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ABSTRACT

As a specific semantic segmentation task, aerial imagery segmentation has been
widely employed in high spatial resolution (HSR) remote sensing images under-
standing. Besides common issues (e.g. large scale variation) faced by general
semantic segmentation tasks, aerial imagery segmentation has some unique chal-
lenges, the most critical one among which lies in foreground-background imbalance.
There have been some recent efforts that attempt to address this issue by propos-
ing sophisticated neural network architectures, since they can be used to extract
informative multi-scale feature representations and increase the discrimination of
object boundaries. Nevertheless, many of them merely utilize those multi-scale
representations in ad-hoc measures but disregard the fact that the semantic meaning
of objects with various sizes could be better identified via receptive fields of diverse
ranges. In this paper, we propose Adaptive Focus Framework (AF;), which adopts
a hierarchical segmentation procedure and focuses on adaptively utilizing multi-
scale representations generated by widely adopted neural network architectures.
Particularly, a learnable module, called Adaptive Confidence Mechanism (ACM),
is proposed to determine which scale of representation should be used for the
segmentation of different objects. Comprehensive experiments show that AF; has
significantly improved the accuracy on three widely used aerial benchmarks, as
fast as the mainstream method.

1 INTRODUCTION

Understanding geospatial objects, such as plants, buildings, vehicles, etc., in high spatial resolution
(HSR) remote sensing images plays a vital role in land cover monitoring, urban management, and
civil engineering. Aerial imagery segmentation, as a specific semantic segmentation task that assigns
a semantic category to each image pixel, has been widely leveraged in HSR remote sensing images
understanding since it can provide semantic and location information for objects of interest.

Nonetheless, in addition to some common issues in most semantic segmentation datasets (Caesar
et al., 2018} |Cordsts et al., 2016; Zhou et al., 2019), including large scale variation (Kirillov et al.|
2019; Long et al.,|2015; [Ronneberger et al., [2015)), complex scene (Chen et al.| 2017} |Zhao et al.,
2017), and indistinguishable object boundaries (Cheng et al., |2020; |Kirillov et al., [2020; Zhen et al.,
2020), aerial imagery segmentation has its own challenges, the most critical one among which lies
in foreground-background imbalance (Deng et al., [2019; [2018; [Li et al.| 2021} |Pang et al.| [2019;
Waqas Zamir et al., 2019} Xia et all 2018; [Zheng et al.l [2020). Taking images in Fig. [I|as examples,
the foreground proportion can be extremely small, e.g. less than 1% for the leftmost image. Such
acute imbalance could drastically increase the difficulty of object recognition, as even human eyes can
hardly recognize them from the image. Moreover, the larger intra-class variance of the background
objects may significantly increase the risk of false positive results (Li et al.| 2021 [Zheng et al., 2020).

Existing general semantic segmentation methods mainly pay attention to designing sophisticated
neural network architectures that can obtain informative multi-scale feature representations (Chen
et al., 2018} He et al., |2016} Kirillov et al.,|2019} Sun et al.,|2019; [Szegedy et al., 2017) and highlight
the object boundaries (Kirillov et al., 2020; Li et al., [2021; Zhen et al., [2020). To further address the
foreground-background imbalance challenge of aerial imagery segmentation, some recent efforts
have created more delicate modules in the neural networks to obtain superior results. For instance,
Foreground-Aware Relation Network (FarSeg) (Zheng et al., [2020) introduces a foreground-scene
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Figure 1: Illustration of aerial imagery segmentation.
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Figure 2: Diagrammatic representation of Adaptive Focus Framework.

relation module to enhance the discrimination of foreground features as well as a foreground-aware
optimization to alleviate foreground-background imbalance problem. More recently, PointFlow
2021)) designs a dual point matcher to select points from the salient area and object boundaries.

While these previous studies have demonstrated the effectiveness of sophisticated neural network
architecture design in both general and aerial imagery segmentation, most of them ignore the other
side of the coin, i.e. how to efficiently utilize the multi-scale representations generated by complex
neural networks. Intuitively, to identify the semantic meaning of a large object, it is more important for
the model to leverage the representations obtained by wider receptive fields since they can represent
the semantics of the whole large object rather than confusing the discrimination with interior details.
On the other hand, for small objects, it is more efficient for the model to exploit the representations
obtained by more concentrated receptive fields because they can focus on the discrimination without
being distracted by noisy context. Unfortunately, most of the existing general or aerial segmentation
methods merely employ multi-scale representations in ad-hoc ways, either simply concatenating them
or arbitrarily using the final layer. This inevitably limits the potential of aerial imagery segmentation.

Inspired by the adaptively-focusing process of the human eye (Artal et al., [2006}; [Wikipedia con]
2021)), we propose a novel Adaptive Focus Framework (AF,) in this paper, which adopts
a hierarchical segmentation procedure for aerial imagery segmentation. The general idea of this
framework is shown in Fig. 2] Particularly, through any widely employed model structure (e.g.
encoder-decoder structure), AF5 can obtain hierarchical representation maps based on different levels
of receptive fields. The semantic segmentation procedure starts from the representation map created
by the largest receptive field. After obtaining the segmentation result on this level, AF, will filter
out the pixels of low confidence on segmentation and then carry out another round of segmentation
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procedure on a finer-grained feature map. The whole process will be conducted repeatedly until all
the pixels have been predicted, or until there is no finer-grained feature map. In AF,, an Adaptive
Confidence Mechanism (ACM) is proposed to deal with pixel filtration. The confidence of a pixel is
defined as the highest value among the probabilities that the pixel belongs to each category, while an
adaptive updated threshold is set to filter out low confidence pixels.

