
Bespoke Non-Stationary Solvers
for Fast Sampling of Diffusion and Flow Models

Neta Shaul 1 Uriel Singer 2 Ricky T. Q. Chen 3 Matthew Le 3 Ali Thabet 2 Albert Pumarola 2 Yaron Lipman 3 1

Abstract

This paper introduces Bespoke Non-Stationary
(BNS) Solvers, a solver distillation approach to
improve sample efficiency of Diffusion and Flow
models. BNS solvers are based on a family of
non-stationary solvers that provably subsumes ex-
isting numerical ODE solvers and consequently
demonstrate considerable improvement in sam-
ple approximation (PSNR) over these baselines.
Compared to model distillation, BNS solvers ben-
efit from a tiny parameter space (<200 param-
eters), fast optimization (two orders of magni-
tude faster), maintain diversity of samples, and in
contrast to previous solver distillation approaches
nearly close the gap from standard distillation
methods such as Progressive Distillation in the
low-medium NFE regime. For example, BNS
solver achieves 45 PSNR / 1.76 FID using 16
NFE in class-conditional ImageNet-64. We ex-
perimented with BNS solvers for conditional im-
age generation, text-to-image generation, and text-
2-audio generation showing significant improve-
ment in sample approximation (PSNR) in all.

1. Introduction
Diffusion and flow-based methods are now established as
a leading paradigm for generative models of high dimen-
sional signals including images (Rombach et al., 2021),
videos (Singer et al., 2022) audio (Vyas et al., 2023), 3D
geometry (Yariv et al., 2023), and physical structures such
as molecules and proteins (Hoogeboom et al., 2022). While
having an efficient training algorithms, sampling is a costly
process that still requires tens to hundreds of sequential
function evaluations to produce a sample.

1Weizmann Institute of Science 2GenAI, Meta 3FAIR, Meta.
Correspondence to: Neta Shaul <Neta.Shaul@weizmann.ac.il>.

Proceedings of the 41 st International Conference on Machine
Learning, Vienna, Austria. PMLR 235, 2024. Copyright 2024 by
the author(s).

Sample efficiency of generative models is crucial to enable
certain applications, e.g., ones that require interaction with
a user, as well as to reduce carbon footprint and costs of
these, now vastly popular models. An ongoing research ef-
fort targets reducing sampling complexity of diffusion/flow
models, concentrating on three main venues: (i) dedicated
solvers: employing high-order numerical ODE solvers (Kar-
ras et al., 2022) and/or time and scale reparameterizations to
further simplify sample trajectories (Zhang & Chen, 2022);
(ii) model distillation: fine-tuning the model to approximate
the original model’s samples or the training data with less
function evaluations (Salimans & Ho, 2022; Meng et al.,
2023; Liu et al., 2022). Recently also perception and GAN
discriminator losses have been incorporated to improve per-
ception quality (Yin et al., 2023); (iii) solver distillation: a
rather recent and unexplored approach that limits distillation
to optimizing a numerical solver that effectively sample the
original model (that is kept frozen). While model distillation
is generally able to reduce the number of function evalua-
tions (NFEs) for producing samples with high perceptual
scores, it can reduce the diversity of the model and shift the
generated distribution. Furthermore, it is still costly to train
(i.e., conceptually continues training the original model),
and mostly requires access to the original training data. In
contrast, solver distillation enjoys a tiny parameters space
(i.e., <200 of parameters), very fast optimization compared
to model distillation (i.e., by two order of magnitude), and
does not require access to training data (Shaul et al., 2023).

The main goal of this paper is to introduce Bespoke Non-
Stationary (BNS) solvers, a solver distillation approach that
provably subsumes all previous dedicated and distillation
solvers (that we are aware of). While BNS solver family
enjoys higher expressive power, it still inherits other model
distillation properties such as tiny parameter space and fast
training. Its higher expressive power demonstrates a consid-
erable improvement in approximating the original model’s
samples (PSNR) for lower NFEs, and is able to nearly close
the gap with standard model distillation approaches such as
Progressive Distillation (Salimans & Ho, 2022) in terms of
perception quality (FID) for low-medium NFE range (i.e.,
8-16). We have experimented with BNS solvers for con-
ditional image generation, Text-to-Image (T2I) generation,
and Text-to-Audio generation. In all cases BNS solvers

1

Bespoke Non-Stationary Solvers for Fast Sampling of Diffusion and Flow Models

GT (Adaptive RK45) ≈ 160 NFE Bespoke Non-Stationary: 16 NFE RK-Midpoint: 16 NFE RK-Euler: 16 NFE

Figure 1: Different solvers on an FM-OT 512×512 Text-to-Image model with guidance scale 2 initiated with the same noise
(from left to right): Ground truth (Adaptive RK45), BNS 16 NFE (this paper), RK-Midpoint 16 NFE, and RK-Euler 16 NFE.
Note the fidelity of BNS compared to GT. The different rows correspond to the captions (top to bottom): ”A husky facing
the camera.”, ”sunflowers in a clear glass vase on a desk.”, ”the cat is sitting on the floor beside a pair of tennis shoes.”.

considerably improved PSNR of generated samples. Figure
1 depicts BNS sampling from a large scale T2I model using
16 NFE producing consistent samples to the Ground Truth
(GT) samples, while baselines fail to achieve this consis-
tency. A secondary goal of this paper is to provide a full
taxonomy of popular numerical solvers used to sample diffu-
sion and flow models, as well as present them in a consistent
way that highlights their relations.

We summarize the paper’s contributions:

(i) Introduce BNS solvers; subsumes existing solvers.

(ii) A simple and effective BNS optimization algorithm.

(iii) Significantly improving sample approximation
(PSNR) over existing solvers, and reducing the gap in
perception (FID) from model distillation techniques.

(iv) Provide a full taxonomy of numerical solver used for
sampling diffusion and flow models.

2. Preliminaries
Flow-based generative models. We let x ∈ Rd represent
a signal, e.g., an image in pixel or latent space. Deterministic
sampling of a diffusion or flow model is done by solving an
Ordinary Differential Equation (ODE),

ẋ(t) = ut(x(t)), (1)

where x(t) is called a sample trajectory initialized with
x(0) = x0, where x0 ∼ p0(x0) is a sample form the
source distribution p0 usually representing noise, and the
ODE is solved until time t = 1. The Velocity Field
(VF) u : [0, 1] × Rd → Rd is defined using the provided
diffusion/flow model, and is detailed below for popular
model parametrizations. Note that we use the convention
of ODE going forward in time with t = 0 corresponding to
source/noise and t = 1 to data.

2

Bespoke Non-Stationary Solvers for Fast Sampling of Diffusion and Flow Models

Diffusion and Flow-Matching models. There are three
common model parametrizations used in Diffusion/Flow-
Matching: (i) (Diffusion) ϵ-prediction (Ho et al., 2020),
(ii) (Diffusion) the x-prediction (Salimans & Ho, 2022), and
(iii) (Flow-Matching) velocity field (VF) prediction (Lipman
et al., 2022). We use the common notation f : [0, 1]×Rd →
Rd to denote all three. The model f is commonly trained
on a predefined time dependent probability density path pt,

pt(x) =

∫
pt(x|x1)q(x1)dx1, (2)

where q(x1) denotes the data distribution, and the condi-
tional probability path pt(x|x1) is often chosen to be a
Gaussian path, that is defined by a Gaussian kernel,

pt(x|x1) = N (x|αtx1, σ2
t I), (3)

and the pair of time dependent functions α, σ : [0, 1] →
[0, 1] are called a scheduler and satisfy

α0 = 0 = σ1, α1 = 1, σ0 > 0. (4)

ft βt γt

Velocity 0 1

ϵ-pred α̇t

αt

σ̇tαt−σtα̇t

αt

x-pred σ̇t

σt

σtα̇t−σ̇tαt

σt

Table 1: Velocities
of common models.

All schedulers discussed in
this paper (and those prac-
tically used in the litera-
ture) have strictly monoton-
ically increasing Signal-to-
Noise (SnR) ratio, defined by
snr(t) = αt/σt. For Gaus-
sian paths, the velocity field
ut (used for sampling, equation 1) takes the form

ut(x) = βtx+ γtft(x), (5)

where the coefficients βt, γt are given in Table 1.

ST transformations and post-training scheduler change.
A Scale-Time (ST) transformation (Shaul et al., 2023) trans-
forms sample trajectories x(t) according to the formula

x̄(r) = srx(tr), (6)

where t, s : [0, 1]→ [0, 1] are a time and scale reparameter-
ization functions satisfying t0 = 0, t1 = 1 and s0, s1 > 0.
These conditions in particular imply that x̄(1) = s1x(1),
that is, we can recover the original sample x(1) from the
transformed path’s sample x̄(1) via x(1) = s−1

1 x̄(1). Con-
sequently, ST transformations can potentially simplify the
sample trajectories for approximation while still allowing to
recover the model’s original samples. The transformed VF
ū that generates the ST-transformed paths x̄(r) is

ūr(x) =
ṡr
sr
x+ ṫrsrutr

(
x

sr

)
. (7)

Particular instances of this formula are also derived and/or
discussed in (Karras et al., 2022; Zhang & Chen, 2022;

Pokle et al., 2023; Kingma et al., 2021). For strictly mono-
tone SnR, Scale-Time transformations (sr, tr) are in a
1-1 correspondence with a scheduler change (αt, σt) →
(ᾱt, σ̄t) in the Gaussian probability path (equation 2), and
the conversion between the two can be done using the fol-
lowing formulas (Shaul et al., 2023):

ᾱr = srαtr

σ̄r = srσtr

}
⇐⇒

{
tr = snr−1(snr(r))

sr = σ̄r/σtr
. (8)

In particular, given a VF u trained with a Gaussian path
defined by a scheduler (αt, σt), moving to a different sched-
uler post-training can be done by first computing the ST
transformation (sr, tr) from equation 8 and then using ū in
equation 7 and sample with equation 1.

