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Abstract: Data piling refers to the phenomenon that training data vectors
from each class project to a single point for classification. While this inter-
esting phenomenon has been a key to understanding many distinctive prop-
erties of high-dimensional discrimination, the theoretical underpinning of
data piling is far from properly established. In this work, high-dimensional
asymptotics of data piling is investigated under a spiked covariance model,
which reveals its close connection to the well-known ridged linear classifier.
In particular, by projecting the ridge discriminant vector onto the sub-
space spanned by the leading sample principal component directions and
the maximal data piling vector, we show that a negatively ridged discrimi-
nant vector can asymptotically achieve data piling of independent test data,
essentially yielding a perfect classification. The second data piling direction
is obtained purely from training data and shown to have a maximal prop-
erty. Furthermore, asymptotic perfect classification occurs only along the
second data piling direction.
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1. Introduction

Classification of high dimensional data has become an extremely common sta-
tistical problem. For a two-group classification, we use the high-dimension, low-
sample-size (HDLSS) asymptotic regime (Hall, Marron and Neeman, 2005), in
which the dimension p increases while the sample size n is fixed, to reveal a
perhaps counter-intuitive phenomenon in classification of HDLSS data.

Consider a situation where a classification rule is given by a linear separating
hyperplane, or equivalently via the orthogonal projection of data onto its normal
vector. A classical choice for such a vector is the Fisher’s linear discriminant
vector wFLD (Fisher, 1936), which maximizes the between-group scatter (wT d)2

while minimizing the within-group scatter wTSw, where d = X̄1 − X̄2 and S is
the p× p pooled covariance matrix of rank min{p, n− 2}. While wFLD = S−1d
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is not defined for high-dimensional data with p > n− 2, a natural extension is
the maximal data piling direction vector (Ahn and Marron, 2010)

wMDP = argmax
w:‖w‖=1

(wT d)2 subject to wTSw = 0.

The term data-piling in the binary classification setting refers to the phe-
nomenon that all data are projected to exactly two points, one for each group.
Among such vectors exhibiting data piling, wMDP uniquely maximizes the be-
tween-group scatter. This “first” data-piling is observed for any given data when-
ever p > n − 2, and may be viewed as a sign of overfitting; independent test
data are not projected to the same piling locations.

In this paper, we reveal that there exists a “second” data piling vector onto
which any independent observations are projected to two distinct points, asymp-
totically. This second data piling vector can be obtained purely from the training
data. Thus, when used for classification, the second data piling direction leads
to an asymptotic perfect classification.

We develop the second data-piling in a dense signal setting for which the true
mean difference exists in almost all coordinates, i.e., ‖μ1 − μ2‖ = O(p1/2), and
using a spiked model for the common covariance Σ. In particular, the spiked
covariance model with m spikes, for a fixed m ≥ 0, assumes that, for a given
β ∈ [0, 1], the m leading eigenvalues of Σ increases at the order of pβ , while the
rest of eigenvalues are nearly constant. This model has been commonly used in
the high-dimensional asymptotic studies for principal component analysis and
factor models; see Jung, Lee and Ahn (2018); Hellton and Thoresen (2017); Fan
et al. (2021) and references therein. Most of the previous HDLSS-asymptotic
studies on classification (Hall, Marron and Neeman, 2005; Qiao et al., 2010;
Jung, 2018) are limited to the simple null case of β = 0, i.e., Σ is the scaled
identity matrix. Allowing β ∈ [0, 1) also results in a similar conclusion (Yata
and Aoshima, 2020). Our findings are obtained under the more interesting and
realistic situation at β = 1, requiring the variables to be meaningfully correlated
with each other. To the best of our knowledge, literature on the theoretical
research on classification under this scenario is scarce. An exception is the work
of Aoshima and Yata (2019), in which the authors proposed to “remove” the
leading eigenspace for better classification performances. Relation of our findings
to Aoshima and Yata (2019) is further discussed in Section 5.

The first and second data piling direction vectors turn out to be closely re-
lated to the ridged linear discriminant vector wα = (S+αIp)

−1d, where Ip is the
p×p identity matrix (Di Pillo, 1976), for which both positive and negative values
for the ridge parameter α are considered. The first maximal-data-piling direc-
tion wMDP is the direction of the “ridgeless” vector limα↓0 wα. Since our model
suggests that only the first m leading eigenvectors û1, . . . , ûm of S are mean-
ingful estimates of their population counterparts, we define a projected ridge
discriminant direction vα, given by projecting wα onto span(û1, . . . , ûm, wMDP)
for most values of α ∈ R; see Section 2 for a precise definition of vα. We show
that the second data piling occurs at vα̂, for an α̂ strictly negative, but not at
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any other choices of α. This implies that an asymptotic perfect classification
can happen only at vα̂.

Note that the second data piling direction is found by allowing the ridge pa-
rameter to be negative. Recently, for over-parameterized regression models with
p > n, Kobak, Lomond and Sanchez (2020); Wu and Xu (2020); Tsigler and
Bartlett (2020) have pointed out that negatively ridged coefficient estimators
can be optimal. In particular, Tsigler and Bartlett (2020) have shown that a
spiked covariance model with the number of spikes much smaller than the sam-
ple size is a key for a negative ridge parameter to be optimal in ridge regression.
Our finding with the m-spiked model parallels this observation, in a classifi-
cation setting. In the linear regression context, extreme overfitting of ridgeless
estimators is found to perform surprisingly well (Hastie et al., 2019; Holzmüller,
2020; Bartlett et al., 2020), a phenomenon called “double descent”. The ridge-
less estimator in the classification context is exactly the first data piling vector
wMDP. Our results further suggest that it is possible to asymptotically interpo-
late test data by the second data piling vector. We also note that an asymptotic
perfect classification of functional data is shown to be possible (Delaigle and
Hall, 2012). There, a key condition enabling perfect classification is that the
norm of the mean difference is comparable to or larger than the standard devia-
tion of the leading principal component scores, which is analogous to our model

with ‖μ1 − μ2‖ = O(p1/2), λ
1/2
i = O(pβ/2) for i = 1, . . . ,m and β ≤ 1.

The HDLSS asymptotic regime we adopt has been used to reveal some unique
characteristics of HDLSS data. Recent developments on the HDLSS asymptotic
studies of various multivariate methods are surveyed by Aoshima et al. (2018).

2. Linear discriminant directions in high dimensions

2.1. Negatively ridged discriminant directions

For i = 1, 2, let Xi1, . . . , Xini ∈ R
p denote a sample drawn from an absolutely

continuous distribution on R
p with mean μi and common covariance matrix Σ.

We assume p > n := n1 + n2. Let d = X̄1 − X̄2 be the vector of sample mean
difference, and S =

∑2
i=1

∑ni

j=1(Xij − X̄i)(Xij − X̄i)
T /n be the sample within-

group covariance matrix. We consider a ridge-type discriminant vector: For a
ridge-parameter α ∈ (−∞,∞),

w̃α = αp (S + αpIp)
−1

d, (2.1)

where αp = αp. We write wα = w̃α/‖w̃α‖. Allowing αp to increase along p will
be convenient in our analysis of diverging p. In (2.1), we have extended the
range of ridge parameter to include negative real values. This is in contrast to
the conventional range α ∈ [0,∞) considered in Friedman (1989); Guo, Hastie
and Tibshirani (2007); Lee, Ahn and Jeon (2013) and many others. The price we
pay is that (2.1) is in fact ill-defined for some α ∈ (−∞, 0] with rank-deficient
S + αpIp. In what follows, we precisely redefine wα for α ∈ [−∞,∞], by filling
in the ill-defined locations.
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Let S = Û1Λ̂Û
T
1 be the eigen-decomposition of S such that Û1 = [û1, . . . ,

ûn−2] consists of the orthogonal eigenvectors, and Λ̂ be the diagonal matrix

whose ith entry λ̂i (i = 1, . . . , n − 2) is the ith largest eigenvalue. (There are
exactly n − 2 positive eigenvalues almost surely.) Let Û2 be a p × (p − n + 2)
matrix whose columns form an orthonormal basis for the nullspace of S. Then,
for α at which (2.1) is defined, we decompose w̃α into three parts:

w̃α = αp(S + αpIp)
−1d = αpÛ1

(
Λ̂ + αpI

)−1

ÛT
1 d+ Û2Û

T
2 d

=

m∑
i=1

αp

λ̂i + αp

ûiû
T
i d+

n−2∑
i=m+1

αp

λ̂i + αp

ûiû
T
i d+ Û2Û

T
2 d. (2.2)

The decomposition above reveals that wα as well as w̃α are decomposed into
the weighted sum of projections of the mean difference d onto three orthogonal
subspaces. The first two subspaces belong to the column space of S. We choose
for the first m sample eigenvectors û1, . . . , ûm to constitute the first subspace,
in the anticipation that the role of the leading m eigenvectors is distinct from
the rest of eigenvectors under the m-component model we consider. The last
subspace, spanned by Û2, is the nullspace of S.

The set of α at which (2.2) is not defined is {0,±∞} ∪ {−λ̂i/p : i =
1, . . . , n − 2}. It can be seen that the last term of (2.2) is parallel to the
maximal data piling direction, and that limα→0 wα = wMDP. Similarly, we
have limα→±∞ wα = d/‖d‖ and limα↑−λ̂i/p

wα = ûi, limα↓−λ̂i/p
wα = −ûi,

(i = 1, . . . , n − 2). We set w0 := wMDP, w±∞ := d/‖d‖, and w−λ̂i/p
:= ûi, so

that wα is left-continuous at −λ̂i/p and continuous elsewhere. Then, the discon-
tinuities of the parameterization path α 	→ wα are exactly the n− 2 sign flips,
each of which occurs when −αp crosses an eigenvalue of S.

It helps to visualize the modified wα as a trajectory along varying α. For this,
temporarily assume a one-component model, i.e., m = 1. The parameterization
path α 	→ wα is visualized in Fig. 1 for a high-dimensional data with p = 5000
and n1 = n2 = 20 (the model for this data set is decribed in Section 4.1).
To visualize the p-vector wα in a three-dimensional plot, we make use of the
decomposition (2.2). For any α ∈ [−∞,∞], the ridged discriminant vector wα

lies in the (n− 1)-dimensional subspace SX spanned by {Xij − X̄}, where X̄ =∑
i

∑
j Xij/n, or equivalently, by the column space of S and d. Recall that

m = 1 in this example. The first and third terms of (2.2) are spanned by
û1, wMDP ∈ SX , respectively, which provide the two axes of the figure. The
remaining n − 3 dimensions of SX , corresponding to the second term of (2.2),
are collapsed to a nonnegative value. For the data set used in Fig. 1, it is
apparent that, for most values of α, wα is close to the plane spanned by û1

and wMDP. It turns out that the subspace S = span(û1, wMDP) is the only
meaningful subspace for large p, while the nullspace of S, within SX , does not
possess any discriminative information. We will show this more carefully in the
next subsection. For general m ≥ 1, the subspace of interest is

S = span(û1, . . . , ûm, wMDP). (2.3)
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Fig 1. The parameterization path of wα lies close to S for most α. (a) Shown are the path
α �→ (wT

α û1, bα, wT
αwMDP), where bα = ‖w̃(2)‖/‖w̃α‖ ≥ 0, and w̃(2) is the second term of

(2.2). w0 is the maximal data piling direction, and w±∞ is the mean difference direction. As

α crosses −λ̂1/p, wα is flipped. (b) The path of wα projected onto S = span(û1, wMDP). See
Appendix B for details on the second axis and bα to see how the n−3 sign flips are suppressed
for visualization.

2.2. Concentration of ridge directions in high dimensions

Key conditions are described with respect to the mean difference μ = μ1 − μ2

and the principal component structure of the common covariance matrix Σ.
Denote the eigen-decomposition of Σ by Σ = UΛUT =

∑p
i=1 λiuiu

T
i , where U =

[u1, . . . , up] collects the eigenvectors, and the entries of the diagonal matrix Λ are
the ordered eigenvalues λ1 ≥ · · · ≥ λp. Assumptions 1–3 play important roles
in describing the high-dimensional asymptotic behaviors of wα and associated
classifiers.

