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ABSTRACT

Inferring the 3D structure from a single image, particularly in occluded regions,
remains a fundamental yet unsolved challenge in vision-centric autonomous driv-
ing. Existing unsupervised approaches typically train a neural radiance field and
treat the network outputs as occupancy probabilities during evaluation, overlook-
ing the inconsistency between training and evaluation protocols. Moreover, the
prevalent use of 2D ground truth fails to reveal the inherent ambiguity in occluded
regions caused by insufficient geometric constraints. To address these issues, this
paper presents a reformulated benchmark for unsupervised monocular 3D occu-
pancy prediction. We first interpret the variables involved in the volume rendering
process and identify the most physically consistent representation of the occu-
pancy probability. Building on these analyses, we improve existing evaluation
protocols by aligning the newly identified representation with voxel-wise 3D oc-
cupancy ground truth, thereby enabling unsupervised methods to be evaluated in
a manner consistent with that of supervised approaches. Additionally, to impose
explicit constraints in occluded regions, we introduce an occlusion-aware polar-
ization mechanism that incorporates multi-view visual cues to enhance discrimi-
nation between occupied and free spaces in these regions. Extensive experiments
demonstrate that our approach not only significantly outperforms existing unsu-
pervised approaches but also matches the performance of supervised ones. Our
source code and evaluation protocol will be made available upon publication.

1 INTRODUCTION

3D occupancy prediction, which infers the volumetric structure of real-world environments, enables
unified spatial representations that support various downstream tasks in autonomous systems (Cao
et al., 2022; Huang et al., 2023; Li et al., 2023). Most existing methods (Zhang et al., 2023; Jiang
et al., 2024) rely on supervised learning with voxel-wise annotated 3D ground truth, typically gen-
erated from sparse LiDAR point clouds (Tian et al., 2023; Wei et al., 2023). Acquiring such annota-
tions is, nevertheless, both labor-intensive and prone to inaccuracies, thereby impeding large-scale
training. In contrast, unsupervised methods (Wimbauer et al., 2023; Han et al., 2024; Li et al., 2024a;
Feng et al., 2025) based on neural radiance fields (NeRFs) (Mildenhall et al., 2020) avoid the need
for explicit supervisory signals and realize occupancy inference from a single image, demonstrating
strong potential and flexibility for real-world applications.

As 3D occupancy prediction continues to advance, the systematic evaluation of emerging networks
has become increasingly critical (Zhang et al., 2024). While supervised methods can be evaluated
on well-established benchmarks (Wang et al., 2025; Tian et al., 2023; Wei et al., 2023; Wang et al.,
2023), unsupervised NeRF-based approaches, developed since BTS (Wimbauer et al., 2023), are
still evaluated using inappropriate protocols misaligned with the 3D nature of the task. Specifically,
NeRF networks are designed to output implicit rendering weights for alpha compositing. As pointed
out by Ahn et al. (2024), the magnitude of these weights depends on the scale of the sampling in-
terval. However, existing evaluation protocols erroneously equate these scale-variant, point-wise
weights with fixed-range, voxel-wise occupancy ground truth, thereby introducing inconsistencies
between the training and evaluation protocols. In addition, existing occupancy annotations are tech-
nically limited to a 2D plane, which is ill-suited for an inherently 3D task, thereby undermining both
the reliability and completeness of the evaluation results.
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The aforementioned issues in current evaluation protocols obscure the inherent limitations of exist-
ing methods. Following the NeRF paradigm, early representative monocular approaches (Wimbauer
et al., 2023; Han et al., 2024; Li et al., 2024a; Feng et al., 2025) reconstruct target-view images from
multiple source views through volume rendering. These networks are trained by minimizing the
photometric discrepancies between reconstructed and real images. However, during the volume ren-
dering process, density values in occluded regions contribute minimally to the reconstructed image,
as image intensities from these areas are rarely transmitted through foreground occluders during
rendering integration for the target view. Compared to supervised approaches, which can directly
learn from occluded occupancy ground truth, NeRF-based networks inherently struggle to accurately
model occupancy distributions in these regions with only 2D supervision. When the ground truth
dimension is lifted to 3D, the accuracy of existing methods deteriorates greatly due to the increased
proportion of occluded regions.

Therefore, in this study, we rebenchmark the unsupervised monocular 3D occupancy prediction task
to address all the aforementioned challenges. First, we systematically analyze and interpret the oc-
cupancy probability in NeRF-based methods, and incorporate spatial neighborhood into point-wise
occupancy estimations. This integration mitigates the magnitude variations of network outputs and
alleviates spatial misalignment with voxel-wise ground truth. Furthermore, we transform the orig-
inal camera coordinate system into a new space and develop an occupancy sampling algorithm to
align the spatial distribution of the proposed occupancy representation with that of the 3D occu-
pancy annotations. This algorithm enables a reliable and interpretable benchmark aligned with the
standard 3D evaluation protocols widely used for supervised methods (Li et al., 2024b). Moreover,
we design an occlusion-aware occupancy polarization mechanism by correlating image intensity
variations with occupancy discrepancies across multiple views to provide additional supervisory
signals for occluded regions. Extensive experimental results on the KITTI-360 (Liao et al., 2022)
dataset validate both the interpretability and rationality of our reformulated benchmark, as well as
the effectiveness of the proposed occupancy polarization mechanism. In addition, comprehensive
comparisons with supervised methods underscore the state-of-the-art (SoTA) performance achieved
by our unsupervised approach. In a nutshell, the key contributions of this study are as follows:

• We delve into the interpretation of occupancy probability in NeRF, bridging the gap be-
tween NeRF-based predictions and voxel-wise 3D occupancy evaluation protocols.

• We develop a coordinated-transformed sampling algorithm that unifies the benchmark for
both unsupervised and supervised 3D occupancy prediction approaches.

• We propose an occlusion-aware occupancy polarization mechanism that exploits visual
cues from other views to provide additional supervision in occluded areas.