3. Bespoke Non-Stationary Solvers
In this section we introduce and analyze the main object of
this paper: Bespoke Non-Stationary (BNS) solvers. We start
with introducing the Non-Stationary (NS) solvers family
followed by developing an algorithmic framework to search
within this family a particular solver suitable to sample
a provided pre-trained diffusion or flow model. We call
such a solver BNS solver. We conclude this section with
a theoretical analysis providing a complete taxonomy for
popular ODE solvers used for diffusion/flows sampling and
proving that NS solvers subsumes them all, see Figure 3.

3.1. Non-Stationary Solvers

Figure 2: Setup.

In practice, equation 1 is solved
using a numerical ODE solver.
We consider a broad family
of ODE solvers - the Non-
Stationary (NS) Solvers. An
n-step NS solver is defined by
a pair: (i) a time-step discretiza-
tion, and (ii) a set of n update rules. The time-step discretiza-
tion is a monotonically increasing sequence,

Tn =
(
t0, t1, . . . , tn−1, tn

)
, (9)

always starts at t0 = 0 and ends with tn = 1. The i-th
update rule, where i = 0, . . . , n− 1, has the form

xi+1 = Xici + Uidi, (10)

where the matrix Xi ∈ Rd×(i+1) stores all previous approx-
imated points on the sample trajectory until and including
time ti, and the matrix Ui ∈ Rd×(i+1) stores all velocity
vectors evaluated at those previous samples,

Xi =

 x0 x1 · · · xi

 , Ui =
u0 u1 · · · ui

 ,
3

Bespoke Non-Stationary Solvers for Fast Sampling of Diffusion and Flow Models

Scale-Time
RK

Scale-Time
Multistep

Euler

DDIM

RK

Exponential
RK

Multistep

 Exponential
Multistep

 Non-Stationary

Figure 3: Taxonomy of ODE solvers used for sampling of
diffusion/flow generative models.

where we denote uj = utj (xj), and the vectors ci, di ∈
Ri+1 are the parameters of the i-th step, see Figure 2. The
i-th step outputs xi+1 that approximates the GT sample at
the same time, i.e., x(ti+1). The NS solver can utilize an
arbitrary linear combination of all previous points on the
trajectory and their corresponding velocities.

3.2. Optimizing BNS Solvers

Our goal is to find a member in the NS family of solvers
that provides a good sampler for a specific diffusion or flow
model u. We call such a model-specific solver Bespoke
Non-Stationary (BNS) solver. In order to find an efficient
BNS solver we require: (i) a parameterization θ ∈ Rp of NS
solvers family; (ii) a cost function, L(θ), quantifying the
effectiveness of different NS solver candidates in sampling
u; and (iii) an initialization θ = θ0 for optimizing the cost
function. We detail these next.

NS solvers parameterization. The naive representation of
an NS solver following the above introduction would be to
collect the time discretization vector Tn and all pairs (ci, di),
i = 0, . . . , n− 1, defining the update rules in equation 10.
Although doable this would provide an over-parameterized
representation, meaning an NS solver can be represented in
more than a single way. The following proposition provides
a generically unique representation:

Proposition 3.1. For every update rule (ci, di) ∈ Ri+1 ×
Ri+1 of an NS solvers there a exist a pair (ai, bi) ∈ R ×
Ri+1 so that the update rule can be equivalently written as

xi+1 = x0ai + Uibi. (11)

Furthermore, if the columns of Ui are linearly independent
then the pair (ai, bi) is unique.

The proposition is proved using induction in Appendix A.
We note that (Duan et al., 2023a) shows a similar result
for diffusion ϵ-prediction vectors and the special case of
Xi ∈ Rd (instead of the more general Xi ∈ Rd×(i+1)).

With equation 11 as the new NS update rules the complete

set of parameters θ ∈ Rp representing an NS solvers is

θ = [Tn, (a0, b0), . . . , (an−1, bn−1)] , (12)

where the number of parameters is p = n
(
n+5
2

)
+1, which

is the dimension of n-steps NS solvers. Algorithm 1 shows
how to generate a sample with an NS solver.

Algorithm 1 Non-Stationary sampling.

Require: NS solver θ, model u, initial noise x0
U−1 ← [] ▷ empty matrix initialization
for i = 0, 1, . . . , n− 1 do

Ui ←
[
Ui−1 utθi (xi)

]
xi+1 ← x0a

θ
i + Uib

θ
i

end for
return xθn

Cost function. To find an effective NS solver θ∗ we con-
sider a set of pairs (x0, x(1)), where x0 ∼ p0(x0) are source
samples, and x(1) are high accuracy approximate solutions
of equation 1 with x(0) = x0 as initial conditions. Then,
we optimize the PSNR loss,

L(θ) = −E(x0,x(1)) log
∥∥xθn − x(1)∥∥2 , (13)

where xθn is the output of Algorithm 1 initialized with x0,
the velocity field u, and θ; we denote ∥x∥2 = 1

d

∑d
i=1 x

2
i .

Initialization and preconditioning. The last remaining
part of our method is initialization θ = θ0 and precondition-
ing, which are related. To have an effective optimization
of the loss and reach a good solution we would like to
start from an already reasonable solver. For that end we
simply take θ0 to coincide with a generic ODE numerical
solver such that Euler (RK 1st order) or Midpoint (RK 2nd

order), see definition in Appendix C. This is always possible
since, as we show in Section 3.3, all generic solvers are
particular instances of NS solvers. However, just providing
a good initialization is not always enough for successful
optimization as bad conditioning can lead to either diverg-
ing solutions or excruciating slow convergence (Nocedal
& Wright, 1999). We found that in some cases, especially
when using high Classifier Free Guidance (CFG) scale (Ho
& Salimans, 2022) preconditioning the velocity field u by
first changing its original scheduler improves convergence
of θ and reaches better solutions in general. In particular we
denote by σ0 > 0 a preconditioning hyperparameter and
change the velocity field u to ū according to the scheduler

σ̄t = σ0σt, ᾱt = αt, (14)

which corresponds to changing the source distribution to be
proportional to p0(xσ0

), i.e., larger standard deviation. This
is done using equations 7,8 as described in detail in Section
2. The BNS optimization is provided in Algorithm 2.

4

Bespoke Non-Stationary Solvers for Fast Sampling of Diffusion and Flow Models

Algorithm 2 Bespoke Non-Stationary solver training.

Require: model u, pairs D = {(x0, x(1))}, n, θ0
initialize θ ← θ0
while not converged do

for (x0, x(1)) ∈ D do
xθn ← NS sampling(x0, u, θ) ▷ Alg. 1
θ ← θ − γ∇θL(θ) ▷ optimization step, eq. 13

end for
end while
return θ

3.3. Expressive power of Non-Stationary Solvers

In this section we start by reviewing generic solvers, move
to dedicated solvers, explained in a unified way with the
aid of the ST transformation tool, and conclude with a full
solver taxonomy theorem. In particular, this theorem shows
that Non-Stationary solvers subsumes all other solvers. The
solver taxonomy is illustrated in Figure 3.

3.3.1. GENERIC SOLVERS

Generic solvers build a series of approximations,
x0, . . . , xi, xi+1, . . . , xn, to the solution of the ODE in
equation 1 by iteratively applying an update rule. The com-
mon update rules are derived from the following formula
describing the solution to the ODE at time ti+1 based on a
known solution at time ti, i.e.,

x(ti+1) = x(ti) +

∫ ti+1

ti

ut(x(t))dt. (15)

Generic solvers numerically approximate the integral by
using, e.g., a polynomial approximation of ut(x(t)) in the
interval [ti, ti+1], resulting in a stationary (i.e., indepen-
dent of i) update rule: Adam-Bashforth and Multistep meth-
ods build the approximation based on past times ti−m+j ,
j = 1 . . . ,m, while Runge-Kutta methods approximate it
by future times inside the interval [ti, ti+1]. Appendix C
provides detailed formulas of both families, where a more
elaborate exposition can be found in (Iserles, 2009).

3.3.2. DEDICATED SOLVERS

In this section we cover dedicated solvers developed specifi-
cally for diffusion and flow models, taking advantage of the
particular structure of the Gaussian probability path (equa-
tion 2) and VF form (equation 5). Interestingly, all can
be explained using scheduler change / ST transformations
(detailed in Section 2) and application of a generic solvers.

EDM (Karras et al., 2022) change the original model’s
scheduler (αt, σt) to

ᾱr = 1, σ̄r = σmax(1− r), (16)

where σmax = 80. This scheduler transforms the original
conditional paths to pt(x|x1) = N (x|x1, σmax(1− r)) so

that at time r = 0, assuming x1 has zero mean and std≪
σmax = 80, the probability path approximates the Gaussian

p0 ≈ N (0, σ2
maxI). (17)

This scheduler is often called Variance Exploding (VE) due
to the large noise std. Note that σmax has to be sufficiently
large for equation 17 to hold. In contrast, our initialization
utilizes a target scheduler that at time r = 0 reaches arbitrary
desired std (the hyperparameter σ0) with no bias, i.e., p0 =
N (0, σ2

0I). In practice we find that setting σ0 too high hurts
performance. Lastly, EDM incorporate a particular time
discretization on top of this scheduler change, potentially to
compensate for the high σmax.

Bespoke Scale-Time solvers (Shaul et al., 2023) suggest
to search among the ST transformations for a particular
instance that facilitates sampling a specific model. In more
detail, applying an ST transformation to equation 15,

x̄(ri+1) = x̄(ri) +

∫ ri+1

ri

ūr(x̄(r))dr, (18)

where x̄(r) and ūr(x) are as in equations 6 and 7 (resp.).
Now applying a generic solver (Section 3.3.1) one gets an
approximation to x(1). Bespoke ST algorithm then searches
among the space of all (st, tr) for the one that in expectation
leads to good approximations of x(1) over a set of training
sample trajectories. (Watson et al., 2021) also optimizes for
a sampling scheduler, concentrating on discrete diffusion
models and perception losses.

