, we can
keep in mind this straightforward rule:

If we employ a batch of size ba, then we need to modify σa by σa√
ba

for a ∈ {g, h} .

Lemma C.1 is based on the following two Lemmas:
Lemma C.2. (Lyapunov’s inequality) For any random variable X and any 0 < s < t we have

E[|X|s]1/s ≤ E[|X|t]1/t.

and
Lemma C.3. Suppose that q ≥ 2, p ≥ 2, and fix r ≥ max (q, 2 log(p)). Consider i.i.d. random
self-adjoint matrices Y1, · · · , YN with dimension p × p, E[Yi] = 0. It holds that:

[
E[∥

N∑
i=1

Yi∥q
2]

]1/q ≤ 2
√

er∥
( N∑

i=1
E[Y 2

i ]
)1/2∥2 + 4erE[max

i
∥Yi∥q

2]1/q.

Lemma C.3 can be found in (Zhou et al., 2019).

Now if we have X1, · · · , Xb ∈ Rd, b i.i.d vector-valued random variables such that E[Xi] = µ and E[∥Xi−µ∥2] ≤
σ2 then by applying Lemma C.2 we get:

E[∥1
b

∑
i

Xi − µ∥3/2] ≤ E[∥1
b

∑
i

Xi − µ∥2]3/4 ≤ σ3/2

b3/4 .

1Here and everywhere O(·) hides an absolute numerical constant.
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When we have b i.i.d matrix-valued random variables Y1, · · · , Yb ∈ Rd×d such that E[Yi] = µ, E[∥Yi −µ∥2] ≤ σ2
2

and E[∥Yi − µ∥3] ≤ σ3
3 (by Jensen’s inequality σ2 ≤ σ3), then by applying Lemma C.3 we get:

E[∥ 1
b

∑
i Yi − µ∥3] ≤

(
2
√

2e log(d)
b σ2 + 8e log(d)

b σ3

)3

= O( log(d)3/2σ3
3

b3/2 )

These last two inequalities are identical to the statement of Lemma C.1.

C.2 Proof of Theorem 3.2

We use here δ1 = σg and δ2 = σh.
Combining both Theorem B.1, Assumption 3.1 and Lemma C.2 we get:

Ef(xt) − Ef(xt+1) ≥ 1
1008

√
M
EµM (xt+1) − 4√

M
E∥∇f(xt) − gt∥3/2

− 73
M2 E∥∇2f(xt) − Ht∥3

Lemma C.2
≥ 1

1008
√

M
EµM (xt+1) − 4√

M
σ

3/2
g − 73

M2 σ3
h.

By summing the above inequality from t = 0 to t = T − 1 and rearranging we get:

1
1008T

T∑
t=1

EµM (xt) ≤
√

M Ef(x0)−Ef(xT )
T + 4σ

3/2
g + 73

M3/2 σ3
h.

All is left is to use the fact that Ef(x0) − Ef(xT ) ≤ f(x0) − f⋆ = F0, and by the definition of xout:
EµM (xout) = 1

T

∑T
t=1 EµM (xt), thus:

1
1008EµM (xout) ≤

√
MF0
T + 73

M3/2 σ3
h + 4σ

3/2
g .

D Proofs of Section 3.2

D.1 Proof of Lemma 3.6

We have
f(x) = 1

n

n∑
i=1

fi(x)

and we suppose that each fi, 1 ≤ i ≤ n have the L-Lipschitz Hessians. Therefore, f also has the L-Lipschitz
Hessian. Thus, fi − f has the 2L-Lipschitz Hessian.

Applying (2.1) and 23 to fi − f we get

∥G(fi, x, x̃) − ∇f(x)∥ ≤ L∥x − x̃∥2

and
∥H(fi, x, x̃) − ∇2f(x)∥ ≤ 2L∥x − x̃∥.

We note also the if i is chosen at random then EiG(fi, x, x̃) = ∇f(x) and EiH(fi, x, x̃) = ∇2f(x).

By using the properties of variance we have

EB∥G(fB, x, x̃) − ∇f(x)∥2 ≤ Ei∥G(fi, x, x̃) − ∇f(x)∥2

b
≤ L2

b
∥x − x̃∥4.
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Applying Lemmas C.2 and C.3 we get

EB∥G(fB, x, x̃) − ∇f(x)∥3 ≤ L3

b3/2 ∥x − x̃∥3

and
EB∥H(fB, x, x̃) − ∇2f(x)∥3 ≤

(
2
√

2e log(d)
b + 8e log(d)

b

)3
Ei∥H(fi, x, x̃) − ∇2f(x)∥3

≤
(

2
√

2e log(d)
b

+ 8e log(d)
b

)3

︸ ︷︷ ︸
O(( log(d)

b )3/2)

L3∥x − x̃∥3.

