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Figure 1: Illustration of our proposed Modality-Inconsistent Continual Learning (MICL), a novel and
practical continual learning scenario of Multimodal Large Language Models (MLLMs), where tasks involve
inconsistent modalities (image, video, or audio) and varying task types (captioning or question-answering).

Abstract

In this paper, we introduce Modality-Inconsistent Continual Learning (MICL), a new contin-
ual learning scenario for Multimodal Large Language Models (MLLMs) that involves tasks
with inconsistent modalities (image, audio, or video) and varying task types (captioning
or question-answering). Unlike existing vision-only or modality-incremental settings, MICL
combines modality and task type shifts, both of which drive catastrophic forgetting. To
address these challenges, we propose MoInCL, which employs a Pseudo Targets Generation
Module to mitigate forgetting caused by task type shifts in previously seen modalities. It
also incorporates Instruction-based Knowledge Distillation to preserve the model’s ability
to handle previously learned modalities when new ones are introduced. We benchmark
MICL using a total of six tasks and conduct experiments to validate the effectiveness of our
MoInCL. The experimental results highlight the superiority of MoInCL, showing significant
improvements over representative and state-of-the-art continual learning baselines.

1 Introduction

Multimodal Large Language Models (MLLMs), leveraging the generative capabilities of LLMs, have demon-
strated remarkable performance across diverse modality-specific tasks (Li et al., 2022b; 2023; Zhang et al.,
2023b; Liu et al., 2023; Panagopoulou et al., 2023; Liu et al., 2024). MLLMs typically consist of a pre-trained
modality encoder, like CLIP (Radford et al., 2021) for visual data, a pre-trained LLM, and a modality adapter
that projects modality-specific features into the language token space. During training, the modality en-
coder is usually frozen to preserve its pre-trained knowledge, while the adapter and, optionally, the LLM are
fine-tuned to align cross-modal representations and enhance task performance.

While fine-tuned MLLMs have demonstrated promising performance across various multimodal tasks, in-
cluding impressive zero-shot capabilities on unseen instructions (He et al., 2023), adapting to novel tasks
still requires task-specific fine-tuning. Nevertheless, existing studies (He et al., 2023; Zeng et al., 2024; Zheng
et al., 2024) indicate that fine-tuning MLLMs on new tasks can lead to significant performance degradation
on previously learned tasks, a phenomenon known as catastrophic forgetting, which remains the key challenge
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in continual learning. To address this issue, several works explore new approaches to enable continual train-
ing of MLLMs while mitigating the catastrophic forgetting issue. For instance, He et al. (2023) introduce the
continual instruction tuning scenario for multimodal large language models, and propose an adapter-based
method to handle it. Zheng et al. (2024) further explore the negative forward transfer problem in continual
instruction tuning of MLLMs and propose a prompt-based method to mitigate these problems. Cao et al.
(2024) propose a MLLM-based continual learning framework but mainly focusing on class-incremental image
classification. While existing methods have demonstrated their abilities in alleviating the catastrophic prob-
lem in the continual learning scenario of MLLMs, they primarily focus on image modality, ignoring more
general multimodal scenarios beyond image. Recently, Yu et al. (2024) introduced a modality-incremental
setting for MLLMs, but treated each modality as a single, non-incremental task, ignoring the incremental
nature of task types within modalities.

To address these issues, in this paper, we introduce Modality-Inconsistent Continual Learning (MICL),
a novel continual learning scenario for MLLMs. In MICL, different task types, such as captioning and
question-answering (QA), are introduced incrementally across learning steps incorporated with inconsistent
modalities, as illustrated in Fig. 1. Unlike existing incremental learning settings of MLLMs, MICL not
only highlights the modality-inconsistent (modality-incremental) scenario but also emphasizes the potential
catastrophic forgetting problem arising from task type incrementality combined with modality inconsistency.

Moreover, we propose MoInCL (Modality-Inconsistent Continual Learning), a novel continual learning
approach designed to address the MICL problem. By leveraging the generative capabilities of the LLM
backbone, MoInCL introduces a Pseudo Target Generation Module (PTGM) to handle the task type shifts
inherent in the task. Additionally, an Instruction-based Knowledge Distillation (IKD) constraint for LLM
backbone is incorporated to preserve its ability to understand modality- and task-aware knowledge, prevent-
ing the degradation of its learned capabilities.

We evaluate our method across image, audio, and video modalities, combined with captioning and question-
answering (QA) tasks, resulting in six multimodal incremental tasks (Image Captioning, Image QA, Audio
Captioning, Audio QA, Video Captioning, and Video QA). Our experiments demonstrate that MoInCL sig-
nificantly outperforms representative and state-of-the-art continual learning methods, effectively addressing
both modality and task type shifts within MICL. In summary, this paper contributes the following:

• We propose the Modality-Inconsistent Continual Learning, a more general and practical continual
learning scenario of MLLMs, where different modalities are introduced incrementally combined with
different task types.

• We propose a novel continual learning approach named MoInCL to tackle the task. In MoInCL,
a Pseudo Target Generation Module (PTGM) is introduced to address the task type shift problem
of previously learned modalities through incremental steps. Moreover, we propose the Instruction-
based Knowledge Distillation (IKD) constraint to prevent the LLM from the forgetting of learned
both modality- and task-aware knowledge in old tasks.

• We benchmark the proposed MICL across three modalities—image, audio, and video—and two task
types: captioning and question-answering, resulting in six incremental tasks. Experimental results
demonstrate that our approach, MoInCL, significantly outperforms representative and state-of-the-
art continual learning methods, showcasing its effectiveness in mitigating catastrophic forgetting
from both modality and task type perspectives.

2 Related Work

2.1 Multimodal Large Language Models

Recent advances have extended Large Language Models (LLMs) to handle multimodal inputs such as images,
audio, and video. Early work like CLIP (Radford et al., 2021) demonstrated the effectiveness of aligning
textual and visual representations for zero-shot image classification. Flamingo (Alayrac et al., 2022) further
integrated vision encoders with LLMs via cross-attention, significantly improving visual question answering
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(VQA) and image captioning. Subsequent models like BLIP (Li et al., 2022b) and PaLM-E (Driess et al.,
2023) scaled multimodal pre-training, with BLIP using a two-stage training strategy and PaLM-E incor-
porating embodied reasoning. More recently, LLaVA (Liu et al., 2023), InstructBLIP (Dai et al., 2023),
X-InstructBLIP (Panagopoulou et al., 2023), Audio Flamingo (Kong et al., 2024; Ghosh et al., 2025; Goel
et al., 2025), VideoLLaMA (Zhang et al., 2023a; Cheng et al., 2024; Zhang et al., 2025), Qwen-VL (Wang
et al., 2024; Bai et al., 2025b), etc., have leveraged instruction tuning to refine the alignment between mul-
timodal inputs and language, pushing the boundaries of multimodal reasoning and generation. Despite this
progress, challenges persist as models scale to new modalities or tasks. Effectively integrating each modality
without degrading performance on others remains a key issue. Moreover, robust continual learning strategies
are crucial to prevent catastrophic forgetting and maintain knowledge across both previously learned and
newly introduced modalities as new modalities or task types are integrated.