In summary, the main contributions of this paper include:

* We propose Adaptive Focus Framework (AF2), which adopts a hierarchical segmentation
procedure and focuses on adaptively utilizing multi-scale representations generated by
widely adopted neural network architectures.

* In the pixel filtering process for each scale’s representation, the Adaptive Confidence
Mechanism (ACM) is adopted to dynamically decide which pixels need to use finer-grained
features. This mechanism ensures the performance and robustness of the framework.

» Extensive experiments and analysis demonstrate the advantage of AF,. It has significantly
improved the accuracy on three typical aerial benchmarks. At the same time, its convergence
speed and inference speed are also the fastest.

It is worth noting that AFs is a general framework, focusing particularly on efficient representation
utilization, which can be leveraged to benefit any other semantic segmentation task.

2 RELATED WORKS

2.1 GENERAL SEMANTIC SEGMENTATION

Fully-convolutional networks (FCNs [Long et al.| (2015)) are the earliest method of using deep
learning to model semantic segmentation problem. The backbone models (He et al.| | 2016;|Simonyan
& Zisserman) 20145 Sun et al.| 20195 Szegedy et al.l[2017; 2016} Xie et al.,|2017) are used to generate
a lower resolution output than the input image and use bilinear up-sampling to recover the original
image resolution. Employing the dilated convolution (Chen et al.,|2017; 2018} Yu & Koltun, 2015) to
replace the down-sampling operation will have a better performance at the expense of more memory
and computation cost. The spatial context information can overcome the limited receptive field
of convolution layer to a certain extent such as Atrous Spatial Pyramid Pooling (ASPP Chen et al.
(2017;2018))), Pyramid Pooling Module (PPM |Zhao et al.[|(2017)) , Densely connected Atrous Spatial
Pyramid Pooling (DenseASPP Yang et al.[(2018)) , Relation-Augmented fully convolutional network
(RA-NetMou et al.| (2019)), etc. PointRend (Kirillov et al.,[2020) performs point-based segmentation
predictions at adaptively selected locations based on an iterative subdivision algorithm. Some other
works (Li et al.l 2020aj [Yuan et al., 2020; Zhang et al., 2020) propose architectures specific for
segmentation boundary that is difficult to predict.

The encoder-decoder architectures (Chen et al., [2018}; Kirillov et al., [2019; [Lin et al.,|[2017a; [Ron]
neberger et al., 2015} [Takikawa et al.l 2019; [Li et al., 2019) progressively upsample the high-level
features and combine them with the features from lower levels, ultimately generating high-resolution
features. For instance, Deeplab v3+ (Chen et al., [2018) combines dilated convolutions with an
encoder-decoder structure to produce the output on a grid 4x sparser than the input. SemanticFPN
(Kirillov et al.| | 2019) merges the information from all levels of the Feature Pyramid Network (FPN)
pyramid into a single output and produces a dense prediction.

2.2 SEMANTIC SEGMENTATION FOR AERIAL IMAGERY

In recent years, employing deep learning to accelerate the understanding of aerial image has received
widespread attention (Kaiser et al.| 2017} |[Kussul et al.,|2017; Marcos et al.,|2018; Marmanis et al.,
2018} [Scott et al., [2017)), and benefits a lot of applications such as agriculture vision (Arakeri et al.,
2016} [Kamilaris & Prenafeta-Boldul, 2018}, |[Patricio & Rieder, [2018)), road extraction (Bastani et al.|
2018} Ji et al.;2018), land cover mapping (Li et al.l 2016; Malkin et al., 2018} Robinson et al.,[2019),
forest monitor (Jiao et al.L|2019;|Yuan et al.| |2015)), etc. They often design delicate structures to ensure
that general semantic segmentation migrates well for specific application scenarios. For instance,
Relation Augmented network (RA-NetMou et al.|(2019)) proposes a spatial relation module and a
channel relation module to explicitly model global relations. Foreground-Aware Relation Network
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Figure 3: Adaptive Focus Framework. C; and Fj represent different hierarchy feature maps. V; means
the pixel set fed into level [ and we show them in gray. The adaptive confidence mechanism (ACM)
is employed to judge whether the prediction for each pixel is sufficiently confident or not in each
level, and v'is the sign of confidence. The detail of the red dashed box is shown in Fig.

(FarSeg Zheng et al.| (2020)) enhances the discrimination of foreground features and proposes a
balanced optimization based on focal loss (Lin et al.,|2017b)). PointFlow (Li et al.,|2021) designs a
dual point matcher to select points from the salient area and object boundaries.

3 METHOD

In this section, we discuss details of the proposed AF,. As shown in Fig. 3] AF; consists of three
main parts: hierarchical features extractor, predictor, and adaptive confidence mechanism (ACM).
The pseudo-code of Adaptive Focus Framework is shown in appendix.

* Hierarchical features extractor: Given an input image, this is used to extract the hier-
archical feature maps of the image. The higher the level of feature map, the coarser the
granularity of feature map and the larger the receptive field.

* Preliminary predictor: For each level of the feature map, there is a preliminary predictor to
output the categories of the pixels that still cannot be confidently predicted with higher-level
feature maps.

