

000 REBENCHMARKING UNSUPERVISED MONOCULAR 3D 001 002 OCCUPANCY PREDICTION 003 004

005 **Anonymous authors**

006 Paper under double-blind review

007 008 ABSTRACT 009

011 Inferring the 3D structure from a single image, particularly in occluded regions,
012 remains a fundamental yet unsolved challenge in vision-centric autonomous driv-
013 ing. Existing unsupervised approaches typically train a neural radiance field and
014 treat the network outputs as occupancy probabilities during evaluation, overlook-
015 ing the inconsistency between training and evaluation protocols. Moreover, the
016 prevalent use of 2D ground truth fails to reveal the inherent ambiguity in occluded
017 regions caused by insufficient geometric constraints. To address these issues, this
018 paper presents a reformulated benchmark for unsupervised monocular 3D occu-
019 pancy prediction. We first interpret the variables involved in the volume rendering
020 process and identify the most physically consistent representation of the occu-
021 pancy probability. Building on these analyses, we improve existing evaluation
022 protocols by aligning the newly identified representation with voxel-wise 3D occu-
023 pancy ground truth, thereby enabling unsupervised methods to be evaluated in
024 a manner consistent with that of supervised approaches. Additionally, to impose
025 explicit constraints in occluded regions, we introduce an occlusion-aware polar-
026 ization mechanism that incorporates multi-view visual cues to enhance discrimi-
027 nation between occupied and free spaces in these regions. Extensive experiments
028 demonstrate that our approach not only significantly outperforms existing unsu-
029 pervised approaches but also matches the performance of supervised ones. Our
030 source code and evaluation protocol will be made available upon publication.

031 1 INTRODUCTION 032

034 3D occupancy prediction, which infers the volumetric structure of real-world environments, enables
035 unified spatial representations that support various downstream tasks in autonomous systems (Cao
036 et al., 2022; Huang et al., 2023; Li et al., 2023). Most existing methods (Zhang et al., 2023; Jiang
037 et al., 2024) rely on supervised learning with voxel-wise annotated 3D ground truth, typically gen-
038 erated from sparse LiDAR point clouds (Tian et al., 2023; Wei et al., 2023). Acquiring such annota-
039 tions is, nevertheless, both labor-intensive and prone to inaccuracies, thereby impeding large-scale
040 training. In contrast, unsupervised methods (Wimbauer et al., 2023; Han et al., 2024; Li et al., 2024a;
041 Feng et al., 2025) based on neural radiance fields (NeRFs) (Mildenhall et al., 2020) avoid the need
042 for explicit supervisory signals and realize occupancy inference from a single image, demonstrating
043 strong potential and flexibility for real-world applications.

044 As 3D occupancy prediction continues to advance, the systematic evaluation of emerging networks
045 has become increasingly critical (Zhang et al., 2024). While supervised methods can be evaluated
046 on well-established benchmarks (Wang et al., 2025; Tian et al., 2023; Wei et al., 2023; Wang et al.,
047 2023), unsupervised NeRF-based approaches, developed since BTS (Wimbauer et al., 2023), are
048 still evaluated using inappropriate protocols misaligned with the 3D nature of the task. Specifically,
049 NeRF networks are designed to output implicit rendering weights for alpha compositing. As pointed
050 out by Ahn et al. (2024), the magnitude of these weights depends on the scale of the sampling
051 interval. However, existing evaluation protocols erroneously equate these scale-variant, point-wise
052 weights with fixed-range, voxel-wise occupancy ground truth, thereby introducing inconsistencies
053 between the training and evaluation protocols. In addition, existing occupancy annotations are tech-
nically limited to a 2D plane, which is ill-suited for an inherently 3D task, thereby undermining both
the reliability and completeness of the evaluation results.

054 The aforementioned issues in current evaluation protocols obscure the inherent limitations of existing
 055 methods. Following the NeRF paradigm, early representative monocular approaches (Wimbauer
 056 et al., 2023; Han et al., 2024; Li et al., 2024a; Feng et al., 2025) reconstruct target-view images from
 057 multiple source views through volume rendering. These networks are trained by minimizing the
 058 photometric discrepancies between reconstructed and real images. However, during the volume ren-
 059 dering process, density values in occluded regions contribute minimally to the reconstructed image,
 060 as image intensities from these areas are rarely transmitted through foreground occluders during
 061 rendering integration for the target view. Compared to supervised approaches, which can directly
 062 learn from occluded occupancy ground truth, NeRF-based networks inherently struggle to accurately
 063 model occupancy distributions in these regions with only 2D supervision. When the ground truth
 064 dimension is lifted to 3D, the accuracy of existing methods deteriorates greatly due to the increased
 065 proportion of occluded regions.
 066