Assumption 1. For m ≥ 1, σ2
i , τ

2
i > 0 and 0 ≤ β ≤ 1, the eigenvalues

of the covariance matrix Σ are λi = pβσ2
i + τ2i (i = 1, . . . ,m) and λi = τ2i

(i = m+1, . . . , p), where max τ2i is uniformly bounded, and
∑p

i=1 τ
2
i /p → τ2 as

p → ∞ for some τ2 > 0.

Remark 2.1. A seemingly more relaxed model may be assumed in place of As-
sumption 1. For example, for some natural number M , we may set 1 ≥ β1 ≥
β2 ≥ · · · ≥ βM ≥ 0 and λi = O(pβi) for i = 1, . . . ,M . This model is asymptot-
ically equivalent to the model assumed in Assumption 1 with m = #{βi = 1},
due to the following reason: There is no difference between λi = O(pβi) with
βi < 1 and λi = O(1) in the HDLSS asymptotic results we derive; see, e.g.,
Lemma 3.6. Note that allowing βi ∈ (0, 1) for i > m should make a difference
in the convergence rates of our conclusions. Since we do not explicitly state the
rates of convergence, we use Assumption 1 for the sake of simplicity.

Assumption 2. There exists δ ∈ (0,∞) such that ‖μ‖2/p → δ2 as p → ∞.

For a vector w ∈ R
p and a subspace A of Rp, we write PA and PAw for the

orthogonal projection matrix and the orthogonal projection of w, respectively,
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onto A. Let Um = span(u1, . . . , um) be the subspace formed by the first m
leading eigenvectors.

Assumption 3. There exists k ∈ [0, 1) such that ‖PUmμ‖/‖μ‖ → k as p → ∞.
Moreover, there exists ki ∈ [0, 1) such that uT

i μ/‖μ‖ → ki as p → ∞ for i =
1, . . . ,m.

The m-component model in Assumption 1 is routinely assumed in classifica-
tion problems (Qiao et al., 2010; Ahn and Marron, 2010; Yata and Aoshima,
2012) and is a special case of spiked covariance models (Hellton and Thore-
sen, 2017; Jung, Lee and Ahn, 2018; Ishii, Yata and Aoshima, 2019; Fan et al.,
2021). The parameter β ∈ [0, 1] determines the order of magnitude of the m
leading eigenvalues λ1, . . . , λm of Σ. The asymptotic result obtained by assum-
ing β ∈ (0, 1) is equivalent to the simple null case β = 0 (cf. Ahn et al., 2007;
Yata and Aoshima, 2020), so we pay a special attention to the β = 1 case. Note
that the case of β = 0 (or, equivalently, m = 0) is easier to classify, since the
Mahalanobis distance ‖Σ−1/2μ‖2 is strictly larger than that under β = 1 and
m ≥ 1. Assumption 3 introduces k that controls the asymptotic portion of the
mean difference μ along the m-dimensional principal subspace Um. We do not
allow k = 1, as in such a case the mean difference vector μ is completely within
the subspace Um with larger variance. Put differently, the quantity 1 − k2 > 0
is the portion of the mean difference in the subspace of relatively smaller mag-
nitude of noise.

The class of distributions we consider is given by the following assumption
on the true principal scores zij = Λ−1/2UT (Xij − μi). These principal scores
may not be independent with each other unless we assume normality.

Assumption 4. The elements of the p-vector zij have uniformly bounded fourth
moments, and for each p, zij consists of the first p elements of an infinite random
sequence (z(1), z(2), . . .)i,j , which is ρ-mixing under some permutation.

One of our main tools of analysis is the law of large numbers applied across
variables (p → ∞), rather than across sample (n → ∞). For this, the depen-
dency among the principal scores is controlled by the ρ-mixing condition; see
Appendix A for definition. A sequence of independent normally distributed ran-
dom variables satisfies the ρ-mixing condition. Assumption 4 is much weaker
than normality and independence, yet it enables an application of the law of
large numbers, as shown in Jung and Marron (2009).

We are now ready to state our result on wα. We define Angle (w,A) :=
cos−1{|wTPAw|/(‖w‖‖PAw‖)}. For two unit vectors w1, w2 ∈ R

p, Angle(w1,
w2) = cos−1 |wT

1 w2| is the acute angle formed by the two vectors. The notation
P−→ represents convergence in probability. Throughout, we let n be fixed and
p → ∞.

Theorem 2.1. Suppose Assumptions 1–4 hold and β = 1 in Assumption 1. For
any α ∈ R \ {−τ2/n},

Angle (wα,S) P−→ 0, (2.4)
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Fig 2. (a) Diagram illustrating S and vα obtained from the data X used in Fig. 1. The arrow
corresponds to vα at α = −τ2/n. (b) Projections onto S of the data X (group 1: filled circles,
group 2: filled triangles) and an independent data set Y (group 1: circles, group 2: triangles).
The origin of the plot is at X̄. The independent data Y are concentrated along the two parallel
lines (3.1), which appear to be orthogonal to v−τ2/n, shown as the arrow in (a).

as p → ∞.

All proofs are contained in Appendix C.

Theorem 2.1 confirms that the concentration of wα towards S for almost
all values of α, illustrated in Fig. 1, is bound to happen in high dimensions.
The only exception is at α = −τ2/n, to which all scaled eigenvalues −λ̂i/p
(i = m + 1, . . . , n − 2) converge. (The asymptotic behaviors of eigenvalues of

S are stated in Lemma C.2.) Heuristically, at α = αi := −λ̂i/p ≈ −τ2/n for
i ≥ m+ 1, we have wαi = ûi, which is orthogonal to S for every p.

We remark that if the assumption β = 1 in Theorem 2.1 is replaced by β ∈
[0, 1), then a stronger, yet less interesting, statement can be given. Specifically, if
β ∈ [0, 1), then the role of û1, . . . , ûm is no longer different from the rest of sam-

ple principal component directions, and for α �= −τ2/n, Angle(wα, wMDP)
P−→ 0

as p → ∞. This can be shown by an argument used in Jung (2018). In contrast,
in the m-component model with β = 1, Angle(wα, wMDP) can be large in the
limit, depending on the choice of α, as depicted for finite p in Fig. 1(b).

Based on the above, it will be convenient to consider a projection of wα onto
S, to which almost all ridge directions converge in high dimensions. We propose
to use

vα ∝
m∑
i=1

αp

λ̂i + αp

ûiû
T
i d+ Û2Û

T
2 d, (2.5)

satisfying ‖vα‖ = 1. This vα is not exactly the projection PSwα/‖PSwα‖, be-
cause PSwα = 0 at α = −λ̂i/p for any i = m + 1, . . . , n − 2. The vα is given
by filling in the n − m − 2 undefined points of the scaled projections. It can
be seen that vα simply ignores the second term of (2.2). For the special case of
m = 1, the trajectory of the unit vectors vα over α ∈ [−∞,∞], which is a unit
semicircle on the plane S, is illustrated in Fig. 2(a).
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3. Double data piling and perfect classification

3.1. First data piling

The data piling in two-group classification problems refers to the phenomenon
that when data are projected onto a vector w, the projected data are piled
on two points, one for each group (Ahn and Marron, 2010). This “first” data
piling can be observed whenever p > n− 2. Specifically, for any vector w in the
nullspace of S, i.e., w ∈ span(Û2) in the decomposition (2.2), data piling occurs.
Among those, the maximal data piling direction wMDP uniquely maximizes the
distance between two piling locations. For example, in Fig. 2(b) the data X :=
{xij : i = 1, 2, j = 1, . . . , ni} projected to wMDP are piled on two locations on
the wMDP axis, and the distance between them is the largest. Note that wα, vα
and S depend only on the data set X .

3.2. Second data piling

The second data piling phenomenon occurs for new, independent data Y , sam-
pled from the same model as X and independent of X . One may regard X as
training data, Y as testing data. Figure 2(b) plots both X and Y of a one-
component model, i.e., m = 1, projected onto S. While Y projected on wMDP

does not exhibit a data piling, it is interesting to observe that PSY tend to lie
on two parallel straight lines, one for each group. It turns out the piling of Y
onto these two lines occurs asymptotically as p → ∞. We call this new phe-
nomenon as the second data piling, this time for independent observations. For
the direction vector v on S orthogonal to both lines, PvY exhibits data piling
on two points, asymptotically.

In the following, we show that such direction v can be identified purely from
the training data X , even before observing the new data Y . Moreover, we show
that such second data piling direction is also maximal in a sense similar to the
first maximal data piling.

We begin by focusing on the two lines, l1 and l2, in Fig. 2(b). The direction
of the parallel lines has a close connection with u1, the first true principal
component direction. Let u1,S = PSu1 be the projection of u1 onto S, and write
κMDP := ‖wT

MDP(X̄1− X̄2)‖/
√
p, which is the distance between the two piles on

the first data piling direction, scaled by
√
p. The two lines are

li = {tu1,S + κiwMDP + PSX̄/
√
p : t ∈ R} (i = 1, 2), (3.1)

where κ1 = (1−n1/n)(1−k2)δ2/κMDP, and κ2 = −(1−n2/n)(1−k2)δ2/κMDP.
The two lines l1 and l2 are parallel to u1,S .

For general cases where m ≥ 1, the two lines (3.1) are naturally extended
to two m-dimensional affine subspaces, L1 and L2. Let ui,S = PSui be the
projection of ui onto S (i = 1, . . . ,m), and write Um,S = [u1,S , . . . , um,S ]. We
define

Li =
{
Um,St+ κiwMDP + PSX̄/

√
p : t ∈ R

m
}

(i = 1, 2). (3.2)
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We now confirm that the independent data are piled along the affine subspaces.
For any observation Y ∈ Y , we write π(Y ) = i if Y belongs to group i.

Theorem 3.1. Suppose Assumptions 1–4 hold and β = 1. For any observation
Y ∈ Y, write YS := PSY/

√
p. Then, for i = 1, 2 and for any ε > 0,

lim
p→∞

P{ inf
a∈Li

‖YS − a‖ > ε | π(Y ) = i} = 0.

Theorem 3.1 reveals that exact second data piling for independent data occurs
asymptotically. Even for the finite-dimensional example in Fig. 2(b), the distance
between YS and Li is small enough to perceive the second data piling.

The parameterization of Li in (3.2) involves unknown parameters u1, . . . , um,
and it is impossible to obtain Li, or the direction orthogonal to Li, from only X .
Our next result shows that there exists an α̂, purely a function of the data X ,
such that vα̂ is a direction asymptotically perpendicular to Li. As Theorem 3.2
shows, any HDLSS-consistent estimator of −τ2/n is such an α̂. We say θ̂ is an

HDLSS-consistent estimator for θ if for any ε > 0, limp→∞ P(|θ̂ − θ| > ε) = 0.

Theorem 3.2. Suppose Assumptions 1–4 hold and β = 1. For any HDLSS-

consistent estimator α̂ of −τ2/n, Angle (vα̂, ui,S)
P−→ π/2 (i = 1, . . . ,m) as

p → ∞.

An immediate consequence of Theorem 3.2 is that the projections of any new
data Y onto vα̂ exhibit the asymptotic second data piling; as p → ∞, Pvα̂Y
pile on two distinct locations, one for each group. Note that the estimator α̂
of −τ2/n is typically negative, and the second data piling direction is a pro-
jected negatively-ridged discriminant direction. Since the scaled eigenvalues of
S converge to τ2/n (shown in Lemma C.2), candidates for α̂ include −p−1λ̂i for
i = m+ 1, . . . , n− 2. In what follows, we fix

α̂ = − τ̂2

n
= − 1

n−m− 2

n−2∑
i=m+1

λ̂i

p
. (3.3)

If L1 and L2 do not coincide, then a separating hyperplane orthogonal to vα̂,
passing X̄, is expected to provide a satisfactory classification of the independent
data Y . At the end of this subsection, we show that Li’s do not coincide in
the limit, thus perfect classification is possible. The distance between the two
parallel affine subspaces is asymptotically equivalent to the distance between the
two piles of Pvα̂Y . This leads to a natural question: Are there other directions
v ∈ SX exhibiting the second data piling phenomenon? We will see that there
are infinitely many such directions, but among those vα̂ leads to the maximal
asymptotic distance between the two piles.