2 RELATED WORK

2.1 SUPERVISED 3D OCCUPANCY PREDICTION

Learning voxel-wise 3D occupancy from images is a key step toward comprehensive 3D scene
understanding (Wang et al., 2024; Ma et al., 2024; Li et al., 2025). As a pioneering study,
MonoScene (Cao et al., 2022) introduces a 3D occupancy prediction framework that infers voxel-
level geometry and semantics from a single image. TPVFormer (Huang et al., 2023) extends this
approach to multi-camera settings by incorporating tri-perspective representations. Subsequent stud-
ies have progressively refined network architectures within this end-to-end framework. For instance,
VoxFormer (Li et al., 2023) adopts Transformers over sparse voxels for long-range context model-
ing, while OccFormer (Zhang et al., 2023) leverages a dual-path Transformer architecture to fuse
semantic and geometric features across multiple views. Building upon these prior works, Sym-
phonies (Jiang et al., 2024) leverages contextual instance queries to enhance scene-level geometric
and semantic understanding in complex driving scenes. Beyond these end-to-end frameworks that
directly infer voxel-level occupancies, recent methods have explored implicit representations to im-
prove both accuracy and interpretability. HybridOcc (Zhao et al., 2024) bridges explicit and implicit
representations by integrating NeRF branches with Transformer-based voxel queries, which leads
to significantly improved performance. Nevertheless, these methods rely on the costly process of
acquiring accurate 3D annotations, which limits their scalability for large-scale training. Thus, this
study focuses extensively on unsupervised methods.
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2.2 UNSUPERVISED 3D OCCUPANCY PREDICTION

Unsupervised methods aim to reconstruct 3D scene geometry with only 2D supervision (Huang
et al., 2024a; Jevtić et al., 2025). Most existing methods are built upon NeRFs (Mildenhall et al.,
2020), which utilize a continuous volume rendering mechanism and optimize the network by min-
imizing the photometric loss across multiple views. BTS (Wimbauer et al., 2023) is a pioneering
work that presents a fully unsupervised NeRF pipeline for single-view 3D reconstruction through
differentiable volume rendering. Building upon this foundation, KDBTS (Han et al., 2024) distills
multi-view density fields into a single-view network via self-supervised training, thereby greatly
improving its performance across diverse scenes. Subsequent studies (Li et al., 2024a; Feng et al.,
2025) have increasingly incorporated off-the-shelf vision models to improve object-level 3D occu-
pancy predictions. For instance, KYN (Li et al., 2024a) leverages vision-language priors to integrate
semantic knowledge and spatial context into the pipeline for semantically guided 3D geometric
reasoning. ViPOcc (Feng et al., 2025) further introduces visual priors from foundation models to
enhance instance-level semantic reasoning and temporal photometric consistency. Despite these ad-
vances, existing approaches remain constrained by their reliance primarily on a reconstruction loss
through volume rendering, which inherently fails to provide explicit guidance in occluded regions.
Additionally, they often overlook the inconsistency between training and evaluation protocols, ulti-
mately compromising the reliability of 3D occupancy predictions. In this work, we present a more
interpretable representation of occupancy probability and propose an occlusion-aware polarization
mechanism to solve these issues.

2.3 BENCHMARKS FOR 3D OCCUPANCY PREDICTION

Several datasets (Liao et al., 2022; Caesar et al., 2020) provide video sequences accompanied by
camera poses and LiDAR point clouds collected in real-world driving environments. To enable 3D
occupancy prediction evaluation, recent studies (Wei et al., 2023; Li et al., 2024b) have constructed
voxel-level occupancy annotations by aggregating multi-frame LiDAR point clouds. Occ3D (Tian
et al., 2023) is among the first to achieve voxel-level semantic annotations, enabling dense 3D occu-
pancy evaluation at fine granularity. SurroundOcc (Wei et al., 2023) applies Poisson reconstruction
to consolidate LiDAR scans into dense 3D annotations, while OpenOccupancy (Wang et al., 2023)
improves labeling accuracy through extensive manual annotation to mitigate LiDAR sparsity. Re-
cent benchmarks such as SSCBench (Li et al., 2024b) and UniOcc (Wang et al., 2025) extend unified
evaluation protocols to a variety of driving scenes. Despite recent progress focused primarily on sup-
porting supervised learning paradigms, a standardized benchmark for unsupervised 3D occupancy
learning remains underdeveloped, with existing annotations often limited to a single 2D plane. In
this work, we exclusively utilize the aforementioned voxel-level occupancy annotations to evaluate
unsupervised approaches, thereby establishing a comprehensive 3D benchmarking protocol.

3 METHODOLOGY

3.1 PROBLEM SETUP

In NeRF-based approaches, the network with parameters Θ takes as input a target-view RGB image
I0, camera intrinsic matrix K, and a 3D point x(i) to predict a rendering weight σ(i) as follows:

σ(i) = f
(
I0,K,x(i);Θ

)
, (1)

where the 3D point x(i) = o+ t(i)d is sampled along a ray in the direction of the unit vector d, with
t(i) denoting the distance from the camera origin o to x(i). During the volume rendering process,
the opacity α(i) is first computed along the ray using the following expression:

α(i) = 1− exp
(
−σ(i)δ(i)

)
, (2)

where δ(i) = |x(i+1) − x(i)| denotes the length of the ray segment between consecutive sample
points x(i) and x(i+1). An image in the target view is rendered using the following expression:

ĉ =

N∑
i=1

α(i)T (i)c(i), T (i) =

i−1∏
j=1

(
1− α(j)

)
, (3)
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where ĉ denotes the image intensity rendered along a sampled ray with N sampled points, c(i)

denotes the color at point x(i) sampled from other viewpoints, and T (i) represents the accumulated
transmittance up to the i-th point. The network is trained by minimizing a photometric loss that
quantifies the discrepancy between the rendered and ground-truth image intensities.

3.2 OCCUPANCY PROBABILITY INTERPRETATION FOR NERF

3.9m-2.5m

Occupancy Height

C

B

A

Camera Origin

Image

0 20 40 60

0 20 40 60
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Occupied Region
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Figure 1: A comparison between the network out-
put σ and the opacity α during inference: (a) two
representative sampled rays; (b) σ distributions;
(c) α distributions. For point A, which transitions
from occupied to free space, αA is bounded within
the range (0, 1), whereas σA has no upper bound,
making α a more suitable representation for occu-
pancy probability; For points B and C with iden-
tical occupancy status, their discrepancy in σ is
significantly greater than that in α, demonstrating
that our proposed representation for occupancy
probability effectively eliminates the magnitude
variation caused by non-uniform point sampling.