* Adaptive confidence mechanism for prediction selection: The adaptive confidence mech-
anism (ACM) is employed to judge whether the prediction for each pixel is sufficiently
confident or not in each level. The predictions with high enough confidence will be accepted
for the corresponding pixels. Otherwise, the pixels will be passed down to the next hierarchy
for further prediction with finer-grained features, until there is no pixels for prediction or the
lowest level is reached.

3.1 HIERARCHICAL FEATURES EXTRACTOR

Hierarchical feature extractor is the fundamental part of the AFs. It prepares different levels of feature
maps for further pixel-level classification. The higher the level of feature map, the larger the receptive
field. Since AF; is independent of the particular structure of the network, any mainstream feature
extraction network can be adopted as long as it is capable of extracting a hierarchy of feature maps.

The typical model structures, such as Fully-Convolutional Network (FCN|Long et al.| (2015)), Feature
Pyramid Networks (FPN |Lin et al.| (2017a)) , Semantic FPN [Kirillov et al.| (2019), etc., can be
employed here. In this section, we take FPN (Lin et al., 2017a) with Atrous Spatial Pyramid
Pooling module (ASPP) (Chen et al.||2017) as an example. Specifically, ResNet (He et al.| 2016)
is chosen as the backbone network for basic feature extractign. VyVe denote the different level of
feature maps generated by ResNet as C = {C’l|Cl € Rdlx?lx?l, I € [Liin, Lmax]}, where H
and W represent the image’s original height and width. [ is the level of feature map, while L,
and L.,.x are the lowest and highest levels (e.g. if the output stride of ResNet is 25, its Liax



Under review as a conference paper at ICLR 2022

(T T T TTTTTT oo TTTT T oo T T T ~
I . Confidence distribution :
| v j
: il 2=label? e > f_J | |
1 . ( i:j ) . ? 0 ‘jl_ - 1
! l argmax | Update 1
| : ‘

| Threlhold :
I . | max A I
I 1 Predictor-1 > > Oy .
I Puij cfrij lx I
| Vi_g |
N e e e e e e e e e e e e e e e e e e e e e e o e e e e e e e e = e o = 7/

Figure 4: The process of Adaptive Confidence Mechanism. Firstly, the corresponding feature map of
pixels in V; are fed into predictor [ to get predicted probabilities. Then, the threshold is employed
to judge whether the pixel should go down the hierarchy to get lower-grained features or output the
prediction. Meanwhile, the threshold is periodically updated according to the confidence distribution
of correctly predicted pixels. Note that the threshold will be fixed without update during the inference.

is 5. The lowest feature map’s output stride is always 22, and its L,y;, is 2.). Furthermore, let
F =1F |Fl e R4 XGrXGr o1 € [Lininy Limax] }, which stands for the the feature map set from the
decoder part. Fj is defined as

F = f(ASPP(CZ),CZ | 9l)7 l= Lmax (1)
P=Y f(ura(Fi41),Cr | 6;), otherwise.

where f(-,- | 6;) represents the top-down feature fusion function. ASPP represents Atrous Spatial
Pyramid Pooling Module (Chen et al.l 2017). UPs represents the bilinear up-sampling function with
a scale factor 2.

3.2 PRELIMINARY PREDICTOR

Multiple pixel-level preliminary predictors are assigned for the different feature maps, and the goal
of the predictor is to output the category of the pixels that cannot be confidently predicted with

higher-level features. Specifically, the feature map F; is fed into its corresponding predictor for level [
H %%
to obtain the prediction results. Since the results belong to R™* 2 * 2 (n is the category number), the

bilinear up-sampling method is employed to generate a prediction with the same size as the original
image. The whole process can be formulated a:

P, = SOFTMAX (Upy: (g (F1 | 61))), (2)

where g(- | 6;) is the prediction function based on multi-layer perceptron (MLP), and UPy: is the
bilinear up-sampling method with a scale factor 2!.

In fact, only a part of the prediction results will be selected from P;. Specifically, we denote p; ; ; as
the prediction results vector in P, for pixel (7, j) € V;, where V] is the pixel set in the original image
that still cannot be confidently predicted in higher levels like Eq. equation[d Only these selected
prediction results, i.e. {p;;; | (¢,7) € Vi}, will be processed by ACM to determine whether they are
adopted as the final results.

3.3 ADAPTIVE CONFIDENCE MECHANISM FOR PREDICTION SELECTION

The purpose of adaptive confidence mechanism (ACM) is to determine which pixels can be identified
and which pixels need to be fed into the lower level for prediction. To achieve the above, the metric
for each pixel is defined and is named as the pixel’s confidence. Then, the filtration function is
adopted based on this metric. The process of ACM is depicted in Fig. 4]

Firstly, the pixel’s confidence is defined to evaluate whether the corresponding prediction result is
reliable enough (i.e. the larger the pixel’s confidence, the more reliable the prediction). For the

!Certainly, P, = SOFTMAX (f (UPy: (F}) | 6)) is another option which performs up-sampling first.
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pixel (4, j) € Vi, the prediction result p; ; ; is an n-dimensional vector to indicate the probabilities
belonging to the n categories. We define the highest value among these probabilities as its conﬁdenceﬂ
thatis cfy; ; = max (pii ;) , (4,7) € Vi.