D.2 Proof of Theorem 3.5

We use Theorem B.1 and denote ri+1 = ∥xi+1 − xi∥. Then by the definition of the similarity between h1, h2
and f , we have:

Ef(xsm+i) − Ef(xsm+i+1) ≥ 1
216

√
M
EµM (xsm+i+1)

+ E
[

M
72 r3

sm+i+1 −
( 4δ

3/2
1√
M

+ 73δ3
2

M2

)
∥xsm+i − xsm∥3

]
.

Summing it for 0 ≤ i ≤ m − 1, we obtain

Ef(xsm) − Ef(x(s+1)m) ≥
m−1∑
i=0

1
216

√
M
EµM (xsm+i+1)

+ E
[

M
72 r3

sm+i+1 −
( 4δ

3/2
1√
M

+ 73δ3
2

M2

)
∥xsm+i − xsm∥3

]
.

We note that ∥xsm+i − xsm∥ ≤
∑i−1

j=1 rsm+j . Therefore,

Ef(xsm) − Ef(x(s+1)m) ≥
∑m−1

i=0
1

216
√

M
EµM (xsm+i+1)

+ E
[

M
72 r3

sm+i+1 −
( 4δ

3/2
1√
M

+ 73δ3
2

M2

)
(
∑i−1

j=1 rsm+j)3
]
.

We apply now the following inequality (from (Doikov et al., 2022)):

m−1∑
k=1

( k∑
i=1

ri

)3
≤ m3

3

m−1∑
k=1

r3
k,

which is true for any positive numbers {rk}k≥1 and any m ≥ 1. Hence,

m−1∑
i=0

[
M
72 r3

sm+i+1 −
( 4δ

3/2
1√
M

+ 73δ3
2

M2

)
(

i−1∑
j=1

rsm+j)3]
≥

(
M
72 − m3

3
( 4δ

3/2
1√
M

+ 73δ3
2

M2

)) m−1∑
i=0

r3
sm+i+1.

The above quantity is thus positive if M
72 − m3

3
( 4δ

3/2
1√
M

+ 73δ3
2

M2

)
≥ 0.

Equivalently, for M satisfying
4( δ1

M )3/2 + 73( δ2
M )3 ≤ 1

24m3 (33)
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we have
Ef(xsm) − Ef(x(s+1)m) ≥ m

216
√

M
1
m

m−1∑
i=0

Eµ(xsm+i+1).

Summing it up for 0 ≤ s ≤ S − 1 gives
√

M(f(x0)−f⋆)
Sm ≥ 1

216Sm

S−1∑
s=0

m−1∑
i=0

Eµ(xsm+i+1).

And thus by the definition of xout we have:

Eµ(xout) ≤ 216
√

M(f(x0)−f⋆)
Sm .

E Gradient dominated functions

E.1 Examples of gradient dominated functions

Let us provide several main examples of functions satisfying (17):
Example E.1. Let f be convex on a bounded convex set Q of diameter D, and let solution x⋆ to (1) belong
to Q. Then, we have:

f(x) − f⋆ ≤ ⟨∇f(x), x − x⋆⟩ ≤ D∥∇f(x)∥, ∀x ∈ Q.

Therefore, f is (D, 1)-gradient dominated.
Example E.2. Let f be uniformly convex of degree s ≥ 2 with some constant µ > 0:

f(y) ≥ f(x) + ⟨∇f(x), y − x⟩ + µ
s ∥y − x∥s, ∀x, y ∈ Rd.

Then, f is
(

s−1
s ( 1

µ ) 1
s−1 , s

s−1
)
-gradient dominated (see, e.g. Doikov & Nesterov (2021)).

The statement of Example E.2 is easily proven by minimizing both sides of the inequality defining uniformly
convex functions.

In particular, uniformly convex functions of degree s = 2 are known as strongly convex, and we see that they
satisfy condition (17) with τ = 1

2µ and α = 2. However, the function class (17) is much wider and it includes
also some problems with non-convex objectives Nesterov & Polyak (2006).