066 Therefore, in this study, we rebenchmark the unsupervised monocular 3D occupancy prediction task
 067 to address all the aforementioned challenges. First, we systematically analyze and interpret the oc-
 068 cupancy probability in NeRF-based methods, and incorporate spatial neighborhood into point-wise
 069 occupancy estimations. This integration mitigates the magnitude variations of network outputs and
 070 alleviates spatial misalignment with voxel-wise ground truth. Furthermore, we transform the orig-
 071 inal camera coordinate system into a new space and develop an occupancy sampling algorithm to
 072 align the spatial distribution of the proposed occupancy representation with that of the 3D occu-
 073 pancy annotations. This algorithm enables a reliable and interpretable benchmark aligned with the
 074 standard 3D evaluation protocols widely used for supervised methods (Li et al., 2024b). Moreover,
 075 we design an occlusion-aware occupancy polarization mechanism by correlating image intensity
 076 variations with occupancy discrepancies across multiple views to provide additional supervisory
 077 signals for occluded regions. Extensive experimental results on the KITTI-360 (Liao et al., 2022)
 078 dataset validate both the interpretability and rationality of our reformulated benchmark, as well as
 079 the effectiveness of the proposed occupancy polarization mechanism. In addition, comprehensive
 080 comparisons with supervised methods underscore the state-of-the-art (SoTA) performance achieved
 081 by our unsupervised approach. In a nutshell, the key contributions of this study are as follows:
 082

- We delve into the interpretation of occupancy probability in NeRF, bridging the gap be-
 083 tween NeRF-based predictions and voxel-wise 3D occupancy evaluation protocols.
- We develop a coordinated-transformed sampling algorithm that unifies the benchmark for
 084 both unsupervised and supervised 3D occupancy prediction approaches.
- We propose an occlusion-aware occupancy polarization mechanism that exploits visual
 085 cues from other views to provide additional supervision in occluded areas.

089 2 RELATED WORK

091 2.1 SUPERVISED 3D OCCUPANCY PREDICTION

093 Learning voxel-wise 3D occupancy from images is a key step toward comprehensive 3D scene
 094 understanding (Wang et al., 2024; Ma et al., 2024; Li et al., 2025). As a pioneering study,
 095 MonoScene (Cao et al., 2022) introduces a 3D occupancy prediction framework that infers voxel-
 096 level geometry and semantics from a single image. TPVFormer (Huang et al., 2023) extends this
 097 approach to multi-camera settings by incorporating tri-perspective representations. Subsequent studies
 098 have progressively refined network architectures within this end-to-end framework. For instance,
 099 VoxFormer (Li et al., 2023) adopts Transformers over sparse voxels for long-range context model-
 100 ing, while OccFormer (Zhang et al., 2023) leverages a dual-path Transformer architecture to fuse
 101 semantic and geometric features across multiple views. Building upon these prior works, Sym-
 102 phonies (Jiang et al., 2024) leverages contextual instance queries to enhance scene-level geometric
 103 and semantic understanding in complex driving scenes. Beyond these end-to-end frameworks that
 104 directly infer voxel-level occupancies, recent methods have explored implicit representations to im-
 105 prove both accuracy and interpretability. HybridOcc (Zhao et al., 2024) bridges explicit and implicit
 106 representations by integrating NeRF branches with Transformer-based voxel queries, which leads
 107 to significantly improved performance. Nevertheless, these methods rely on the costly process of
 108 acquiring accurate 3D annotations, which limits their scalability for large-scale training. Thus, this
 109 study focuses extensively on unsupervised methods.

108
109

2.2 UNSUPERVISED 3D OCCUPANCY PREDICTION

110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127

Unsupervised methods aim to reconstruct 3D scene geometry with only 2D supervision (Huang et al., 2024a; Jevtić et al., 2025). Most existing methods are built upon NeRFs (Mildenhall et al., 2020), which utilize a continuous volume rendering mechanism and optimize the network by minimizing the photometric loss across multiple views. BTS (Wimbauer et al., 2023) is a pioneering work that presents a fully unsupervised NeRF pipeline for single-view 3D reconstruction through differentiable volume rendering. Building upon this foundation, KDBTS (Han et al., 2024) distills multi-view density fields into a single-view network via self-supervised training, thereby greatly improving its performance across diverse scenes. Subsequent studies (Li et al., 2024a; Feng et al., 2025) have increasingly incorporated off-the-shelf vision models to improve object-level 3D occupancy predictions. For instance, KYN (Li et al., 2024a) leverages vision-language priors to integrate semantic knowledge and spatial context into the pipeline for semantically guided 3D geometric reasoning. ViPOcc (Feng et al., 2025) further introduces visual priors from foundation models to enhance instance-level semantic reasoning and temporal photometric consistency. Despite these advances, existing approaches remain constrained by their reliance primarily on a reconstruction loss through volume rendering, which inherently fails to provide explicit guidance in occluded regions. Additionally, they often overlook the inconsistency between training and evaluation protocols, ultimately compromising the reliability of 3D occupancy predictions. In this work, we present a more interpretable representation of occupancy probability and propose an occlusion-aware polarization mechanism to solve these issues.