The second data piling on a v ∈ SX ⊂ R
p is recognized asymptotically as p →

∞. While vα̂ is defined for any p, we wish to consider any sequence of directions,
which may not have a simple definition applicable to every p, as a candidate for
a second data piling direction. For this, it will be clearer to think of v ∈ R

p as
the pth element of an infinite sequence {v} = (v(1), . . . , v(p−1), v(p), v(p+1), . . .).
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We write {v} for such a sequence with v indicating the pth element of {v}. Let
V be the collection of sequences of unit vectors in the sample space X , that is,
V = {{v} : v ∈ SX , ‖v‖ = 1 for all p}. Let Y and Y ′ be any two independent
observations in Y from the same group. We characterize the collection of all
sequences of second data piling direction vectors as

A = {{v} ∈ V : for any Y, Y ′ with π(Y ) = π(Y ′),

1
√
p
vT (Y − Y ′)

P−→ 0, as p → ∞}. (3.4)

That is, a sequence {v} is a second-data-piling-direction sequence if all observa-
tions from the same population are projected to a single point asymptotically.
In the two-class discrimination problem, there are at most two points to which
the independent data are projected. To better understand the second data piling
directions, we use alternative but equivalent definitions of A to show that any
{v} ∈ A is asymptotically close to a sequence {w}, where each w is in the direct
sum of span(vα̂) and span({ûi}n−2

i=m+1).

Lemma 3.3. Suppose Assumptions 1–4 hold and β = 1. Let A′ be the collection
of all sequences {v} ∈ V such that for any independent {Y }

lim
p→∞

Var(p−1/2vT [Y − E{Y | π(Y ) = i}] | π(Y ) = i) = 0,

for both i = 1, 2, and A′′ = {{v} ∈ V : vTui
P−→ 0, i = 1, . . . ,m as p → ∞}.

(i) A = A′ = A′′.
(ii) For any given {v} ∈ A, there exists a sequence {w} ∈ B such that

‖w − v‖ P−→ 0 as p → ∞, where B = {{w} ∈ V : w ∈ span(vα̂) ⊕
span({ûi}n−2

i=m+1)}.

It is clear that {vα̂} ∈ B ⊂ A is a second data piling direction. Lemma 3.3(ii)
shows that other second data piling directions are given by “lifting” vα̂ on S
towards span({ûi}n−2

i=m+1).

We next show that among the many second-data-piling-direction sequences
in A, {vα̂} maximizes the limiting distance between the two piles. For {w} ∈ A,
let D(w) be the probability limit of p−1/2|wT (Y1 − Y2)| as p → ∞, if it exists
for Yi with π(Yi) = i (i = 1, 2). That is,

p−1/2|wT (Y1 − Y2)| P−→ D(w) as p → ∞, (3.5)

if the limit exists. The probability limit may not exist for, e.g., an oscillating
sequence {w}, and the limiting distance D(w) may be a random variable.

Theorem 3.4. Suppose Assumptions 1–4 hold and β = 1. Then, for any {w} ∈
A such that D(w) exists,

D(w) ≤ D(vα̂)
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with probability 1, and the equality holds if and only if ‖w−vα̂‖ P−→ 0 as p → ∞.
Moreover, for any independent observation Y ,

p−1/2vTα̂ (Y − X̄)
P−→
{

γ n2

n (1− k2)δ2, π(Y ) = 1;
−γ n1

n (1− k2)δ2, π(Y ) = 2,
(3.6)

as p → ∞, where γ is a strictly positive random variable depending only on the
first m principal scores of X .

Consequently, we may call {vα̂} a sequence of maximal second-data-piling
directions. Since vα̂ ∈ S, the result above also justifies our choice of focusing on
vα in S rather than wα in the whole sample space SX .

Theorem 3.4 also shows that the limiting maximal distance between the two
piles is γ(1 − k2)δ2. Since the two lines do not coincide in the limit, a perfect
classification occurs. To be specific, let φα(Y ;X ) be a classification rule defined
for a given α:

φα(Y ;X ) =

{
1, vTα

(
Y − X̄

)
≥ 0;

2, vTα
(
Y − X̄

)
< 0.

(3.7)

Theorem 3.5. Under the setting of Theorem 3.4, P{φα̂(Y ;X ) = π(Y )} → 1
as p → ∞.

A perfect classification occurs in the limit p → ∞, even if the sample size of
X is kept fixed, and for a negative ridge parameter α̂ < 0.

3.3. Perfect classification at negative ridge

In this subsection, we show that the perfect classification occurs only at the
negatively ridged φα, i.e., at α = α̂. Denote the limits of correct classification
rates of φα by

Pi(α) = lim
p→∞

P {φα(Y ;X ) = i | π(Y ) = i} (i = 1, 2),

P(α) = lim
p→∞

P{φα(Y ;X ) = π(Y )} =

2∑
i=1

πiPi(α).
(3.8)

For simplicity, we assume that the prior π1 = P{π(Y ) = 1} = 1 − π2 is equal
to n1/n. These limits (3.8) exist as shown in Lemma 3.6 below. There, we
provide an explicit expression of Pi(α), from which the limiting accuracy can
be evaluated.

Recall that any observation X ∈ R
p is represented by X = μi + UΛ1/2z(p),

where the elements of z(p) = (z(1), . . . , z(p))
T are the first p elements of an

infinite sequence; see Assumption 4. For a given l = 1, . . . ,m, the uncentered
lth principal score of X, uT

l X, depends only on z(l) for each and every p, and

the almost sure limit of p−1/2uT
l X exists. For Xij ∈ X , we write the lth limiting

principal score as x(l),ij , which satisfies P(limp→∞ p−1/2uT
l Xij = x(l),ij) = 1 for
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l = 1, . . . ,m. Furthermore, we denote xij = (x(1),ij , . . . , x(m),ij)
T . Similarly, let

y = (y(1), . . . , y(m))
T which collects the first m limiting principal scores of an

independent observation {Y }. In Lemma 3.6 below, the limiting probabilities
Pi(α) depend on the distribution of

ξα =
(
nα+ τ2

)
(y − x̄)T

(
Ω+

(
nα+ τ2

)
Im
)−1

(x̄1 − x̄2), (3.9)

where x̄i =
∑ni

j=1 xij/ni, x̄ =
∑2

i=1

∑ni

j=1 xij/n and Ω =
∑2

i=1

∑ni

j=1(xij −
x̄i)(xij − x̄i)

T . Note that Ω is the within-class scatter matrix of first m limiting
principal scores, so ξα in (3.9) can be considered as a generalized linear classifier.

Lemma 3.6. Suppose Assumptions 1–4 hold.

(i) If 0 ≤ β < 1, then P1(α) = P2(α) = 1 for all α ∈ R \ {−τ2/n}.
(ii) If β = 1, then for a given α ∈ R,

P1(α) = P (ξα + C1 ≥ 0 | π(Y ) = 1) ,

P2(α) = P (ξα − C2 < 0 | π(Y ) = 2) ,
(3.10)

where Ci = (1− ni/n)(1− k2)δ2 > 0, i = 1, 2, and ξα is defined in (3.9).

Lemma 3.6 shows a sharp distinction between a null model with β ∈ [0, 1)
and the m-component model with β = 1. For β < 1, the within-group variance
of Xij becomes negligible when compared to the magnitude of the true mean
difference ‖μ‖, thus perfect classification occurs for any reasonable classifier. In
particular when β < 1, for any α �= −τ2/n, vα converges to wMDP as p → ∞.
The only exception is α = −τ2/n, at which v−τ2/n becomes orthogonal to wMDP

as p → ∞. The result on β < 1 is consistent with findings in Hall, Marron and
Neeman (2005); Jung (2018), where only the case β = 0 was studied. Note
that in those previous work an additional condition δ2 > |1/n1 − 1/n2|τ2 is
required, while we do not. This is because we use the total mean X̄ rather than
the centroid mean (X̄1 + X̄2)/2 used in Hall, Marron and Neeman (2005); Jung
(2018).

The m-component model with β = 1 is more interesting, as the limiting accu-
racy P(α) = π1P1(α) + π2P2(α) depends on the distribution of the first m true
principal component scores (z(1), . . . , z(m))

T , through ξα. Note that the sign of
ξα depends on an m-dimensional classification result based on the unobservable
principal component scores of Y and X . The positive constant Ci is related to
the maximal second-data-piling distance (3.6), and represents the magnitude of
group separation on the nullspace of span(u1, . . . , um).

With a regularizing condition on the distribution of (z(1), . . . , z(m)), the lim-
iting accuracy P(α) is uniquely maximized at α = −τ2/n. Note that at α =
−τ2/n, ξα = 0 and P(−τ2/n) = 1.

Theorem 3.7. Suppose Assumptions 1–4 hold and β = 1. If {x : fz(x) > 0} =
R

m, where fz is the joint density of (z(1), . . . , z(m))
T , then α = −τ2/n is the

unique maximizer of P(α).
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Table 1

Estimates of the accuracy (standard error) of the three classifiers. As p increases, the
accuracy of the classifier based on vα̂ becomes the highest, and approaches to 1.

p wMDP wα̂ vα̂
100 0.594 (0.027) 0.517 (0.037) 0.586 (0.028)
500 0.722 (0.021) 0.537 (0.038) 0.710 (0.021)
2000 0.847 (0.035) 0.579 (0.060) 0.871 (0.018)
5000 0.905 (0.048) 0.613 (0.071) 0.965 (0.008)
10000 0.917 (0.061) 0.645 (0.098) 0.994 (0.003)

A wide range of distributions, including the normal, satisfy the condition of
Theorem 3.7.

Remark 3.1. The regularity condition in Theorem 3.7 can be written more
directly for ξα having its support on (−∞,∞) for any α �= −τ2/n, and is relaxed
by the following condition: For any α �= −τ2/n, the density fξα of ξα satisfies
either (−∞,−C1) ∩ {x : fξα(x | π(Y ) = 1) < 0} �= ∅ or (C2,∞) ∩ {x : fξα(x |
π(Y ) = 2) > 0} �= ∅.

4. Numerical studies

In this section, we first numerically demonstrate the perfect classification of φα

(3.7) via a simulation experiment (Section 4.1), then confirm that the optimal
ridge parameter α of the classifier φα is indeed negative in some real data
situation, including well-known handwritten image datasets (Section 4.2) and a
number of microarray datasets (Section 4.3).

4.1. A simulation experiment

We compare the classification performances of the classifier φα̂ (3.7) based on
vα̂, and two others classifiers, defined similar to (3.7) but using wα̂ and wMDP in
place of vα̂, respectively. The model we use is a one-component model satisfying
Assumptions 1–4 with β = 1. Specifically, Xij ∼ Np(μi,Σ), where Σ has a com-
pound symmetry structure, Σ = 1p1

T
p +40Ip, with eigenvalues (p+40, 40, . . . , 40)

and the first eigenvector u1 = 1p/
√
p. Here, 1p is the p-vector consisting of

1. The first p/2 coordinates of the mean difference vector μ = μ1 − μ2 are
(
√
2 +

√
3)/2, and the rest (

√
2−

√
3)/2. That is, μ = (

√
p/2)u1 +

√
(3p)/4u2,

where uT
2 = (1Tp/2,−1Tp/2)/

√
p. We set n1 = n2 = 20, and p varies from 100 to

10,000. For this model, δ2 = 1, k = 1/2, σ = 1 and −τ2/n = −1.
The correct classification rates of the three classifiers, obtained from the sam-

ple of size n = 40, are empirically computed using 1,000 independent observa-
tions. This is averaged over 100 repetitions to estimate the accuracy P{φ(Y ;X )
= π(Y )} of the classifier φ. Table 1 displays the result. Using vα̂ not only out-
performs the others, but also achieves nearly perfect classification for sufficiently
large p. The poor performance of using wα̂ is due to the inflation of noisy second
term in (2.2).
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Fig 3. A graph showing the correct classification rates of the classifier φα (using vα) for
p = 100 (dashed), 500 (dots), 2,000 (dot-dashed), and 5,000 (long dashed). The limiting
accuracy P(α) is shown as a solid curve. The vertical reference lines indicate α = 0 (solid)
and α = −τ2/n = −1 (dashed).

Under the same model, Fig. 3 displays an estimate of the accuracy of φα at
α ∈ (−1.5, 0.5) for several choices of dimension. At α = 0, φ0 corresponds to
the classifier based on wMDP. For moderately large dimensions (p = 200, 500),
the accuracy increases as α increases, and positive ridge-parameters appear to
be optimal. On the other hand, for p in the thousands, the correct classification
rate is the highest near α = −τ2/n = −1, as Theorem 3.7 postulates. For this
model, near-perfect classification will occur at α = −τ2/n, for larger choices of
p.