Exponential Integrator (Song et al., 2022; Zhang &
Chen, 2022; Lu et al., 2022a; 2023). For ϵ/x-prediction
diffusion model with VF as defined in equation 5 the sam-
pling ODE of equation 1 takes the form

ẋ(t) =
ψ̇t
ψt
x(t) + η

σtα̇t − σ̇tαt
ψt

ft(x(t)), (19)

where ft is the ϵ/x-prediction, and

(ψt, η) =

{
(αt,−1) if f is ϵ-pred
(σt, 1) if f is x-pred

. (20)

Now changing the original model’s scheduler (αt, σt) to

ᾱt =
1

ψr
αr, σ̄r =

1

ψr
σr, (21)

which corresponds to the conditional paths pt(x|x1) =
N (x|x1, snr(r)−2I) for ϵ-prediction and pt(x|x1) =
N (x|snr(r)x1, I) for x-prediction, where as before
snr(r) = αr/σr. Using equation 7 in equation 18 and
rearranging leads to Exponential Integrators’ basic formula

5

Bespoke Non-Stationary Solvers for Fast Sampling of Diffusion and Flow Models

ImageNet-64: ϵ-pred ImageNet-64: FM-CS ImageNet-64: FM-OT ImageNet-128: FM-OT

4 6 8 10 12 14 16 18 20
NFE

10

15

20

25

30

35

40

45

50

PS
NR

4 6 8 10 12 14 16 18 20
NFE

10

15

20

25

30

35

40

45

50

PS
NR

4 6 8 10 12 14 16 18 20
NFE

10

15

20

25

30

35

40

45

50

PS
NR

4 6 8 10 12 14 16 18 20
NFE

10

15

20

25

30

35

40

45

50

PS
NR

4 6 8 10 12 14 16 18 20
NFE

1

2

3

4

5

6

7

8

9

10

FI
D

DDIM
DPM++(M2)
DPM++(S2)
DPM++(S3)

UniPC
BST
BNS

4 6 8 10 12 14 16 18 20
NFE

1

2

3

4

5

6

7

8

9

10
FI

D
RK-Euler
RK-Midpoint
DDIM
DPM++(2M)

DPM++(3M)
BST
BNS

4 6 8 10 12 14 16 18 20
NFE

1

2

3

4

5

6

7

8

9

10

FI
D

RK-Euler
RK-Midpoint
DDIM
DPM++(2M)

DPM++(3M)
BST
BNS-transfer
BNS

4 6 8 10 12 14 16 18 20
NFE

1

2

3

4

5

6

7

8

9

10

FI
D

RK-Euler
RK-Midpoint
BST
BNS

Figure 4: BNS solvers vs. BST solvers, RK-Midpoint/Euler, DDIM, and DPM++, UniPC on ImageNet-64, and Image-
Net128: PSNR vs. NFE (top row), and FID vs. NFE (bottom row); BNS-transfer is trained on CIFAR10 FM-OT model.

(equivalent to the result after employing variation of con-
stants method (Lu et al., 2023))

x(ti+1) =
ψti+1

ψti
x(ti) + yψti+1

∫ λti+1

λti

eyλfλ(x(λ))dλ,

(22)
where λt = log snr(t) and fλ = ftλ , where tλ is the inverse
of λt which is defined since we assume λt is monotonically
increasing. Note that this transformation is also discussed
in (Zhang & Chen, 2023). Now using generic solvers (Sec-
tion 3.3.1) to approximate the integral above leads to the
desired solver. We are now ready to formulate our main
theorem proving the relations depicted in Figure 3, proved
in Appendix B:

Theorem 3.2 (Solver Taxonomy). The Runge-Kutta (RK
and Exponential-RK). family is included in the Scale-
Time RK family, while the Multistep family (Multistep and
Exponential-Multistep) is included in the Scale-Time multi-
step family. The Scale-Time family is included in the Non-
Stationary solvers family.

4. Previous work
Most previous works on dedicated solvers and solver distil-
lation are already covered in Section 3.3. Here we discuss
works that are not yet covered. Another related work on
solver distillation is (Duan et al., 2023b) that removes time
steps from a diffusion sampler and uses a similar param-
eterization to equation 11 for approximating the missing
ϵ-prediction values with linear projection. In contrast, we
formulate a single optimization problem over the NS family
of solvers to directly minimize the solver’s error. DPM-
solver-v3 (Zheng et al., 2023a) learns the linear part of
ϵ-prediction followed by an exponential integrator.

Model distillation fine tunes the original model to find an
efficient solver. Early attempts minimize directly a sam-
ple approximation loss (Luhman & Luhman, 2021), while
follow-up approaches progressively reduce the number of
steps (Salimans & Ho, 2022; Meng et al., 2023), or itera-
tively fine-tune from previous model’s samples (Liu et al.,
2022). (Song et al., 2023) trains a one-step solver using
consistency loss. We show that BNS solvers, uses only a
tiny fraction of the parameter count of model distillation,
can be trained quickly on a tiny training set.

5. Experiments
We evaluate BNS solvers on: (i) Class condi-
tional/unconditional image generation, (ii) Text-to-Image
generation, and (iii) Text-to-Audio generation. Additionally,
we compare our method with model distillation. Unless
stated otherwise, conditional sampling is done using
classifier-free guidance (CFG) (Ho & Salimans, 2022;
Zheng et al., 2023b). All BNS solvers are trained on 520
pairs (x0, x(1)) of noise and generated image using adap-
tive RK45 (Shampine, 1986) solver. During optimization
(Algorithm 2) we log PSNR on a validation set of 1024 such
pairs and report results on best validation iteration. Further
details are in Appendix D.1. As pre-trained models we use:
(i) ϵ-prediction Diffusion model (Ho et al., 2020) with the
Variance Preserving scheduler (ϵ-VP) (Song et al., 2020);
(ii) Flow-Matching with the Conditional Optimal-Transport
scheduler (FM-OT)(Lipman et al., 2022; Liu et al., 2022);
(iii) Flow-Matching - Cosine scheduler (FM-CS) (Salimans
& Ho, 2022; Albergo & Vanden-Eijnden, 2022); and (iv)
x-prediction Diffusion model (Karras et al., 2022). Further
details are in Appendix E and D.5.

6

Bespoke Non-Stationary Solvers for Fast Sampling of Diffusion and Flow Models

GT NFE=20 NFE=16 NFE=12 GT NFE=20 NFE=16 NFE=12

R
K

-M
id

po
in

t
B

N
S

Figure 5: BNS vs. RK-Midpoint on latent FM-OT Text-to-Image 512x512: (left) guidance scale 2.0 with the caption ”a
building is shown behind trees and shrubs.”, (right) guidance scale 6.5 with the ”panda bear sitting in tree with no leaves.”

Class condition image generation. We evaluate our
method on the class conditional ImageNet-64/128 (Deng
et al., 2009) dataset. As recommended by the authors (ima)
to support fairness we used the official face-blurred data,
see more details in Appendix D.2. We report PSNR
w.r.t. ground truth (GT) images generated with adaptive
RK45 solver (Shampine, 1986), and Fréchet Inception Dis-
tance (FID) (Heusel et al., 2017), both metrics are computed
on 50k samples from the models. We train our BNS solvers
for NFE ∈ {4, 6, . . . , 20} with RK-Midpoint initial solver
and preconditioning σ0 = 1, each taking 0.2− 1% fraction
of the GPU days used to train the diffusion/flow models (i.e.,
2-10 GPU days with Nvidia V100). We compare our results
against various baselines, including generic solvers, expo-
nential solvers: DDIM (Song et al., 2022), DPM++ (Zhang
& Chen, 2023), and UniPC (Zhao et al., 2023), as well as the
BST (Shaul et al., 2023) distilled solvers. Figure 4 shows
our BNS solvers improves both PSNR and FID over all base-
lines. Specifically, in PSNR metric we achieve a large im-
provement of at least 5−10dB above the runner-up baseline
and get to 5% from FID of the GT solver (about 160− 320
NFE) with 16 NFE. Qualitative examples are shown in Fig-
ures 9 and 10 in Appendix D.2. Interestingly, for PSNR we
see the order: BNS > BST > DPM > RK-Midpoint/Euler,
that matches well the solver hierarchy proved in Theorem
3.2, see also Figure 3. In Figure 11 we also show an ablation
experiment comparing the Non-Stationary and Scale-Time
family both optimized with Algorithm 2, demonstrating
the benefit in the NS family of solvers over the ST family.
Lastly, Figure 4 additionally shows results of a BNS solver
transferred between different models (BNS-transfer), see
details in Appendix D.2.

Unconditional image generation. We also evaluate our
method on a pretrained CIFAR10 model from (Karras et al.,
2022) in Table 6, in particular improving upon DPM-solver-
v3 (Zheng et al., 2023a) and UniPC (Zhao et al., 2023) in
the low NFE regime.

w = 2.0 NFE PSNR ↑ Pick Score ↑ Clip Score ↑ FID ↓
GT (DOPRI5) 170 ∞ 20.95 0.252 15.20

RK-Euler 12
16
20

13.95
14.86
15.71

20.66
20.79
20.86

0.252
0.253
0.253

16.62
13.68
12.86

RK-Midpoint 12
16
20

15.05
16.28
17.46

20.72
20.82
20.88

0.250
0.250
0.251

11.54
12.03
12.50

BNS 12
16
20

25.86
29.13
31.78

20.83
20.90
20.91

0.252
0.252
0.252

13.93
14.48
14.68

w = 6.5 NFE PSNR ↑ Pick Score ↑ Clip Score ↑ FID ↓
GT (DOPRI5) 268 ∞ 21.16 0.260 23.99

RK-Euler 12
16
20

9.61
10.02
10.52

19.92
20.34
20.60

0.237
0.247
0.252

50.00
35.37
28.36

RK-Midpoint 12
16
20

9.65
9.98

10.34

19.79
20.11
20.34

0.240
0.245
0.248

34.01
27.06
23.63

BNS 12
16
20

18.94
21.23
23.27

20.92
21.03
21.09

0.261
0.260
0.259

20.67
21.93
22.56

Table 2: BNS solvers vs. GT and RK-Midpoint, RK-Euler
on Text-to-Image 512 FM-OT evaluated on MS-COCO.