128
129

2.3 BENCHMARKS FOR 3D OCCUPANCY PREDICTION

130
131
132
133
134
135
136
137
138
139
140
141
142
143

Several datasets (Liao et al., 2022; Caesar et al., 2020) provide video sequences accompanied by camera poses and LiDAR point clouds collected in real-world driving environments. To enable 3D occupancy prediction evaluation, recent studies (Wei et al., 2023; Li et al., 2024b) have constructed voxel-level occupancy annotations by aggregating multi-frame LiDAR point clouds. Occ3D (Tian et al., 2023) is among the first to achieve voxel-level semantic annotations, enabling dense 3D occupancy evaluation at fine granularity. SurroundOcc (Wei et al., 2023) applies Poisson reconstruction to consolidate LiDAR scans into dense 3D annotations, while OpenOccupancy (Wang et al., 2023) improves labeling accuracy through extensive manual annotation to mitigate LiDAR sparsity. Recent benchmarks such as SSCBench (Li et al., 2024b) and UniOcc (Wang et al., 2025) extend unified evaluation protocols to a variety of driving scenes. Despite recent progress focused primarily on supporting supervised learning paradigms, a standardized benchmark for unsupervised 3D occupancy learning remains underdeveloped, with existing annotations often limited to a single 2D plane. In this work, we exclusively utilize the aforementioned voxel-level occupancy annotations to evaluate unsupervised approaches, thereby establishing a comprehensive 3D benchmarking protocol.

144

3 METHODOLOGY

145
146
147

3.1 PROBLEM SETUP

148
149
150

In NeRF-based approaches, the network with parameters Θ takes as input a target-view RGB image I_0 , camera intrinsic matrix K , and a 3D point $\mathbf{x}^{(i)}$ to predict a rendering weight $\sigma^{(i)}$ as follows:

$$\sigma^{(i)} = f(I_0, K, \mathbf{x}^{(i)}; \Theta), \quad (1)$$

151
152
153
154
155

where the 3D point $\mathbf{x}^{(i)} = \mathbf{o} + t^{(i)}\mathbf{d}$ is sampled along a ray in the direction of the unit vector \mathbf{d} , with $t^{(i)}$ denoting the distance from the camera origin \mathbf{o} to $\mathbf{x}^{(i)}$. During the volume rendering process, the opacity $\alpha^{(i)}$ is first computed along the ray using the following expression:

$$\alpha^{(i)} = 1 - \exp(-\sigma^{(i)}\delta^{(i)}), \quad (2)$$

156
157
158
159

where $\delta^{(i)} = |\mathbf{x}^{(i+1)} - \mathbf{x}^{(i)}|$ denotes the length of the ray segment between consecutive sample points $\mathbf{x}^{(i)}$ and $\mathbf{x}^{(i+1)}$. An image in the target view is rendered using the following expression:

160
161

$$\hat{\mathbf{c}} = \sum_{i=1}^N \alpha^{(i)} T^{(i)} \mathbf{c}^{(i)}, \quad T^{(i)} = \prod_{j=1}^{i-1} (1 - \alpha^{(j)}), \quad (3)$$

162 where \hat{c} denotes the image intensity rendered along a sampled ray with N sampled points, $c^{(i)}$
 163 denotes the color at point $x^{(i)}$ sampled from other viewpoints, and $T^{(i)}$ represents the accumulated
 164 transmittance up to the i -th point. The network is trained by minimizing a photometric loss that
 165 quantifies the discrepancy between the rendered and ground-truth image intensities.
 166

167 3.2 OCCUPANCY PROBABILITY INTERPRETATION FOR NERF

182 Figure 1: A comparison between the network output σ and the opacity α during inference: (a) two
 183 representative sampled rays; (b) σ distributions;
 184 (c) α distributions. For point A, which transitions
 185 from occupied to free space, α_A is bounded within
 186 the range $(0, 1)$, whereas σ_A has no upper bound,
 187 making α a more suitable representation for occu-
 188 pancy probability; For points B and C with iden-
 189 tical occupancy status, their discrepancy in σ is
 190 significantly greater than that in α , demon-
 191 strating that our proposed representation for occu-
 192 pancy probability effectively eliminates the magni-
 193 tude variation caused by non-uniform point sam-
 194 pling.