4.2. Handwritten character recognition examples

The original MNIST (Modified National Institute of Standards and Technol-
ogy) dataset (LeCun, Cortes and Burges, 2010) contains 60,000 images of hand-
written digits 0 to 9, while the EMNIST (Extended MNIST) database (Cohen
et al., 2017) has 124,800 images of handwritten English alphabets a to z, in
28 × 28 = 784 pixels. Since the true classification boundaries for these data
are likely to be non-linear, we employed random Fourier features (Rahimi and
Recht, 2007), a popular method originally developed for kernel methods for large
scale problems. The idea of random Fourier features is to embed the original
data into high-dimensional space so that a linear inner product in the em-
bedded space approximates a non-linear kernel function. As similarly done in
Kobak, Lomond and Sanchez (2020), we obtained random Fourier features of
each image corresponding to Gaussian RBF kernel and used them as variables
for linear classification. Let xj be the 1 × 784 vector with pixel intensity val-
ues for the jth image, scaled to be bounded by −1 and 1. For each choice of
d = 500, 1000, 2000, 3000, we then calculated exp(−ixjZ), where Z ∈ R

784×d

is a random matrix consisting of independent Gaussian random variables with
mean zero and standard deviation 0.1. Taking the real and the imaginary parts
of exp(−ixjZ), we obtained p = 2d features.

For classification, we converted the multi-category problems with 10 groups
to
(
10
2

)
= 45 binary problems for the MNIST data and 26 groups to

(
26
2

)
= 325
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Table 2

Number of cases for which the optimal α is negative. The result is based on average test
errors from 10 repetitions.

p m = 1 m = 2 m = 3 m = 4

MNIST (45 cases)

1000 25 30 30 33
2000 29 37 40 41
4000 29 37 38 41
6000 33 36 41 42

EMNIST (325 cases)

1000 195 203 207 195
2000 241 270 280 289
4000 253 280 295 307
6000 252 291 307 311

binary problems for the EMNIST data. To mimic the HDLSS situation, we
randomly chose n1 = n2 = 100 images for each class as the training data for
each binary problem, and computed vα (2.5) and the corresponding classifier
φα (3.7), for each of m = 1, 2, 3, 4 and for a fine grid of α ∈ (−20, 20). Using the
hold-out data as the test data set, the test error rates are computed for each
choice of (m,α). This experiment was repeated ten times to report the average
test error rates.

For all choices of dimension p, and for all choice of the number of components
m, the optimal choice of the ridge parameter turns out to be negative for a
majority of cases considered; Table 2 collects the number of cases under which
a negative ridge parameter provides the smallest test error rate. For a reference,
Figure 4 shows the test error rates of φα over the grid of α, when the number
of leading components is set as m = 4. Patterns are similar for m = 1, 2, 3;
see Figs. D.1—D.3 in Appendix D.1. As the dimension increases, the overall
error rates decrease, and the fraction of “negative-ridge-optimal” cases (i.e., the
optimal choice of α is negative) increases as the dimension increases.

We also have repeated the above experiment with a larger sample size of
200 for each category, for the MNIST dataset. When the dimension p is large
enough, by increasing the sample size from ni = 100 to ni = 200, the optimal
ridge parameter α̃n tends to shrink to zero; see the top panels of Fig. 5. For most
cases, α̃100 < α̃200 < 0. This makes sense since the asymptotically optimal choice
of α is −τ2/n (see Theorem 3.7), which also shrinks to zero as n increases. We
also confirm that as the sample size increases (albeit still much smaller than the
dimension), the misclassification rate becomes smaller; see the bottom panels of
Fig. 5.

An additional experiment suggests that the key assumptions (Assumptions 1
and 2) are in fact satisfied for our binary classification of the MNIST dataset.
See Appendix D.2.

4.3. Microarray data examples

Statistical analysis of microarray gene expression data has been a prominent
example of the HDLSS situations. We use eight sets of public microarray data
sets to examine whether the conclusion of Section 4.2 holds. The microarray
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Fig 4. Misclassification rates of φα applied to two-group classifications of images of handwrit-
ten digits (MNIST) and alphabets (EMNIST). Each curve represents a trajectory of average
test error rates from a binary classification. The minimum error rate of each curve is marked
with a star.
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Fig 5. The effect of sample sizes to the classification. Top panels compare the empirically-
optimal ridge parameters α̃n with n = 100 and 200. Stars represent the cases where both
α̃100 and α̃200 are negative; Circles are used for all other cases. Bottom panels compare the
misclassification rates of φα̃n

for n = 100, 200. Patterns are similar for other choices of
m = 1, 2, 3.
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Table 3

A list of microarray datasets used in our experiment

ID (p, n, n1, n2) Reference
DLBCL (2648,77,19,58) Shipp et al. (2002); Glaab et al. (2012)
prostate (2135,102,52,50) Singh et al. (2002)

breast cancer (47293,128,84,44) Naderi et al. (2007)
lung cancer (2530, 37,20,17) Bhattacharjee et al. (2001)
colon cancer (2000,62,22,40) Alon et al. (1999)
methylation (1413,217,132,85) Christensen et al. (2009)

breast cancer (Gravier) (2905,168,111,57) Gravier et al. (2010)
lymphoma (7129,77,19,58) Shipp et al. (2002);

Jeffery, Higgins and Culhane (2006)

datasets we used are listed in Table 3 along with their dimensionality and sample
sizes.

Since the sample sizes are quite small for these datasets, we computed the
leave-one-out average error rates of the classifier (3.7) for a few choice of m
and for a fine grid of α. The results are visually summarized in Fig. 6. Two
datasets result in zero test error rates for any choice of α and thus excluded
from the figure and from further discussion. Out of the remaining six cases, if
we takem = 1, for all cases the optimal ridge parameters are indeed negative; for
m = 2, 3, or 4, the number of the negative-ridge-optimal is 5, 5 or 3, respectively,
out of six cases.

The axis for α in Fig. 6 is scaled so that the estimate α̂ = −τ̂2/n (3.3) is −1.
Observe from the figure that the optimal ridge parameters, if they are negative,
are typically between (−τ̂2/n, 0). This is partly due to the bias of the estimator
−τ̂2/n (the magnitude of τ̂2/n is typically larger than τ2/n). This suggests that
in practice a cross-validation over a range of ridge parameters is recommended,
rather than simply using the estimate.

In the data examples above, the true number m of leading principal compo-
nents is unknown. While the number m may be estimated, by e.g., Bai and Ng
(2002); Passemier and Yao (2014); Jung, Lee and Ahn (2018), we do not pursue
it here.

5. Discussion

In this work, we have revealed a perhaps counter-intuitive phenomenon of sec-
ond data piling in the HDLSS context, and showed that a negatively ridged
discriminant direction vα̂, with α̂ < 0, exhibits the second data piling with a
maximal property. This second data piling direction vα̂ is asymptotically orthog-
onal to the true leading principal component (PC) directions. Thus, by using
the direction vα̂ for classification, we effectively remove the excessive variability
in the leading PC directions. This observation naturally leads to an approach of
directly removing the leading PC directions (i.e., projecting the data onto the
nullspace of the leading eigenspace). This approach, via an estimation of the PC
directions, has been already proposed by Aoshima and Yata (2019) in a simi-
lar setting. Although both our classifier and the classifier of Aoshima and Yata
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Fig 6. Misclassification rates of φα applied to microarray datasets in Table 3. Each curve
represents the trajectory of leave-one-out error rates. The minimum error rate of each curve
is marked with a filled circle. Results for ‘lung cancer’ and ‘methylation’ are omitted as their
error rates are zero everywhere.

(2019) aim to achieve a similar goal of classifying in the nullspace of the lead-
ing eigenspace, there has been no discussion of double data piling in Aoshima
and Yata (2019). Our current work not only reveals the double data piling phe-
nomenon but also provides an answer to the question “why is removing the
leading eigenspace beneficial?”

Our analysis assumes that the true number of components m is known. What
happens if one chooses to use an estimate or guess m∗ �= m in defining the sub-
space S (2.3) and direction vα̂ (2.5)? In fact, the second data piling does not
occur for m∗ < m. Heuristically, if m∗ < m, then vα̂ is not asymptotically
orthogonal to the principal component directions with large variance, thus re-
sulting in no data piling. On the other hand, the second data piling occurs for
m∗ > m, with a slower rate of convergence. Rigorously confirming these facts is
rather involved, and will be addressed in our subsequent work.

It is well-known that the first data piling also occurs in high-dimensional
multi-category data situations. Suppose there are K categories. Let B be the
p× (K−1) matrix with the kth column given by X̄k− X̄K , and ST be the total
covariance matrix. If p > n −K − 1, then the first data piling happens on the
column space of S−

T B, where S−
T is the Moore-Penrose inverse of ST . Is there a

situation under which the second (asymptotic) data piling also occurs for such
multi-category classification? While we do have an answer for this question (the
answer is yes), we choose to use a binary classification framework to introduce
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the notion of the second data piling, in this work.
Ahn and Marron (2010) observed that the first maximal data piling direc-

tion for p > n − 2, when appended by the Fisher’s discriminant direction for
p ≤ n− 2, exhibits the so-called double descent phenomenon. The term double
descent is coined for the regression setting (Hastie et al., 2019). In the classifi-
cation context, the double descent phenomenon is understood as follows: The
misclassification rate initially decreases as p increases from 1, increases as p ap-
proaches to n− 2, then decreases as p diverges. The first descent, a “U”-shaped
dip, of the misclassification rate is due to the bias-variance trade-off. The second
descent occurs at the HDLSS regime. This phenomenon has been observed for a
number of real data situations, but has not been fully understood theoretically.
A natural question is whether the double descent phenomenon is observed for
the second maximal piling direction. Simulation studies (not reported here) us-
ing vα̂ (well-defined for both p ≤ n and p > n) indicate that the misclassification
rate is monotone with respect to p, thus just a single descent. This observation
parallels the empirical observations by Kobak, Lomond and Sanchez (2020) and
Wu and Xu (2020) in the regression setting, and suggests that negatively ridged
classifiers may mitigate the double decent phenomenon. The misclassification
rate corresponding to vα̂ is smaller than that using wMDP, for any p > n, which
is expected for large p by Theorem 3.7. A thorough investigation on this matter
is left as a future research agenda.

Appendix A: On ρ-mixing condition

The concept of ρ-mixing was first proposed in Kolmogorov and Rozanov (1960);
see Bradley (2005) for detailed introduction on mixing conditions. The definition
of ρ-mixing follows. For a σ-algebra A, denote the class of square-integrable and
A-measurable functions as L2(A). The ρ-type measure of dependency of two
σ-algebras F and G is defined as

ρ (F ,G) := sup{|Corr(f, g)| : f ∈ L2(F), g ∈ L2(G)}.

Suppose (Yk, k ∈ Z) is a sequence of random variables. For −∞ ≤ J ≤ L ≤ ∞,
denote the σ-algebra generated by {Yk : J ≤ k ≤ L} as FL

J . Then, the ρ-mixing
coefficient is defined as:

ρ(n) := sup
j∈Z

ρ(F j
−∞,F∞

j+n).

The sequence of random variables (Yk, k ∈ Z) is called ρ-mixing if ρ(n) −→ 0
as n → ∞.

Appendix B: Additional details for the linear discriminant direction
wα

In this section, we provide more descriptions of the parameterization path wα

has.
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Fig B.1. The parameterization path of α �→ (wT
α û1, cα, wT

αwMDP), where cα is defined in
(B.1). Whenever −αp passes the eigenvalues of S, the direction wα is reversed, and exactly
n− 2 flips occur.