E.2 Special cases of Theorem 4.2

For convex functions (the case α = 1) Theorem 4.2 implies that for M = max{L, δ2T
2D } we have the rate

E[f(xout)] − f⋆ = O
(

LD3

T 2 + δ2D2

T
+ δ1D

)
. (34)

Equation (34) has been obtained by (Agafonov et al., 2020) using an assumption that the noise is bounded
almost surely. Using the gradient and Hessian estimates in (32), for ε > 0 and M = L, to reach an ε-global
minimum, we need at most

T = O
(√

LD3

ε

)
,

iterations of the method, with the batches of size bg = O(σ2
gD2

ε2 ) and bh = O(σ2
hD
Lε ) for the gradients and

Hessians, respectively. Therefore, the total number of arithmetic operations needed to find an ε-global
minimum is

O
(

σ2
gL1/2D3/2

ε5/2 + d
σ2

hD5/2

L1/2ε3/2

)
× GradCost.
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For µ-uniformly convex functions of degree s = 3 (the case α = 3
2 and τ ∼ 1√

µ ), using stochastic
estimates (32) and setting M = L, we reach an ε-global minimum for any ε > 0 in at most

T = O
(√

L
µ log( F0

ε )
)

iterations of the method with the batches of sizes bg = O( σ2
g

µ2/3ε4/3 ) and bh = O( σ2
h

µ1/3Lε2/3 ). Therefore, the
total number of arithmetic operations is bounded as

Õ
(

σ2
g

√
L

µ7/6ε4/3 + d
σ2

h

µ5/6
√

Lε2/3

)
× GradCost.

µ-strongly convex functions (α = 2 and τ ∼ 1
µ ). For this class of functions, setting M = L, for any ε > 0

to get E[f(xout)] − f⋆ < ε we need to perform at most

T = O
(

t0 + log log( µ3

L2ε )
)

,

with batches of size bg = O( σ2
g

µε ) and bh = O( σ2
h

L
√

µε ) and, where

t0 = Õ(
√

LF
1/4
0

µ3/4 ).

Therefore, the total number of arithmetic operations needed to find an ε-global minimum, in this case, is

Õ
(

t0σ2
g

µε + d
t0σ2

h

L
√

µε

)
× GradCost.

E.3 A special case of Theorem 4.3

Let us consider the special case α = 1, which corresponds to minimizing convex functions. Theorem 4.3
implies the following global convergence rate:

E[f(xout)] − f⋆ = O
(

δ1D3

S2 + δ2D3

S2m
+ LD3

S2m2

)
. We have the following special cases based on the choice of the helper functions.

• Basic Cubic Newton (Nesterov & Polyak, 2006) corresponds to δ1 = δ2 = 0. Thus, we get
its known rate in the convex case. We reach an ε-global minimum using the following number of
arithmetic operations:

O
(

nd√
ε

)
× GradCost. (35)

• Cubic Newton with Lazy Hessian updates (Doikov et al., 2022) corresponds to δ1 = 0, δ2 = L.
It gives f(xout) − f⋆ = O

(
LD3

S2m

)
. By choosing m = d, we reach an ε-global minimum using the

following number of arithmetic operations:

O
(

n
√

d√
ε

)
× GradCost. (36)

To the best of our knowledge, this complexity estimate of the Lazy Cubic Newton for convex functions
is new, and it improves the complexity of the basic Cubic Newton (35) by factor

√
d.

• Stochasic Cubic Newton with Variance Reduction (Zhou et al., 2019; Wang et al., 2019)
corresponds to sampling random batches Bg, Bh of sizes bg, bh respectively at each iteration, and
setting h1 = 1

bg

∑
i∈Bg

fi, h2 = 1
bh

∑
i∈Bg

fi in our helper framework. According to Lemma 3.6

23



Under review as submission to TMLR

we have δ1 = L√
bg

and δ2 = Õ( L√
bh

). Therefore, for bg ∼ m4, bh ∼ m2 and M = L, we get

E[f(xout)] − f⋆ = O
(

LD3

S2m2

)
. By choosing m = (nd)1/51d≤n2/3 + n1/31d≥n2/3 , we reach an ε-global

minimum using the following number of arithmetic operations:

O
(

min{(nd)4/5, n2/3d+n}√
ε

)
× GradCost. (37)

In Masiha et al. (2022), the global complexity estimate for the stochastic Cubic Newton with Variance
Reduction was established for the gradient dominated functions of degree α = 1. However, their
result is different from ours, assuming only stochastic samples of the gradients and Hessians, while in
our work, we allow recomputing the full gradient and Hessian once per m iterations, similar in spirit
to (Zhou et al., 2019; Wang et al., 2019). In our analysis, we take into account the total arithmetic
cost of the operations. Hence, to the best of our knowledge, our complexity estimate (37) is new.