Text-to-Image generation. In considerations regarding the
training data of Stable Diffusion, we have opted not to exper-
iment with this model. Hence, we use a large latent FM-OT
T2I model (2.2b parameters) trained on a proprietary dataset
of 330m image-text pairs. Image size is 512 × 512 × 3
while the latent space is of dimension 64 × 64 × 4; see
implementation details in Appendix E. For evaluation we
report PSNR w.r.t GT images, similar to the class condi-
tional task. Additionally, we use MS-COCO (Lin et al.,
2015) validation set and report perceptual metrics including
Pick Score (Kirstain et al., 2023), Clip Score (Ramesh et al.,
2022), and zero-shot FID. All four metrics are computed on
30K generated and validation images and reported for guid-
ance (CFG) scale w = 2 and w = 6.5. For each guidance

7

Bespoke Non-Stationary Solvers for Fast Sampling of Diffusion and Flow Models

CIFAR10 NFE FID GT-FID Forwards Training Set Parameters

PD 4
8

3.00
2.57

2.51 211m
192m

50k
(CIFAR10)

>50m

BNS 4
8

25.20
2.73

2.54 4.9m
9.7m

520 18
52

ImageNet-64 NFE FID GT-FID Forwards Training Set Parameters

PD 4
8
16

4.79
3.39
2.97

2.92 2457m
2150m
1843m

1.2m
(ImageNet)

> 200m

BNS 4
8
16

31.83
3.90
2.62

2.50 2.5m
4.9m
9.7m

520 18
52
168

Table 3: BNS solver vs. Progressive Distillation on CI-
FAR10 and ImageNet-641 class conditional with w = 0.

scale, we optimize BNS solvers for NFE ∈ {12, 16, 20}
with initial solver RK-Euler. Each solver training takes 15-
24 GPU days with Nvidia V100, consisting at most 0.3%
fraction of the GPU days used to train the latent FM-OT
model. We find that σ0 = 5 gives best results for w = 2,
while σ0 = 10 for w = 6.5. As baselines we compare our
results to RK-Midpoint/Euler. Table 2 shows BNS solvers
improves PSNR by at least 10dB and consistently improves
Pick Score as well. The Clip Score and FID metrics are
not correlated with NFE and are considered noisy metrics
for T2I evaluations (Kirstain et al., 2023). Figure 5 shows
qualitative examples. Additionally, Table 5, and Figures 7
and 8 in Appendix D.3 shows an ablation comparing BNS
solver to its initialization, DDIM, and DPM++. Lastly, we
note that higher guidance scale generally tends to be hard to
approximate as can be noticed by comparing PSNR values
for different NFEs in Table 2.

Bespoke solvers vs. Distillation. We compare BNS solvers
with Progressive Distillation (PD) (Salimans & Ho, 2022)
on two datasets: CIFAR10 (Krizhevsky & Hinton, 2009),
and class conditional ImageNet-641. For BNS we use the
FM-OT models. For fair comparison, we report both BNS
and PD in the unguided setting (i.e., w = 0); results for
PD taken from (Salimans & Ho, 2022; Meng et al., 2023).
Table 3 shows FID, number of forward passes in the model
during training (Forwards), where computation is detailed in
Appendix D.4, training set size (Training Set), and number
of trained parameters in BNS/PD (Parameters). While on
NFE < 8 we fail to compete with PD’s FID, we see that in
the mid range of 8− 16 NFE our BNS solver gives compa-
rable FID using significantly less compute. Specifically, for
ImageNet-64 our training uses only 0.5% of the forwards
used by PD. Additionally, the low number of parameters
allows us to generalize well despite the tiny training set.

1Note that BNS evaluates on models trained with the blurred
face ImageNet as recommended in ImageNet website (ima) to
support fairness.

LibriSpeech TTS Audiocaps

Figure 6: NFE vs. SNR of BNS solvers, BST solvers, RK-
Midpoint/Euler for Speech Generation FM-OT evaluated
on: (left) LibriSpeech TTS, (right) Audiocaps.

Audio generation. Next, we experiment with BNS solvers
on an audio generation model. We use the speech model
introduced by (Vyas et al., 2023), which is a latent Flow-
Matching model trained to infill Encodec (Défossez et al.,
2022) features, conditioned on frame-aligned text tran-
scripts. To train the BNS and BST solvers we generate
10k random samples from the training set using the RK45
solver. We evaluate on 8 different datasets, each of which
are described in D.6. In each setting, the model is given a
transcript and a (possibly empty) audio prompt. The model
needs to synthesize speech corresponding to the transcript
and the speech should preserve the speaker style of the given
audio prompt if one is provided. We evaluate by computing
the SNR (dB) w.r.t. ground truth samples generated using
the adaptive RK45 solver. Figure 6 compares the SNR for
two datasets at different NFEs for each solver. The remain-
ing datasets can be found in Figure 12. Across all datasets
BNS solver is consistently better than baselines improving
1dB-3dB from runner-up.

6. Conclusions and limitations
We have introduced Bespoke Non-Stationary (BNS) solvers
based on the provably expressive Non-Stationary (NS)
solvers family and demonstrated this theoretical expressive-
ness translates to better samples approximation at low NFE
presenting best PSNR per NFE results among a large set of
baselines and applications. In contrast to previous solver dis-
tillation methods such as (Shaul et al., 2023) BNS don’t need
to a-priori fix a base solver and consequently an order, how-
ever it does need to optimize a different solver for different
NFE, which opens an interesting future research question
whether a single solver can handle different NFE without
degrading performance. Further limitations of BNS solvers
is that they don’t reach the extremely low NFE regime (1-4),
and for T2I generation utilize CFG (increasing the effective
batch size). An interesting future work is to further increase
the expressiveness to further reduce NFE and potentially
incorporate conditional guidance in the solver.

8

Bespoke Non-Stationary Solvers for Fast Sampling of Diffusion and Flow Models

Impact Statement
This paper presents a method for fast sampling of diffu-
sion and flow models. There are many potential societal
consequences of our work, none which we feel must be
specifically highlighted here.

Acknowledgements
NS is supported by a grant from Israel CHE Program for
Data Science Research Centers.

References
Imagenet website. https://www.image-net.org/.

Albergo, M. S. and Vanden-Eijnden, E. Building normaliz-
ing flows with stochastic interpolants, 2022.

Ardila, R., Branson, M., Davis, K., Henretty, M., Kohler,
M., Meyer, J., Morais, R., Saunders, L., Tyers, F. M.,
and Weber, G. Common voice: A massively-multilingual
speech corpus. In International Conference on Language
Resources and Evaluation, 2019.

Chen, S., Wang, C., Chen, Z., Wu, Y., Liu, S., Chen, Z., Li,
J., Kanda, N., Yoshioka, T., Xiao, X., et al. Wavlm: Large-
scale self-supervised pre-training for full stack speech
processing. IEEE Journal of Selected Topics in Signal
Processing, 16(6):1505–1518, 2022.

Chrabaszcz, P., Loshchilov, I., and Hutter, F. A downsam-
pled variant of imagenet as an alternative to the cifar
datasets. arXiv preprint arXiv:1707.08819, 2017.

Cieri, Christopher, et al. . Fisher English training speech
parts 1 and 2 LDC200{4,5}S13. Web Download. Linguis-
tic Data Consortium, Philadelphia, 2004,2005.

Clifton, A., Pappu, A., Reddy, S., Yu, Y., Karlgren, J.,
Carterette, B., and Jones, R. The spotify podcast dataset.
arXiv preprint arXiv:2004.04270, 2020.

Deng, J., Dong, W., Socher, R., Li, L.-J., Li, K., and Li, F.-F.
Imagenet: A large-scale hierarchical image database. In
The IEEE Conference on Computer Vision and Pattern
Recognition (CVPR), 2009.

Dhariwal, P. and Nichol, A. Diffusion models beat gans
on image synthesis. Advances in neural information
processing systems, 34:8780–8794, 2021.

Duan, Z., Wang, C., Chen, C., Huang, J., and Qian, W.
Optimal linear subspace search: Learning to construct
fast and high-quality schedulers for diffusion models. In
Proceedings of the 32nd ACM International Conference
on Information and Knowledge Management, CIKM ’23.
ACM, October 2023a. doi: 10.1145/3583780.3614999.

URL http://dx.doi.org/10.1145/3583780.
3614999.

Duan, Z., Wang, C., Chen, C., Huang, J., and Qian, W.
Optimal linear subspace search: Learning to construct
fast and high-quality schedulers for diffusion models.
arXiv preprint arXiv:2305.14677, 2023b.

Défossez, A., Copet, J., Synnaeve, G., and Adi, Y. High
fidelity neural audio compression, 2022.

Godfrey, J. J., Holliman, E. C., and McDaniel, J. Switch-
board: Telephone speech corpus for research and devel-
opment. In Acoustics, Speech, and Signal Processing,
IEEE International Conference on, volume 1, pp. 517–
520. IEEE Computer Society, 1992.

Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., and
Hochreiter, S. Gans trained by a two time-scale update
rule converge to a local nash equilibrium. In Advances in
Neural Information Processing Systems (NeurIPS), 2017.

Ho, J. and Salimans, T. Classifier-free diffusion guidance.
arXiv preprint arXiv:2207.12598, 2022.

Ho, J., Jain, A., and Abbeel, P. Denoising diffusion proba-
bilistic models. Advances in neural information process-
ing systems, 33:6840–6851, 2020.

Hoogeboom, E., Satorras, V. G., Vignac, C., and Welling, M.
Equivariant diffusion for molecule generation in 3d. In
International conference on machine learning, pp. 8867–
8887. PMLR, 2022.

Iserles, A. A first course in the numerical analysis of dif-
ferential equations. Number 44. Cambridge university
press, 2009.

Karras, T., Aittala, M., Aila, T., and Laine, S. Elucidating
the design space of diffusion-based generative models.
Advances in Neural Information Processing Systems, 35:
26565–26577, 2022.

Kim, C. D., Kim, B., Lee, H., and Kim, G. Audiocaps:
Generating captions for audios in the wild. In NAACL-
HLT, 2019.

Kingma, D., Salimans, T., Poole, B., and Ho, J. Varia-
tional diffusion models. Advances in neural information
processing systems, 34:21696–21707, 2021.

Kingma, D. P. and Ba, J. Adam: A method for stochastic
optimization, 2017.

Kirstain, Y., Polyak, A., Singer, U., Matiana, S., Penna,
J., and Levy, O. Pick-a-pic: An open dataset of user
preferences for text-to-image generation, 2023.