2.2 Continual Learning

Continual learning aims to enable models to learn incrementally while retaining previously acquired knowl-
edge. Regularization-based methods, such as Elastic Weight Consolidation (EWC) (Kirkpatrick et al., 2017),
assign importance to model parameters to prevent drastic updates (Kim et al., 2023). Knowledge distillation
(KD) (Li & Hoiem, 2017; Rebuffi et al., 2017; Pian et al., 2023; Mo et al., 2023; Ahn et al., 2021; Douillard
et al., 2020) and memory replay (Rebuffi et al., 2017; Pian et al., 2024; Chaudhry et al., 2019; Lopez-Paz &
Ranzato, 2017) are other common strategies, where KD-based methods preserve past learned knowledge by
aligning the predictions or internal features of a new model with those of an older one, and memory replay-
based methods utilize a small memory set to store samples from old tasks, allowing the model to review a
small number of old data while training on the current task (Rebuffi et al., 2017; Pian et al., 2024; Chaudhry
et al., 2019; Lopez-Paz & Ranzato, 2017). Pseudo-rehearsal approaches (Odena et al., 2017; Ostapenko
et al., 2019) take this a step further by generating synthetic examples via a generative model, reducing the
need to store large amounts of data.

For MLLMs, where multiple modalities (e.g., images, audio, video) interact with language models, catas-
trophic forgetting is especially severe. Recent adapter-based continual instruction tuning (He et al., 2023) and
prompt-based strategies (Zheng et al., 2024) help retain previously learned knowledge. HiDe-LLaVA (Guo
et al., 2025) proposes a hierarchical decoupling strategy to separate instruction and perception components,
allowing better task adaptation. SEFE (Chen et al., 2025) addresses forgetting by distinguishing between
essential and superficial knowledge in continual instruction tuning. CL-MoE (Huai et al., 2025) introduces
a dual momentum mixture-of-experts framework for continual visual question answering. However, these
approaches mainly target image-text modalities. A modality-incremental scenario (Yu et al., 2024) has
been explored, treating each modality as a separate task. However, it does not fully address evolving task
types within each modality. To tackle this gap, we propose a new Modality-Inconsistent Continual Learning
(MICL) scenario along with a novel approach to handle it effectively.

3 Method

3.1 Problem Formulation

In this subsection, we formalize the definition of our proposed Modality-Inconsistent Continual Learning
(MICL). Given a sequence of T tasks {T1, T2, . . . , TT}, MICL aims to train the Multimodal Large Language
Model (MLLM) FΘ with parameters Θ across these tasks incrementally. For the i-th task Ti, we have
Ti = {(xi,j , ti,j , yi,j)ni

j=1, Mi, Pi}, where Mi and Pi denote the modality and task type of task Ti, respectively.
xi,j , ti,j , and yi,j present the modality’s input data, the input text, and the target text of the j-th data sample
of task Ti. In our setting, the input text ti,j varies depending on the task type. For captioning tasks, it may
consist of a simple instruction, such as “Describe the image/video/audio." For question-answering (QA)
tasks, the input text consists of sample-specific questions tailored to each instance. Moreover, the target text
yi,j typically consists of detailed description sentences for captioning tasks, while for QA tasks, it is usually
limited to a few answer words. Please note that, the output yi,j is always a text sequence, consistent with
the design of LLMs and MLLMs, which generate natural language outputs across diverse tasks. Tasks with

3



Under review as submission to TMLR

🔥 Trainable ❄ Frozen Trainable with LoRA

Modality 
Encoder

❄

Audio / Image / Video

Modality Projection🔥

LLM

Text Input

MLLM
FΘi

Pseudo Targets Generation 
Module (PTGM)

❄
MLLM
FΘi−1

Output

Pseudo 
Input Text

Target Text

Pseudo OutputPseudo 
Target

Old Pseudo 
Output

LCE(·||·)

LCE(·||·)LKL(·||·)

LLM

MLLM
FΘi

Instruc4on Text LKL(·||·)

Pseudo Targets Generation Instruction-based 
Knowledge Distillation

LLM

MLLM
FΘi−1

❄

Instruc4on
Output

Old Instruc4on
Output

Figure 2: Overview of our proposed MoInCL, which mainly consists of a Multimodal Large Language Model
(MLLM), a Pseudo Target Generation Module (PTGM), and a Instruction-based Knowledge Distillation
(IKD). The red fire icon denotes the component is trainable in the current task, and the snowflake icon
denotes the component is frozen during the training of the current task, while the blue fire icon means the
associate component is trainable with LoRA (Hu et al., 2022) when training on the current task.

non-textual outputs (e.g., image or video generation) are beyond the scope of our current formulation, as they
typically require fundamentally different architectures and objectives. We define Di = {(xi,j , ti,j , yi,j)ni

j=1}
as the available training data when training the model FΘ on task Ti. Following the settings in modality-
incremental learning (Yu et al., 2024), we do not include the memory set for replay in our MICL scenario,
resulting in a memory-free continual learning setting. In summary, the training process on an incremental
task Ti can be presented as:

Θi = arg min
Θi−1

E(x,t,y)∼Di
[L(FΘi−1(x, t), y)], (1)

where L denotes the cross-entropy loss function between the generated results and the target text for training
the MLLM.

Please note that, in this work, we focus on two task types (captioning and question-answering) since they
are among the most commonly studied in multimodal and continual learning scenarios (He et al., 2023; Yu
et al., 2024). Following common practice, we adopted these tasks to establish benchmarks for comparison.
Additionally, most of multimodal task types such as audio-visual event localization, vision-language naviga-
tion, etc, can often be reformulated into question-answering tasks, making these two task types a natural
choice in our setting.

3.2 Framework Overview

To address our proposed Modality-Inconsistent Continual Learning (MICL), we introduce a novel continual
learning method, MoInCL, as illustrated in Fig. 2. MoInCL primarily comprises a Pseudo Target Generation
Module (PTGM) and an Instruction-based Knowledge Distillation (IKD) constraint. For the MLLM, we
adopt the commonly used architecture, containing a modality encoder, a projection layer (MLP), and an
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LLM, following the design paradigm used in models such as LLaVA (Liu et al., 2023), Qwen-VL family (Wang
et al., 2024; Bai et al., 2025b;a), etc. However, we do not directly use the pre-trained parameters from these
models, as most are designed to process only the visual modality, and their vision-language pre-training may
introduce biases and unfairness in our continual learning setting. Please note that, for fair comparison, all
the baseline methods use the same model architecture as our method, and during training, the modality
encoders remain frozen, while the LLM is fine-tuned using LoRA (Hu et al., 2022).

3.3 Pseudo Target Generation Module

We now describe the Pseudo Target Generation Module (PTGM). Our key motivation is to leverage the
text generation capability of the LLM component in the MLLM to address the task type shift challenge in
continual learning. PTGM generates input and target text for different task types based on the modality
input data of the current task. By utilizing the generated pseudo input text and pseudo targets, the model
can effectively handle both the current task type and previously learned task types within the current
modality.