B.1. Parametrization path of wα with sign flips

Main article Figure 1 plots a parametrization path of wα. For its second coor-
dinate, we use

bα =

∣∣∣∣∣
n−2∑
i=2

αp

λ̂i + αp

ûiû
T
i d

∣∣∣∣∣
/∣∣∣∣∣

n−2∑
i=1

αp

λ̂i + αp

ûiû
T
i d+ Û2Û

T
2 d

∣∣∣∣∣ ,
which is exactly ‖(I − Pû1 − PwMDP)wα‖. The term bα is for the second term
in (2.2), which lies on an (n − 3)-dimensional subspace. Suppressing it to a
non-negative real value, however, may blind the noticeable features on the
parametrization of wα such as sign-flips. Here, we use a different choice of co-
ordinate cα,

cα = Πn−2
i=2 sgn

(
λ̂i + αp

)
·
∣∣∣∣∣
n−2∑
i=2

αp

λ̂i + αp

ûiû
T
i d

∣∣∣∣∣
/∣∣∣∣∣

n−2∑
i=1

αp

λ̂i + αp

ûiû
T
i d+ Û2Û

T
2 d

∣∣∣∣∣ .
(B.1)

As depicted in Figure B.1, the coordinate cα is designed so that the sign is
reversed every time αp passes −λ̂i, which reflects the property of wα.

B.2. Projection of wα into lower dimensional space

Another cost we pay when suppressing the (n−3)-dimensional vector, the second
term in (2.2), into one coordinate is that even different vectors have the same

coordinates. For instance, bα ≈ 1 whenever αp reaches −λ̂i for i = 2, . . . , n− 2.
Figure B.2 illustrates the curve with only three axis û1, û2, wMDP. A similar
shape of the path can be obtained by altering û2 to ûi, 3 ≤ i ≤ n− 2.
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Fig B.2. The parameterization path of α �→ (wT
α û1, wT

α û2, wT
αwMDP). Exactly two sign flips

are illustrated.

Appendix C: Technical Details

C.1. Preliminary results on principal component scores

Denote horizontally concatenated p× n data matrix as X, that is,

X = [X1,1, . . . , X1,n1 , X2,1, . . . , X2,n2 ].

The within sample covariance matrix S can be expressed as follows: S = (X −
X̃)(X − X̃)T /n where X̃ = [X̄1, . . . , X̄1, X̄2, . . . , X̄2]. Consider the eigenvalue
decomposition of Σ, Σ = UΛUT where Λ = Diag{λi}pi=1, λi = pβσ2

i + τ2i
(i = 1, . . . ,m) and λi = τ2i (i = m+1, . . . , p). Also, U = [u1, . . . , up] is the p×p
orthogonal matrix where ui’s are normalized eigenvectors corresponding to λi.
Denote the matrix of principal component scores of X, Z, that is,

Z = Λ−1/2UT (X − [μ11
T
n1
, μ21

T
n2
]) =

⎡⎢⎣z
T
1
...
zTp

⎤⎥⎦ =

⎡⎢⎣z
T
1,1 zT2,1
...

...
zT1,p zT2,p

⎤⎥⎦
where zi,j is a vector of principal component scores corresponding to the j-
th principal component and the i-th class. Finally, write a vector of principal
component scores of new observation Y as ζ = (ζ1, . . . , ζp)

T
. Then, each element

of Z and ζ are uncorrelated and have mean 0 and unit variance.

Lemma C.1. Under Assumptions 1—4, the following hold simultaneously. The
limits are with respect to p → ∞.

(a) 1
pμ

TUΛ1/2ζ
P−→
{∑m

i=1 σi · kiδ · ζi, β = 1;

0, 0 ≤ β < 1.
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(b) 1
pμ

TUΛ1/2Z
P−→
{∑m

i=1 σi · kiδ · zTi , β = 1;

0, 0 ≤ β < 1.

(c) 1
pZ

TΛζ
P−→
{∑m

i=1 σ
2
i ziζi, β = 1;

0, 0 ≤ β < 1.

(d) 1
pZ

TΛZ
P−→
{∑m

i=1 σ
2
i ziz

T
i + τ2In, β = 1;

τ2In, 0 ≤ β < 1.

Proof. We begin by decomposing the quantities in (a)–(d) into two terms:

1

p
μTUΛ1/2ζ =

1

p

m∑
i=1

(uT
i μ)
√

pβσ2
i + τ2i ζi +

1

p

p∑
i=m+1

τi(u
T
i μ)ζi := A1 +A2,

1

p
μTUΛ1/2Z =

1

p

m∑
i=1

(uT
i μ)
√

pβσ2
i + τ2i z

T
i +

1

p

p∑
i=m+1

τi(u
T
i μ)z

T
i := B1 +B2,

1

p
ZTΛζ =

m∑
i=1

σ2
i p

β−1ziζi +
1

p

p∑
i=1

τ2i ziζi := C1 + C2,

1

p
ZTΛZ =

m∑
i=1

σ2
i p

β−1ziz
T
i +

1

p

p∑
i=1

τ2i ziz
T
i := D1 +D2.

The terms A2, B2, C2 are irrelevant to β, and can be shown to converge to 0
as p → ∞. Specifically, to handle A2 and B2, for any fixed l ≥ 1 let Wi ∈ R

l

(i = 1, . . . , p) be any random vectors satisfying E(Wi) = 0, Var(Wi) = Il and
Cov(Wi,Wι) = 0 for any 1 ≤ i �= ι ≤ p. Note that by Assumption 1, there exists
M < ∞ such that τi ≤ M for all i. Chebyshev’s inequality gives

P

(∥∥∥∥∥1p
p∑

i=m+1

τi(u
T
i μ)Wi

∥∥∥∥∥ > ε

)

≤ 1

p2ε2
E

⎡⎣{ p∑
i=m+1

τi(u
T
i μ)Wi

}T { p∑
i=m+1

τi(u
T
i μ)Wi

}⎤⎦
=

1

p2ε2
E

⎧⎨⎩
p∑

i=m+1

τ2i (u
T
i μ)

2WT
i Wi +

∑
m+1≤i �=ι≤p

τiτι(u
T
i μ)(u

T
ι μ)W

T
i Wι

⎫⎬⎭
=

1

p2ε2
E

{
p∑

i=m+1

τ2i (u
T
i μ)

2wT
i wi

}
≤ lM2

p2ε2

p∑
i=m+1

(uT
i μ)

2 ≤ lM2

pε2
1

p
‖μ‖2 −→ 0,

as p → ∞. Letting Wi = ζi or Wi = zi, we have A2 → 0 and B2 → 0 in
probability as p → ∞. Similarly, C2 → 0 in probability as well since

P

(∥∥∥∥∥1p
p∑

i=1

τ2i ziζi

∥∥∥∥∥ > ε

)
≤ 1

p2ε2
E

⎧⎨⎩
(

p∑
i=1

τ2i ziζi

)T ( p∑
i=1

τ2i ziζi

)⎫⎬⎭
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=
1

p2ε2
E

⎛⎝ p∑
i=1

τ4i z
T
i ziζ

2
i +
∑
i �=ι

τ2i τ
2
ι z

T
i zιζiζι

⎞⎠
=

1

p2ε2
E

(
p∑

i=1

τ4i z
T
i ziζ

2
i

)
≤ nM4

pε2
−→ 0 as p → ∞,

in which we used the fact that zi and ζi are independent.
The term D2 is irrelevant to β as well, but does not degenerate. We use

Theorem 1 of Jung and Marron (2009) which states that, in our context, if∑p
i=1 τ

4
i

(
∑p

i=1 τ
2
i )

2 −→ 0 as p → ∞, (C.1)

and Assumptions 1–4 are satisfied, then D2 =
∑p

i=1 τ
2
i ziz

T
i /p

P−→ In as p → ∞.
Since by Assumption 1, τi ≤ M and limp→∞

∑p
i=1 τ

2
i /p = τ2, (C.1) holds.

It remains to show that A1, B1, C1, and D1 converge to their respective coun-
terparts in the statement of the lemma. For β < 1, they all converge to 0 almost
surely. For β = 1, Assumptions 3–4 guarantee that with probability 1, they
converge to the random variables given in the statement. Combining the above
gives the desired result.

Let Jm be the matrix of ones of size m×m. For

J =

[ 1
n1

Jn1 O

O 1
n2

Jn2

]
, (C.2)

the group-wise centered data matrix is X − X̃ = X(In − J), where

X̃ = XJ = [X̄1, . . . , X̄1, X̄2, . . . , X̄2].

The empirical common principal components are given either by the eigende-
composition of S or by the singular-value-decomposition of X− X̃ = Û1DV̂ T

1 =∑n−2
i=1 diûiv̂

T
i , where ûi is the ith sample principal component direction and

v̂i is the vector of (normalized) sample principal component scores. Here, the
(n−2)×(n−2) diagonal matrix D collects the non-zero singular values {di}n−2

i=1

in descending order. Note that

ûi = d−1
i (X − X̃)v̂i =

1√
n
λ̂
−1/2
i (X − X̃)v̂i

=
1√
n
λ̂
−1/2
i UΛ1/2Z(In − J)v̂i,

(C.3)

where λ̂i = d2i /n is the ith largest eigenvalue of S.

We make use of the dual matrix SD = (X− X̃)T (X− X̃)/n which is a finite-
dimensional matrix and shares all n− 2 nonzero eigenvalues with S. By writing
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X − X̃ = X(In−J) and by Lemma C.1 (d), the limiting distribution of SD can
be obtained. As p → ∞,

nSD

p
=

1

p
(In − J)ZTΛZ(In − J)

P−→
{∑m

i=1 σ
2
i (In − J)ziz

T
i (In − J) + τ2(In − J) =: S0, β = 1;

τ2(In − J), 0 ≤ β < 1.

(C.4)

For a square matrix M , we denote φi(M) and vi(M) as the ith largest eigen-
value of M and corresponding eigenvector, respectively. Also, let vij(M) be the
jth coefficient of vi(M). The following lemmas give the probability limits of
eigenvalues and eigenvectors of the sample covariance matrix S, respectively.

Lemma C.2. Suppose Assumptions 1—4 are satisfied. Let an n×m matrix of
the leading m component scores as W = [σ1z1, . . . , σmzm] and Ω = WT (In −
J)W .

(i) If β = 1, then

nλ̂i

p

P−→
{
φi(Ω) + τ2, i = 1, . . . ,m;

τ2, m+ 1 ≤ i ≤ n− 2,

as p → ∞.

(ii) If 0 ≤ β < 1, then nλ̂i/p
P−→ τ2 as p → ∞ for i = 1, . . . , n− 2.

Proof. As can be seen in (C.4), we have

nSD/p = (In − J)ZTΛZ(In − J)/p

P−→
{
(In − J)(WWT + τ2In)(In − J) = S0, β = 1

τ2(In − J), 0 ≤ β < 1,

(C.5)

as p → ∞. Here, (ii) follows immediately from (C.5). While for β = 1, we get

p−1nφi(SD)
P−→ φi(S0) for i = 1, . . . , n−2 as p → ∞. To show (i), we claim that

for i = 1, . . . ,m, φi(S0) = φi(Ω) + τ2. For this, let λ be a nonzero eigenvalue of
(In−J)WWT (In−J) and v be its corresponding eigenvector. Then, there exists
u satisfying v = (In − J)u, and thus (In − J)(WWT )(In − J)u = λ(In − J)u.
Hence,

S0v = (In − J)(WWT + τ2In)(In − J)u = (λ+ τ2)(In − J)u = (λ+ τ2)v.

Since Ω = WT (In − J)W and (In − J)WWT (In − J) share their eigenvalues,
we have φi(S0) = φi(Ω) + τ2 for i = 1, . . . ,m. On the other hand, since Ω is of
rank m with probability 1, the rest of eigenvalues of S0 equals to τ2.

For β = 1, let Ṽ1 = [v1(S0), . . . , vn−2(S0)] which collects the eigenvectors of

S0 in the proof of Lemma C.2 and D̃ = Diag{d̃i}pi=1 where d̃i =
√

φi(Ω) + τ2
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for i = 1, . . . ,m and d̃i = τ for i ≥ m + 1. Then, we have the limits of right
singular vectors and singular values,

V̂1
P−→ Ṽ1 and

1
√
p
D

P−→ D̃, (C.6)

as p → ∞. The limit of eigenvector ûi is analyzed through v̂i utilizing (C.3) and
(C.6).

Finally, the following lemma suggests the limits of the sample eigenvectors
ûi and the inner product dT ûi for β ∈ [0, 1]. The results in Lemma C.3 will be
frequently used in the later sections.

Lemma C.3. Let Assumptions 1—4 hold.