9

https://www.image-net.org/
http://dx.doi.org/10.1145/3583780.3614999
http://dx.doi.org/10.1145/3583780.3614999

Bespoke Non-Stationary Solvers for Fast Sampling of Diffusion and Flow Models

Krizhevsky, A. and Hinton, G. Learning multiple layers
of features from tiny images. In University of Toronto,
Canada, 2009.

Lin, T.-Y., Maire, M., Belongie, S., Bourdev, L., Girshick,
R., Hays, J., Perona, P., Ramanan, D., Zitnick, C. L., and
Dollár, P. Microsoft coco: Common objects in context,
2015.

Lipman, Y., Chen, R. T. Q., Ben-Hamu, H., Nickel, M., and
Le, M. Flow matching for generative modeling. arXiv
preprint arXiv:2210.02747, 2022.

Liu, X., Gong, C., and Liu, Q. Flow straight and fast:
Learning to generate and transfer data with rectified flow.
arXiv preprint arXiv:2209.03003, 2022.

Lu, C., Zhou, Y., Bao, F., Chen, J., Li, C., and Zhu, J.
Dpm-solver: A fast ode solver for diffusion probabilistic
model sampling in around 10 steps. Advances in Neural
Information Processing Systems, 35:5775–5787, 2022a.

Lu, C., Zhou, Y., Bao, F., Chen, J., Li, C., and Zhu, J. Dpm-
solver++: Fast solver for guided sampling of diffusion
probabilistic models. arXiv preprint arXiv:2211.01095,
2022b.

Lu, C., Zhou, Y., Bao, F., Chen, J., Li, C., and Zhu, J. Dpm-
solver++: Fast solver for guided sampling of diffusion
probabilistic models, 2023.

Luhman, E. and Luhman, T. Knowledge distillation in
iterative generative models for improved sampling speed.
arXiv preprint arXiv:2101.02388, 2021.

Meng, C., Rombach, R., Gao, R., Kingma, D., Ermon,
S., Ho, J., and Salimans, T. On distillation of guided
diffusion models. In Proceedings of the IEEE/CVF Con-
ference on Computer Vision and Pattern Recognition, pp.
14297–14306, 2023.

Nguyen, T. A., Hsu, W.-N., d’Avirro, A., Shi, B., Gat, I.,
Fazel-Zarani, M., Remez, T., Copet, J., Synnaeve, G.,
Hassid, M., et al. Expresso: A benchmark and analysis
of discrete expressive speech resynthesis. arXiv preprint
arXiv:2308.05725, 2023.

Nocedal, J. and Wright, S. J. Numerical optimization.
Springer, 1999.

Panayotov, V., Chen, G., Povey, D., and Khudanpur, S.
Librispeech: An asr corpus based on public domain audio
books. International Conference on Acoustics, Speech
and Signal Processing, 2015.

Pokle, A., Muckley, M. J., Chen, R. T., and Karrer, B.
Training-free linear image inversion via flows. arXiv
preprint arXiv:2310.04432, 2023.

Radford, A., Kim, J. W., Xu, T., Brockman, G., McLeavey,
C., and Sutskever, I. Robust speech recognition via large-
scale weak supervision. ArXiv, abs/2212.04356, 2022.

Raffel, C., Shazeer, N., Roberts, A., Lee, K., Narang, S.,
Matena, M., Zhou, Y., Li, W., and Liu, P. J. Exploring
the limits of transfer learning with a unified text-to-text
transformer. The Journal of Machine Learning Research,
21(1):5485–5551, 2020.

Ramesh, A., Dhariwal, P., Nichol, A., Chu, C., and Chen,
M. Hierarchical text-conditional image generation with
clip latents, 2022.

Rombach, R., Blattmann, A., Lorenz, D., Esser, P., and
Ommer, B. High-resolution image synthesis with latent
diffusion models, 2021.

Salimans, T. and Ho, J. Progressive distillation for
fast sampling of diffusion models. arXiv preprint
arXiv:2202.00512, 2022.

Shampine, L. F. Some practical runge-kutta formulas. Math-
ematics of computation, 46(173):135–150, 1986.

Shaul, N., Perez, J., Chen, R. T. Q., Thabet, A., Pumarola,
A., and Lipman, Y. Bespoke solvers for generative flow
models, 2023.

Singer, U., Polyak, A., Hayes, T., Yin, X., An, J., Zhang,
S., Hu, Q., Yang, H., Ashual, O., Gafni, O., Parikh, D.,
Gupta, S., and Taigman, Y. Make-a-video: Text-to-video
generation without text-video data, 2022.

Song, J., Meng, C., and Ermon, S. Denoising diffusion
implicit models, 2022.

Song, Y., Sohl-Dickstein, J., Kingma, D. P., Kumar, A., Er-
mon, S., and Poole, B. Score-based generative modeling
through stochastic differential equations. arXiv preprint
arXiv:2011.13456, 2020.

Song, Y., Dhariwal, P., Chen, M., and Sutskever, I. Consis-
tency models. 2023.

Vyas, A., Shi, B., Le, M., Tjandra, A., Wu, Y.-C., Guo,
B., Zhang, J., Zhang, X., Adkins, R., Ngan, W., Wang,
J., Cruz, I., Akula, B., Akinyemi, A., Ellis, B., Moritz,
R., Yungster, Y., Rakotoarison, A., Tan, L., Summers,
C., Wood, C., Lane, J., Williamson, M., and Hsu, W.-
N. Audiobox: Unified audio generation with natural
language prompts, 2023.

Watson, D., Chan, W., Ho, J., and Norouzi, M. Learning fast
samplers for diffusion models by differentiating through
sample quality. In International Conference on Learning
Representations, 2021.

10

Bespoke Non-Stationary Solvers for Fast Sampling of Diffusion and Flow Models

Yariv, L., Puny, O., Neverova, N., Gafni, O., and Lipman, Y.
Mosaic-sdf for 3d generative models, 2023.

Yin, T., Gharbi, M., Zhang, R., Shechtman, E., Durand, F.,
Freeman, W. T., and Park, T. One-step diffusion with
distribution matching distillation, 2023.

Zhang, Q. and Chen, Y. Fast sampling of diffusion
models with exponential integrator. arXiv preprint
arXiv:2204.13902, 2022.

Zhang, Q. and Chen, Y. Fast sampling of diffusion models
with exponential integrator, 2023.

Zhao, W., Bai, L., Rao, Y., Zhou, J., and Lu, J. Unipc: A
unified predictor-corrector framework for fast sampling
of diffusion models, 2023.

Zheng, K., Lu, C., Chen, J., and Zhu, J. Dpm-solver-v3: Im-
proved diffusion ode solver with empirical model statis-
tics, 2023a.

Zheng, Q., Le, M., Shaul, N., Lipman, Y., Grover, A., and
Chen, R. T. Guided flows for generative modeling and de-
cision making. arXiv preprint arXiv:2311.13443, 2023b.

Zhuang, J., Dvornek, N., Li, X., Tatikonda, S., Papademetris,
X., and Duncan, J. Adaptive checkpoint adjoint method
for gradient estimation in neural ode, 2020.

11

Bespoke Non-Stationary Solvers for Fast Sampling of Diffusion and Flow Models

A. BNS Optimization
Proposition A.1. For every update rule (ci, di) ∈ Ri+1 × Ri+1 of an NS solvers there a exist a pair (ai, bi) ∈ R× Ri+1

so that the update rule can be equivalently written as

xi+1 = x0ai + Uibi. (11)

Furthermore, if the columns of Ui are linearly independent then the pair (ai, bi) is unique.

Proof of proposition 3.1. To prove the proposition we use induction on the step number 0 ≤ i ≤ n− 1, where our induction
hypothesis is the proposition its self. Remember, an Update rule of a NS solver represented by (ci, di) ∈ Ri+1 × Ri+1 is

xi+1 = Xici + Uidi (23)

=

i∑
j=0

(ci)jxj +

i∑
j=0

(di)juj . (24)

First, for the base case i = 0, both (c0, d0) ∈ R× R and (a0, b0) ∈ R× R, hence we can take a0 = c0 and b0 = d0. Let
k < n− 1, we assume the hypothesis is true for every i ≤ k. Then we can write the kth step as

xk+1 =

k∑
j=0

(ck)jxj +

k∑
j=0

(dk)juj (25)

= (ck)0x0 +

k−1∑
j=0

(ck)j+1xj+1 +

k∑
j=0

(dk)juj (26)

= (ck)0x0 +

k−1∑
j=0

(ck)j+1

(
ajx0 +

j∑
l=0

(bj−1)lul

)
+

k∑
j=0

dk)juj (27)

=

(ck)0 +

k−1∑
j=0

(ck)jaj

x0 +

k−1∑
j=0

(ck)j+1

j∑
l=0

(bj)lul +

k∑
j=0

dk)juj (28)

=

(ck)0 +

k−1∑
j=0

(ck)jaj

x0 +

k−1∑
l=0

k−1∑
j=l

(ck)j+1(bj)lul +

k∑
j=0

dk)juj (29)

=

(ck)0 +

k−1∑
j=0

(ck)jaj

x0 +

k−1∑
j=0

k−1∑
l=j

(ck)l+1(bl)juj +

k∑
j=0

dk)juj (30)

= akx0 +

k∑
j=0

(bk)juj (31)

where in the 2nd equality we made the shift j 7→ j + 1, in the 3rd we substitue (ai, bi) for i ≤ k given by our induction
assumption, in the 5th equality we changed the order of summation to first sum on j index and then on l, in the 6th equality
we only switched the notation of l and j indices, finally in the last equality we define

ak =

(ck)0 +

k−1∑
j=0

(ck)jaj

 , (bk)j =

k−1∑
l=j

(ck)l+1(bl)j + (dk)j , j = 0, . . . k − 1, (bk)k = (dk)k. (32)

Note, if the vectors x0, u0, . . . , uk are linearly independent then the above coefficients, ak, (bk)0, . . . , (bk)k are unique.