Secondly, we filter out some of the pixels to be fed into the lower level according to their confidence. A
straightforward way is to select the pixels with the top k-lowest confidence in each image. However,
since the variance among different images, especially for aerial images, is very large, the top-k
approach cannot efficiently handle such complicated situation. For instance, pixels in complicated
images usually have low confidence, while pixels in simple images have relatively higher confidence.
Therefore, we choose to use a uniform threshold for all images. Since the accuracy of prediction is
improved during training, the threshold should also be learnable and adaptively updated with model
training. More concretely, the statistical information of the confidence for correctly predicted pixels
in each level is employed to help update the threshold adaptively. That is

TltH =~ -7/ + (1 — ) - QUANTILE, {cfiij; | (i,7) € Vi Nargmax(py; ;) = label; j}, (3)

where 7/ is the threshold in step ¢ for level I, 7 is soft update factor, and QUANTILE,. represents the
r-quantile method. It should be noted that the threshold is fixed without update in inference.

Thus, compared with threshold 7;, the pixels with a lower confidence will be fed into the level [ — 1
like Eq. equation 4] except for the lowest level. Meanwhile, the categories of the rest pixels will be
determined based on the prediction results of this layer like Eq. equation 5] In the lowest level Ly,
we set 77, = 0 so that all the pixels V,_, will be determined.

W—l = {(7".]) | (Zaj) € ‘/l A cfl,i,j < Tlt}vl # Lminv (4)
Oy = {(i,j,argmax(py s ;)) | (1,5) € ViAefriy; > Tlt}» &)
where O, is the confident prediction in each level.

Since there are a number of pixels whose categories could be determined in each level, i.e., O; for

Lmax

Imin <1 < lhax, the final prediction results is a union of all these pixels O = Ulz T 0.

3.4 OPTIMIZATION

The optimization objective function is based on cross-entropy loss. Due to the hierarchical prediction
procedure adopted in AFs, the overall loss is accumulated at each level of the hierarchical predictions.
Since pixels in V; are fed into predictor in level [, the total loss function can be formulated as follow:

1
J= > Wil > CROSS-ENTROPY (py; ;, label; ;) | . (6)
1€ Lmin Lunax] \| ! (1)EV:

4 EXPERIMENTS

To evaluate the proposed method, we carry out comprehensive experiments on three aerial imagery
datasets: iSAID, Vaihingen and Potsdam. We first introduce these datasets. Then, we show the
experimental results on those four datasets. After that, we conduct further analysis to examine the
importance of each components of AF,. The implementation details are shown in appendix.

4.1 DATASETS

iSAID. iSAID (Wagas Zamir et al.| 2019} Xia et al.| | 2018)) is the largest dataset for instance segmenta-
tion in the HSR remote sensing imagery. It contains 2,806 high-resolution aerial images with 655,451
instance annotations from 15 categories. iSAID is distinguished from other semantic segmentation
datasets for its significant imbalance between the annotated instances and background as well as
its scale variation even for the instances from the same category. In our experiments, we follow its
default dataset split where 1,411 images are used for training, 458 for validation, and 937 for testing.
The original images can be as large as 4000x 13000 pixels. Following previous work (Zheng et al.,

The probability distribution entropy, the difference value between the first and second largest probability
value, etc. are other optional choices for pixel’s confidence.
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Table 1: Experiments on 3 aerial imagery datasets. For iSAID wval set, we show the mloU score
and the category with a significant improvement, such as: baseball court (BC), large vehicle (LV),
helicopter (HC), swimming pool (SP) and roundabout (RA). All the experiments use ResNet-50 with
weights pretrained on ImageNet as backbone for fair comparison except HRNet (Sun et al., 2019).

iSAID (%) Vaihingen (%) | Potsdam (%)
mloU BC LV HC SP RA [mloU m-F; | mloU m-F;
FCN (Long et al.[2015) - - - - - - 642 759 | 73.1 83.1
PSPNet (Zhao et al.|2017) 60.3 61.1 58.0 109 46.8 68.6| 65.1 76.8 | 739 839
Ocnet (Yuan et al.|2018) - - - - - - 65.7 774 | 742 84.1
DenseASPP (Yang et al.|[2018) 573 548 55.6 334 375 534| 647 764 | 739 839
Deeplabv3+ (Chen et al.|[2018) 61.5 56.6 60.3 345 414 651| 643 76.0 | 741 839
SemanticFPN (Kirillov et al.{2019) | 62.1 54.1 61.0 37.4 428 702| 663 77.6 | 743 84.0
RefineNet (Cheng et al.|[2020) 60.2 61.1 58.2 23.0 434 65.6 - - - -
UPerNet (Xiao et al.|[2018) 63.8 553 61.3 303 457 68.7| 66.9 787 | 743 84.0

Method

HRNet (Sun et al.[[2019) 61.5 594 62.1 149 442 529| 669 782 | 734 834
GSCNN (Takikawa et al.;[2019) 634 56.1 63.8 33.8 48.8 585| 67.7 795 | 734 84.1
SFNet (Li et al.||2020b) 643 588 629 304 478 69.8| 67.6 78.6 | 743 84.0
RANet (Mou et al.|2019) 62.1 532 60.1 38.1 41.8 70.5| 66.1 782 | 73.8 839
PointRend (Kirillov et al.|[2020) | 62.8 554 62.3 29.8 450 66.0| 659 78.1 | 72.0 827
FarSeg (Zheng et al.![2020) 63.7 62.1 60.6 358 512 71.4| 657 780 | 73.4 833
PointFlow (L1 et al.|[2021) 669 622 64.6 379 50.1 71.7| 704 819 | 754 84.8
AF,-AFPN 67.8 66.2 67.3 389 53.1 77.0| 70.5 821 | 749 844

2020; |Li et al., 2021)), these images are cropped into patches with a fixed size of 896x 896 with a
sliding window striding 512 pixels, and these models are trained with 16 epochs on cropped images
for all experiments. We employ the mean intersection over union (mloU) as evaluation metric.