(i) The limit of the inner product between the population eigenvector uι (ι =
1, . . . ,m) and the sample eigenvector ûi (i = 1, . . . ,m) depends on β;

uT
ι ûi

P−→
{√

φi(Ω)/(φi(Ω) + τ2)viι(Ω), β = 1;

0, 0 ≤ β < 1,

as p → ∞. While uT
i ûι

P−→ 0 as p → ∞ for i ≥ m+1 and ι = 1, . . . , n−2.
(ii) The limit of the inner product between the sample eigenvector ûi (i =

1, . . . ,m) and d depends on β;

1
√
p
dT ûi

P−→
m∑
j=1

√
φi(Ω)/(φi(Ω) + τ2)vij(Ω){kjδ + σj(z̄1,j − z̄2,j)},

for β = 1, and

1
√
p
dT ûi

P−→ 0 for 0 ≤ β < 1 as p → ∞,

while dT ûi/
√
p

P−→ 0 as p → ∞ for i ≥ m+ 1 and 0 ≤ β ≤ 1.

Proof.

(i) We express ûi with v̂i using (C.3),

uT
i ûι =

(
nλ̂ι

p

)− 1
2

1
√
p
uT
i UΛ

1
2Z(In − J)v̂ι =

(
nλ̂ι

p

)− 1
2 (

λi

p

) 1
2

zTi (In − J)v̂ι.

The random variables nλ̂ι/p and zTi (In − J)v̂ι are stochastically bounded since
they converge in probability as shown in Lemma C.2 and (C.6), respectively.

For 0 ≤ β < 1, since λi/p → 0 for all 1 ≤ i ≤ p, we get uT
i ûι

P−→ 0 for all

i. Similarly, uT
i ûι

P−→ 0 for β = 1 and m + 1 ≤ i ≤ p. Now, it suffices to
consider the case of β = 1 and 1 ≤ i ≤ m. Due to the duality, vi(Ω), vi(S0), and√
φi(Ω) are the ith right singular vector, left singular vector, and singular value
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of (In−J)W , respectively. Therefore, we have (In−J)Wvi(Ω) = φi(Ω)
1/2vi(S0)

for i = 1, . . . ,m. Hence, for i, ι = 1, . . . ,m,

u′
ιûi = φi(S)

− 1
2

(
λι

p

) 1
2

zTι (In − J)vi(SD)
P−→ σιz

T
ι (In − J)√
φi(Ω) + τ2

(In − J)W√
φi(Ω)

vi(Ω)

=
eTι Ωvi(Ω)√

φi(Ω)(φi(Ω) + τ2)
=

φi(Ω)e
T
ι vi(Ω)√

φi(Ω)(φi(Ω) + τ2)
=

√
φi(Ω)

φi(Ω) + τ2
viι(Ω),

as p → ∞.

(ii) Note that d = μ+UΛ1/2Z

[ 1
n1

1n1

− 1
n2

1n2

]
. We decompose the quantity dT Û1/

√
p into two terms:

1
√
p
dT ûi =

1
√
p
μT ûi +

1
√
p

[ 1
n1

1n1

− 1
n2

1n2

]T
ZTΛ1/2UT ûi.

From (C.3), (C.6), and Lemmas C.1 and C.2, we have

1
√
p
μT ûi =

1

p
μTUΛ1/2Z(In − J)v̂i

√
pd−1

i

P−→
{∑m

j=1 kjδ
√
φi(Ω)/(φi(Ω) + τ2)vij(Ω) β = 1 and i = 1, . . . ,m;

0, otherwise,

(C.7)

and

1
√
p

[ 1
n1

1n1

− 1
n2

1n2

]T
ZTΛ1/2UT ûi=

1

p

[ 1
n1

1n1

− 1
n2

1n2

]T
ZTΛZ(In − J)v̂i

√
pd−1

i

P−→
{∑m

j=1 σj(z̄1,j − z̄2,j)
√

φi(Ω)/(φi(Ω) + τ2)vij(Ω), β=1 and i=1, . . . ,m;

0, otherwise.

(C.8)

Adding (C.7) and (C.8), we get the desired results.

C.2. Proof of Theorem 2.1

Proof. Let β = 1. First, we make use of w̃α in (2.2). The limiting angle between
wα and S is analyzed through the quantity,

w̃T
αPSw̃α

‖w̃α‖‖PSw̃α‖
=

‖PSw̃α‖
‖w̃α‖

, (C.9)

where PS is the orthogonal projection operator onto S. We claim that the quan-
tity in (C.9) converges to 1 in probability. First, the following holds by Pythago-
ras’ theorem:

1

p
‖w̃α‖2 =

1

p

n−2∑
i=1

(
α

λ̂i/p+ α

)2

(ûT
i d)

2 +
1

p

∥∥∥Û2Û
T
2 d
∥∥∥
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=
1

p
‖PSw̃α‖2 +

1

p

n−2∑
i=m+1

(
α

λ̂i/p+ α

)2

(ûT
i d)

2. (C.10)

Since Lemmas C.2 and C.3 give that the last term in (C.10) converges to 0 in
probability for α �= −τ2/n, it remains to show that ‖PSw̃α‖2/p is stochastically
bounded. We decompose ‖PSw̃α‖2/p into two terms:

1

p
‖PSw̃α‖2 =

1

p

m∑
i=1

(
α

λ̂i/p+ α

)2

(ûT
i d)

2 +
1

p
‖Û2Û

T
2 d‖2.

The first term converges to a certain quantity from Lemmas C.2 and C.3,
so is thus stochastically bounded. To deal with the second term, note that
‖Û2Û

T
2 d‖2 = ‖d‖2 − ‖Û1Û

T
1 d‖2. The limit of norm of d can be derived using

Lemma C.1,

1

p
‖d‖2 =

1

p
‖μ‖2 + 2

p
μTUΛ1/2Z

[ 1
n1

1n1

− 1
n2

1n2

]
+

1

p

[ 1
n1

1n1

− 1
n2

1n2

]T
ZTΛZ

[ 1
n1

1n1

− 1
n2

1n2

]
P−→ δ2 + 2

m∑
i=1

σi · kiδ(z̄1,i − z̄2,i) +

m∑
i=1

σ2
i (z̄1,i − z̄2,i)

2 + τ2
(

1

n1
+

1

n2

)
,

(C.11)

as p → ∞. While we handle the limit of ‖Û1Û
T
1 d‖2 with Lemma C.3 (ii),

1

p
‖Û1Û

T
1 d‖2 =

1

p

m∑
i=1

|ûT
i d|2 + oP (1)

P−→
m∑
i=1

⎡⎣ m∑
j=1

{kjδ + σj(z̄1,j − z̄2,j)} vij(Ω)

⎤⎦2

φi(Ω)

φi(Ω) + τ2
,

(C.12)

as p → ∞. Note that
∑m

i=1 vij(Ω)
2 = 1 and

∑
i=1 vij(Ω)vij′(Ω) = 0 for j �= j′.

Combining this with (C.11) and (C.12) gives

1

p
‖Û2Û2d‖2 P−→ (1− k2)δ2 +

(
1

n1
+

1

n2

)
τ2

+

m∑
i=1

⎡⎣ m∑
j=1

{kjδ + σj(z̄1,j − z̄2,j)} vij(Ω)

⎤⎦2

τ2

φi(Ω) + τ2
,

(C.13)

as p → ∞. We denote the limit of (C.13) as κ2 for κ > 0. Since ‖PSw̃α‖2/p
converges in probability, and we come to conclusion. We make use of random
variable κ in the proof of Theorem 3.1.

C.3. Proof of Theorem 3.1

Proof. We continue to assume β = 1. Note that uι,S = PSuι =
∑m

i=1(u
T
ι ûi)ûi+

(uT
ι wMDP)wMDP. We begin with focusing on the inner products uT

ι ûi and
uT
ι wMDP.
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On uT
ι ûi. The limit of the inner product uT

ι ûi (ι, i = 1, . . . ,m) can be derived
immediately from Lemma C.3 (i): As p → ∞,

uT
ι ûi

P−→
√

φi(Ω)/(φi(Ω) + τ2)viι(Ω), (C.14)

where Ω is defined in Lemma C.2.

On uT
ι wMDP. We claim that as p → ∞,

uT
ι wMDP

P−→ 1

κ

m∑
j=1

m∑
l=1

{klδ + σl(z̄1,l − z̄2,l)}vjι(Ω)vjl(Ω)
τ2

φj(Ω) + τ2
, (C.15)

for ι = 1, . . . ,m where κ is defined in (C.13). To show (C.15), recall that
wMDP = Û2Û

T
2 d/‖Û2Û

T
2 d‖ and Û2Û

T
2 d = d− Û1Û

T
1 d. Since the limits of quan-

tities uT
ι Û1, Û

T
1 d/

√
p and ‖Û2Û

T
2 d‖√p are already analyzed in Lemma C.3 and

(C.13), it suffices to show that uT
ι d/

√
p

P−→ kιδ + σι(z̄1,ι − z̄2,ι), which is given
by Assumptions 1—3;

1
√
p
uT
ι d =

1
√
p
uT
ι μ+

1
√
p
uT
ι UΛ1/2Z

[ 1
n1

1n1

− 1
n2

1n2

]
=

1
√
p
uT
ι μ+

1
√
p
λ1/2
ι zTι

[ 1
n1

1n1

− 1
n2

1n2

]
P−→ kιδ + σι(z̄1,ι − z̄2,ι),

as p → ∞. We now deal with L1 and L2 in (3.1) which generally exist on S,

Li = {Um,St+ κiwMDP + PSX̄/
√
p : t ∈ R

m} (i = 1, 2),

where κ1 = (1−η1)(1−k2)δ2/κMDP and κ2 = −(1−η2)(1−k2)δ2/κMDP having
η1 = n1/n and η2 = n2/n. The distance between two piles induced by wMDP,
p1/2κMDP, is exactly ‖Û2Û

T
2 d‖ since wMDP = Û2Û

T
2 d/‖Û2Û

T
2 d‖. Also, as shown

in (C.13), κMDP
P−→ κ as p → ∞.

For Y ∈ Y , we temporarily assume π(Y ) = 1. Let to = (t1, . . . , tm)T with
tj = η2kjδ + σj(ζj − z̄j) and let vo = Um,St

o + κ1wMDP + PSX̄/
√
p ∈ L1. We

claim that ‖YS−vo‖2 P−→ 0 as p → ∞. Since YS−vo ∈ S, it suffices to show that

as p → ∞, (a) ûT
i (YS − vo)

P−→ 0 for i = 1, . . . ,m and (b) wT
MDP(YS − vo)

P−→ 0.

Note that ûT
i (YS − vo) = p−1/2ûT

i (Y − X̄)− ûT
i

∑m
j=1 tjuj,S and (C.14) gives

the limit of the second term,

ûT
i

m∑
j=1

tjuj,S =

m∑
j=1

tj û
T
i uj

P−→
m∑
j=1

tjvij(Ω)
√

φi(Ω)/(φi(Ω) + τ2).
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Also, from Lemma C.1 and (C.7),

1
√
p
ûT
i

(
Y − X̄

)
=

η2√
p
ûT
i μ+

1
√
p
ûT
i UΛ1/2

(
ζ − 1

n
Z1n

)
=

η2√
p
ûT
i μ+

m∑
j=1

ûT
i uj · σj(ζj − z̄j) + oP (1)

=

m∑
j=1

η2kjδvij(Ω)

√
φi(Ω)

φi(Ω) + τ2
+

m∑
j=1

σj(ζj − z̄j)vij(Ω)

√
φi(Ω)

φi(Ω) + τ2
+ oP (1)

P−→
m∑
j=1

{η2kjδ + σj(ζj − z̄j)}vij(Ω)
√

φi(Ω)

φi(Ω) + τ2
=

m∑
j=1

tjvij(Ω)

√
φi(Ω)

φi(Ω) + τ2
,

(C.16)

as p → ∞. Therefore, (a) follows.
For (b), note that wT

MDP(YS−vo) = p−1/2wT
MDP(Y −X̄)−wT

MDP

∑m
j=1 tjuj,S−

κ1. From (C.15),

wT
MDP

m∑
j=1

tjuj,S =
m∑
j=1

tjw
T
MDPuj

P−→ 1

κ

m∑
j=1

tj

m∑
l=1

m∑
l′=1

{klδ + σl(z̄1,l − z̄2,l)}vl′j(Ω)vl′l(Ω)
τ2

φl′(Ω) + τ2
.