In our PTGM, we maintain a set LM = {} to represent all learned modalities. For example, LM =
{“image”, “audio”} indicates that the model has been trained on tasks involving image or audio modalities.
And for learned modalities, we maintain a modality-specific set LTM = {} to denote the learned task types
of modality M . For instance, LTimage = {“captioning”} if only image captioning task has been learned
for image modality. Since different task types have distinct forms, the pseudo target generation process
varies accordingly for each task type. Specifically, for a current task Ti with the modality of Mi, if Mi

is a learned modality, i.e. Mi ∈ LM , the PTGM will be used to generate pseudo targets for task types
within LTMi . If “captioning” ∈ LTMi , the pseudo input text should be a simple instruction guiding the
model to generate a description of the input data. In this case, the pseudo input text generation process can
be implemented by automatically filling the template to produce the result “Describe the Mi”. On the
other hand, if “QA” ∈ LTMi

, directly applying a template is not suitable, as the pseudo QA pair should be
specifically tailored to the modality’s data rather than relying on generic templates. To overcome this issue,
we utilize the generation ability of the LLM to generate the pseudo QA pair from the caption text of the
current modality’s data. Please note that in our MICL scenario, the task types considered are captioning
and question-answering. Therefore, when generating pseudo QA pairs, the current task should correspond to
the captioning task of the current modality. To generate QA pairs from captions, we employ a three-round
generation process by prompting the pre-trained LLM component of the MLLM F . Details of this process
can be found in the Appendix. In summary, we use the following formulation to denote the pseudo target
generation process:

t̃, ỹ = PTGM(x, y, p),
s.t. Mi ∈ LM, Pi /∈ LTMi

,
(2)

where p ∈ LTMi is a learned task type of modality Mi (please note that p ̸= Pi), t̃ and ỹ denote the generated
pseudo input text and pseudo target, respectively. x and y are the modality data and target text sampled
from Di. Please note that only x is used for generating pseudo targets, while only y is utilized for generating
pseudo QA pairs.

After obtaining the pseudo input text and pseudo target, a dual consistency constraint is applied between
(1) the pseudo outputs of the current model FΘi

and the old model FΘi−1 , and (2) the pseudo target and
the pseudo output of the current model. This process is formulated as:

Lp. = E(x,t)∼Di

[
λiLCE(ŷ′||ỹ) + λ′

iLKL(ŷ′||ŷ′
o)

]
,

s.t. ŷ′ = FΘi(x, t̃), ŷ′
o = FΘi−1(x, t̃),

(3)

where ŷ′
o and ŷ′ denote the pseudo output from the old model and current model, respectively. λi and λ′

i

present the weights to balance the two loss values for task Ti.
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3.4 Instruction-based Knowledge Distillation

In the previous subsection, we introduced the proposed PTGM to address the task type shift problem
in the MICL scenario. However, when new modalities are introduced, the model faces a modality shift,
leading to catastrophic forgetting of previously learned modalities. Additionally, as the PTGM generates
pseudo targets only for seen modalities, the task type shift problem persists when training on tasks involving
novel modalities. Furthermore, different modalities do not share the modality encoder or the modality
projection, meaning that the shift problems primarily arise from updates to the LLM component in the
MLLM. This results in the degradation of the LLM’s ability to handle previously learned modalities. To
address these issues, we propose Instruction-based Knowledge Distillation (IKD), a text instruction-based
constraint designed to prevent the LLM from forgetting its learned capabilities in dealing with old modalities.
Specifically, as illustrated in Fig. 2, IKD aligns the outputs of the LLM component from both the old and
current models by applying a consistency loss, i.e. KL divergence, on their responses to the same text
instruction input. In this way, instead of merely learning to handle tasks from new modalities, the current
LLM’s generative ability is also aligned with that of the previous LLM, thereby mitigating degradation in
its ability to handle previously learned modalities. To achieve this, we introduce a pure text instruction
set within IKD, which is maintained throughout the incremental steps. Since this pure text instruction set
contains only text and no modality-specific data, it is not considered part of any multimodal tasks in our
MICL scenario. As a result, maintaining this set does not violate the continual learning constraint that
prohibits access to data from previous tasks during future tasks. This process can be formulated as:

Lins. = Et′∼I

[
LKL(fθi

(t′)||fθi−1(t′))
]
, (4)

where I denotes the pure text instruction set, fθi
and fθi−1 denote the LLM component of the FΘi

and
FΘi−1 , respectively.

Algorithm 1 Training of MoInCL on task Ti

Require: Old model FΘi−1 , training set Di, pure text instruction set I, current modality Mi, current task
type Pi, learned modalities set LM , learned task type for the current modality LTMi (only if Mi ∈ LM),
learning rate η, scalars λi, λ′

i, αi

1: Initialize current model FΘi
from FΘi−1

2: if Mi /∈ LM then
3: {} → LTMi

4: end if
5: while not converged do
6: Sample data (x, t, y) ∼ Di

7: L = LCE(FΘi
(x, t)||y)

8: if Mi ∈ LM and LTMi
̸= ∅ then

9: t̃, ỹ = PTGM(x, y, p), s.t. p ∈ LTMi

10: ŷ′ = FΘi(x, t̃), ŷ′
o = FΘi−1(x, t̃)

11: Lp. = λiLCE(ŷ′||ỹ) + λ′
iLKL(ŷ′||ŷ′

o)
12: L = L+ Lp.

13: end if
14: Sample instruction data t′ ∼ I
15: Lins. = LKL(fθi

(t′)||fθi−1(t′))
16: L = L+ Lins.

17: Θi ← Θi − η∇L
18: θi ← αiθi + (1− αi)θi−1
19: end while
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3.5 Overall Training Target

Above, we present our proposed Pseudo Target Generation Module (PTGM) and Instruction-based Knowl-
edge Distillation (IKD) constraint. When training on a current task Ti, we have the main loss function:

Lmain = E(x,t,y)∼Di

[
LCE(ŷ||y)

]
,

s.t. ŷ = FΘi
(x, t),

(5)

where ŷ is the output of the output of the current model FΘi
by taking data samples from current task’s

training data Di as input.

Finally, in our overall training target, the dual consistency constraint for generated pseudo targets Lpseudo

and the IKD constraint Lins. are combined with the main training loss of task Ti:

L = Lmain + Lp. + Lins. (6)

Additionally, inspired by the parameters/weights fusion mechanism proposed in existing works (Xiao et al.,
2023; Sun et al., 2024), which have demonstrated effectiveness in preserving learned knowledge from previous
tasks by applying a weighted sum between the old and current models’ parameters/weights, we also adopt
the parameters fusion mechanism on the LLM component of the MLLM to further prevent it from forgetting
the capabilities of handling previously learned modalities, which can be denoted as:

θi = αiθi + (1− αi)θi−1, (7)

where θ denotes the parameters of the LLM component of the MLLM, αi is the weight for balancing the
two groups of parameters. The overall algorithm of our proposed MoInCL is presented in Alg. 1.