Vaihingen and Potsdam. Vaihingen includes 33 aerial images with 2494 x2064 pixels. Potsdam
includes 38 aerial images with 6000 x 6000 pixels. 6 categories are defined for both of them. Following
the previous work (Li et al.| 2021)), images are cropped into patches with fixed sizes of 768 x768 and
896 x 896, respectively. These models are trained with 200 epochs for all experiments. We use mloU
and mean-F; metrics to evaluate the proposed method.

4.2 RESULT COMPARISON

In this section, we conduct detailed experiments on iSAID, Vaihingen and Potsdam datasets to
compare the final prediction performance and the inference efficiency of AFs; with several mainstream
methods. The base model for hierarchical feature extractor adopted is a combination of FPN (Lin
et al., [2017a) and ASPP (Chen et al., 2018), abbreviated as AFPN for convenience. Our whole
implementation is denoted as AF5-AFPN.

Result Comparison on iSAID. As shown in Table. |I} AF2-AFPN achieves the state-of-the-art result
among all previous works with r = 0.32 in ACM. The results also show a significant improvement
among some categories, which demonstrates again that AF, can identify the tiny instance with high
accuracy. Meanwhile, compared with previous methods, It shows that AF>-AFPN has exceeded most
mainstream models in terms of running efficiency. More details can be found in the appendix.

It is worth noting that the architecture re-design methods, such as FarSeg (Zheng et al.| 2020)
and the best model before PointFlow (Li et al., 2021)), can be easily integrated with our model to
further improve the performance. However, tweaking the architecture is not the focus of this work.
Meanwhile, the source code of some models, e.g. PointFlow, is not available yet. As one piece of
future work, we will verify the effectiveness of the combination of AFs and other more advanced
architectures.

Result Comparison on Vaihingen and Potsdam. To further verify the performance of our frame-
work, we also conduct experiments on two well-known aerial imagery datasets, i.e. Vaihingen and
Potsdam. Compared with iSAID dataset, the categories are relatively balanced in terms of instance
shape and category ratio in these two datasets. The quantitative results listed in Table [T]show that
AF, outperforms all methods except PointFlow. More details can be found in the appendix.
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Figure 5: Image prediction process show case on iSAID validation set with » = 0.32. Different color
means different category. Black means the background. Specifically, white means that the pixel has
not been predicted or has been predicted in higher level.

4.3 SENSITIVITY ANALYSIS

In this section, we conduct thorough analysis over iSAID to study the importance of each modules
of AF,. To better demonstrate the analysis results, we first present the process of image prediction
over some examples from the validation set of iSAID in Figure[5} In this figure, columns 3 to 5
indicate the accepted prediction results at level 4 to 2, respectively, while the last column is the
stacked final results. As we can see, at higher levels, it is more often the inner areas of the background
or foreground that are predicted successfully. Lower level finer-grained features are primarily used to
improve the prediction results of the edges. This hierarchical prediction method is independent to the
proportion of foreground and background and thus can effectively solve the problems existed in the
previous method.

Study on the Effect of the ACM. ACM, as a core part of AF,, is designed to filter out the low
confidence pixels. In ACM, the quantile ratio is a key factor to control the filtration threshold.
To study its influence, we set different values of » in ACM. As shown in Table [2] the models
integrated with AF, achieve significant improvement over the basic AFPN model. In addition, the
experimental results show that the setting of ’s value has a great influence on the results. Particularly,
either too large or too small r will skew the model toward finer- or coarser- grained representations.
Experimental results show that 0.3 is a compromise value on the iSAID dataset, which can greatly
improves the prediction accuracy over the baseline method. It is worth noting that, in the case of
r = 0.9, where most pixels (96.0%) are segmented in level-2, the mIoU value has been improved by
2.1%. This result indicates that the loss function for coarse-grained features is beneficial.

Study on the Effect of Employed Levels. In this experiment, we study the influence on perfor-
mance when employing feature maps from only a subset of levels in AF5. By default, feature maps
from level-2, level-3, and level-4 are employed in the framework to produce the final result. However,
as shown in Tabld3] when using only two levels’ feature maps, the segmentation mIoU dropped from
67.4 to 66.8 even in the best case. Note that only employing feature maps from level-2 and level-4
is equivalent to FPN and FCN respectively. Experimental results demonstrate that the multi-scale
feature maps utilization is crucial.
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Table 2: Study of ACM. The prediction ratio means how many pixels have completed prediction at
this level (i.e. %). The foreground ratio means foreground pixels proportion of the current pixel

[[{labels j is fg. | (M)EVL}H)

sets (i.e.

vl
Prediction Ratio (%) Foreground Ratio (%)

Method " level4 level3  level-2 1eve1-4g level-3 level-z  ™IoU (%)

AFPN . - . 100 - n 33 633
AF.-AFPN 0.9 22 1.8 96.0 33 35 36 65.4
AF,-AFPN 0.7 9.7 163 740 33 38 43 65.8
AF,-AFPN 05 327 412 260 33 4.7 8.8 66.4
AF,-AFPN 03 737 20.0 6.3 33 8.8 27.6 67.4
AF.-AFPN 0.1 914 7.0 1.6 33 27 413 64.7