195 Existing evaluation protocols simply adopt a
 196 fixed σ threshold of 0.5 to binarize each voxel¹:

$$o(\mathbf{x}) = [\sigma > 0.5], \quad (4)$$

197 where $[\cdot]$ denotes the Iverson bracket, and \mathbf{x}
 198 represents the voxel center. However, accord-
 199 ing to Eq. 1, the network predicts occupancy
 200 densities at infinitesimal points, whereas the
 201 ground truth typically corresponds to the occu-
 202 pancy probability of a volumetric cell. The
 203 spatial misalignment between point-wise pre-
 204 dictions and voxel-level ground truth annota-
 205 tions makes their direct comparison with a fixed
 206 threshold of 0.5 in Eq. 4 uninterpretable.

207 Specifically, existing approaches typically per-
 208 form non-uniform point sampling along each
 209 ray during training, with denser sampling near
 210 the camera and sparser sampling in more dis-
 211 tant regions. The variation in sampling den-
 212 sity along the ray changes the spatial neighbor-
 213 hood around each point, which is characterized
 214 by the distance δ to its nearest point. Con-
 215 sider two occupied points, B and C, as illus-
 216 trated in Fig. 1(a), with the former located in a
 217 densely sampled region and the latter located in a
 218 sparsely sampled one. According to Eq. 3, the
 219 rendering contributions αT of these two occu-
 220 pied points to the reconstructed pixel color are

221 theoretically expected to be equivalent. In the training process, the network adjusts its output σ to
 222 satisfy this equality, which leads to a magnitude variation issue, as illustrated in Fig. 1(b). As indi-
 223 cated by Eq. 2, denser sampling yields a smaller spatial neighborhood δ_B , which in turn increases
 224 the network output σ_B , and conversely, a larger δ_C in sparse sampling regions results in a lower σ_C .
 225 This dependency established during training is retained at inference time, causing magnitude vari-
 226 ations of the network outputs along the ray. Current method, nevertheless, overlooks this variation
 227 and applies a fixed threshold to obtain voxel-wise occupancy predictions, leading to inconsisten-
 228 cies in existing evaluation protocols across regions with varying point sampling densities. In addition,
 229 when the number of sampled points along each ray changes, the spatial neighborhood δ around
 230 each point also varies, thereby inducing inconsistent output magnitudes due to the underlying de-
 231 pendency. This also leads to inconsistency of evaluation protocols across different experimental
 232 configurations.

233 In this study, we argue that the opacity α provides a more interpretable representation of occupancy
 234 probability than the network’s output σ . According to Eq. 2, the opacity, computed based on the spa-
 235 tial neighborhood δ , characterizes the occupancy attributes within a finite volume rather than at an
 236 infinitesimal point. This volumetric interpretation aligns more naturally with voxel-level occupancy
 237 ground truth, making it better suited for model evaluation. In addition, unlike the original network
 238 output σ , which is highly sensitive to the point sampling strategy, the opacity value is bounded
 239 within $(0, 1)$, as illustrated in Fig. 1(c). This bounded range eliminates the aforementioned magni-
 240 tude variation effect, thereby enhancing the consistency of the evaluation protocols across diverse

241 ¹In this subsection, we omit the superscript (i) for σ , α , δ , and T for notational simplicity.

Figure 2: The occupancy sampling algorithm in the camera coordinate system (CCS) and the transformed coordinate system (TCS): (a) network inference with sampled points as input; (b) opacity distribution v.s. the voxel grid in the CCS; (c) opacity sampling using voxel centers in the TCS.

settings. The occupancy prediction is formulated under the proposed interpretation as follows:

$$o(\mathbf{x}) = [\alpha > 0.5]. \quad (5)$$

By adopting this opacity-based volumetric interpretation, we redefine the occupancy probability representation and reformulate the entire benchmark.

3.3 COORDINATE-TRANSFORMED OCCUPANCY SAMPLING

As discussed in the previous subsection, opacity α provides a more appropriate representation for occupancy prediction. Nonetheless, as illustrated in Figs. 2(a) and (b), the predicted opacities are distributed along radial segments originating from the camera center, whereas the ground-truth occupancy annotations are defined on a uniform voxel grid. To address this spatial misalignment problem, we propose a coordinate-transformed occupancy sampling algorithm that maps opacities from radial segments onto the voxel grid.