3.6 Distinction from Existing Methods

Our MoInCL introduces two key innovations: 1) a Pseudo Target Generation Module (PTGM) to leverage
the text generation capability of the LLM component in the MLLM to address the task type shift challenge
in our proposed MICL scenario, and 2) an Instruction-based Knowledge Distillation (IKD) constraint to
tackle the modality shift problem in the LLM component of the MLLM.

While existing works also utilize knowledge distillation techniques to preserve knowledge from old tasks,
they primarily focus on distilling final outputs or internal features between old and current models by taking
same training samples as input, as seen in methods like LwF (Li & Hoiem, 2017) and EWF (Xiao et al.,
2023). These approaches do not perform well in our MICL scenario, as they significantly constrain the
MLLM’s ability to learn new tasks, particularly in settings with substantial gaps between tasks, such as
in our proposed MICL. In contrast, our IKD leverages pure text instructions as the input to the LLM
component for knowledge distillation, avoiding introducing negative impacts on the current training task.
This approach allows us to directly distill knowledge of the LLM without imposing additional constraints on
the MLLM’s ability to learn new tasks, ensuring that both knowledge preservation and new task learning
are achieved effectively in MICL.

As for the weight fusion strategy, we acknowledge that it is not one of our primary technical contributions.
However, our experiments demonstrate that this strategy can be seamlessly integrated with PTGM and IKD
to further enhance the anti-forgetting capability of our approach. For this reason, we also include the weight
fusion strategy in our method.

4 Experiments

4.1 Experimental Setup

4.1.1 Dataset

In our proposed Modality-Inconsistent Continual Learning (MICL), we include six tasks: Image Captioning,
Image QA, Audio Captioning, Audio QA, Video Captioning, and Video QA. Each task is represented by
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a commonly used dataset. Specifically, we use the Flickr30K (Young et al., 2014) dataset for the Image
Captioning task, the OK-VQA (Marino et al., 2019) dataset for the Image QA task, the AudioCaps (Kim
et al., 2019) dataset for the Audio Captioning task, the Clotho-AQA (Lipping et al., 2022) dataset for the
Audio QA task, the MSR-VTT (Xu et al., 2016) dataset for the Video Captioning task, and the MSVD-
QA (Xu et al., 2017) dataset for the Video QA task. More dataset details are provided in the Appendix B.

4.1.2 Baselines

In our experiments, we compare our proposed MoInCL with the following continual learning methods: Fine-
tuning, LwF (Li & Hoiem, 2017), EWC (Kirkpatrick et al., 2017), EWF (Xiao et al., 2023), PathWeave (Yu
et al., 2024), and BECAME (Li et al., 2025). Among these, LwF, EWC, EWF, and BECAME are repre-
sentative general continual learning methods, while PathWeave is the most recent state-of-the-art continual
learning method designed for MLLMs, which involves a modality-aware adapter-in-adapter mechanism to
address the modality-shift problem in modality-incremental learning of MLLMs. Please note that, for a
fair comparison, all baseline methods use the same model architecture as our approach, including the Large
Language Model (LLM) component. We also conduct the experiment of joint training with all tasks as the
Upper-Bound.

4.1.3 Evaluation Metrics

Following Panagopoulou et al. (2023), we use the CIDEr score (Vedantam et al., 2015) and prediction
accuracy as evaluation metrics to evaluate captioning tasks and QA tasks, respectively. For all baselines and
our method, we report the average final performance across all learned tasks, i.e., the average performance
of all tasks after completing the training of the final task. Since captioning and QA tasks use different
evaluation metrics, we separately report the average final performance for each task type: the average final
CIDEr score for captioning tasks and the average final accuracy for QA tasks. We formulate them as:

Avg.CIDEr = 1
Ncap.

T∑
i=1

cT
i ,

s.t. Pi =“Captioning”,

(8)

where Ncap. denotes the number of captioning tasks, cT
i denotes the CIDEr score of task Ti after completing

the training of task TT if task Ti is a captioning task. Similarly, the average final accuracy can be formulated
as:

Avg.Acc. = 1
NQA

T∑
i=1

aT
i ,

s.t. Pi = “QA”,

(9)

where NQA denotes the number of QA tasks, aT
i denotes the accuracy of task Ti after completing the training

of task TT if task Ti is a QA task. Furthermore, to evaluate the anti-forgetting capability of each method,
we propose two metrics: the forgetting ratio and the average forgetting ratio. The forgetting ratio measures
the proportion of performance drop for each task after completing the training of the final task, while the
average forgetting ratio represents the mean forgetting ratio across all tasks, which can be formulated as:

Forget.i =(si
i − sT

i )/si
i,

Avg.Forget. = 1
T

T∑
i=1

Forget.i
(10)

where si
i and sT

i denotes the testing score of task Ti after the training of task Ti and TT , respectively.

4.1.4 Implementation Details

We implement our experiments using Pytorch (Paszke et al., 2019) and LaVIS (Li et al., 2022a) framework.
For the LLM backbone of the Multimodal Large Language Model (MLLM), we adopt the Llama-3.2-1B-
Instruct (Dubey et al., 2024), which is initialized with its official pre-trained parameters at the beginning
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Table 1: Results on the two task orders for different methods. Bold values indicate the best results in each
column, while underlined values represent the second-best results in each column.

Methods
Order 1 Order 2

Avg. CIDEr ↑ Avg. Acc. ↑ Avg. Forget. ↓ Avg. CIDEr ↑ Avg. Acc. ↑ Avg. Forget. ↓
Fine-tuning 30.64 40.58 41.17% 10.82 37.01 65.56%
LwF (Li & Hoiem, 2017) 34.80 40.21 39.26% 12.37 38.79 61.84%
EWC (Kirkpatrick et al., 2017) 39.06 37.04 38.79% 9.92 37.65 66.40%
EWF (Xiao et al., 2023) 24.59 36.34 48.55% 13.92 45.85 46.64%
PathWeave (Yu et al., 2024) 34.20 36.19 44.36% 11.11 41.13 61.47%
BECAME (Li et al., 2025) 24.36 38.50 46.96% 10.61 43.20 54.10%
MoInCL (Ours) 55.31 42.29 14.21% 51.13 45.22 8.93%
Upper Bound (Joint training) 66.69 48.97 - 66.69 48.97 -

of the first task. Following the implementation in (Panagopoulou et al., 2023), we apply the EVA-CLIP-
ViT-G/14 (Fang et al., 2023) as the Image Encoder and Video Encoder, and the BEATsiter3+ (Chen et al.,
2023) as the Audio Encoder. Each video input consists of 4 frames, and the audio input also consists of
4 frames with the sampling rate of 11kHz. For the video and audio modalities, the Video Encoder and
Audio Encoder process each frame individually and then concatenate the encoded patches from all frames,
following the approach in (Panagopoulou et al., 2023). For the Image Projection, we use a two-layers MLP
with the GELU (Hendrycks & Gimpel, 2016) activation function. For the Video and Audio Projection,
both of them include a single convolutional layer as a pooling layer to reduce the total number of patches,
followed by a two-layers MLP with the GELU activation function. For each task, we train the model using
the AdamW (Loshchilov & Hutter, 2019) optimizer with an initial learning rate of 1e-5, adjusted using the
cosine decay strategy, and a weight decay of 5e-2. We train our proposed MoInCL and all baseline methods
on a NVIDIA RTX A6000 Ada GPU. During the training of our approach, the pure text instructions
in the Instruction-based Knowledge Distillation (IKD) constraint are randomly sampled from the Natural
Instructions (Mishra et al., 2022) dataset.