Existing evaluation protocols simply adopt a
fixed σ threshold of 0.5 to binarize each voxel1:

o(x) = [σ > 0.5], (4)

where [·] denotes the Iverson bracket, and x
represents the voxel center. However, accord-
ing to Eq. 1, the network predicts occupancy
densities at infinitesimal points, whereas the
ground truth typically corresponds to the oc-
cupied probability of a volumetric cell. The
spatial misalignment between point-wise pre-
dictions and voxel-level ground truth annota-
tions makes their direct comparison with a fixed
threshold of 0.5 in Eq. 4 uninterpretable.

Specifically, existing approaches typically per-
form non-uniform point sampling along each
ray during training, with denser sampling near
the camera and sparser sampling in more dis-
tant regions. The variation in sampling den-
sity along the ray changes the spatial neighbor-
hood around each point, which is characterized
by the distance δ to its nearest point. Con-
sider two occupied points, B and C, as illus-
trated in Fig. 1(a), with the former located in a
densely sampled region and the latter located in
a sparsely sampled one. According to Eq. 3, the
rendering contributions αT of these two occu-
pied points to the reconstructed pixel color are

theoretically expected to be equivalent. In the training process, the network adjusts its output σ to
satisfy this equality, which leads to a magnitude variation issue, as illustrated in Fig. 1(b). As indi-
cated by Eq. 2, denser sampling yields a smaller spatial neighborhood δB , which in turn increases
the network output σB , and conversely, a larger δC in sparse sampling regions results in a lower σC .
This dependency established during training is retained at inference time, causing magnitude vari-
ations of the network outputs along the ray. Current method, nevertheless, overlooks this variation
and applies a fixed threshold to obtain voxel-wise occupancy predictions, leading to inconsistencies
in existing evaluation protocols across regions with varying point sampling densities. In addition,
when the number of sampled points along each ray changes, the spatial neighborhood δ around
each point also varies, thereby inducing inconsistent output magnitudes due to the underlying de-
pendency. This also leads to inconsistency of evaluation protocols across different experimental
configurations.

In this study, we argue that the opacity α provides a more interpretable representation of occupancy
probability than the network’s output σ. According to Eq. 2, the opacity, computed based on the spa-
tial neighborhood δ, characterizes the occupancy attributes within a finite volume rather than at an
infinitesimal point. This volumetric interpretation aligns more naturally with voxel-level occupancy
ground truth, making it better suited for model evaluation. In addition, unlike the original network
output σ, which is highly sensitive to the point sampling strategy, the opacity value is bounded
within (0, 1), as illustrated in Fig. 1(c). This bounded range eliminates the aforementioned magni-
tude variation effect, thereby enhancing the consistency of the evaluation protocols across diverse

1In this subsection, we omit the superscript (i) for σ, α, δ, and T for notational simplicity.
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the i-th sampled point:

the j-th voxel center in the CCS: 

the i-th predicted opacity:

the j-th voxel center in the TCS: 

(a) (b) (c)

Figure 2: The occupancy sampling algorithm in the camera coordinate system (CCS) and the trans-
formed coordinate system (TCS): (a) network inference with sampled points as input; (b) opacity
distribution v.s. the voxel grid in the CCS; (c) opacity sampling using voxel centers in the TCS.

settings. The occupancy prediction is formulated under the proposed interpretation as follows:

o(x) = [α > 0.5]. (5)

By adopting this opacity-based volumetric interpretation, we redefine the occupancy probability
representation and reformulate the entire benchmark.

3.3 COORDINATE-TRANSFORMED OCCUPANCY SAMPLING

As discussed in the previous subsection, opacity α provides a more appropriate representation for
occupancy prediction. Nonetheless, as illustrated in Figs. 2(a) and (b), the predicted opacities are
distributed along radial segments originating from the camera center, whereas the ground-truth oc-
cupancy annotations are defined on a uniform voxel grid. To address this spatial misalignment
problem, we propose a coordinate-transformed occupancy sampling algorithm that maps opacities
from radial segments onto the voxel grid.

As illustrated in Fig. 2(c), to more clearly characterize the radial distribution of opacity, we construct
the TCS, in which opacity is uniformly distributed, from the CCS. A 3D point xc = (xc, yc, zc)

⊤

in the CCS corresponds to the homogeneous pixel coordinates (u, v, 1)
⊤

= Kxc/zc, where K
denotes the camera intrinsic matrix. The coordinates of the corresponding point in the TCS can be
computed using the following expression:

xt =

(
u

w − 1
,

v

h− 1
,
1/tn − 1/∥xc∥2
1/tn − 1/tf

)⊤

, (6)

where the image resolution is h×w pixels, and tn and tf denote the near and far bounds, respectively.
This transformation maps the view frustum in the rendering field into a normalized cube spanning
[0, 1]3, where the x- and y-axes in the TCS are aligned with the image axes, and the z-axis is
aligned with the sampled ray direction. The TCS enables the grid sampling process, which requires
a uniformly distributed opacity map.

Given the above details on the defined TCS, the coordinate-transformed occupancy sampling algo-
rithm proceeds with the following steps. First, each 3D point x(i)

c is sampled in the CCS using the
same strategy adopted during training. Following Eq. 1, x(i)

c is passed through the network to infer
the cooresponding output σ(i), as depicted in Fig. 2(a). Following Eq. 2, the opacity α(i) is then
computed along each camera ray using the sampling interval δ(i), as shown in Fig. 2(b). Subse-
quently, each voxel center v(j)

c is transformed from the CCS to the TCS, yielding the corresponding
coordinates v(j)

t , as illustrated in Fig. 2(c). The voxel-wise occupancy predictions, spatially aligned
with the ground truth annotations, are obtained by sampling the grid-based opacity map in the TCS,
expressed as follows:

o(v(j)
c ) =

[
A⟨v(j)

t ⟩ > 0.5
]
, (7)

where A⟨·⟩ denotes the grid sampling process on the opacity map A = {α(i)}. The resulting
occupancy predictions are subsequently evaluated using the metrics in our benchmark.