• Stochastic Cubic Newton with Variance Reduction and Lazy Hessian updates. In this
case, by using sampling, we have δ1 = L√

bg

and δ2 = L. If we take m = (nd)1/31d≤
√

n + d1d≥
√

n then
we reach an ε-global minimum using the following number of arithmetic operations:

O
(

min{(nd)5/6, n
√

d}√
ε

)
× GradCost.

This further improves the total complexity of both the method with Variance Reduction (37) and
the Lazy Cubic Newton (36).

E.4 Proof of Theorem 4.2

From Theorem B.1, we have

Ef(xt) − Ef(xt+1) ≥ 1
1008

√
M
E∥∇f(xt+1)∥3/2 − 4√

M
σ

3/2
g − 73

M2 σ3
h.

By the definition of (τ, α)-gradient dominated functions we have

f(xt) − f⋆ ≤ τ∥∇f(xt)∥α,

which leads to
E∥∇f(xt+1)∥3/2 ≥ E

( f(xt+1)−f⋆

τ

) 3
2α .

If α ≤ 3/2, then by Jensen’s inequality we have

E∥∇f(xt+1)∥3/2 ≥
(Ef(xt+1)−f⋆

τ

) 3
2α . (38)

For α > 3/2 we need to assume that Ef(xt) − f⋆ ≤ τE[∥∇f(xt)∥]α. This gives us (38).

We consider the sequence Ft = Ef(xt) − f⋆ and denote γ = 3
2α , C = 1

1008
√

Mτγ
and a = 4√

M
σ

3/2
g + 25

M2 σ3
h.

Then sequence (Ft)t≥0 satisfies:

Ft − Ft+1 ≥ CF γ
t+1 − a. (39)

We assume that CF γ
t+1 − a ≥ 0 i.e., Ft+1 ≥

(
a
C

)1/γ ; we will prove that when this is the case, the sequence
(Ft) converges to

(
a
C

)1/γ ; otherwise, we stop.

– Case γ = 1. Then
Ft+1 ≤ Ft+a

C+1 .

From the recurrence, we have:

Ft ≤ (1 + C)−tF0 +
∑t−1

i=0(1 + C)−i a
1+C ≤ (1 + C)−tF0 + a

C .
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We note that (1 + C)−t ≤ exp( −Ct
1+C ). Therefore,

Ft ≤ exp
(

−Ct
1+C

)
F0 + a

C .

– Case 1 < γ ≤ 3/2. Then let F̃t = Ft

C1/(1−γ) and ã = a
C1/(1−γ) for which we have

F̃t − F̃t+1 ≥ F̃ γ
t+1 − ã.

Now let x = ã1/γ , and δt = F̃t − x. Then

δt − δt+1 ≥ (δt+1 + x)γ − xγ ≥ δγ
t+1,

where we used in the last inequality the fact that (x + y)γ ≥ xγ + yγ for γ ≥ 1 and x, y ≥ 0. Here, we assume
that δt ≥ 0. Otherwise, we have Ft ≤ ( a

C )1/γ .

Therefore, δt = Ft−( a
C )1/γ

C1/(1−γ) and
δt − δt+1 ≥ δγ

t+1.

We have
1

(γ−1)δγ−1
t+1

− 1
(γ−1)δγ−1

t

= δγ−1
t −δγ−1

t+1

(γ−1)δγ−1
t δγ−1

t+1
.

The concavity of x 7→ xγ−1 (since γ ≤ 2) implies that for all x, y ≥ 0 we have xγ−1 −yγ−1 ≥ (γ−1)xγ−2(x−y).
Hence,

1
(γ−1)δγ−1

t+1
− 1

(γ−1)δγ−1
t

≥ δt−δt+1

δtδγ−1
t+1

≥ δt+1
δt

.

If δt+1 ≥ δt/2 then
1

(γ − 1)δγ−1
t+1

− 1
(γ − 1)δγ−1

t

≥ 1/2 ,

otherwise, δt+1 ≤ δt/2, and in this case we have

1
(γ−1)δγ−1

t+1
− 1

(γ−1)δγ−1
t

≥ 1
(γ−1)δγ−1

t

(2γ−1 − 1) ≥ 2γ−1−1
(γ−1)δγ−1

0
,

where we used that (δt)t≥0 is decreasing. Thus, in all cases we have:

1
(γ−1)δγ−1

t+1
− 1

(γ−1)δγ−1
t

≥ min(1/2, 2γ−1−1
(γ−1)δγ−1

0
) := D.

By summing from t = 0 to t = T − 1, we get:

1
(γ−1)δγ−1

T

≥ DT.

In other words
δT ≤

( 1
(γ−1)DT

) 1
γ−1 .