4.2 Experimental Comparison

We conduct experiments using two random task orders. For Order 1, the tasks are arranged as: Audio
Captioning→ Image Captioning→ Video QA→ Audio QA→ Image QA→ Video Captioning. For Order 2,
the task sequence is: Image Captioning→ Video Captioning→ Video QA→ Image QA→ Audio Captioning
→ Audio QA. Additional experimental results on more task orders are provided in Appendix C, where we
demonstrate that our framework can handle highly challenging task orders involving severe modality and
task shifts.

The main results are shown in Tab. 1. We can see that our proposed MoInCL achieves state-of-the-art
performance compared to all baseline methods. Except the average final accuracy of the Order 2, our
method has the best performance on all three metrics across both orders. Specifically, in Order 1, our
method surpasses the best baseline results by 16.25, 1.71, and 24.58 in terms of average final CIDEr
score, average final accuracy, and average forgetting ratio, respectively. In Order 2, our method outperforms
the best baseline results by 37.21 and 37.71 for average final CIDEr score and average forgetting ratio,
respectively.

The testing results of the first three incremental tasks (Image Captioning→ Video Captioning→ Video QA)
are shown in Tab. 2. From these results, we observe that when the modality shift occurs from the Image
Captioning task to the Video Captioning task, the performance of the previous task (Image Captioning)
drops significantly across all baseline methods, with CIDEr score reductions ranging from 8.34 to 23.63.
Additionally, when the task type shift occurs from the Video Captioning task to the Video QA task, the
performance of the previous task (Video Captioning) also decreases significantly, with CIDEr score reductions
ranging from 35.61 to 41.66. These results further validate our insight that both modality shift and task
type shift directly contribute to the catastrophic forgetting problem, underscoring the core challenges of our
proposed MICL scenario. For our method, the performance drop for the Image Captioning task is only 3.91
when the modality shift occurs. Moreover, we observe that the performance of the Video Captioning task
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Table 2: Detailed testing results of the first three tasks of Order 2. The evaluation metric used for the
Flickr30K and MSR-VTT datasets is CIDEr score, while that for the MSVD-QA dataset is accuracy.

Methods Flickr30k MSR-VTT MSVD-QA

Fine-tuning
Step 1 77.50 - -
Step 2 64.04 48.03 -
Step 3 12.12 8.64 46.20

LwF (Li & Hoiem, 2017)
Step 1 77.50 - -
Step 2 53.87 48.70 -
Step 3 10.20 7.80 47.64

EWC (Kirkpatrick et al., 2017)
Step 1 77.50 - -
Step 2 62.65 47.73 -
Step 3 10.45 9.66 45.79

EWF (Xiao et al., 2023)
Step 1 77.50 - -
Step 2 69.16 45.30 -
Step 3 56.10 9.69 45.33

PathWeave (Yu et al., 2024)
Step 1 77.22 - -
Step 2 53.60 50.01 -
Step 3 7.36 8.35 47.87

BECAME (Li et al., 2025)
Step 1 77.50 - -
Step 2 77.22 47.64 -
Step 3 52.16 9.82 47.35

MoInCL (Ours)
Step 1 77.50 - -
Step 2 73.59 48.03 -
Step 3 70.88 48.34 43.11

Table 3: Forgetting ratio of each task in Order 1. Bold values denote the best results in each column, while
underlined values indicate the second-best results in each column.

Methods
Forgetting Ratio ↓

AudioCaps Flickr30k MSVD-QA Clotho-AQA OK-VQA MSR-VTT
Fine-tuning 57.51% 85.04% 51.33% 7.15% 4.81% 0.00%
LwF (Li & Hoiem, 2017) 54.79% 72.52% 59.32% 2.76% 6.92% 0.00%
EWC (Kirkpatrick et al., 2017) 62.47% 46.55% 61.55% 9.95% 13.42% 0.00%
EWF (Xiao et al., 2023) 69.65% 92.51% 79.07% 0.47% 1.03% 0.00%
PathWeave (Yu et al., 2024) 75.49% 58.16% 61.74% 16.25% 10.18% 0.00%
BECAME (Li et al., 2025) 72.82% 92.70% 66.04% -0.13% 3.36% 0.00%
MoInCL (Ours) 27.52% 9.18% 36.58% 0.07% -2.28% 0.00%

improves after training on the Video QA task which introduces the task type shift issue. These findings
further highlight the effectiveness of our method in mitigating the catastrophic forgetting problem in MICL
by addressing both modality shift and task type shift challenges. For detailed results of each task and
qualitative analysis, please refer to E, D, and F in Appendix.

We present the forgetting ratio of each task in both orders in Tab. 3 and 4, from which we can see that, our
method outperforms baseline methods significantly, further demonstrating the superiority of our proposed
method in mitigating the catastrophic forgetting in our proposed MICL scenario.
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Table 4: Forgetting ratio of each task in Order 2. Bold values denote the best results in each column, while
underlined values indicate the second-best results in each column.

Methods
Forgetting Ratio ↓

Flickr30k MSR-VTT MSVD-QA OK-VQA AudioCaps Clotho-AQA
Fine-tuning 93.02% 85.72% 31.23% 49.77% 68.06% 0.00%
LwF (Li & Hoiem, 2017) 91.20% 85.83% 31.51% 40.07% 60.60% 0.00%
EWC (Kirkpatrick et al., 2017) 91.08% 92.21% 40.49% 37.91% 70.31% 0.00%
EWF (Xiao et al., 2023) 89.86% 78.28% 6.04% 4.15% 54.89% 0.00%
PathWeave (Yu et al., 2024) 92.42% 87.54% 25.67% 35.51% 66.22% 0.00%
BECAME (Li et al., 2025) 90.50% 80.31% 15.48% 9.92% 74.29% 0.00%
MoInCL (Ours) 22.04% 2.25% 2.60% 3.33% 14.43% 0.00%

Table 5: Ablation results on the two task orders on each key component of our MoInCL. Bold values indicate
the best results in each column, while underlined values represent the second-best results in each column.

Methods
Order 1 Order 2

Avg. CIDEr ↑ Avg. Acc. ↑ Avg. Forget. ↓ Avg. CIDEr ↑ Avg. Acc. ↑ Avg. Forget. ↓
MoInCL w/o PTGM 26.61 37.18 45.64% 9.95 47.51 49.62%
MoInCL w/o IKD 53.33 40.69 17.82% 49.32 43.40 13.03%
MoInCL 55.31 42.29 14.21% 51.13 45.22 8.93%

4.3 Ablation Studies

To further assess the effectiveness of each key component in our proposed MoInCL, we conduct ablation
studies on the Pseudo Target Generation Module (PTGM) and Instruction-based Knowledge Distillation
(IKD) across two random task orders. The experimental results, presented in Tab. 5, clearly demonstrate
that removing either PTGM or IKD leads to a performance drop in both task orders. This highlights the
significance of each component in our framework.