As illustrated in Fig. 2(c), to more clearly characterize the radial distribution of opacity, we construct the TCS, in which opacity is uniformly distributed, from the CCS. A 3D point $\mathbf{x}_c = (x_c, y_c, z_c)^\top$ in the CCS corresponds to the homogeneous pixel coordinates $(u, v, 1)^\top = \mathbf{K}\mathbf{x}_c/z_c$, where \mathbf{K} denotes the camera intrinsic matrix. The coordinates of the corresponding point in the TCS can be computed using the following expression:

$$\mathbf{x}_t = \left(\frac{u}{w-1}, \frac{v}{h-1}, \frac{1/t_n - 1/\|\mathbf{x}_c\|_2}{1/t_n - 1/t_f} \right)^\top, \quad (6)$$

where the image resolution is $h \times w$ pixels, and t_n and t_f denote the near and far bounds, respectively. This transformation maps the view frustum in the rendering field into a normalized cube spanning $[0, 1]^3$, where the x - and y -axes in the TCS are aligned with the image axes, and the z -axis is aligned with the sampled ray direction. The TCS enables the grid sampling process, which requires a uniformly distributed opacity map.

Given the above details on the defined TCS, the coordinate-transformed occupancy sampling algorithm proceeds with the following steps. First, each 3D point $\mathbf{x}_c^{(i)}$ is sampled in the CCS using the same strategy adopted during training. Following Eq. 1, $\mathbf{x}_c^{(i)}$ is passed through the network to infer the corresponding output $\sigma^{(i)}$, as depicted in Fig. 2(a). Following Eq. 2, the opacity $\alpha^{(i)}$ is then computed along each camera ray using the sampling interval $\delta^{(i)}$, as shown in Fig. 2(b). Subsequently, each voxel center $\mathbf{v}_c^{(j)}$ is transformed from the CCS to the TCS, yielding the corresponding coordinates $\mathbf{v}_t^{(j)}$, as illustrated in Fig. 2(c). The voxel-wise occupancy predictions, spatially aligned with the ground truth annotations, are obtained by sampling the grid-based opacity map in the TCS, expressed as follows:

$$o(\mathbf{v}_c^{(j)}) = [\mathcal{A}(\mathbf{v}_t^{(j)}) > 0.5], \quad (7)$$

where $\mathcal{A}(\cdot)$ denotes the grid sampling process on the opacity map $\mathcal{A} = \{\alpha^{(i)}\}$. The resulting occupancy predictions are subsequently evaluated using the metrics in our benchmark.

270 3.4 OCCLUSION-AWARE OCCUPANCY POLARIZATION
271

272 Further exploration of our benchmark reveals a critical limitation of existing unsupervised NeRF-
273 based occupancy prediction methods: they inherently struggle to predict occupancy distributions
274 behind foreground occluders. This limitation arises from their exclusive reliance on reconstruction
275 loss derived from volume rendering. To better understand this limitation, we conduct a quantitative
276 analysis on the supervisory signals within occluded regions during the back-propagation process.
277 For simplicity, we define the per-pixel photometric reconstruction loss as $\mathcal{L}_r = |\hat{c} - c_{gt}|$, where c_{gt}
278 denotes the ground-truth RGB value. Taking the derivative of Eq. 3 results in the gradient of the loss
279 with respect to the predicted opacity at the corresponding sampled point $\mathbf{x}^{(i)}$ as follows:
280

$$\frac{\partial \mathcal{L}_r}{\partial \alpha^{(i)}} = T^{(i)}[\hat{c} > c_{gt}]^\top c^{(i)} - T^{(i-1)} \sum_{j=i+1}^N \left(\alpha^{(i)} \prod_{k=i+1}^{j-1} (1 - \alpha^{(k)}) [\hat{c} > c_{gt}]^\top c^{(j)} \right) \quad (8)$$

283 The detailed derivation of Eq. 8 is given in the supplement. As shown in Eq. 3, the transmittance
284 $T^{(i)}$ decreases monotonically as the depth of $\mathbf{x}^{(i)}$ increases, approaching zero in regions occluded
285 by foreground occluders. According to Eq. 8, when both $T^{(i-1)}$ and $T^{(i)}$ approach zero, the gradient
286 $\partial \mathcal{L}_r / \partial \alpha^{(i)}$ diminishes as well. As a result, the gradients with respect to the network parameters in
287 occluded regions become negligible, thereby hindering effective learning in these areas.
288

302 Figure 3: An illustration of the occlusion-aware
303 occupancy polarization mechanism. The dis-
304 crepancy of sampled colors on adjacent sampled
305 points indicates that the colors likely originate
306 from distinct objects. The mechanism amplifies
307 the occupancy differences between such points
308 and refines predictions in occluded regions.
309
310

To address this issue, we leverage visual cues from other views to incorporate additional, explicit supervisory signals. As illustrated in Fig. 3, although occupancy in occluded regions is invisible in the target view, it may become visible in certain source views. Consider two adjacent sampled points, $\mathbf{x}^{(i)}$ and $\mathbf{x}^{(i+1)}$, located along a single ray. If at least one of them, e.g., $\mathbf{x}^{(i)}$, is occupied, the color difference between the two points provides valuable visual cues about the underlying occupancy. When the neighboring point $\mathbf{x}^{(i+1)}$ is unoccupied, its sampled color $\mathbf{c}^{(i+1)}$ often originates from a surface different from that of $\mathbf{x}^{(i)}$, leading to a noticeable color discrepancy. In contrast, if both points are occupied and lie on the same object, their colors tend to be similar due to their shared surface. Thus, the color discrepancy or similarity between adjacent points serves as an effective indicator of local occupancy variation. Nonetheless, when both points are unoccupied, the observed color difference is typically unrelated to underlying scene geometry and provides limited value for occupancy learning.