Hierarchical Features Extractor with Different Neural Architectures. In this experiment, we
aim to evaluate the extendibility and flexibility of the proposed AF; in terms of feature extraction.
Specifically, we select 3 typical architectures: FCN (Long et al.;[2015)), SemanticFPN (Kirillov et al.|
2019), FPN+ASPP (Chen et al., 2017} Lin et al., 2017a) as the hierarchical features extractor, which
are named as FCN, SFPN and AFPN for convenience. For FCN, we combine the feature of each level
with all of its higher level feature maps to introduce richer semantic information into lower levels. As
shown in Table[d} we find that the different architectures have different degrees of score improvement
with the assistance of AF,. AF5 narrows the gap among different architectures. Even for the the FCN
architecture, which only has a bottom-up feature generation, AF5 can achieve about 8.4 improvement
on mloU score. This result further illustrates the extendibility and superiority of AF,.

Table 3: Study of Employed Levels. Table 4: Study of Hierarchical Features Extractor.

Method Level-4 Level-3 Level-2 mloU Method _mloU

AF2-AFPN v 57.9 —FN 579
AF,-AFPN v 60.7 o
SFPN  62.1
AF,-AFPN v 63l AFPN 633
AFp-AFPN v v 66.0 A FCN €63
AF,-FCN 663

AF,-AFPN v v 667
AF,-SFPN  66.8
AFy-AFPN v v 068 AF,-AFPN 67.4
AR-AFPN v v v 614 _ =

Results on general segmentation benchmark We further verify our approach on general segmenta-
tion dataset Cityscapes. As show in Table[3] the experiment shows that our method has about 2%
mloU improvement. The training, validation, testing data is 2975, 500, and 1525 respectively. We
only use the fine-data for training. During training, data augmentation contains random horizontal
flip, random cropping with the size 768 x768. We train a totally 50k iterations with a minibatch 16.
We use ResNet-50 with weights pretrained on ImageNet.

Table 5: Experiment on Cityscapes validation.

Methods mloU road SW BD wall fence pole TL TS VG terrain sky person rider car truck bus train MT bicycle
SFPN  0.76 0.98 0.85 0.92 0.52 0.61 0.63 0.69 0.78 0.92 0.64 0.95 0.82 0.63 0.95 0.71 0.82 0.58 0.68 0.77
AF2-SFPN 0.78 0.98 0.86 0.93 0.57 0.62 0.66 0.71 0.80 0.93 0.65 0.95 0.83 0.66 0.95 0.76 0.84 0.70 0.67 0.78

SW, BD, TL, TS, VG, MT represents sidewalk, building, traffic light, traffic sign, vegetation, and motorcycle, respectively.

5 CONCLUSION

In this paper, we argue that the lack of efficient utilization of multi-scale representations could be
a bottleneck for accurate semantic segmentation on HSR aerial imagery, which is characterized by
the huge scale variation of objects and the imbalance between foreground and background. We
present AF,, i.e. Adaptive Focus Framework, to alleviate this critical but long-standing concern.
AF, is independent of the specific architecture and is capable of adaptively utilizing multi-scale
feature representations and producing the final result through the proposed Adaptive Confidence
Mechanism. Extensive experiments and analyses have demonstrated its remarkable advantages
in boosting segmentation accuracy and have proved its universality on common architectures and
datasets.
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A APPENDIX

A.1 PSEUDO-CODE OF ADAPTIVE FOCUS FRAMEWORK

Pseudo-code is shown in Alg. which summarizes and describes how various stages work in
training or testing mode.

Algorithm 1 Pseudo-code of Adaptive Focus Framework

Input: Image: X € R>HXW
Output: Image segmentatlon
Initialize: Vi, = {(i,j) | i € [1,H],j € [1, W]}

max

1:

2: Mode: train or test

3: Feature map from FPN: {FZ|FZ € Rd’XFX?,Z € [Lmin, Lmax] }

4: Preliminary predictor result: P, = Softmax (Upay (g (Fy | 6;)))

5: forl € {Lmazs Lmaz—1, s Limin } do:

6: for each (i,7) € V; do:

7: select pixel (i,j) ’s preliminary prediction from Pp: py; ; = Py (i 5)
8: calculate the confidence value: cf; ; = max (p1;;), (i,j) € Vi
9: ifcfi;; > mand !l # Ly, then:
10 put (¢, j, arg max(p; ; ;)) into O;
11: else
12: put (4, 7) into V;_4
13: end if
14: if mode is train then:
15: Adaptively update the threshold:7;
16: end if
17: end for
18: end for

19: Final prediction is: O = Ul 2 O

20: if mode is train then:

21:  optimize objective function: J = 37, 1y 32 ; jyev; CrossEntropy(pu,;, label; ;)
22: end if

A.2 IMPLEMENTATION DETAILS

Following (Chen et al.| (2018)); [Li et al.| (2021); Mou et al.|(2019); Zheng et al.| (2020), we use
ResNet-50 with weights pretrained on ImageNet in all the experiments for fair comparison except
for HRNet (Sun et al.l 2019). The output stride of the backbone is adjusted to 16 by setting the
convolution stride of the last layer to 1 and employing dilated convolution following DeepLab
v3+(Chen et al [2018)). The feature maps from the backbone, i.e. Cs, C3, C4, are the outputs of
the conv2_z, conv3_x, and convb_x of the ResNet-50 respectively. All the confidence thresholds
are initialized to be 0.5. In the threshold update, we set the soft intensity v to 0.9 and r to 0.3
for QUANTILE,.. The learning rate decreases from 0.01 to 0.0001 following the poly policy, i.e.