12

Bespoke Non-Stationary Solvers for Fast Sampling of Diffusion and Flow Models

A.1. Memory cost and complexity of BNS optimization

The memory cost of BNS optimization is dominated by the hidden units of the pre-trained model network, which scales as
O(n), where n is the number of steps (i.e., NFE). However, in practice we completely remove this dependence of memory
cost on n by using active checkpointing (a standard approach to backpropagation through long chains, e.g., (Zhuang et al.,
2020)). Therefore, denoting the memory cost to store a single xi by fX and the memory cost of a single evaluation of the
network by fN , the actual memory cost is only O(fx × n + fN), which is a rather small memory overhead on top of a
single evaluation of the network since this sum is dominated by fN . As far as time complexity, using active checkpointing is
roughly twice as costly compared to without checkpointing.

B. Universality Of Non-Stationary Solvers
This appendix provides a proof of theorem 3.2 and its visualization in the Ven diagram in figure 3. We state the first part of
the theorem in lemma B.1 and provide a stand-alone proof of the lemma. Then using lemma B.1 we complete the proof of
theorem 3.2.

Lemma B.1. The Runge-Kutta (RK and Exponential-RK) family is included in the Scale-Time RK family, while the Multistep
family (Multistep and Exponential-Multistep) is included in the Scale-Time multistep family.

Proof of lemma B.1. Remeber, given a pair of Scale-Time (ST) transformation (sr, tr) and a generic solver, its associated
solver in the ST solver family is defined as an approximation using the generic solver to the exact solution as in equation 15
for the transformed VF,

x̄(ri+1) = x̄(ri) +

∫ ri+1

ri

ūr(x̄(r))dr, (33)

where x̄(r) and ūr(x) are as in equations 6 and 7 (resp.). First consider the identity transformation as the ST transformation,
that is

sr = 1, tr = r, (34)

then equation 33 consolidated with equation 15. In this case, applying the generic solver gives the solver its self, hence
Multistep family is included in the ST Multistep family and RK family is included in ST RK family. Next, we consider an
Exponential Integrator, it is defined as an approximation to the exact solution (Lu et al., 2023; 2022b) as in equation 22,

x(ti+1) =
ψti+1

ψti
x(ti) + ηψti+1

∫ λti+1

λti

eηλfλ(x(λ))dλ, (35)

where λt = log snr(t) and fλ = ftλ , where tλ is the inverse of λt which is defined since we assume λt is monotonically
increasing, and ψt and η are dependent on the scheduler and the objective f ,

(ψt, η) =

{
(αt,−1) if f is ϵ-pred
(σt, 1) if f is x-pred

. (36)

Hence, it is enough to show there exist a ST transformation (sr, tr), such that equation 35 and equation 33 consolidate. As
mention in section 3.3 in equation 21 we consider the change of scheduler to

ᾱt =
1

ψr
αr, σ̄r =

1

ψr
σr. (37)

By equation 8 it corresponding ST transformation is

sr =
1

ψr
, tr = r, (38)

and by equations 6 and equation 7 the transformed trajectory and VF are

x̄(r) =
x(r)

ψr
, ūr(x) = −

ψ̇r
ψr
x+

1

ψ
ur(ψrx). (39)

13

Bespoke Non-Stationary Solvers for Fast Sampling of Diffusion and Flow Models

For an objective f either ϵ-prediction or x-prediction, the VF u is as in equation 5,

ur(x) =
ψ̇r
ψr
x+ η

Lr
ψr
fr(x) (40)

where Lr = σrα̇r − σ̇rαr. Finally, substitute equations 39 and 40 into equation 33 gives

xri+1

ψri+1

=
xri
ψri

+ η

∫ ri+1

ri

Lr
ψ2
r

fr(x)dr (41)

=
xri
ψri

+ η

∫ ri+1

ri

d

dr

1

η

(
αr
σr

)η
fr(x)dr (42)

=
xri
ψri

+

∫ ri+1

ri

d

dr

(
eηλr

)
fr(x)dr (43)

=
xri
ψri

+

∫ ri+1

ri

η
dλ

dr
eηλrfr(x)dr (44)

=
xri
ψri

+ η

∫ λri+1

λri

eηλfλ(x)dλ, (45)

where in the 2nd equality we notice that Lr

ψ2
r
= d

dr
1
η

(
αr

σr

)η
, int the 3rd equality we substitute λr = log(αr/σr), in the 4th

equality used the chain rule to carry the derivative w.r.t. r,in the 5th equality we changed the integration variable to λ, and
multiplying both sides by ψri+1

gives equation 35.

We are ready prove the main theorem:

Theorem 3.2 (Solver Taxonomy). The Runge-Kutta (RK and Exponential-RK). family is included in the Scale-Time RK
family, while the Multistep family (Multistep and Exponential-Multistep) is included in the Scale-Time multistep family. The
Scale-Time family is included in the Non-Stationary solvers family.

Proof of lemma 3.2. By lemma B.1 we are only left to show that the Non-Stationary (NS) solvers family includes the
Scale-Time (ST) solvers family. Remember, given a ST transformation (sr, tr), its associated solver is defined as an
approximation using a generic solver to the exact solution as in equation 15 for the transformed VF. That is,

x̄(ri+1) = x̄(ri) +

∫ ri+1

ri

ūr(x̄(r))dr, (46)

where x̄(r) and ūr(x) are as in equations 6 and 7 (resp.), and the generic solvers we consider are either a Multistep or RK
method. Note by equations 53, 54, and 55 the update rules of both Multistep and RK method are expressed as a linear
combination of xi and ui, hence they are included in the NS solver family. That is, for every such generic solver with n
steps there exists , āi, b̄i ∈ Ri+1, i = 0, . . . , n − 1, and a discretization 0 = r0, r1, . . . , rn = 1 such that the ST solver
update rule is

x̄ri+1 =

i∑
j=0

āij x̄rj +

i∑
j=0

b̄ij ūrj (x̄rj). (47)

We substitute the definition of x̄(r), ūr(x), and divide both sides of equation 47 by si+1 = sri+1
,

xti+1 =

i∑
j=0

āijsi
si+1

xtj +

i∑
j=0

b̄ij
si+1

(
ṡjxtj + ṫjsjutj (xtj)

)
(48)

=

i∑
j=0

(
āijsi
si+1

+
b̄ij ṡj
si+1

)
xtj +

i∑
j=0

b̄ij

si+1ṫjsj
utj (xtj) (49)

=

i∑
j=0

aijxtj +

i∑
j=0

bijutj (xtj), (50)

14

Bespoke Non-Stationary Solvers for Fast Sampling of Diffusion and Flow Models

where we denoted trj = tj and we set

aij =

(
āijsi
si+1

+
b̄ij ṡj
si+1

)
, bij =

b̄ij

si+1ṫjsj
. (51)

C. Generic solvers
Adam-Bashforth and Multistep solvers. The Adam-Bashforth (AB) solver is derived by replacing ut(x(t)) in the
integral in equation 15 with an interpolation polynomial q(t) constructed with the m previous data points (ti−m+j , ui−m+j),
j = 1, . . . ,m. Integrating q(t) over [ti, ti+1] leads to an m-step Adam-Bashforth (AB) update formula:

xi+1 = xi−m+1 + h

m∑
j=1

bjui−m+j , (52)

where h = ti+1 − ti. A general (stationary) m-step Multistep method is defined with the more general update rule
incorporating arbitrary linear combinations of previous xi, ui:

xi+1 =

m∑
j=1

ajxi−m+j + h

m∑
j=1

bjui−m+j , (53)

where aj , bj ∈ R, j = 0, . . . ,m− 1 are constants (i.e., independent of i).

Runge-Kutta. This class of solvers approximates the integral of ut(x(t)) in equation 15 with a quadrature rule using
interior nodes in the interval [ti, ti+1]. Namely, it uses the data points the data points (ti + hcj , uti+hcj (ξj)), where cj
define the RK nodes, and ξj ≈ x(ti + hcj), j = 0, . . . ,m− 1. This leads to an update rule of the form

xi+1 = xi + h

m−1∑
j=0

bjuti+hcj (ξj), (54)

ξj =

{
xi j = 0

xi + h
∑j−1
k=0 ajkuti+hck(ξk) j > 0

, (55)

where the matrix a ∈ Rm×m with ajk = 0 for j ≤ k is called the RK matrix, and b ∈ Rm is the RK weight vector, both
independent of i, i.e., stationary.

D. Experiments
D.1. Bespoke Non-Stationary training details

In this section we provide the training details of the BNS solvers for the three tasks: (i) class conditional image generation,
(ii) Text-to-Image generation, (iii) Text-to-Audio generation. For all tasks training set and validation set were generate using
using adaptive RK45 solver, optimization is done with Adam optimizer (Kingma & Ba, 2017) and results are reported on
best validation iteration.

Class condition image generation. For this task we generated 520 pairs of (x0, x(1)), noise and image, for the training
set, and 1024 such pairs for the validation set. For each model on this task, ImageNet-64 eps-VP/FM-CS/FM-OT, and
ImageNet-128 FM-OT, we train BNS solvers with NFE ∈ {4, 6, 8, 10, 12, 14, 16, 18, 20}. We use with learning rate of
5e−4, a polynomial decay learning rate scheduler, batch size of 40, for 15k iterations. We compute PSNR on the validation
set every 100 iterations.

Text-to-Image. For this task, we generate two training and validation sets of 520 and 1024 pairs (resp.), one for guidance
scale w = 2.0 and one for w = 6.5. The text prompts for the generation were taken from the training set of MS-COCO (Lin
et al., 2015). For each guidance scale we train BNS solvers with NFE ∈ {12, 16, 20}, learning rate of 1e−4, cosine annealing
learning rate scheduler, batch size of 8, for 20k iterations. We compute PSNR on the validation set every 200 iterations.

15

Bespoke Non-Stationary Solvers for Fast Sampling of Diffusion and Flow Models

GT NFE=20 NFE=16 NFE=12 GT NFE=20 NFE=16 NFE=12

R
K

-M
id

po
in

t
In

iti
al

So
lv

er
B

N
S

”a cow is sitting alone on a grassy field.” ”a teddy bear sitting in a fake bath tub with a rubber ducky.”

R
K

-M
id

po
in

t
In

iti
al

So
lv

er
B

N
S

”a dog is on the floor hiding under a curtain.” ”a brown bear walking through a lush green forest.”