5
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3.4 OCCLUSION-AWARE OCCUPANCY POLARIZATION

Further exploration of our benchmark reveals a critical limitation of existing unsupervised NeRF-
based occupancy prediction methods: they inherently struggle to predict occupancy distributions
behind foreground occluders. This limitation arises from their exclusive reliance on reconstruction
loss derived from volume rendering. To better understand this limitation, we conduct a quantitative
analysis on the supervisory signals within occluded regions during the back-propagation process.
For simplicity, we define the per-pixel photometric reconstruction loss as Lr = |ĉ− cgt|, where cgt
denotes the ground-truth RGB value. Taking the derivative of Eq. 3 results in the gradient of the loss
with respect to the predicted opacity at the corresponding sampled point x(i) as follows:

∂Lr

∂α(i)
= T (i)[ĉ > cgt]

⊤c(i) − T (i−1)
N∑

j=i+1

(
α(i)

j−1∏
k=i+1

(1− α(k))[ĉ > cgt]
⊤c(j)

)
(8)

The detailed derivation of Eq. 8 is given in the supplement. As shown in Eq. 3, the transmittance
T (i) decreases monotonically as the depth of x(i) increases, approaching zero in regions occluded
by foreground occluders. According to Eq. 8, when both T (i−1) and T (i) approach zero, the gradient
∂Lr/∂α

(i) diminishes as well. As a result, the gradients with respect to the network parameters in
occluded regions become negligible, thereby hindering effective learning in these areas.

Color Source
Sampled Point
w/ Polarization
w/o Polarization

Target View

Source View

Polarization
Direction

Figure 3: An illustration of the occlusion-aware
occupancy polarization mechanism. The dis-
crepancy of sampled colors on adjacent sampled
points indicates that the colors likely originate
from distinct objects. The mechanism amplifies
the occupancy differences between such points
and refines predictions in occluded regions.

To address this issue, we leverage visual cues
from other views to incorporate additional, ex-
plicit supervisory signals. As illustrated in
Fig. 3, although occupancy in occluded regions
is invisible in the target view, it may become
visible in certain source views. Consider two
adjacent sampled points, x(i) and x(i+1), lo-
cated along a single ray. If at least one of them,
e.g., x(i), is occupied, the color difference be-
tween the two points provides valuable visual
cues about the underlying occupancy. When
the neighboring point x(i+1) is unoccupied, its
sampled color c(i+1) often originates from a
surface different from that of x(i), leading to
a noticeable color discrepancy. In contrast, if
both points are occupied and lie on the same ob-
ject, their colors tend to be similar due to their
shared surface. Thus, the color discrepancy or
similarity between adjacent points serves as an
effective indicator of local occupancy variation.
Nonetheless, when both points are unoccupied,
the observed color difference is typically un-
related to underlying scene geometry and pro-
vides limited value for occupancy learning.

Motivated by the observation, we develop an occlusion-aware occupancy polarization mechanism
to explicitly guide occupancy predictions across occupied and free space, enhancing the supervision
signals in occluded regions. Specifically, this mechanism encourages the network to polarize the
predicted occupancy values of adjacent points x(i) and x(i+1) when their sampled colors differ
significantly. This facilitates sharper occupancy transitions in regions where visual cues suggest a
boundary. We implement this mechanism by formulating a polarization loss Lp as follows:

Lp =

N−1∑
i=1

Mi

∣∣∣c(i+1) − c(i)
∣∣∣ exp

(
−
∣∣∣σ(i+1) − σ(i)

∣∣∣) , (9)

where Mi = max(α(i), α(i+1)) is a weighting mask to exclude regions where both consecutive
points are unoccupied, as discussed above. The loss penalizes insufficient polarization across object
boundaries and diminishes as the predicted occupancy difference increases. The overall loss is:

L = λrLr + λpLp (10)
where λr and λp are the weighting parameters.

6
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Table 1: Quantitative comparison among unsupervised methods on the KITTI-360 dataset.

Method OAcc OPre ORec IEAcc IEPre IERec

BTS (Wimbauer et al., 2023) 0.870 0.733 0.745 0.727 0.466 0.658
KDBTS (Han et al., 2024) 0.871 0.746 0.731 0.722 0.463 0.682
KYN (Li et al., 2024a) 0.861 0.746 0.654 0.671 0.402 0.707
ViPOcc (Feng et al., 2025) 0.875 0.748 0.746 0.728 0.467 0.668

Ours 0.883 0.763 0.757 0.741 0.475 0.676

4 EXPERIMENTS

4.1 IMPLEMENTATION DETAILS

Datasets. We establish a new benchmark and conduct extensive experiments on the KITTI-360
dataset (Liao et al., 2022), with 3D occupancy ground truth provided by the SSCBench-KITTI-
360 dataset (Li et al., 2024b). Unsupervised methods are trained with video sequences and the
corresponding ground-truth camera poses from the KITTI-360 dataset. All images are resized to a
resolution of 192×640 pixels. Following Wimbauer et al. (2023), we split the dataset into a training
set of 98,008 images, a validation set of 11,451 images, and a test set of 446 images.

Network Training. We train our network (He et al., 2016) for 25 epochs using the Adam (Kingma
et al., 2014) optimizer on an NVIDIA RTX 4090 GPU, with the initial learning rate set to 2× 10−4,
which is decayed by a factor of 2 during the final 10 epochs.

Evaluation Protocols. Existing evaluation protocols for unsupervised approaches are typically
restricted to a narrow 2D slice of the scene, with highly limited spatial ranges (y = 0.375m,
x ∈ [−4m,+4m], and z ∈ [3m, 20m] in the CCS). To overcome this limitation, we utilize the
3D occupancy ground truth from SSCBench-KITTI-360 dataset (Li et al., 2024b), which covers
a substantially larger spatial volume extending 51.2m forward, 25.6m to each side, and 6.4m in
height, discretized into a 256×256×32 voxel grid with a resolution of 0.2m. Specifically, we align
the 3D occupancy annotations for each image in the KITTI-360 test set and provide the transforma-
tion from the voxel coordinate system to the camera coordinate system. With this transformation,
we generate 3D frustum masks and 3D voxel visibility masks using a ray-tracing algorithm, thereby
enabling evaluation in occluded regions. We relax the evaluation limitation along the y-axis while
preserving the original ranges along the x- and z-axes in Wimbauer et al. (2023). This adaptation
enables the evaluation protocol to prioritize spatial regions closer to the input camera viewpoint,
where predictions are generally more reliable. Additional details are provided in the supplement.