– Case 3/4 < γ < 1. Then we have

Ft+1 ≤
( Ft−Ft+1+a

C

)1/γ
.

By convexity of x 7→ x1/γ we get

Ft+1 ≤ 21/γ−1( Ft−Ft+1
C

)1/γ + 21/γ−1(
a
C

)1/γ
.
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Let δt = Ft−21/γ−1( a
C )1/γ

21/γ C1/(1−γ) . Then we have

δt+1 ≤ (δt − δt+1)1/γ .

The sequence (δt)t≥0 is decreasing, thus:

δt+1 ≤ δ
1/γ
t .

This is a superlinear rate, starting from the moment δt < 1 . We can show that from the very beginning
(δt)t≥0 will decrease at least at a linear rate, and thus at some point we reach the region of superlinear
convergence.

Indeed, we have δt

δt+1
≥ 1 + δt−δt+1

δt+1
≥ 1 + 1

δ1−γ
t+1

≥ 1 + 1
δ1−γ

0
. Therefore,

δt+1 ≤ (1 + 1
δ1−γ

0
)−1δt = (1 − 1

1+δ1−γ
0

)δt ≤ exp(− 1
1+δ1−γ

0
)δt.

We reach δt ≤ 1/2 after t ≥ t0 = (1 + δ1−γ
0 ) log(2δ0) iterations. After that (t ≥ t0), we enjoy a superlinear

convergence rate: δt ≤
( 1

2
)( 1

γ )t−t0
. This finishes the proof.

E.5 Proof of Theorem 4.3

In Theorem 4.3 we made the choice of updating the snapshot in the following way x̃s+1 =
xarg mini∈{0,··· ,m−1}f(xsm+i

) which means that f(x̃s+1) ≤ f(xsm+i) for all i ∈ {0, · · · , m − 1}.

For s ∈ {0, · · · , S − 1} and i ∈ {0, · · · , m − 1} We have the following inequality

Ef(xsm+i) − Ef(xsm+i+1) ≥ 1
216

√
M
E∥∇f(xsm+i+1)∥3/2

+ E
[

M
72 r3

sm+i+1 −
( 4δ

3/2
1√
M

+ 73δ3
2

M2

)
∥xsm+i − xsm∥3

]
.

By the definition of gradient dominated functions we have E∥∇f(xt+1)∥3/2 ≥
(Ef(xt+1)−f⋆

τ

) 3
2α .

So
Ef(xsm+i) − Ef(xsm+i+1) ≥ 1

216
√

M

(Ef(xsm+i+1)−f⋆

τ

) 3
2α

+ E
[

M
72 r3

sm+i+1 −
( 4δ

3/2
1√
M

+ 73δ3
2

M2

)
∥xsm+i − xsm∥3

]
≥ 1

216
√

M

(Ef(x̃s+1)−f⋆

τ

) 3
2α

+ E
[

M
72 r3

sm+i+1 −
( 4δ

3/2
1√
M

+ 73δ3
2

M2

)
∥xsm+i − xsm∥3

]
.

Summing the above inequality for 0 ≤ i ≤ m − 1 and remarking that x̃s = xsm, we get

Ef(x̃s) − Ef(x(s+1)m) ≥ m
216

√
M

(Ef(x̃s+1)−f⋆

τ

) 3
2α

+ E
[m−1∑

i=0

M
72 r3

sm+i+1 −
( 4δ

3/2
1√
M

+ 73δ3
2

M2

)
∥xsm+i − xsm∥3

]
.

By the definition of x̃s+1 we have f(x̃s+1) ≤ f(x̃sm+i) for all i ∈ {0, . . . , m − 1} which leads to

Ef(x̃s) − Ef(x̃s+1) ≥ m
216

√
M

(Ef(x̃s+1)−f⋆

τ

) 3
2α

+ E
[m−1∑

i=0

M
72 r3

sm+i+1 −
( 4δ

3/2
1√
M

+ 73δ3
2

M2

)
∥xsm+i − xsm∥3

]
.
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For M satisfying (33) we have
∑m−1

i=0
M
72 r3

sm+i+1 −
( 4δ

3/2
1√
M

+ 73δ3
2

M2

)
∥xsm+i − xsm∥3 ≥ 0 thus we have

Ef(x̃s) − Ef(x̃s+1) ≥ m
216

√
M

(Ef(x̃s+1)−f⋆

τ

) 3
2α .

Let us define Fs = Ef(x̃s) − f⋆. Then

Fs − Fs+1 ≥ CF γ
s+1,

which is a special case of inequality (39) with a = 0. Thus we can apply our findings from before and replace
a with 0.
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