4.4 Analysis and Discussion

4.4.1 Results Analysis

We provide a more detailed analysis of the experimental results, specifically examining why the average
accuracy of QA tasks in Order 2 does not achieve the best performance. In Order 2, the last four tasks
follow the sequence: Video QA → Image QA → Audio Captioning → Audio QA, where QA tasks dominate.
Consequently, the task type shift problem has a greater impact on captioning tasks than on QA tasks.
For the baseline methods, as they focus less on addressing the task type shift problem, they prioritize QA
tasks in the later stages of Order 2 rather than preserving knowledge from earlier tasks. This explains why
most baseline methods perform better on QA tasks in Order 2 compared to Order 1. Nevertheless, our
MoInCL still outperforms all other baselines in terms of average accuracy of QA tasks, except for EWF,
where the difference is marginal. Additionally, MoInCL exhibits a lower average forgetting ratio compared
to all baselines in both orders, and achieves lower forgetting ratio on each single task. Moreover, MoInCL
maintains more stable performance across both task orders, further demonstrating its robustness.

4.4.2 Task Transfer Effectiveness

To investigate the mutual impact between different tasks, we evaluate the positive knowledge transfer across
tasks that share the same modality or task type. Specifically, we conduct experiments to determine whether
training on one task benefits a subsequent task within the same modality or task type. The experimental
results are presented in Tab. 6. As shown, transferring the captioning ability from the image captioning
task improves the CIDEr score of the video captioning task from 47.12 to 48.03. Similarly, transferring the
question-answering capability from the video QA task enhances the accuracy of the audio QA task from
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Table 6: Experimental results on task transfer effectiveness. We evaluate modality transfer effectiveness
within the same task type and task type transfer effectiveness within the same modality.

Modality Transfer Task Type Transfer
Video Cap Image Cap → Video Cap Audio QA Video QA → Audio QA Audio QA Audio Cap → Audio QA

47.12 48.03 58.28 59.94 58.28 61.75
Task Type Transfer

Image QA Image Cap → Image QA Video Cap Video QA → Video Cap Image Cap Image QA → Image Cap
35.00 36.50 47.12 51.25 77.50 81.93

58.28 to 59.94. These results further demonstrate that transferring knowledge from a previous task to a new
task with the same task type enhances the performance of this new task. Additionally, the audio QA ability
is enhanced by transferring knowledge from the learned audio captioning task, improving accuracy from
58.28 to 61.75. Similarly, positive knowledge transfer is observed within the image and video modalities,
further demonstrating the benefits of transferring knowledge across tasks within the same modality.

4.4.3 Analysis on the Computational Cost

For each experiment, i.e., training a single baseline method or our MoInCL, we use a single RTX A6000
Ada GPU with 48GB of memory. Compared to the pure fine-tuning baseline, the average training time for
our MoInCL increases by approximately 40% per epoch, while the inference time remains the same. For
example, during training on the audio captioning task with the AudioCaps dataset, pure fine-tuning takes
around 45 minutes per epoch, and our method requires approximately 64 minutes per epoch.

5 Conclusion

In this paper, we explore the Modality-Inconsistent Continual Learning (MICL), a novel and practical contin-
ual learning scenario of Multimodal Large Language Models (MLLMs). To address the introduced MICL, we
propose MoInCL, which incorporates a Pseudo Targets Generation Modul and an Instruction-based Knowl-
edge Distillation constraint to mitigate the catastrophic forgetting caused by the inherent task type shift and
modality shift problem in the context of MICL. Experiments on six multimodal incremental tasks demon-
strate the effectiveness of our proposed MoInCL. This paper introduces a new direction for the continual
learning of MLLMs.

Broader Impact. Our proposed continual modality-inconsistent continual learning allows the MLLMs to
adapt to new modalities and task types without full retraining, which could enhance efficiency and privacy
by reducing the need to transmit and store sensitive data.

Limitations

Our Modality-Inconsistent Continual Learning (MICL) introduces a novel and practical continual learning
scenario by incorporating inconsistent modalities and varying task types across incremental tasks. However,
the scope of our work is constrained by the limited number of modalities (audio, image, and video) and task
types (captioning and question-answering) included in the experiments. This restricts the generalizability
of MICL to scenarios involving a broader range of modalities and task types. Another limitation lies in the
pseudo QA pairs generated by PTGM, which may not fully capture the complete answer space of prior QA
tasks, leading to incomplete supervision when mitigating the task type shift from QA to captioning tasks.
These imperfect pseudo targets may thus still hinder a full resolution of the task type shift problem.

In the future, we plan to enhance our MICL framework by incorporating additional modalities, such as
depth, 3D, or even joint inputs like joint audio-visual modalities. We also aim to introduce a broader range
of task types, such as reasoning, grounding, decision-making, etc. Furthermore, scaling up MICL to larger
datasets within each task is also a key objective to better enable the model to address the complexity and
diversity of real-world multimodal tasks in continual learning.
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In this appendix, we provide the process of generating three-round QA pairs from captions in Sec. A. We
also include dataset details in Sec. B. Experimental results on additional task orders, upper bound results,
detailed results of each task, and qualitative analysis are provided in Sec. C, D, E, and F, respectively.

A Three-Round QA Pairs Generation from Captions

Inspired by the question answering text generation process in (Panagopoulou et al., 2023), we adopt a similar
three-round QA pair generation process from captions in our proposed Pseudo Targets Generation Module
(PTGM). Given a caption from the dataset of the current captioning task Ti, the objective is to generate a
QA pair to address the task type shift problem when training on a captioning task within a seen modality.
This process relies entirely on prompt engineering, where the caption is used as input to the pre-trained
Large Language Model (LLM) component of our Multimodal Large Language Model (MLLM). Please note
that, the LLM component employed in this process uses pre-trained weights, i.e., the weights that are not
fine-tuned on our incremental tasks.

In Round 1, the LLM takes an input with the format of:

Given the Mi context: "y", generate a potential short answer from it.
Provide just one or two words. The answer words should be strictly
selected from the context. Provide only the answer, nothing else. Answer:,

where Mi is the modality of the task Ti, y denotes the sampled caption text. And the output of the LLM
is used as the temporal short answer ȳ.

In Round 2, the LLM takes the following prompt as input:

Given the Mi context: "y" and the answer: "ȳ", generate a question
for the answer that can be inferred from the context. Provide only one
question and nothing else. Question:

and the output of the LLM in Round 2 is the question we aim to generate, which is denoted as t̃.

Finally, in Round 3, the LLM processes the following prompt as input:

Answer the question using the given context. The answer should be only one
or two words. Context: "y". Question: "t̃". Answer:

and generates the final short answer ỹ.
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Based the above three rounds, the pseudo QA pair is obtained, where t̃ represents the pseudo question and
ỹ denotes the pseudo answer.

B Dataset Details

Table 7: Details of the datasets used in our experiments.