Metrics. Based on the above evaluation protocols, we extend the evaluation metrics used in Wim-
bauer et al. (2023) to the 3D domain. These metrics include: occupancy accuracy OAcc, occupancy
precision OPre, occupancy recall ORec, invisible and empty accuracy IEAcc, invisible and empty pre-
cision IEPre, and invisible and empty recall IERec. The first three metrics are computed within the
camera frustum, while the latter three are evaluated within the intersection of the camera frustum
and the invisibility mask. In addition, to facilitate comparison with supervised methods, we adopt
unified metrics, including intersection over union (IoU), precision (Pre), and recall (Rec).

4.2 COMPARISONS WITH STATE-OF-THE-ART METHODS

We compare our approach with representative unsupervised SoTA methods. As shown in Table 1,
our method achieves SoTA performance across the majority of evaluation metrics. In particular, it
improves OAcc, OPre, ORec, IEAcc, and IEPre by 0.9%, 2.0%, 1.5%, 1.8%, and 1.7%, respectively. It
is worth noting that although KYN achieves the highest IERec score, it incorporates a computation-
ally intensive visual-language network (Li et al., 2022), which significantly compromises inference
efficiency. Qualitative comparisons are presented in Fig. 4, where the predicted occupancy grids are
visualized from the right side of the scene. Compared to BTS and ViPOcc, our method achieves
superior 3D geometry reconstruction, and effectively mitigates trailing effects. The results demon-
strate the effectiveness of our proposed polarization mechanism in reasoning occluded occupancy.

7
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(a)

(d)

(b)

(c)

Figure 4: Qualitative comparisons of 3D occupancy prediction on the KITTI-360 dataset: (a) input
RGB images; (b) BTS results; (c) ViPOcc results; (d) our results.

Table 2: Quantitative comparison with both supervised and unsupervised methods on the KITTI-360
dataset. The best results are shown in bold type, with the best unsupervised ones underlined.

Supervised
Method

IoU (%) Pre (%) Rec (%)
Unsupervised

Method
IoU (%) Pre (%) Rec (%)

MonoScene 37.9 56.7 53.3 KDBTS 44.6 52.7 74.3
VoxFormer 38.8 58.5 53.4 KYN 44.4 54.0 71.4
OccFormer 40.3 59.7 55.3 ViPOcc 43.1 47.2 83.4
Symphonies 44.1 69.2 54.9 Ours 45.5 50.8 81.4

Table 3: Zero-shot 3D occupancy prediction met-
rics on the SemanticKITTI dataset.

Method IoU (%) Pre (%) Rec (%)

SceneRF 13.8 17.3 41.0
SelfOcc(BEV) 21.0 37.3 32.4
SelfOcc(TPV) 22.0 34.8 37.3
ViPOcc 23.6 26.9 66.8
Ours 24.1 27.0 68.7

Additionally, our reformulated benchmark suite
is aligned with the evaluation protocols used
by supervised methods, thereby enabling direct
comparison with representative supervised ap-
proaches. The quantitative experimental results
presented in Table 2 reveal several notewor-
thy findings. Most notably and somewhat un-
expectedly, NeRF-based methods achieve IoU
scores that are comparable to, or even exceed
those of recent supervised approaches, while
outperforming most earlier ones. We attribute
this phenomenon to the limited quality of ex-
isting 3D occupancy ground truth, which may introduce misleading supervisory signals and thus
hinder the effectiveness of supervised training. In contrast, NeRF-based methods are unaffected by
this issue, as they do not rely on such supervision. Moreover, unsupervised methods typically ex-
hibit higher recall than precision, indicating a tendency to overestimate occupied space, particularly
in occluded regions where supervisory signals are absent. In contrast, benefiting from direct super-
vision in these areas, supervised methods often achieve more balanced metrics. While our method
mitigates this imbalance compared to the unsupervised baseline ViPOcc, further improvements are
necessary, especially in handling occlusions, which remain a key challenge for unsupervised 3D
occupancy prediction.

To further evaluate the generalizability of the proposed method, we conduct a zero-shot test on
the SemanticKITTI dataset (Behley et al., 2019) using the pre-trained weights obtained from the
KITTI-360 dataset. As presented in Table 3, the proposed method outperforms other SoTA methods
including SceneRF (Cao & De Charette, 2023) and SelfOcc (Huang et al., 2024b) in zero-shot 3D
occupancy prediction, demonstrating its exceptional generalizability.
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Figure 5: Comparison between the conventional and proposed occupancy probability representations
in terms of (a) OAcc and (b) IERec across varying numbers of sampled points per ray.

4.3 ABLATION STUDIES

Occupancy Probability Interpretation. To demonstrate the rationality of our interpreted occu-
pancy probability representation, we evaluate existing unsupervised methods under both the con-
ventional and the proposed representations. Specifically, we utilize pretrained weights from prior
works without any modification and exclusively adjust the occupancy probability representation for
performance evaluation. The network’s performance is then evaluated using the above-mentioned
metrics under both interpretations for comparative analysis.

As shown in Table 4, directly applying our interpreted occupancy probability defined in Eq. 7, with-
out any retraining, consistently leads to higher OAcc and IERec scores, compared to the conventional
representation defined in Eq. 4. This improvement demonstrates that our proposed formulation en-
sures greater consistency between the training and evaluation protocols and is more suitable for
the quantitative evaluation of unsupervised methods. Furthermore, by leveraging the proposed oc-
cupancy probability representation, we observe opposing trends in IERec and IEAcc, which quan-
tify performance within invisible regions, revealing that existing methods generally misclassify free
space as occupied when explicit supervisory signals are absent. This observation corroborates the
limitation in current approaches when inferring occupancy in occluded regions.