(C.17)

To evaluate the limit of p−1/2wT
MDP(Y − X̄), we decompose it into two terms,

p−1/2wT
MDP(Y − X̄) = p−1/2 (Û2Û

T
2 d)T

‖Û2ÛT
2 d‖

(Y − X̄) = κ−1
MDP (K1 −K2) ,

whereK1 = dT (Y −X̄)/p andK2 = (Û1Û
T
1 d)T (Y −X̄)/p. Routinely, the limit of

K1 can be evaluated through the expression of d and Y − X̄ using the principal
scores and Lemma C.1.

K1 =
1

p

(
μ+ UΛ1/2Z

[ 1
n1

1n1

− 1
n2

1n2

])T {
η2μ+ UΛ1/2

(
ζ − 1

n
Z1n

)}
=

1

p

{
η2‖μ‖2 + η2μ

TUΛ1/2Z

[ 1
n1

1n1

− 1
n2

1n2

]
+ μTUΛ1/2

(
ζ − 1

n
Z1n

)

+

[ 1
n1

1n1

− 1
n2

1n2

]T
ZTΛ

(
ζ − 1

n
Z1n

)}
P−→ η2(1− k2)δ2 +

m∑
j=1

{kjδ + σj(z̄1,j − z̄2,j)} {η2kjδ + σj (ζj − z̄j)} ,

(C.18)
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as p → ∞. Meanwhile, (C.16) and Lemma C.3 (ii) gives

K2
P−→

m∑
j=1

m∑
l=1

m∑
l′=1

[
{klδ + σl (z̄1,l − z̄2,l)} {η2kl′δ + σl′ (ζl′ − z̄l′)}

× φj(Ω)

φj(Ω) + τ2
vjl(Ω)vjl′(Ω)

]
. (C.19)

Combining (C.13), (C.18) and (C.19), we have

p−1/2wT
MDP(Y − X̄)

P−→ κ−1

[
η2(1− k2)δ2+

m∑
j=1

m∑
l=1

m∑
l′=1

{klδ + σl (z̄1,l − z̄2,l)} {η2kl′δ + σl′ (ζl′ − z̄l′)}
τ2vjl(Ω)vjl′(Ω)

φj(Ω) + τ2

]
.

(C.20)

Simply applying the results in (C.14), (C.15), (C.17) and (C.20), we get (b).
The same goes for Y ∈ Y with π(Y ) = 2.

C.4. Proof of Theorem 3.2

Proof. We begin by introducing

ṽα =

m∑
i=1

α

λ̂i/p+ α

(
1
√
p
ûT
i d

)
ûi +

1
√
p
‖Û2Û

T
2 d‖wMDP, (C.21)

where vα ∝ ṽα. Let α̂ be an HDLSS-consistent estimator for −τ2/n. The quan-
tity of interest is the angle between ṽα̂ and uι,S ,

Angle(ṽα̂, uι,S) = cos−1

(
ṽTα̂uι,S

‖ṽα̂‖‖uι,S‖

)
, (C.22)

for ι = 1, . . . ,m. Combining (C.21) and that uι,S =
∑m

i=1(u
T
ι ûi)ûi +

(uT
ι wMDP)wMDP, the limit of the inner product ṽTα̂uι,S becomes

ṽTα̂uι,S =
m∑
i=1

α̂

λ̂i/p+ α̂

(
1
√
p
ûT
i d

)(
uT
ι ûi

)
+

1
√
p
‖Û2Û

T
2 d‖

(
uT
ι wMDP

)
. (C.23)

The limit of the right-hand-side of (C.23) can be obtained through (C.13),
(C.14), (C.15), Lemmas C.2 and C.3 (ii),

ṽTα̂uι,S
P−→

m∑
i=1

−τ2

φi(Ω)

m∑
j=1

{kjδ + σj (z̄1,j − z̄2,j)} vij(Ω)
√

φi(Ω)

φi(Ω) + τ2
viι(Ω)

√
φi(Ω)

φi(Ω) + τ2
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+

m∑
i=1

m∑
j=1

{kjδ + σj (z̄1,j − z̄2,j)} vij(Ω)viι(Ω)
τ2

φi(Ω) + τ2
= 0,

as p → ∞. In order to show that the quantity (C.22) converges to π/2 in prob-
ability, it remains to verify that the denominator in (C.22) does not degenerate
as p → ∞. First, (C.14) and (C.15) give that

‖uι,S‖2 P−→
m∑
i=1

viι(Ω)
2 φi(Ω)

φi(Ω) + τ2
+ (C.24)

1

κ2

⎡⎣ m∑
j=1

m∑
l=1

{klδ + σl(z̄1,l − z̄2,l)}vjι(Ω)vjl(Ω)
τ2

φj(Ω) + τ2

⎤⎦2

> 0. (C.25)

Also, from (C.13), Lemmas C.2 and C.3 (ii),

‖ṽα̂‖2 P−→
m∑
i=1

τ4

φi(Ω)(φi(Ω) + τ2)

⎡⎣ m∑
j=1

{kjδ + σj (z̄1,j − z̄2,j)} vij(Ω)

⎤⎦2

+ κ2

=:
1

γ2
> 0.

(C.26)

By (C.24) and (C.26), the desired result is obtained. The positive term γ depends
on the first true principal scores of training data, which are invariant to p. We
make use of γ in Theorem 3.5.

C.5. Proof of Lemma 3.3

Proof. Recall that we assume β = 1.

(i) For Y, Y ′ ∈ Y with π(Y ) = π(Y ′), denote ζ and ζ ′ as the vectors consisting
of principal scores of Y and Y ′, respectively. That is, Y − E(Y ) = UΛ1/2ζ and
Y ′ − E(Y ′) = UΛ1/2ζ ′. For any v ∈ SX ,

1
√
p
vT (Y − Y ′) =

1
√
p
vTUΛ1/2(ζ − ζ ′)

=

m∑
i=1

(
λi

p

)1/2

vTui(ζi − ζ ′i) +
1
√
p

p∑
i=m+1

τiv
Tui(ζi − ζ ′i),

(C.27)

where ζi and ζ ′i is ith component of ζ and ζ ′, respectively. With the aim of the
second term in (C.27) converging to 0, we use a similar strategy as in Lemma
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C.1. For any ε > 0,

P

(∣∣∣∣∣ 1
√
p

p∑
i=m+1

τiv
Tui(ζi − ζ ′i)

∣∣∣∣∣ > ε

)
≤ 1

pε2
E

⎛⎝∣∣∣∣∣
p∑

i=m+1

τiv
Tui(ζi − ζ ′i)

∣∣∣∣∣
2
⎞⎠

=
1

pε2
E

⎧⎨⎩
p∑

i=m+1

τ2i (v
Tui)

2(ζi−ζ ′i)
2+

∑
m+1≤i �=ι

τiτι(v
Tui)(v

Tuι)(ζi−ζ ′i)(ζι−ζ ′ι)

⎫⎬⎭
=

1

pε2
E

{
p∑

i=m+1

τ2i (v
Tui)

2(ζi−ζ ′i)
2

}
≤M2

pε2
E

{
p∑

i=m+1

(vTui)
2(ζi−ζ ′i)

2

}
≤ 2M2

pε2
.

(C.28)

The first inequality is Chebyshev’s inequality and the second equality holds
because X , Y and Y ′ are independent. The result in (C.28) gives that the
second term in (C.27) converges to 0 in probability as well as in L2. Therefore,
we get

1
√
p
vT (Y − Y ′) =

m∑
i=1

σi(ζi − ζ ′i)v
Tui + oP (1).

Since ζ and ζ ′ are invariant to p, above equation implies that vT (Y −Y ′)/
√
p

P−→
0 if and only if vTui

P−→ 0 for i = 1, . . . ,m, in other words, A = A′′.
Now, we show that A = A′. First, A′ ⊂ A is clear due to Chebyshev’s inequal-

ity. For the converse, it remains to show that Var{p−1/2vT [Y − E{Y |π(Y ) =
j}]|π(Y ) = j} = E{p−1(vT [Y − E{Y |π(Y ) = j}])2|π(Y ) = j} → 0 as p → ∞
for {v} ∈ A and j = 1, 2. Since for both j = 1, 2,

p−1/2vT [Y − E{Y |π(Y ) = j}] =
m∑
i=1

(
λi

p

)1/2

vTuiζi + p−1/2

p∑
i=m+1

τiv
Tuiζi,

(C.29)

if we follow the same logic in (C.28), the second term in (C.29) converges to
0 in L2. Hence, it suffices to show that E{λi(v

Tui)
2ζ2i /p} −→ 0 as p → ∞

for i = 1, . . . ,m. Note that λi/p = σ2
i + O(p−1) and (vTui)

2 ≤ 1. Therefore,
Assumption 4 guarantees that for i = 1, . . . ,m, the sequence {λi(v

Tui)
2ζ2i /p},

which converges to 0 in probability since {v} ∈ A = A′′, has uniformly bounded
second moments, so is uniformly integrable. Thus, with Vitali’s convergence

theorem, p−1/2λ
1/2
i vTuiζi also converges to 0 in L2 for i = 1, . . . ,m, which

gives A ⊂ A′.

(ii) For an HDLSS-consistent α̂, write Bp = span(vα̂) ⊕ span({ûi}n−2
i=m+1), an

(n−m− 1)-dimensional subspace of SX ⊂ R
p. For each p, let {vα̂, f1, . . . , fm}

forms an orthogonal basis of S. Consequently, {vα̂, f1, . . . , fm, ûm+1, . . . , ûn−2}
forms an orthogonal basis for SX . For a fixed {v} ∈ A, write v = a0vα̂ +∑m

i=1 aifi +
∑n−2

i=m+1 aiûi. Theorem 3.2 and Lemma C.3 (i) gives that vα̂
Tuι =
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vα̂
TPSuι = vα̂

Tuι,S
P−→ 0 for ι = 1, . . . ,m and ûT

i uι
P−→ 0 for i ≥ m + 1 and

ι = 1, . . . ,m, respectively. Since vTuι
P−→ 0 for {v} ∈ A and ι = 1, . . . ,m, aι

(ι = 1, . . . ,m) converges to 0 in probability. Consequently, ‖PBpv‖2 = ‖v‖2 −∑m
ι=1 a

2
ι

P−→ 1. Now, let {w} ∈ Bp with w = PBpv/‖PBpv‖ ∈ Bp for all p. Then,

wT v = ‖PBpv‖
P−→ 1, which gives that ‖w − v‖ P−→ 0 as p → ∞.

C.6. Proof of Theorem 3.4

Proof. Let β = 1 and α̂ be an HDLSS-consistent estimator of −τ2/n. We use
same notation as in the proof of Lemma 3.3. For any {w} ∈ A such that D(w)
in (3.5) exists, the triangle inequality gives

|p−1/2wTμ−D(w)| ≤ p−1/2|wT {Y1−E(Y1)}|+p−1/2|wT {Y2−E(Y2)}|+oP (1),

which implies that |p−1/2wTμ| P−→ D(w). Combining Lemma 3.3 and Lemma C.3
(i), for each i = m + 1, . . . , n − 2, {ûi} belongs to A. Moreover, from (C.7),
D(ûi) = 0. Using the notation from the proof of Lemma 3.3, w = a0vα̂ +∑m

i=1 aifi +
∑n−2

i=m+1 aiûi while ai = oP (1) for i = 1, . . . ,m. From the triangle
inequality,

∣∣∣∣ 1
√
p
vT (Y1 − Y2)

∣∣∣∣ ≤ 1
√
p

{ ∣∣a0vα̂T (Y1 − Y2)
∣∣+ m∑

i=1

∣∣∣aifiT (Y1 − Y2)
∣∣∣

+

n−2∑
i=m+1

∣∣aiûT
i (Y1 − Y2)

∣∣ }

= |a0|D(vα̂) + oP (1) +

n−2∑
i=m+1

|ai|D(ûi)

= |a0|D(vα̂) + oP (1).

(C.30)

Since |a0| ≤ 1, the desired results are obtained immediately from (C.30). Here,

the equality holds if and only if a0
P−→ 1, which is also equivalent to that ‖w −

vα̂‖ P−→ 0.