Irstep = ITinit(1 — %)pow”, where power is 0.9. We employ synchronized SGD over 4
GPUs with each mini-batch containing 16 cropped patches, weight decay of 0.0001 and momentum
of 0.9. The synchronized batch normalization is enabled for cross-GPU communication. Following
Li et al.[(2021); Mou et al.|(2019); [Zheng et al.[(2020), for iSAID, we adopt data augmentation during
the training, which includes horizontal flip, vertical flip, and rotations of 90, 180, and 270 degrees.
Note that, for each experimental setting, we run the experiment 5 times and report the average score

to remove the influence of randomness.

A.3 RESULTS ON ISAID DATASET

We show the detailed results on iSAID Dataset in Tab. [6] and AF5 achieves state-of-the-art for most
categories.
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Table 6: Experimental results on iSAID val set. The bold values in each column represent the
best entries. The category are defined as: ship (Ship), storage tank (ST), baseball diamond (BD),
tennis court (TC),baseball court (BC), ground field track (GTF), bridge (Bridge), large vehicle (LV),
small vehicle (SV), helicopter (HC), swimming pool (SP), roundabout (RA), soccerball field (SBF),
plane (Plane), harbor (Harbor). All the models are trained under the same setting following the
FarSeg(Zheng et al.,|2020) and PointFlow (Li et al., [2021]).

IoU per category(%)
Ship ST BD TC BC GTF Bridge LV SV HC SP RA SBF Plane Harbor
PSPNet (Zhao et al.|[2017} ResNet50 | 603 [65.2 52.1 75.7 85.6 61.1 60.2 32.5 58.0 43.0 10.9 46.8 68.6 71.9 79.5 54.3
DenseASPP (Yang et al.|[2018) | RenNet50 | 57.3 |55.7 63.5 67.2 81.7 54.8 52.6 34.7 55.6 36.3 33.4 37.5 53.4 733 747 46.7
Deeplabv3+ (Chen et al.]2018) | ResNet50 | 61.5 [63.2 67.8 69.9 85.3 56.6 52.9 34.2 60.3 43.2 34.5 41.4 65.1 73.8 81.0 52.3
SemanticFPN (Kirillov et al.[2019)| ResNet50 | 62.1 |68.9 62.0 72.1 85.4 54.1 48.9 449 61.0 48.6 37.4 42.8 70.2 61.6 81.7 549
RefineNet (Cheng et al.|[2020) ResNet50 60.2 [63.8 58.6 72.3 85.3 61.1 52.8 32.6 58.2 424 23.043.4 65.6 744 799 51.1

Method backbone |mloU(%)

UPerNet (Xiao et al.[[2018) ResNet50 63.8 |68.7 71.0 73.1 85.5 553 57.3 43.0 61.3 45.6 30.3 45.7 68.7 75.1 843 56.2
HRNet (Sun et al.||[2019) HRNetW18| 61.5 [65.9 68.9 74.0 86.9 59.4 61.5 33.8 62.1 46.9 14.9 442 529 75.6 81.7 52.2
GSCNN (Takikawa et al.[[2019) | ResNet50 634 1659 71.2 72.6 85.5 56.1 58.4 40.7 63.8 51.1 33.8 48.8 58.5 72.5 83.6 54.4
SFENet (Li et al.[[2020b) ResNet50 64.3 |68.8 71.3 72.1 85.6 58.8 60.9 43.1 629 47.7 30.4 47.8 69.8 75.1 83.1 57.3
RANet (Mou et al.|[2019) ResNet50 62.1 |67.1 61.3 72.5 85.1 53.2 47.1 453 60.1 49.3 38.1 41.8 70.5 58.8 83.1 55.6
PointRend (Kirillov et al.|2020) | ResNet50 62.8 644 69.9 73.7 82.9 554 61.1 38.5 62.3 48.1 29.8 45.0 66.0 72.7 80.7 54.0
FarSeg (Zheng et al.||2020) ResNet50 63.7 |65.4 61.8 77.7 86.4 62.1 56.7 36.7 60.6 46.3 35.8 51.2 71.4 72.5 82.0 53.9
PointFlow (Li et al.||2021) ResNet50 66.9 |70.3 74.7 77.8 87.7 62.2 59.5 452 64.6 50.2 379 50.1 71.7 754 85.0 59.3
AF,-AFPN ResNet50 67.8 |69.5 73.7 80.9 89.9 66.2 56.5 41.1 67.3 52.0 38.9 53.1 77.9 744 84.5 59.6

Efficiency Comparison: we compare the model size and inference speed on validation set in Figure[6]
It shows that AF5-AFPN has exceeded most mainstream models in terms of running efficiency.

mloU (%) 75
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Figure 6: Speed (FPS) versus accuracy (mloU) on iSAID wal set.

A.4 RESULTS ON VAIHINGEN DATASET

Vaihingen contains 33 images (of different sizes) and 6 categories have been defined. Following
previous work (Li et al., 2021)), we adopt large patches as the iSAID dataset. We utilize 16 images for
training and the rest 17 images for testing. For training set, the image IDs are 1, 3, 5, 7, 11, 13, 15,
17,21, 23, 26, 28, 30, 32, 34, 37. For validation set, the images IDs are 2, 4, 6, 8, 10, 12, 14, 16, 20,
22,24, 27,29, 31, 33, 35, 38. We crop the images into 768 x 768 with a sliding window striding 512
pixels, and all the experiments are trained with 200 epochs. Like previous work, we use the mIoU
and m-F} (i.e. the harmonic mean of precision and recall) as the main metric.