Table 4: Ablation study on the occupancy prob-
ability interpretation. The conventional occu-
pancy probability interpretation is given in Eq. 4,
whereas ours is given in Eq. 7.

Method Representation OAcc IEAcc IERec

BTS
Conventional 0.867 0.756 0.606

Ours 0.870 0.727 0.658

KDBTS
Conventional 0.868 0.750 0.618

Ours 0.871 0.722 0.682

ViPOcc
Conventional 0.873 0.757 0.608

Ours 0.875 0.728 0.668

Table 5: Ablation study on the occlusion-aware
occupancy polarization mechanism.

Baseline Lp OAcc IEAcc IERec

BTS
✗ 0.870 0.727 0.658
✓ 0.880 0.737 0.667

KDBTS
✗ 0.871 0.722 0.682
✓ 0.879 0.725 0.682

ViPOcc
✗ 0.875 0.728 0.668
✓ 0.883 0.741 0.676

To further demonstrate the robustness of the
proposed occupancy probability representation
under varying point sampling intervals along
rays, we train the baseline network (Feng et al.,
2025) with different numbers of sampled points
per ray, while maintaining fixed near and far
bounds, as defined in the NeRF framework.
As illustrated in Fig. 5, unlike the conven-
tional representation, which suffers from fluc-
tuations in network output magnitude under
varying sampling densities, our representation
maintains consistent performance, demonstrat-
ing greater stability to changes in point sam-
pling strategies, as discussed above.

Occlusion-Aware Occupancy Polarization.
To validate the effectiveness of the occlusion-
aware occupancy polarization mechanism, we
incorporate its corresponding loss Lp into the
overall loss function and retrain several base-
line networks for comprehensive comparisons.
As shown in Table 5, the mechanism consis-
tently improves all evaluation metrics across
all baseline networks, with maximum improve-
ments of 1.1%, 1.8% and 1.4% on OAcc, IEAcc
and IERec, demonstrating its general efficacy.
Additional comparative results are provided in
the supplement.
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5 CONCLUSION

In this paper, we first addressed a critical limitation in the existing unsupervised monocular 3D oc-
cupancy prediction benchmark: the spatial inconsistency between training and evaluation protocols.
To this end, we developed an interpretable, opacity-based representation of occupancy probability
and introduced a coordinate-transformed sampling algorithm for voxel-wise occupancy prediction,
contributing a consistent and reliable evaluation protocol aligned with those used by supervised
methods. In addition, to compensate for the inherent lack of photometric supervision revealed by
the proposed benchmark, we leveraged multi-view visual cues and introduced an occlusion-aware
occupancy polarization mechanism, which proves to be compatible across all baseline networks. Ex-
tensive experiments conducted with both supervised and unsupervised methods on the reformulated
benchmark validate the rationality of our interpreted occupancy probability, the alignment between
training and evaluation protocols, and the effectiveness of the proposed occlusion-aware occupancy
polarization mechanism.

REPRODUCIBILITY STATEMENT

Our results are reproducible by consulting section 4 and section C in appendix for the experimental
details of our new benchmark, and by downloading the supplementary materials which contain the
complete source code.
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A ETHICS

In this study, we utilize the KITTI-360 (Liao et al., 2022) and SSCBench-KITTI-360 (Li et al.,
2024b) datasets for the development and evaluation of 3D occupancy prediction networks. It is im-
portant to emphasize that we strictly adhere to the terms of usage for each dataset. We acknowledge
that these datasets may contain images with visible faces and other personal data collected without
consent. Nevertheless, we confirm that no biometric information has been processed. All images
are used in accordance with the CC-BY license or in a manner compatible with the Data Analysis
Permission.

B ADDITIONAL METHODOLOGICAL DETAILS

B.1 THE GRADIENT OF THE RECONSTRUCTION LOSS

We derive the gradient of the reconstruction loss with respect to the opacity at the sampled point
x(i) as follows:

∂Lr

∂α(i)
=

∂Lr

∂ĉ

∂ĉ

∂α(i)
= [ĉ > cgt]

⊤ ∂ĉ

∂α(i)
, (11)

where [·] denotes the Iverson bracket, Lr represents the reconstruction loss, α(i) denotes the opacity

at point x(i), ĉ =
N∑
i=1

α(i)T (i)c(i) represents the rendered pixel color, and cgt denotes the ground-

truth RGB value. We take the derivate of the rendered pixel color ĉ and obtain the following expres-
sion:

∂ĉ

∂α(i)
=

N∑
j=1

∂

∂α(i)

(
α(j)T (j)c(j)

)

= T (i)c(i) +

N∑
j=1

α(j)c(j)
∂T (j)

∂α(i)
,

(12)

where ∂T (j)/∂α(i) is obtained by taking the derivative of T (j) =
j−1∏
k=1

(
1− α(k)

)
. We present the

derivative by cases as follows:

∂T (j)

∂α(i)
=


0 (j ≤ i)

− T (i−1)

j−1∏
k=i+1

(1− α(k)) (j > i)
. (13)

We combine the above expressions and yield the final result, expressed as follows:

∂ĉ

∂α(i)
= T (i)c(i) − T (i−1)

N∑
j=i+1

(
α(i)

j−1∏
k=i+1

(1− α(k))c(j)

)
(14)
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∂Lr

∂α(i)
= T (i)[ĉ > cgt]

⊤c(i) − T (i−1)
N∑

j=i+1

(
α(i)

j−1∏
k=i+1

(1− α(k))[ĉ > cgt]
⊤c(j)

)
(15)

B.2 SAMPLING STRATEGY

To support the discussion in the main paper regarding the magnitude variation of the network’s
output induced by different sampling strategies, we provide a detailed description of the sampling
strategies adopted in existing methods (Wimbauer et al., 2023; Han et al., 2024; Li et al., 2024a;
Feng et al., 2025) and ours. These strategies are categorized as ray sampling and point sampling.