Task Dataset
Sample number

Total Training Validation Testing
Image Captioning Flickr30K 31,784 29,783 1,000 1,000
Image QA OK-VQA 14,055 8,007 1,002 5,046
Audio Captioning AudioCaps 46,378 44,378 1,000 1,000
Audio QA Clotho-AQA 10,480 6,181 1,823 2,476
Video Captioning MSR-VTT 10,000 6,010 1,000 2,990
Video QA MSVD-QA 50,476 30,904 6,415 13,157

In our experiments, we use the AudioCaps, Flickr30K, MSR-VTT, MSVD-QA, Clotho-AQA, and OK-VQA
datasets for Audio Captioning, Image Captioning, Video Captioning, Video QA, Audio QA, and Image QA
tasks, respectively. We summarize the details of these data in Tab. 7.

C Experimental Results on Additional Task Orders

Apart from the random task orders in Sec. 4.2, we also conduct additional experiments to further verify the
effectiveness and robustness of our proposed MoInCL. Specifically, we construct a new random order: Video
Captioning → Image QA → Image Captioning → Video QA → Audio Captioning → Audio
QA, which we refer to as Order 3.

Additionally, we also manually create another task order: Image QA → Video Captioning → Audio
QA → Image Captioning → Video QA → Audio Captioning, one of the most challenging task orders.
This task order enforces frequent alternation between task types, following the pattern: QA → Captioning
→ QA → Captioning → QA → Captioning, which ensures no two tasks of the same task type appear
consecutively. Moreover, this order also introduces more frequent modality shifts, avoiding repetition of the
same modality in adjacent tasks. This setting helps mitigate task-recency bias and offers a more rigorous
evaluation of each method’s ability to generalize under highly dynamic conditions. We refer to this extreme
task order as Order 4.

The experimental results on these two new task orders are reported in Tab. 8. As shown, our method
consistently achieves significant improvements over the baseline methods. Furthermore, its performance
remains in line with the results on the original task orders, further highlighting the stability and robustness
of our approach.

D Upper Bound Results

We present the testing results of the Upper Bound (joint training) on each task in Tab. 9.

E Detailed Results of Each Task in Both Orders

We also present the detailed testing results for each task across the incremental steps in both orders in
Tab. 10 and 11. These results show that our proposed MoInCL exhibits less performance drop compared to
the baseline methods, demonstrating its superior ability to address catastrophic forgetting in the proposed
Modality-Inconsistent Continual Learning (MICL) scenario.
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Table 8: Experimental results on additional two task orders for different continual learning methods. Bold
values indicate the best results in each column, while underlined values represent the second-best results in
each column.

Methods
Order 3 Order 4

Avg. CIDEr ↑ Avg. Acc. ↑ Avg. Forget. ↓ Avg. CIDEr ↑ Avg. Acc. ↑ Avg. Forget. ↓
Fine-tuning 23.14 41.59 53.18% 46.16 19.94 56.11%
EWF (Xiao et al., 2023) 35.46 37.10 46.14% 46.92 36.72 29.66%
PathWeave (Yu et al., 2024) 28.46 40.50 51.73% 47.27 20.54 53.72%
MoInCL (Ours) 57.18 45.39 13.07% 57.77 40.81 14.93%
Upper Bound (Joint training) 66.69 48.97 - 66.69 48.97 -

Table 9: Experimental results of the Upper Bound (joint training) on each task.

Methods Flickr30k MSR-VTT MSVD-QA OK-VQA AudioCaps Clotho-AQA
Upper Bound (Joint training) 80.24 54.76 48.54 38.16 65.07 60.22

F Qualitative Analysis

We present the qualitative results of the Fine-tuning, LwF (Li & Hoiem, 2017), EWC (Kirkpatrick et al.,
2017), EWF (Xiao et al., 2023), PathWeave (Yu et al., 2024), and our MoInCL in Fig. 3, 4, 5, 6, 7, and 8,
respectively. From these results, we can see that our MoInCL can generate better results with the incremental
step increases, demonstrating the better capability in mitigating the catastrophic forgetting problem in our
proposed Modality-Inconsistent Continual Learning (MICL) scenario.
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Table 10: Detailed testing results for each task across the incremental steps in Order 1. The evaluation metric
used for the AudioCaps, Flickr30K, and MSR-VTT datasets is CIDEr score, while that for the MSVD-QA,
Clotho-AQA, and OK-VQA datasets is accuracy.

Fine-tuning

AudioCaps Flickr30K MSVD-QA Clotho-AQA OK-VQA MSR-VTT
Step 1 57.66 - - - - -
Step 2 26.42 85.83 - - - -
Step 3 8.34 30.83 47.67 - - -
Step 4 4.28 21.89 44.52 62.64 - -
Step 5 4.06 6.49 39.36 57.51 42.41 -
Step 6 24.50 12.84 23.20 58.16 40.37 54.59

LwF (Li & Hoiem, 2017)

Step 1 57.66 - - - - -
Step 2 26.32 86.97 - - - -
Step 3 4.61 30.38 47.47 - - -
Step 4 0.04 15.96 42.08 63.13 - -
Step 5 1.18 6.36 36.16 59.85 42.89 -
Step 6 26.07 23.90 19.31 61.39 39.92 54.44

EWC (Kirkpatrick et al., 2017)

Step 1 57.66 - - - - -
Step 2 38.59 85.27 - - - -
Step 3 5.67 25.23 46.03 - - -
Step 4 2.04 14.21 43.78 63.29 - -
Step 5 3.85 6.31 38.85 56.70 42.09 -
Step 6 21.64 45.58 17.70 56.99 36.44 49.95

EWF (Xiao et al., 2023)

Step 1 57.66 - - - - -
Step 2 49.84 82.73 - - - -
Step 3 38.01 71.03 44.33 - - -
Step 4 14.19 65.28 44.22 59.69 - -
Step 5 15.48 6.08 43.98 59.53 40.75 -
Step 6 17.50 6.20 9.28 59.41 40.33 50.07

PathWeave (Yu et al., 2024)

Step 1 59.86 - - - - -
Step 2 13.54 82.32 - - - -
Step 3 2.95 12.02 46.00 - - -
Step 4 0.54 9.07 37.28 63.13 - -
Step 5 4.19 6.26 28.97 57.84 42.42 -
Step 6 14.67 34.44 17.60 52.87 38.10 53.48

BECAME (Li et al., 2025)

Step 1 57.66 - - - - -
Step 2 55.71 81.46 - - - -
Step 3 18.34 63.77 45.61 - - -
Step 4 5.81 54.34 45.31 60.18 - -
Step 5 9.43 6.04 40.39 59.13 41.13 -
Step 6 15.67 5.95 15.49 60.26 39.75 51.47

MoInCL (Ours)

Step 1 57.66 - - - - -
Step 2 56.58 81.15 - - - -
Step 3 56.51 82.71 43.38 - - -
Step 4 43.44 81.91 43.43 57.71 - -
Step 5 43.01 74.19 43.51 57.51 40.75 -
Step 6 41.79 73.70 27.51 57.67 41.68 50.44

Upper Bound (Joint training) 65.07 80.24 48.54 60.22 38.16 54.76
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Table 11: Detailed testing results for each task across the incremental steps in Order 2. The evaluation metric
used for the AudioCaps, Flickr30K, and MSR-VTT datasets is CIDEr score, while that for the MSVD-QA,
Clotho-AQA, and OK-VQA datasets is accuracy.