The detailed results on Vaihingen Dataset are shown in Tab. [/] The process of prediction is shown in
Fig. [/l In Vaihingen dataset, the imbalance between foreground and background is relatively slight.
Among all categories, only the cars are tiny, while the background is complex. Our framework also
has a big improvement in these categories, which demonstrates the flexibility of AF,.

A.5 RESULTS ON POTSDAM DATASET

Potsdam contains 38 images (of different sizes) and 6 categories have been defined. Following (L1
et al.|[2021)), we utilize 24 images for training, and the image IDs are 2_10,2_11,2_12,3_10, 3_11,
3.12,4.10,4_11,4_12,5_10,5_11,5_12,6_7,6_8,6_9,6_10,6_11,6_12,7_7,7_8,7_9,7_10,
7_11,7_12. We utilize the another 14 images for test, and the image IDs are 2_13,2_14, 3_13, 3_14,
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Table 7: Experimental results on the Vaihingen Dataset. The results are reported with single scale
input. The bold values in each column represent the best entries. The category are defined as:
impervious surfaces (Imp.surf.), buildings (Build), low vegetation (Low veg), trees (Tree), cars
(Car), cluster/background (Cluster). All the models are trained under the same setting following the

PointFlow 1, 2021)).

Fy per category

Method mIoU(%) | mean-Fy Imp.surf. Build. Low veg. Tree Car Cluster

FCN (Long et al.[[2015 64.2 75.9 87.6 91.6 77.8  84.6 735 403
PSPNet (Zhao et al.[|2017 65.1 76.8 88.4 92.8 792 859 735 41.0
OCNet(ASP-OC) (Yuan et al.]|2018] 65.7 774 88.8 92.9 792  85.8 739 438
Denseaspp (Yang et al.[2018 64.7 76.4 87.3 91.1 762 834 77.1 433

64.3 76.0 887 928 789 856 724 376
66.3 71.6 80.6 936 797 863 757 40.7
66.9 78.7 892 930 794 86.0 749 49.7
66.9 78.2 892 92,6 787 857 77.1 459
67.7 79.5 89.4 926 788 854 779 529
67.6 78.6 90.0 940 803 865 789 419
66.1 78.2 880 923  79.1 86.0 788 53.1
65.9 78.1 882 924 789 845 735 5l.1
FarSeg (Zheng et al.] 65.7 78.0 880 920 782 852 733 515
PointFlow (Li et al. 70.4 81.9 90.1 936 777 854 80.0 64.6

AF,-AFPN 70.5 82.1 80.6 934 798 862 798 63.5

Deeplabv3+ (Chen et al..

HRNet-W18 (Sun et al.|

RANet 2019
PointRend (Kirillov et al.| 20

Final Prediction

(Stacked)
N

Figure 7: Image Prediction Process Show Case on Vaihingen val set.
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Table 8: Experimental results on the Potsdam Dataset. The results are reported with single scale
input. The bold values in each column represent the best entries. The category are defined as:
impervious surfaces (Imp.surf.), buildings (Build), low vegetation (Low veg), trees (Tree), cars
(Car), cluster/background (Cluster). All the models are trained under the same setting following the

PointFlow 2021)).

. F per category

Method mloU(%) | mean-F} Imp.surf. Build. Low veg. Tree Car Cluster
73.1 83.1 90.2 94.7 84.1 856 89.2 548
73.9 83.9 90.8 95.4 845 86.1 88.6 58.0
74.2 84.1 90.9 95.5 84.8 86.0 89.2 582
73.9 83.9 90.8 95.4 84.6 86.0 88.5 58.1
74.1 83.9 91.0 95.6 84.6  86.0 90.0 56.2
74.3 84.0 91.0 95.5 849 859 904 563

Xiao et al.[2018] 74.3 84.0 90.9 957 850 86.0 90.2 56.2

‘ 73.4 83.4 90.4 94.9 842 854 90.0 555
GSCNN (Takikawa et al.[[2019 73.4 84.1 91.4 95.5 848 858 91.2 559
SFNet ( 74.3 84.0 91.0 95.5 85.1 86.0 90.9 555
RANet ( 73.8 83.9 90.8 92.1 843 86.8 889 56.0
PointRend ( 72.0 82.7 89.8 94.6 82.8 852 852 586
73.4 83.3 90.7 95.2 843 853 90.2 54.1
75.4 84.8 91.5 95.9 854 863 91.1 58.6
AF,-AFPN 74.9 84.4 91.1 95.7 85.0 862 91.5 57.0
Ground Truth Level-3 Level-2 Final Prediction
(Stacked)
=S 5

e ¢

D
g

Figure 8: Image Prediction Process Show Case on Potsdam val set.

4 13,4_14,4_15,5_13,5_14,5_15,6_13, 6_14, 6_15, 7_13. We crop the images into 896x 896
with a sliding window striding 512 pixels, and all the experiments are trained with 80 epochs. Like

previous work, we use the mloU and m-F} as the main metric.

We show detailed results in Tab. [§]and the process of prediction in Fig. [§]for Potsdam dataset.
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