Motivated by the observation, we develop an occlusion-aware occupancy polarization mechanism to explicitly guide occupancy predictions across occupied and free space, enhancing the supervision signals in occluded regions. Specifically, this mechanism encourages the network to polarize the predicted occupancy values of adjacent points $\mathbf{x}^{(i)}$ and $\mathbf{x}^{(i+1)}$ when their sampled colors differ significantly. This facilitates sharper occupancy transitions in regions where visual cues suggest a boundary. We implement this mechanism by formulating a polarization loss \mathcal{L}_p as follows:

$$\mathcal{L}_p = \sum_{i=1}^{N-1} M_i |\mathbf{c}^{(i+1)} - \mathbf{c}^{(i)}| \exp \left(- |\sigma^{(i+1)} - \sigma^{(i)}| \right), \quad (9)$$

320 where $M_i = \max(\alpha^{(i)}, \alpha^{(i+1)})$ is a weighting mask to exclude regions where both consecutive
321 points are unoccupied, as discussed above. The loss penalizes insufficient polarization across object
322 boundaries and diminishes as the predicted occupancy difference increases. The overall loss is:
323

$$\mathcal{L} = \lambda_r \mathcal{L}_r + \lambda_p \mathcal{L}_p \quad (10)$$

where λ_r and λ_p are the weighting parameters.

324 Table 1: Quantitative comparison among unsupervised methods on the KITTI-360 dataset.
325

Method	O _{Acc}	O _{Pre}	O _{Rec}	IE _{Acc}	IE _{Pre}	IE _{Rec}
BTS (Wimbauer et al., 2023)	0.870	0.733	0.745	0.727	0.466	0.658
KDBTS (Han et al., 2024)	0.871	0.746	0.731	0.722	0.463	0.682
KYN (Li et al., 2024a)	0.861	0.746	0.654	0.671	0.402	0.707
ViPOcc (Feng et al., 2025)	0.875	0.748	0.746	0.728	0.467	0.668
Ours	0.883	0.763	0.757	0.741	0.475	0.676

333
334

4 EXPERIMENTS

335336

4.1 IMPLEMENTATION DETAILS

337

338 **Datasets.** We establish a new benchmark and conduct extensive experiments on the KITTI-360
339 dataset (Liao et al., 2022), with 3D occupancy ground truth provided by the SSCBench-KITTI-
340 360 dataset (Li et al., 2024b). Unsupervised methods are trained with video sequences and the
341 corresponding ground-truth camera poses from the KITTI-360 dataset. All images are resized to a
342 resolution of 192×640 pixels. Following Wimbauer et al. (2023), we split the dataset into a training
343 set of 98,008 images, a validation set of 11,451 images, and a test set of 446 images.
344

345 **Network Training.** We train our network (He et al., 2016) for 25 epochs using the Adam (Kingma
346 et al., 2014) optimizer on an NVIDIA RTX 4090 GPU, with the initial learning rate set to 2×10^{-4} ,
347 which is decayed by a factor of 2 during the final 10 epochs.
348

349 **Evaluation Protocols.** Existing evaluation protocols for unsupervised approaches are typically
350 restricted to a narrow 2D slice of the scene, with highly limited spatial ranges ($y = 0.375m$,
351 $x \in [-4m, +4m]$, and $z \in [3m, 20m]$ in the CCS). To overcome this limitation, we utilize the
352 3D occupancy ground truth from SSCBench-KITTI-360 dataset (Li et al., 2024b), which covers
353 a substantially larger spatial volume extending 51.2m forward, 25.6m to each side, and 6.4m in
354 height, discretized into a $256 \times 256 \times 32$ voxel grid with a resolution of 0.2m. Specifically, we align
355 the 3D occupancy annotations for each image in the KITTI-360 test set and provide the transforma-
356 tion from the voxel coordinate system to the camera coordinate system. With this transformation,
357 we generate 3D frustum masks and 3D voxel visibility masks using a ray-tracing algorithm, thereby
358 enabling evaluation in occluded regions. We relax the evaluation limitation along the y -axis while
359 preserving the original ranges along the x - and z -axes in Wimbauer et al. (2023). This adaptation
360 enables the evaluation protocol to prioritize spatial regions closer to the input camera viewpoint,
361 where predictions are generally more reliable. Additional details are provided in the supplement.
362