Fine-tuning

Flickr30K MSR-VTT MSVD-QA OK-VQA AudioCaps Clotho-AQA
Step 1 77.50 - - - - -
Step 2 64.04 48.03 - - - -
Step 3 12.12 8.64 46.20 - - -
Step 4 5.86 8.23 39.38 37.13 - -
Step 5 9.63 14.05 24.91 17.24 63.19 -
Step 6 5.41 6.86 31.77 18.65 20.18 60.62

LwF (Li & Hoiem, 2017)

Step 1 77.50 - - - - -
Step 2 53.87 48.70 - - - -
Step 3 10.20 7.80 47.64 - - -
Step 4 7.41 8.44 37.14 36.51 - -
Step 5 12.51 18.08 31.44 19.47 59.37 -
Step 6 6.82 6.90 32.63 21.88 23.39 61.87

EWC (Kirkpatrick et al., 2017)

Step 1 77.50 - - - - -
Step 2 62.65 47.73 - - - -
Step 3 10.45 9.66 45.79 - - -
Step 4 7.19 7.85 37.42 35.90 - -
Step 5 12.10 4.24 27.59 21.09 64.40 -
Step 6 6.91 3.72 27.25 22.29 19.12 63.41

EWF (Xiao et al., 2023)

Step 1 77.50 - - - - -
Step 2 69.16 45.30 - - - -
Step 3 56.10 9.69 45.33 - - -
Step 4 8.26 9.85 44.74 34.95 - -
Step 5 8.04 10.24 43.31 33.10 53.36 -
Step 6 7.86 9.84 42.59 33.50 24.07 61.47

PathWeave (Yu et al., 2024)

Step 1 77.22 - - - - -
Step 2 53.60 50.01 - - - -
Step 3 7.36 8.35 47.87 - - -
Step 4 6.99 7.14 41.17 36.38 - -
Step 5 8.01 7.86 33.89 22.27 62.90 -
Step 6 5.85 6.23 35.58 23.46 21.25 64.34

BECAME (Li et al., 2025)

Step 1 77.50 - - - - -
Step 2 77.22 47.64 - - - -
Step 3 52.16 9.82 47.35 - - -
Step 4 7.24 9.59 46.36 34.48 - -
Step 5 8.04 8.81 43.11 31.62 58.74 -
Step 6 7.36 9.38 40.02 31.06 15.10 58.52

MoInCL (Ours)

Step 1 77.50 - - - - -
Step 2 73.59 48.03 - - - -
Step 3 70.88 48.34 43.11 - - -
Step 4 63.32 47.56 42.27 33.35 - -
Step 5 61.91 47.78 42.24 33.46 53.79 -
Step 6 60.42 46.95 41.99 32.24 46.03 61.43

Upper Bound (Joint training) 80.24 54.76 48.54 38.16 65.07 60.22
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Describe the image.

A man in a red jacket 
plays the guitar on the 
sidewalk.

(a)

Describe the image.

A man in a red shirt 
playing the guitar.

(b)

Describe the image.

Man.

(c)

Describe the image.

Hat.

(d)

Describe the image.

Man walking down 
street.

(e)

Describe the image.

Trotting.

(f)

Figure 3: Qualitative results of the Fine-tuning method in Order 2. The sample is randomly selected from
the test set of Task 1 (Image Captioning). The results are generated using models trained after after (a)
Task 1, (b) Task 2, (c) Task 3, (d) Task 4, (e) Task 5, and (f) Task 6.
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Describe the image.

A man in a red jacket 
plays the guitar on the 
sidewalk.

(a)

Describe the image.

A man in a red coat 
playing the guitar.

(b)

Describe the image.

Man.

(c)

Describe the image.

Guitar.

(d)

Describe the image.

A man is playing music.

(e)

Describe the image.

Singing. 

(f)

Figure 4: Qualitative results of the LwF (Li & Hoiem, 2017) method in Order 2. The sample is randomly
selected from the test set of Task 1 (Image Captioning). The results are generated using models trained
after after (a) Task 1, (b) Task 2, (c) Task 3, (d) Task 4, (e) Task 5, and (f) Task 6.
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Describe the image.

A man in a red jacket 
plays the guitar on the 
sidewalk.

(a)

Describe the image.

A man in red is playing 
the guitar.

(b)

Describe the image.

Man.

(c)

Describe the image.

Singer.

(d)

Describe the image.

Sneakers are dirty.

(e)

Describe the image.

Talking.

(f)

Figure 5: Qualitative results of the EWC (Kirkpatrick et al., 2017) method in Order 2. The sample is
randomly selected from the test set of Task 1 (Image Captioning). The results are generated using models
trained after after (a) Task 1, (b) Task 2, (c) Task 3, (d) Task 4, (e) Task 5, and (f) Task 6.
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Describe the image.

A man in a red jacket 
plays the guitar on the 
sidewalk.

(a)

Describe the image.

A man in a red jacket 
playing the guitar.

(b)

Describe the image.

A man is playing the 
guitar.

(c)

Describe the image.

Musician.

(d)

Describe the image.

Singer.

(e)

Describe the image.

Guitar.

(f)

Figure 6: Qualitative results of the EWF (Xiao et al., 2023) method in Order 2. The sample is randomly
selected from the test set of Task 1 (Image Captioning). The results are generated using models trained
after after (a) Task 1, (b) Task 2, (c) Task 3, (d) Task 4, (e) Task 5, and (f) Task 6.
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Describe the image.

A man in a red shirt 
playing the guitar on 
the street.

(a)

Describe the image.

A man in a red hat is 
playing the guitar.

(b)

Describe the image.

Man.

(c)

Describe the image.

Banjo.

(d)

Describe the image.

Music playing.

(e)

Describe the image.

Music.

(f)

Figure 7: Qualitative results of the PathWeave (Yu et al., 2024) method in Order 2. The sample is randomly
selected from the test set of Task 1 (Image Captioning). The results are generated using models trained
after after (a) Task 1, (b) Task 2, (c) Task 3, (d) Task 4, (e) Task 5, and (f) Task 6.
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Describe the image.

A man in a red jacket 
plays the guitar on the 
sidewalk.

(a)

Describe the image.

A man in a red jacket 
is playing the guitar.

(b)

Describe the image.

A man in a red jacket 
is playing the guitar.

(c)

Describe the image.

A man is playing the 
guitar.

(d)

Describe the image.

A man is playing the 
guitar.

(e)

Describe the image.

A man is playing the 
guitar.

(f)

Figure 8: Qualitative results of our proposed MoInCL in Order 2. The sample is randomly selected from the
test set of Task 1 (Image Captioning). The results are generated using models trained after after (a) Task
1, (b) Task 2, (c) Task 3, (d) Task 4, (e) Task 5, and (f) Task 6.
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