R
K

-M
id

po
in

t
In

iti
al

So
lv

er
B

N
S

”a kitchen that has a bowl of fruit on the table.” ”panda bear sitting in tree with no leaves.”

Figure 7: Comparison of generated Images on latent FM-OT text-to-image 512x512 guidance scale 2.0: RK-Midpoint,
Initial Solver (RK-Euler+precondition σ0 = 5), and BNS.

16

Bespoke Non-Stationary Solvers for Fast Sampling of Diffusion and Flow Models

GT NFE=20 NFE=16 NFE=12 GT NFE=20 NFE=16 NFE=12

R
K

-M
id

po
in

t
In

iti
al

So
lv

er
B

N
S

”a cow is sitting alone on a grassy field.” ”sunflowers in a clear glass vase on a desk.”

R
K

-M
id

po
in

t
In

iti
al

So
lv

er
B

N
S

”a teddy bear sitting in a fake bath tub with a rubber ducky” ”a building is shown behind trees and shrubs.”

R
K

-M
id

po
in

t
In

iti
al

So
lv

er
B

N
S

”a dog is on the floor hiding under a curtain.” ”a kitchen that has a bowl of fruit on the table.”

Figure 8: Comparison of generated Images on latent FM-OT text-to-image 512x512 guidance scale 6.5: RK-Midpoint,
Initial Solver (RK-Euler+precondition σ0 = 10), and BNS.

17

Bespoke Non-Stationary Solvers for Fast Sampling of Diffusion and Flow Models

GT NFE=14 NFE=12 NFE=10 NFE=8 NFE=6 GT NFE=14 NFE=12 NFE=10 NFE=8 NFE=6

Figure 9: Comparison of generated Images on ImageNet-128 FM-OT model with guidance scale 0.5: (top row) RK-Midpoint,
(middle row) BST, (bottom row) BNS.

18

Bespoke Non-Stationary Solvers for Fast Sampling of Diffusion and Flow Models

GT NFE=14 NFE=12 NFE=10 NFE=8 NFE=6 GT NFE=14 NFE=12 NFE=10 NFE=8 NFE=6

Figure 10: Comparison of generated Images on ImageNet-64 ϵ-VP model with guidance scale 0.2: (top row) DDIM, (middle
row) DPM++(2M), (bottom row) BNS.

19

Bespoke Non-Stationary Solvers for Fast Sampling of Diffusion and Flow Models

ImageNet-64: FM-OT

4 6 8 10 12 14 16 18 20
NFE

20

25

30

35

40

45

50

PS
NR

BST-PSNR
BNS-PSNR

4 6 8 10 12 14 16 18 20
NFE

1

2

3

4

5

6

7

8

9

10

FI
D

BST-PSNR
BNS-PSNR

Figure 11: BNS vs. BST on ImageNet-64 FM-OT trained with PSNR loss.

ImageNet 64 NFE: 4 6 8 10 12 14 16 18 20 GT

FM-OT PSNR:
FID:

25.08
27.35

29.9
6.02

34.25
3.11

37.92
2.27

41.06
1.91

43.52
1.83

45.64
1.78

47.12
1.72

48.33
1.75

∞
1.68

FMv-CS PSNR:
FID:

25.0
27.59

29.76
6.05

34.03
3.14

37.7
2.4

40.83
1.89

43.3
1.82

45.21
1.76

46.68
1.74

47.68
1.72

∞
1.71

ϵ-VP PSNR:
FID:

24.65
30.0

29.49
7.21

33.77
3.61

37.48
2.88

40.61
2.22

43.21
1.97

45.7
1.94

47.32
1.97

48.57
2.04

∞
1.84

ImageNet 128 NFE: 4 6 8 10 12 14 16 18 20 GT

FM-OT PSNR:
FID:

23.43
36.17

27.72
8.93

31.41
4.53

34.54
2.91

37.37
2.48

39.56
2.38

41.28
2.26

42.38
2.28

42.88
2.17

∞
2.16

Table 4: PSNR and FID of BNS on ImageNet 64 FM-OT/FMv-CS/ϵ-VP, and ImageNet 128 FM-OT.

Text-to-Audio. We generate a training set of 10k pairs and a validation set of 1024 pairs. We train BNS solver with NFE
∈ {8, 12, 16, 20}, and optimize with learning rate of 1e−4, cosine annealing learning rate scheduler, batch size of 40, for
15k iterations. We compute SNR on the validation set every 5k itrations.

D.2. Class condition image generation

Dataset and implementation details. As recommended by the authors (ima) we used the official face-blurred data.
Specifically, for the 64×64 we downsample using the open source preprocessing scripts from (Chrabaszcz et al., 2017)). For
ImageNet-64 we use three models as described in Appendix E, while for ImageNet-128 we only use FM-OT model due to
computational constraints (training requires close to 2000 NVidia-V100 GPU days).

BNS solvers are transferable. This experiment demonstrates that BNS solvers are transferable between different
flow/diffusion models, but there is still an advantage to a model-specific solver. We train a BNS solver on a CIFAR10
FM-OT for NFE ∈ 8, 10, 12, 14, 16, 18, 20, and evaluate the BNS solver when used to sample an ImageNet-64 FM-OT
model. Figure 4 (middle-right) shows the transferred BNS solver (BNS-transfer) outperforms all baselines in both PSNR
and FID, yet it’s not able to match the PSNR of the BNS solver (although it is comparable in terms of its FID) that is directly
trained on the ImageNet-64 FM-OT model. Importantly, this experiment shows the advantage of decoupling the parameters
of the solver and the flow/diffusion model. Potentially, BNS solvers can be trained on smaller models and only fine-tuned on
larger models, alleviating the overhead cost of a model-specific solver.

D.3. Text-to-Image

In this section we compare our BNS solver with the initial solver. That is, the solver used in initialization of BNS
optimization. Table 5 shows PSNR, Pick Score, Clip Score, and FID of the initial solver - RK-Euler with preconditioning
σ0 = 5 for guidance scale w = 2 and σ0 = 10 for guidance scale w = 6.5, and the BNS solvers.

20

Bespoke Non-Stationary Solvers for Fast Sampling of Diffusion and Flow Models

w = 2.0 NFE PSNR Pick Score Clip Score FID

GT (DOPRI5) 170 ∞ 20.95 0.252 15.20

Initial Solver 12
16
20

19.23
20.55
21.60

20.65
20.78
20.85

0.257
0.256
0.256

21.14
18.19
16.96

DDIM 12
16
20

14.50
15.50
16.35

20.69
20.82
20.88

0.252
0.253
0.253

14.9
13.65
13.98

DPM++(2M) 12
16
20

17.45
18.87
19.81

20.30
20.60
20.73

0.244
0.249
0.250

17.74
14.06
13.83

DPM++(3M) 12
16
20

17.51
18.95
20.01

20.20
20.57
20.72

0.241
0.247
0.249

14.89
13.65
13.97

BNS 12
16
20

25.86
29.13
31.78

20.83
20.90
20.91

0.252
0.252
0.252

13.93
14.48
14.68

w = 6.5 NFE PSNR Pick Score Clip Score FID

GT (DOPRI5) 268 ∞ 21.16 0.260 23.99

Initial Solver 12
16
20

17.21
18.38
19.29

20.69
20.87
20.97

0.264
0.263
0.262

29.63
28.02
27.15

DDIM 12
16
20

9.96
10.43
10.98

19.99
20.41
20.66

0.234
0.247
0.252

52.71
37.44
30.49

DPM++(2M) 12
16
20

8.69
11.19
13.06

18.90
19.85
20.49

0.251
0.240
0.252

57.67
29.60
22.38

DPM++(3M) 12
16
20

9.96
10.75
11.89

18.22
19.03
19.82

0.193
0.221
0.240

87.20
53.57
28.87

BNS 12
16
20

18.94
21.23
23.27

20.92
21.03
21.09

0.261
0.260
0.259

20.67
21.93
22.56

Table 5: BNS solvers vs. GT, Intial Solver (Euler + ST), DDIM, and DPM++ on Text-to-Image 512 FM-OT evaluated on
MS-COCO.

21

Bespoke Non-Stationary Solvers for Fast Sampling of Diffusion and Flow Models

D.4. Bespoke vs Distillation

We compare Bespoke with Progressive Distillation (PD) (Salimans & Ho, 2022), for CIFAR10 we compare against results
reported by (Salimans & Ho, 2022) and for ImageNet 64 against results reported by (Meng et al., 2023). To count the
number of forwards in the network that was done in training of Bespoke or PD, we count a forward in the model with a
batch of 1 as one forward. The training of PD for CIFAR10 model with 8 and 4 steps done by (Salimans & Ho, 2022) with
500k and 550k parameters updates (reps.), each update computed a batch of 128 images and requires two evaluation of
the teacher model and one evaluation of student model, which sums to 192m and 211m forwards (resp.) The training of
Bespoke for CIFAR10 with 8 and 4 steps was done with 30k parameters updates and batch of 40 for both, each update
requires 8 and 4 evaluation of the model (resp.). For Bespoke we also take in account the cost of generating the training set
that cost 85k forwards, which in total sums to 9.7m and 4.9m forwards (resp.). For ImageNet 64 we compare against the
unguided single-w model trained by (Meng et al., 2023). The PD training of this model with 16, 8, and 4 steps is done with
300k, 350k, and 400k parameters updates (resp.) and a batch of 2048, taking in account both teacher and student models
evaluation gives 1843m, 2150m, and 2457m forwards (resp.). The Bespoke training for 16, 8, and 4 was done with 15k
parameters updates and a batch of 40, each update requires 16, 8, and 4 evaluation of the model (resp.), and the cost of
generating the training set is 90k forwards, which in total sums to 9.7m, 4.9m, and 2.5m forwards (resp.).