363 **Metrics.** Based on the above evaluation protocols, we extend the evaluation metrics used in Wim-
364 bauer et al. (2023) to the 3D domain. These metrics include: occupancy accuracy O_{Acc}, occupancy
365 precision O_{Pre}, occupancy recall O_{Rec}, invisible and empty accuracy IE_{Acc}, invisible and empty pre-
366 cision IE_{Pre}, and invisible and empty recall IE_{Rec}. The first three metrics are computed within the
367 camera frustum, while the latter three are evaluated within the intersection of the camera frustum
368 and the invisibility mask. In addition, to facilitate comparison with supervised methods, we adopt
369 unified metrics, including intersection over union (IoU), precision (Pre), and recall (Rec).
370

371

4.2 COMPARISONS WITH STATE-OF-THE-ART METHODS

372

373 We compare our approach with representative unsupervised SoTA methods. As shown in Table 1,
374 our method achieves SoTA performance across the majority of evaluation metrics. In particular, it
375 improves O_{Acc}, O_{Pre}, O_{Rec}, IE_{Acc}, and IE_{Pre} by 0.9%, 2.0%, 1.5%, 1.8%, and 1.7%, respectively. It
376 is worth noting that although KYN achieves the highest IE_{Rec} score, it incorporates a computa-
377 tionally intensive visual-language network (Li et al., 2022), which significantly compromises inference
378 efficiency. Qualitative comparisons are presented in Fig. 4, where the predicted occupancy grids are
379 visualized from the right side of the scene. Compared to BTS and ViPOcc, our method achieves
380 superior 3D geometry reconstruction, and effectively mitigates trailing effects. The results demon-
381 strate the effectiveness of our proposed polarization mechanism in reasoning occluded occupancy.
382

Figure 4: Qualitative comparisons of 3D occupancy prediction on the KITTI-360 dataset: (a) input RGB images; (b) BTS results; (c) ViPOcc results; (d) our results.

Table 2: Quantitative comparison with both supervised and unsupervised methods on the KITTI-360 dataset. The best results are shown in bold type, with the best unsupervised ones underlined.

Supervised Method	IoU (%)	Pre (%)	Rec (%)	Unsupervised Method	IoU (%)	Pre (%)	Rec (%)
MonoScene	37.9	56.7	53.3	KDBTS	44.6	52.7	74.3
VoxFormer	38.8	58.5	53.4	KYN	44.4	<u>54.0</u>	71.4
OccFormer	40.3	59.7	55.3	ViPOcc	43.1	47.2	83.4
Symphonies	44.1	69.2	54.9	Ours	<u>45.5</u>	50.8	81.4

Additionally, our reformulated benchmark suite is aligned with the evaluation protocols used by supervised methods, thereby enabling direct comparison with representative supervised approaches. The quantitative experimental results presented in Table 2 reveal several noteworthy findings. Most notably and somewhat unexpectedly, NeRF-based methods achieve IoU scores that are comparable to, or even exceed those of recent supervised approaches, while outperforming most earlier ones. We attribute this phenomenon to the limited quality of existing 3D occupancy ground truth, which may introduce misleading supervisory signals and thus hinder the effectiveness of supervised training. In contrast, NeRF-based methods are unaffected by this issue, as they do not rely on such supervision. Moreover, unsupervised methods typically exhibit higher recall than precision, indicating a tendency to overestimate occupied space, particularly in occluded regions where supervisory signals are absent. In contrast, benefiting from direct supervision in these areas, supervised methods often achieve more balanced metrics. While our method mitigates this imbalance compared to the unsupervised baseline ViPOcc, further improvements are necessary, especially in handling occlusions, which remain a key challenge for unsupervised 3D occupancy prediction.

To further evaluate the generalizability of the proposed method, we conduct a zero-shot test on the SemanticKITTI dataset (Behley et al., 2019) using the pre-trained weights obtained from the KITTI-360 dataset. As presented in Table 3, the proposed method outperforms other SoTA methods including SceneRF (Cao & De Charette, 2023) and SelfOcc (Huang et al., 2024b) in zero-shot 3D occupancy prediction, demonstrating its exceptional generalizability.

Figure 5: Comparison between the conventional and proposed occupancy probability representations in terms of (a) O_{Acc} and (b) IE_{Rec} across varying numbers of sampled points per ray.