For the second part of Theorem 3.4, recall ṽα in (C.21) and let vTα̂ (Y −
X̄)/

√
p = M/‖ṽα̂‖ where Y ∈ Y and M = ṽTα̂ (Y − X̄)/

√
p. Since 1/‖ṽα̂‖ P−→

γ > 0 in (C.26), it suffices to show that

M
P−→
{
η2(1− k2)δ2, for π(Y ) = 1;

−η1(1− k2)δ2, for π(Y ) = 2.
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Assume that π(Y ) = 1. The definition of ṽα̂ in (C.21) gives

M =

m∑
i=1

α̂

λ̂i/p+ α̂

(
1
√
p
ûT
i d

){
1
√
p
ûT
i (Y − X̄)

}
+

1
√
p
‖Û2Û

T
2 d‖

{
1
√
p
wT

MDP(Y − X̄)

}
.

(C.31)

We can derive the limit of M through simple arithmetics with the limits of the
random variables in (C.31) which are already found in (C.13), (C.17), (C.20),
Lemma C.2 and C.3 (ii). Specifically,

M
P−→

m∑
i=1

−τ2

φi(Ω)

m∑
j=1

√
φi(Ω)

φi(Ω) + τ2
{kjδ + σj (z̄1,j − z̄2,j)} vij(Ω)

×
m∑

j′=1

√
φi(Ω)

φi(Ω) + τ2
{η2kj′δ + σj′ (ζj′ − z̄j′)} vij′(Ω) + η2(1− k2)δ2

+

m∑
i=1

τ2

φi(Ω) + τ2

m∑
j=1

{kjδ + σj (z̄1,j − z̄2,j)} vij(Ω)

×
m∑

j′=1

{η2kj′δ + σj′ (ζj′ − z̄j′)} vij′(Ω)

= η2(1− k2)δ2 > 0,

(C.32)

as p → ∞. For Y ∈ Y with π(Y ) = 2, M
P−→ −η1(1 − k2)δ2 < 0 as p → ∞ is

similarly verified.

C.7. Proof of Theorem 3.5

Proof. The correct classification rate of φα̂ is

P{φα̂(Y ;X ) = π(Y )} =

2∑
i=1

P{φα̂(Y ;X ) = i|π(Y ) = i}P{π(Y ) = i}.

Here, the event {φα̂(Y ;X ) = 1} is equivalent to that M ≥ 0 where M =
ṽTα̂ (Y − X̄)/

√
p. Since M converges to strictly positive quantity η2(1−k2)δ2 for

Y ∈ Y with π(Y ) = 1, as shown in (C.32), we have P{M ≥ 0|π(Y ) = 1} → 1.
Similar argument can be used for Y ∈ Y with π(Y ) = 2, leading that P{M <
0|π(Y ) = 2} → 1. Integrating these, we have P{φα̂(Y ;X ) = π(Y )} → 1 as
p → ∞.
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C.8. Proof of Lemma 3.6

Proof. The performance of φα is analyzed through the inner product Nα =
ṽTα (Y − X̄)/

√
p where Y ∈ Y . Inspecting (C.21), the quantity Nα becomes

Nα =
m∑
i=1

α

λ̂i/p+ α

(
1
√
p
ûT
i d

){
1
√
p
ûT
i (Y − X̄)

}
+

1
√
p
‖Û2Û

T
2 d‖

{
1
√
p
wT

MDP(Y − X̄)

}
.

(C.33)

Now, we aim to obtain the limit of Nα.

(ii) Assume that β = 1 and π(Y ) = 1. Utilizing the results in (C.13), (C.17),
(C.20), Lemmas C.2 and C.3 (ii), we get the limit of Nα,

Nα
P−→

m∑
i=1

α

τ2/n+ φi(Ω)/n+ α

φi(Ω)

τ2 + φi(Ω)

×
m∑
j=1

{kjδ + σj (z̄1,j − z̄2,j)} vij(Ω)

×
m∑

j′=1

{η2kj′δ + σj′ (ζj′ − z̄j′)} vij′(Ω) + η2(1− k2)δ2

+
m∑
i=1

τ2

τ2 + φi(Ω)

∑
j=1

{kjδ + σj (z̄1,j − z̄2,j)} vij(Ω)

×
m∑

j′=1

{η2kj′δ + σj′ (ζj′ − z̄j′)} vij′(Ω)

= η2(1− k2)δ2 +

m∑
i=1

τ2 + nα

φi(Ω) + τ2 + nα

∑
j=1

{kjδ + σj (z̄1,j − z̄2,j)} vij(Ω)

×
m∑

j′=1

{η2kj′δ + σj′ (ζj′ − z̄j′)} vij′(Ω)

d
= η2(1− k2)δ2 +

(
nα+ τ2

)
(y − x̄)T

(
Ω+

(
nα+ τ2

)
Im
)−1

(x̄1 − x̄2)

= ξα + C1.

Here, xi,j and y are defined in Section 3.3 and X
d
= Y means that two random

variables are equal in distribution. Since the convergence in probability implies
the convergence in distribution, P1(α), the asymptotic correct classification rate
of φα given that π(Y ) = 1, becomes

P1(α) = lim
p→∞

P{φα(Y ;X ) = 1|π(Y ) = 1}

= lim
p→∞

P{Nα ≥ 0|π(Y ) = 1}
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= P{ξα + C1 ≥ 0|π(Y ) = 1}.

Similar arguments applied to P2(α) leads that Nα
P−→ ξα − C2 and P2(α) =

P{ξα − C2 < 0|π(Y ) = 2}.

(i) Most part before this proof covered the case when β = 1. Here, we assume
0 ≤ β < 1, which shows a sharp contrast with β = 1. We begin with re-
calculating the limit of quantities composing Nα in (C.33). First, the leading
eigenvalues no longer show any difference with the rest eigenvalues in the limit

and λ̂i/p
P−→ τ2/n for i = 1, . . . ,m; see Lemma C.2. Hence, we exclude the case

α = −τ2/n since otherwise the first term in (C.33) inflates. Also, Lemma C.3

(ii) gives that ûT
i d/

√
p

P−→ 0 for all i. We claim that

Nα
P−→
{
η2δ

2, π(Y ) = 1;

−η1δ
2, π(Y ) = 2;

, (C.34)

as p → ∞. If (C.34) holds, then we can conclude that P(α) = 1 for α �= −τ2/n
as in the proof of Theorem 3.5. In order to show (C.34), we need to obtain the
limit of p−1/2ûT

i (Y − X̄) (i = 1, . . . ,m) and p−1(Û2Û
T
2 d)T (Y − X̄).

On p−1/2ûT
i (Y − X̄). Assume that π(Y ) = 1. The quantity p−1/2ûT

i (Y − X̄)

(i = 1, . . . ,m) is analyzed through ÛT
1 (Y −X̄)/

√
p by definition. In (C.16), note

that the first and second equations hold regardless of β,

1
√
p
ÛT
1 (Y − X̄) =

η2√
p
ÛT
1 μ+

1
√
p
D−1V̂ T

1 (In − J)ZTΛ

(
ζ − 1

n
Z1n

)
.

Combining the results in (C.7) and Lemma C.1 for the case 0 ≤ β < 1, ÛT
1 (Y −

X̄)/
√
p

P−→ 0 as p → ∞.

On p−1(Û2Û
T
2 d)T (Y −X̄). From the definition, p−1(Û2Û

T
2 d)T (Y −X̄) = K1−

K2 where K1 = dT (Y − X̄)/p and K2 = (Û1Û
T
1 d)T (Y − X̄)/p. The limit of K1

can be obtained as in (C.18) utilizing Lemma C.1,

K1 =
1

p

(
μ+ UΛ1/2Z

[ 1
n1

1n1

− 1
n2

1n2

])T {
η2μ+ UΛ1/2

(
ζ − 1

n
Z1n

)}
=

1

p

{
η2‖μ‖2 + η2μ

TUΛ1/2Z

[ 1
n1

1n1

− 1
n2

1n2

]
+ μTUΛ1/2

(
ζ − 1

n
Z1n

)

+

[ 1
n1

1n1

− 1
n2

1n2

]T
ZTΛ

(
ζ − 1

n
Z1n

)}
P−→ η2δ

2,

as p → ∞. As well, K2 converges to 0 in probability since we have shown that
the both quantities ÛT

1 d/
√
p and ÛT

1 (Y − X̄)/
√
p converge to 0.
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All in all, we have shown that Nα
P−→ η2δ

2 for Y ∈ Y with π(Y ) = 1 and the
other case when π(Y ) = 2 can be done with very similar logic.

C.9. Proof of Theorem 3.7

Proof. Assume β = 1. Lemma 3.6 tells that P1(α) = P{ξα + C1 ≥ 0|π(Y ) = 1}
and P2(α) = P{ξα − C2 < 0|π(Y ) = 2}. It is immediate that if ξα given π(Y )
has its support on (−∞,∞) for α �= −τ2/n, then P(α) has its unique maximum
1 at α = −τ2/n. Assume α �= −τ2/n and let I be an any interval in R with a
positive Lebesque measure. We claim that P(ξα ∈ I) > 0. To see this, note that
ξα given xtr := {xij : j = 1, . . . , ni, i = 1, 2} ⊂ R

n is a linear translation of y.
Also, y equals to some linear translation of z = (z(1), . . . , z(m))

T in distribution.
Since {x : fz(x) > 0} = R

m, ξα given xtr has its support on (−∞,∞) with
probability 1. Consequently, we have P(ξα ∈ I|xtr) > 0, which implies that
P(ξα ∈ I) = E{P(ξα ∈ I|xtr)} > 0.

Appendix D: Additional numerical results

D.1. Additional figures

Figures D.1 to D.3 display the misclassification rates of binary classification of
the MNIST and EMNIST datasets, for the cases where the number of leading
components is set as m = 1, 2, 3. These figures are referenced in Section 4.2.

D.2. Model assumptions

For the MNIST data example, we check that Assumptions 1 and 2 are indeed
satisfied. Checking the asymptotic assumptions is possible in this case, due to the
following two reasons. First, dealing with varying dimensions is possible, since we
can obtain random Fourier features of any dimension p. We have experimented
with p = 1000, 2000, 4000, 6000 in Section 4.2. Second, since the data set consists
of a sufficiently large number of sample (6,000 observations on average for each
category), we may regard the sample estimate a close approximation of true
parameter.

For each case of binary classification problems (total
(
10
2

)
= 45 cases), and

for each dimension p, we have computed the size of the mean difference ‖μ‖ =
‖μ1 − μ2‖, and the eigenvalues λi of the within covariance matrix Σ. The mean
difference μ and covariance matrix Σ are computed from the whole sample, and
we treat as if there are the true parameters. (The experiment in Section 4.2 was
conducted based on a random sample of size n = 100 or 200 from the whole
sample.)

Assumption 2 is satisfied if ‖μ‖ = O(
√
p) or, equivalently, ‖μ‖2 = O(p). In

Fig. D.4, we confirm that ‖μ‖2 is linear in p, and Assumption 2 is seemingly
satisfied.
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Fig D.1. The m = 1 case. Misclassification rates of φα applied to two-group classifications
of images of handwritten digits (MNIST) and alphabets (EMNIST).
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Fig D.2. The m = 2 case. Misclassification rates of φα applied to two-group classifications
of images of handwritten digits (MNIST) and alphabets (EMNIST).
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Fig D.3. The m = 3 case. Misclassification rates of φα applied to two-group classifications
of images of handwritten digits (MNIST) and alphabets (EMNIST).
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Fig D.4. ‖μ‖2 against the dimension p for all 45 binary problems of MNIST data. See text
for the definition of μ.

Fig D.5. The eigenvalue against the dimension p for all 45 binary problems of MNIST data
(plotted for the first four largest eigenvalues). See text for the definition of λi.
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Fig D.6. The eigenvalue ratio against the dimension p for all 45 binary problems of MNIST
data (plotted for the first four largest eigenvalues). See text for the definition of ri.

Assumption 1 gives that the first m eigenvalues of Σ grow at the rate of
p. Moreover, the ratio of λi over the total variance should be constant if the
assumption is true. Define the ratio by

ri :=
λi∑p
i=1 λi

.

If λi = O(p) and ri is constant over p, then the ith component may be considered
as a leading component (or a “spike”). In Fig. D.5, we confirm that λi is indeed
nearly linear in p for i = 1, 2, 3, 4; in Fig. D.6, we confirm that the ratio ri is
nearly constant for i = 1, 2, 3, 4.

To summarize, Figs. D.4-D.5 suggest that our key assumptions are satisfied
for the MNIST dataset. Therefore, the numerical results on the classification in
Section 4.2 should come at no surprise.
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