B.2.1 RAY SAMPLING

The ray sampling strategy differs between the training and evaluation phases. During training, to
reduce computational cost and accelerate network convergence, we adopt a patch sampling strategy.
Specifically, we extract 64 image patches (resolution: 8 × 8 pixels), resulting in 4,096 sampled
pixels and their corresponding rays per training iteration. This sampling strategy ensures both the
spatial diversity and similarity among sampled rays, thereby facilitating network training. During
evaluation, we sample all pixels from the input image to infer occupancies across the entire spatial
space in the camera frustum.

B.2.2 POINT SAMPLING

After sampling rays from the input image, points are sampled along each ray for network inference.
Owing to the varying depth sensitivity of pinhole cameras, existing strategies do not sample points
uniformly in the Euclidean depth space. Instead, they apply uniform sampling in the inverse-depth
space, which allows for denser sampling near the camera and sparser sampling in distant areas. The
distance between the camera origin and the i-th sampled point on a sampled ray is expressed as
follows:

t(i) = 1/

((
1− i+ r

N

)
1

tn
+

i+ r

N

1

tf

)
, (16)

where N denotes the number of points sampled per ray, r ∼ N(−0.5, 0.5) denotes a random variable
from a uniform distribution, and tn and tf represent the near and far bounds in the rendering field,
respectively. The sampled points are defined as x(i)

c = o+ t(i)d, where o denotes the camera origin
and d represents the unit direction vector of the sampled ray. As discussed in the main paper, this
non-uniform sampling strategy introduces variations in the network output magnitudes due to the
depth-dependent sampling density of the points. During evaluation, instead of directly using voxel
centers as input points to the network, we employ the same point sampling strategy as used during
training, with the only difference being the removal of the random variable r. This eliminates the
inconsistency in the spatial distribution of sampled points across both phases.

B.3 COORDINATE-TRANSFORMED SAMPLING DETAILS

In the coordinate-transformed occupancy sampling process, we transform both the opacity values
inferred by the network and the voxel center points from the CCS to the TCS. This transformation
enables us to compute the occupancy probability for each voxel using the grid sampling algorithm.
Specifically, we perform 3D grid sampling in the normalized spanning cube [0, 1]3 using the bilinear
interpolation mode and the border padding mode.

C TECHNICAL DETAILS

C.1 TRAINING DETAILS

C.1.1 HYPERPARAMETERS AND CONFIGURATIONS

The batch size is set to 16, and the network is trained for 25 epochs. We set the loss weights, λr and
λp, to 1 and 1 × 10−3, respectively. Furthermore, since the occlusion-aware occupancy polariza-
tion mechanism directly utilizes color similarity as a prior to infer the geometric structure between
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neighboring sampled points, it is reasonable to omit color augmentation for training. Additionally,
we employ horizontal flip augmentation by randomly flipping the input image prior to feeding it into
the network. To preserve the original geometric structure of the scene, a corresponding inverse flip
is applied to the resulting feature maps before they undergo further processing.

C.1.2 DATASET

We train the network with both the stereo perspective-camera video sequence and the left and right
fisheye-camera video sequences from the KITTI-360 dataset (Liao et al., 2022). For each fisheye
image, we follow the resampling process described in Wimbauer et al. (2023) to obtain the corre-
sponding image using a virtual perspective camera. To enlarge the overlap among camera frustums,
we offset fisheye-camera sequences by ten timestamps relative to the stereo perspective-camera se-
quence, thereby enhancing the ratio of valid color samples.

C.2 BENCHMARK DETAILS

C.2.1 DATASET ALIGNMENT

The SSCBench-KITTI-360 dataset (Li et al., 2024b) provides 3D occupancy ground truth along with
the corresponding 2D images. However, it employs a non-public method to select 2D image frames
from the KITTI-360 dataset, resulting in updated image indices. As a result, the provided occupancy
ground truth cannot be directly aligned with the test images from the KITTI-360 dataset. To address
this issue, we systematically scan both datasets and construct a frame correspondence lookup table
by identifying exact matches between 2D images.

C.2.2 TRANSFORMATION BETWEEN COORDINATE SYSTEMS

In the SSCBench-KITTI-360 dataset, ground-truth 3D occupancy annotations are provided at a
lower temporal resolution to reduce storage cost. Specifically, for every five consecutively rein-
dexed frames, only one frame is associated with a 3D occupancy label. Fortunately, based on our
experimental verification, all selected frames are accompanied by ground-truth poses from the origi-
nal KITTI-360 dataset. This enables us to compute the relative pose transformation between a query
frame in the test split and its nearest adjacent frame with ground-truth 3D occupancy annotations.
Consequently, we can derive the transformation from the voxel coordinate system of the annotated
occupancy grid to the camera coordinate system of the test frame.

Voxel Origin

Figure 6: An illustration of the coordinate sys-
tem transformation is provided in the bird’s-eye
view of the occupancy ground truth. Specifically,
it depicts the transformation from the voxel co-
ordinate system associated with the j-th frame to
the camera coordinate system of the i-th frame.
This transformation enables subsequent computa-
tion of the frustum mask and the visibility mask.

Specifically, for the i-th index in the test split,
we first identify the nearest subsequent in-
dex j such that the corresponding frame has
an associated 3D occupancy annotation in the
SSCBench-KITTI-360 dataset. For example,
the first test frame (index: 386) in the KITTI-
360 dataset lacks an associated 3D annotation,
but its nearest subsequent frame (index: 387)
has a 3D occupancy label, which corresponds to
index 295 in the SSCBench-KITTI-360 dataset.
This mapping ensures evaluation even when di-
rect 3D annotations are unavailable for specific
test frames. Let Ti and Tj denote the ego poses
at indices i and j, respectively. The transfor-
mation from the LiDAR coordiante system to
the camera coordinate system provided by the
KITTI-360 dataset is denoted by Tl→c, while
the transformation from the voxel coordinate
system to the LiDAR coordinate system pro-
vided by the SSCBench-KITTI-360 dataset is
denoted by Tv→l. Tv→c, the transformation
from the voxel coordinate system to the cam-

era coordinate system can be obtained using the following expression:
Tv→c = T−1

i TjTl→cTv→l. (17)
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C.2.3 MASK GENERATION

Based on the transformation defined in Eq. 17, we construct the frustum mask Mf and the visibility
mask Mv corresponding to the 3D occupancy ground truth. For each voxel center v(i)

c , we define
binary values m(i)

f and m
(i)
v in this voxel to represent its frustum and visibility status, respectively.