D.5. Bespoke vs DPM-solver-v3

CIFAR10 (EDM VP) NFE: 5 6 8 10 12 15 20 25

Heund’s 2nd FID: 20.80 103.86 39.66 16.57 7.59 4.76 2.51 2.12
DPM++ FID: 24.54 11.85 4.36 2.91 2.45 2.17 2.05 2.02
UniPC FID: 23.52 11.10 3.86 2.85 2.38 2.08 2.01 2.00
DPM-solver-v3 FID: 12.21 8.56 3.50 2.51 2.24 2.10 2.02 2.00
BNS-solver FID: 7.32 3.80 2.31 2.19 2.13 2.10 2.06 2.06

Table 6: FID vs. NFE of BNS vs. DPM-solver-v3, UniPC, DPM++, Heun 2 on CIFAR10 model published by (Karras et al.,
2022). We take the results for the baselines from (Zheng et al., 2023a).

To compare our BNS solver with DPM-solver-v3 (Zheng et al., 2023a) solver distillation method, we train a BNS solver on
a CIFAR10 model published by (Karras et al., 2022). The CIFAR10 model is trained with a VE scheduler i.e.,

αt = 1, σt = σmax(1− t), (56)

where σmax = 80. As a preconditioning for the training of the BNS solver, we use the change of scheduler formula as in
equation 8, and apply an ST transformation that changes the scheduler to the Cond-OT path i.e.,

ᾱr = r, σ̄r = (1− r). (57)

Table 6 shows FID vs. NFE results for DPM-solver-v3, UniPC (Zhao et al., 2023), DPM++ as reported by (Zheng et al.,
2023a), and our BNS solver for NFE ∈ {5, 6, 8, 10, 12, 15, 20, 25}. We see that for NFE ≥ 12, BNS solver is on par with
DPM-solver-v3 and UniPC, while for lower NFE (≤ 10) the BNS solver considerably outperforms DPM-solver-v3 and all
other baselines.

D.6. Audio Generation

The audio generation model was evaluated on the following datasets:

• LibriSpeech (test-clean): audio book recordings that are scripted and relatively clean (Panayotov et al., 2015)

• CommonVoice v13.0: sentences read by volunteers worldwide. Covers a broader range of accents and are nosier
compared to LibriSpeech (Ardila et al., 2019)

• Switchboard: a conversational speech corpus (Godfrey et al., 1992)

22

Bespoke Non-Stationary Solvers for Fast Sampling of Diffusion and Flow Models

Spotify

Accent

Expresso

Switchboard

Librispeech

CommonVoice v13.0

Fisher

Figure 12: NFE vs. SNR for each solver

• Expresso: A multispeaker expressive speech dataset covering 7 different speaking styles. (Nguyen et al., 2023)

• Accent: An internal expressive and accented dataset.

• Audiocaps: A subset of the AudioSet dataset. Contains sound sourced from YouTube videos. (Kim et al., 2019)

• Spotify: podcast recordings (Clifton et al., 2020)

• Fisher: conversational speech data (Cieri, Christopher, et al. , 2004,2005)

Additionally we evaluate the solvers using word error rate (WER), and speaker similarity. For WER the generated audio is
transcribed using Whisper (Radford et al., 2022) and then WER is computed against the transcript used to generate the audio.
We quantify the speaker similarity by embedding both the audio prompt and the generated audio using WavLM-TDCNN
(Chen et al., 2022), and compute the cosine similarity between the embeddings. In general these metrics do not accurately
reflect the sample quality of different solvers. In instances where a solver generates a low-quality sample we qualitatively
find that the speaker still sounds the same and the audio is intelligible, but there are artifacts in the audio such as static,
background noise, etc. which are are not quantified by speaker similarity or WER. As can be seen from Table 7 and Table 8
there is little variance in these metrics across solvers.

Conditioning of the audio model. The model takes in three tensors, all of the same length: a noise tensor and conditioning
which is constructed of a masked Encodec features and frame-aligned token embeddings. These get concatenated together
channel-wise, and input to the model to produce the resulting Encodec features for the entire sequence. This is then fed to
the Encodec decoder to produce the final waveform.

E. Pre-trained models
In this section describe the training objective that pre-trained model we used were trained with and their schedulers. In
addition, we provide architecture details for our CIFAR10, ImageNet, and Text-to-Image models.

Training obejective and schedulers. The FM-OT and FM-CS model where trained with Conditional Flow Matching
(CFM) loss derived in (Lipman et al., 2022). That is,

LCFM(θ) = Et,p0(x0),q(x1) ∥ut(xt; θ)− (σ̇tx0 + α̇tx1)∥2 , (58)

23

Bespoke Non-Stationary Solvers for Fast Sampling of Diffusion and Flow Models

Accent Audiocaps CV13 Expresso Fisher LS Spotify Switchboard
Solver NFE

BNS 8 0.662 0.391 0.611 0.608 0.586 0.735 0.540 0.610
12 0.662 0.396 0.610 0.607 0.588 0.734 0.541 0.611
16 0.661 0.396 0.608 0.604 0.587 0.731 0.539 0.610
20 0.661 0.397 0.608 0.604 0.588 0.732 0.540 0.610

BST 8 0.662 0.387 0.608 0.605 0.587 0.732 0.540 0.610
12 0.663 0.398 0.609 0.605 0.589 0.733 0.544 0.611
16 0.662 0.399 0.609 0.602 0.590 0.731 0.544 0.611
20 0.661 0.397 0.608 0.602 0.589 0.731 0.542 0.611

Euler 8 0.662 0.387 0.609 0.605 0.584 0.732 0.544 0.608
12 0.664 0.395 0.611 0.605 0.588 0.734 0.546 0.612
16 0.665 0.402 0.612 0.605 0.590 0.734 0.548 0.613
20 0.665 0.404 0.612 0.605 0.591 0.734 0.550 0.614

Midpoint 8 0.664 0.391 0.608 0.600 0.592 0.731 0.543 0.614
12 0.664 0.399 0.608 0.601 0.593 0.731 0.547 0.615
16 0.662 0.398 0.608 0.602 0.590 0.731 0.543 0.611
20 0.661 0.396 0.608 0.602 0.589 0.731 0.539 0.610

RK45 adaptive 0.661 0.396 0.608 0.602 0.588 0.730 0.538 0.610

Table 7: Speaker similarity for each solver (higher is better)

Accent Audiocaps CV13 Expresso Fisher LS LS TTS Spotify Switchboard
Solver NFE

BNS 8 0.86 3.98 3.04 3.11 7.71 3.01 3.12 3.48 11.02
12 0.98 3.61 3.38 3.05 7.66 3.41 3.23 2.60 11.39
16 1.02 3.69 3.10 3.09 7.75 3.16 3.25 2.59 12.54
20 1.07 3.56 3.07 3.21 7.87 3.27 3.33 2.58 10.50

BST 8 0.90 3.87 3.16 3.11 7.77 3.18 3.06 2.89 10.17
12 1.02 4.05 3.16 3.21 7.42 3.22 3.19 3.16 9.83
16 1.04 3.74 3.11 3.17 7.50 3.35 3.16 3.16 10.35
20 0.95 3.81 3.41 2.99 7.58 4.26 3.18 2.98 11.19

Euler 8 0.90 3.49 3.38 3.05 7.05 3.31 2.81 2.81 12.36
12 0.98 3.79 3.13 3.05 7.71 2.99 2.92 3.44 10.75
16 0.99 3.73 3.35 3.11 7.37 3.12 3.04 3.65 9.40
20 0.95 3.74 3.13 3.11 7.83 3.16 3.16 2.80 9.82

Midpoint 8 1.03 4.25 3.26 3.05 7.66 3.10 3.03 3.95 9.46
12 0.95 3.97 3.37 3.17 7.30 3.29 3.12 3.32 7.84
16 0.98 3.95 3.34 3.19 7.43 3.50 3.19 2.83 10.72
20 1.08 3.81 3.24 3.17 7.67 3.12 3.13 2.60 12.33

RK45 adaptive 1.04 3.76 3.43 3.13 7.67 3.27 3.31 2.88 10.75

Table 8: WER for each solver (lower is better)

24

Bespoke Non-Stationary Solvers for Fast Sampling of Diffusion and Flow Models

CIFAR10 ImageNet-64 ImageNet-128
FM-OT ϵ-VP;FM-OT;FM/v-CS FM-OT

Channels 128 196 256
Depth 4 3 2
Channels multiple 2,2,2 1,2,3,4 1,1,2,3,4
Heads 1 - -
Heads Channels - 64 64
Attention resolution 16 32,16,8 32,16,8
Dropout 0.3 1.0 0.0
Effective Batch size 512 2048 2048
GPUs 8 64 64
Epochs 3000 1600 1437
Iterations 300k 1M 900k
Learning Rate 1e-4 1e-4 1e-4
Learning Rate Scheduler constant constant Poly Decay
Warmup Steps - - 5k
P-Unconditional - 0.2 0.2
Guidance scale - 0.20 (vp,cs), 0.15 (ot) 0.5
Total parameters count 55M 296M 421M

Table 9: CIFAR10 and ImageNet Pre-trained models’ hyper-parameters.

where t is uniform on [0, 1], p0(x0) = N (x0|0, I), q(x1) is the data distribution, ut is the network, (αt, σt) is the scheduler,
and xt = σtx0 + αtx1 ∼ pt(x|x1) as in equation 3. The FM-OT scheduler is

αt = t, σt = 1− t, (59)

and the FM-CS scheduler is
αt = sin

π

2
t, σt = cos

π

2
t. (60)

The ϵ-VP model was trained on a different objective, the noise prediction loss as in (Ho et al., 2020) and (Song et al., 2020)
with the VP scheduler. That is,

Lnoise(θ) = Et,p0(x0),q(x1) ∥ϵt(xt; θ)− x0∥
2
, (61)

where t, p0(x0), q(x1), xt as above, ϵt is the network and the VP scheduler is

αt = ξ1−t, σt =
√

1− ξ21−t, ξs = e−
1
4 s

2(B−b)− 1
2 sb, (62)

where B = 20, b = 0.1.

Architecture details. The Text-to-Image model has the same architecture as used by Dalle-2(Ramesh et al., 2022) (2.2b
parameters) with the following changes: we use the T5 text encoder (Raffel et al., 2020), we have 4 input/output channels,
finally we also have an autoencoder with the same architecture of Stable Diffusion autoencoder (Rombach et al., 2021). Our
CIFAR10, and class conditional ImageNet models have the U-Net architecture as in Dhariwal & Nichol (2021), with the
hyper-parameters listed in Table 9.

25