Given the projected image coordinates (u, v) that correspond to the voxel center v(i)
c , the value in

the frustum mask is defined as follows:
m

(i)
f = [0 ≤ u ≤ w − 1] ∧ [0 ≤ v ≤ h− 1], (18)

where w and h denote the image width and height, respectively. In this equation, m(i)
f = 1 indicates

that the voxel projects within the valid image bounds.

We apply a ray tracing algorithm to generate visibility masks based on 3D occupancy ground truth.
Specifically, we generate a ray for each image pixel and perform dense sampling along the ray within
the spatial bounds of the 3D occupancy volume. The sampling interval is set equal to the voxel size
to ensure that any two adjacent sampled points lie either within the same voxel or in adjacent voxels.
Subsequently, we query the ground-truth occupancy at each sampled location to determine whether
it is occupied. For a given ray, the visibility status m(i)

v of a point is set to 1 if the point itself and all
preceding points along the ray are unoccupied. These per-point visibility statuses are then mapped
back to their corresponding voxels, resulting in the final voxel-wise visibility mask Mv .

C.2.4 OCCUPANCY METRICS DETAILS

The expressions of the evaluation metrics used in the main paper is given as follows:

OAcc =

∑
i

[
ô(i) = o(i)

]
m

(i)
f∑

i

m
(i)
f

, (19)

OPre =

∑
i

o(i)ô(i)m
(i)
f∑

i

ô(i)m
(i)
f

, (20)

ORec =

∑
i

ô(i)o(i)m
(i)
f∑

i

o(i)m
(i)
f

, (21)

IEAcc =

∑
i

[
ô(i) = o(i)

]
(1−m

(i)
v )m

(i)
f∑

i

(1−m
(i)
v )m

(i)
f

, (22)

IEPre =

∑
i

(1− o(i))(1− ô(i))(1−m
(i)
v )m

(i)
f∑

i

(1− ô(i))(1−m
(i)
v )m

(i)
f

, (23)

IERec =

∑
i

(1− ô(i))(1− o(i))(1−m
(i)
v )m

(i)
f∑

i

(1− o(i))(1−m
(i)
v )m

(i)
f

, (24)

where ô(i) and o(i) denote the predicted and ground-truth occupancies for the i-th voxel, respectively.

D ADDITIONAL EXPERIMENTAL RESULTS

D.1 OCCLUSION-AWARE OCCUPANCY POLARIZATION

When designing the polarization mechanism, our goal is to establish an indicator that reflects
whether two adjacent 3D points along a ray correspond to the same object when projected into a
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Baseline Signal for building Lp OAcc IEAcc IERec

BTS
Pseudo depth 0.879 0.734 0.644
RGB intensity 0.880 0.737 0.667

KDBTS
Pseudo depth 0.878 0.724 0.679
RGB intensity 0.879 0.725 0.682

ViPOcc
Pseudo depth 0.881 0.740 0.655
RGB intensity 0.883 0.741 0.676

Table 6: Ablation study on the signals of occlusion-aware occupancy polarization mechanism.

given source view. Other than relying on the color difference, we exploit the difference in pseudo
depth predicted by a vision foundation model (Yang et al., 2024). Specifically, for each pair of adja-
cent samples along a ray, we obtain their projections in the source view and examine the discrepancy
of their image-level signals (e.g., color or pseudo depth) as an indicator to determine whether these
projections lie on the same object.

Experimental results presented in Table 6 suggest that RGB-based indicators consistently outper-
form pseudo-depth-based ones across baseline models. This finding is somewhat unexpected, given
that depth maps typically provide more reliable geometric cues and are generally more robust to
texture ambiguity and color similarity.

We hypothesize that this phenomenon stems from the distinct signal transition characteristics across
object boundaries. For two adjacent points located on different objects, the pseudo-depth differ-
ences can vary significantly depending on the geometric structure of the scene. In particular, when
these points lie on different objects but have similar depth values, their pseudo-depth values are
often close, making it difficult to distinguish inter-object cases from intra-object ones. In contrast,
due to variations in lighting, material, and texture across different objects, RGB intensities tend
to differ markedly across object boundaries, even when depth values are similar. This observation
suggests that RGB intensity is generally more reliable than pseudo-depth for inferring object-level
consistency. In the future, we plan to further optimize the design of the polarization mechanism by
developing a lightweight object-consistency indicator that does not rely on vision foundation models
or additional ground truth annotations.

D.2 3D OCCUPANCY PREDICTION VISUALIZATION

We present additional qualitative results of 3D occupancy prediction on the KITTI-360 dataset. As
shown in Fig. 7, our method achieves superior geometric reconstruction performance in occluded
regions compared to previous state-of-the-art approaches. This improvement can be attributed to the
proposed occlusion-aware occupancy polarization mechanism, which effectively leverages comple-
mentary visual cues from alternative viewpoints to recover missing structural information.

E LIMITATIONS

Overlap

Overlap

Narrow FOV Camera Wide FOV Camera

Side-view CameraForward-view Camera

𝒕𝒕 frame

𝒕𝒕 + 𝑻𝑻 frame

Figure 8: An illustration of the limitation related
to camera field of view.

Despite achieving SoTA performance, the pro-
posed method still presents a known limitation
related to the camera field of view (FOV). Dur-
ing training, forward-view cameras at frame t
and side-view cameras at frame t + T are se-
lected (where T is a fixed parameter), and the
supervisory signals are primarily derived in re-
gions where their FOVs overlap. As illustrated
in Fig. 8, the narrow horizontal FOV of the
cameras results in a limited overlapping vol-
ume, thereby weakening the supervision avail-
able during training. Our future work will in-
vestigate improved dataset organization strate-
gies to increase the volume of overlapping regions.
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(b)

(a)

(c)

(d)

(b)

(a)

(c)

(d)

Figure 7: Qualitative comparison of occupancy prediction on KITTI-360 dataset: (a) RGB images;
(b) BTS (Wimbauer et al., 2023) results; (c) ViPOcc (Feng et al., 2025) results; (d) our results.
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