4.3 ABLATION STUDIES

Occupancy Probability Interpretation. To demonstrate the rationality of our interpreted occupancy probability representation, we evaluate existing unsupervised methods under both the conventional and the proposed representations. Specifically, we utilize pretrained weights from prior works without any modification and exclusively adjust the occupancy probability representation for performance evaluation. The network’s performance is then evaluated using the above-mentioned metrics under both interpretations for comparative analysis.

As shown in Table 4, directly applying our interpreted occupancy probability defined in Eq. 7, without any retraining, consistently leads to higher O_{Acc} and IE_{Rec} scores, compared to the conventional representation defined in Eq. 4. This improvement demonstrates that our proposed formulation ensures greater consistency between the training and evaluation protocols and is more suitable for the quantitative evaluation of unsupervised methods. Furthermore, by leveraging the proposed occupancy probability representation, we observe opposing trends in IE_{Rec} and IE_{Acc} , which quantify performance within invisible regions, revealing that existing methods generally misclassify free space as occupied when explicit supervisory signals are absent. This observation corroborates the limitation in current approaches when inferring occupancy in occluded regions.

To further demonstrate the robustness of the proposed occupancy probability representation under varying point sampling intervals along rays, we train the baseline network (Feng et al., 2025) with different numbers of sampled points per ray, while maintaining fixed near and far bounds, as defined in the NeRF framework. As illustrated in Fig. 5, unlike the conventional representation, which suffers from fluctuations in network output magnitude under varying sampling densities, our representation maintains consistent performance, demonstrating greater stability to changes in point sampling strategies, as discussed above.

Occlusion-Aware Occupancy Polarization. To validate the effectiveness of the occlusion-aware occupancy polarization mechanism, we incorporate its corresponding loss \mathcal{L}_p into the overall loss function and retrain several baseline networks for comprehensive comparisons. As shown in Table 5, the mechanism consistently improves all evaluation metrics across all baseline networks, with maximum improvements of 1.1%, 1.8% and 1.4% on O_{Acc} , IE_{Acc} and IE_{Rec} , demonstrating its general efficacy. Additional comparative results are provided in the supplement.

Table 4: Ablation study on the occupancy probability interpretation. The conventional occupancy probability interpretation is given in Eq. 4, whereas ours is given in Eq. 7.

Method	Representation	O_{Acc}	IE_{Acc}	IE_{Rec}
BTS	Conventional	0.867	0.756	0.606
	Ours	0.870	0.727	0.658
KDBTS	Conventional	0.868	0.750	0.618
	Ours	0.871	0.722	0.682
ViPOcc	Conventional	0.873	0.757	0.608
	Ours	0.875	0.728	0.668

Table 5: Ablation study on the occlusion-aware occupancy polarization mechanism.

Baseline	\mathcal{L}_p	O_{Acc}	IE_{Acc}	IE_{Rec}
BTS	✗	0.870	0.727	0.658
	✓	0.880	0.737	0.667
KDBTS	✗	0.871	0.722	0.682
	✓	0.879	0.725	0.682
ViPOcc	✗	0.875	0.728	0.668
	✓	0.883	0.741	0.676

486

5 CONCLUSION

488 In this paper, we first addressed a critical limitation in the existing unsupervised monocular 3D oc-
 489 cupancy prediction benchmark: the spatial inconsistency between training and evaluation protocols.
 490 To this end, we developed an interpretable, opacity-based representation of occupancy probability
 491 and introduced a coordinate-transformed sampling algorithm for voxel-wise occupancy prediction,
 492 contributing a consistent and reliable evaluation protocol aligned with those used by supervised
 493 methods. In addition, to compensate for the inherent lack of photometric supervision revealed by
 494 the proposed benchmark, we leveraged multi-view visual cues and introduced an occlusion-aware
 495 occupancy polarization mechanism, which proves to be compatible across all baseline networks. Ex-
 496 tensive experiments conducted with both supervised and unsupervised methods on the reformulated
 497 benchmark validate the rationality of our interpreted occupancy probability, the alignment between
 498 training and evaluation protocols, and the effectiveness of the proposed occlusion-aware occupancy
 499 polarization mechanism.

500

501 REPRODUCIBILITY STATEMENT

502 Our results are reproducible by consulting section 4 and section C in appendix for the experimental
 503 details of our new benchmark, and by downloading the supplementary materials which contain the
 504 complete source code.

506

507 REFERENCES

508 Joshua Ahn et al. Alpha Invariance: On inverse scaling between distance and volume density in
 509 neural radiance fields. In *Proceedings of the IEEE/CVF Conference on Computer Vision and*
 510 *Pattern Recognition (CVPR)*, pp. 20396–20405, June 2024.

512 J. Behley et al. SemanticKITTI: A Dataset for Semantic Scene Understanding of LiDAR Sequences.
 513 In *Proceedings of the IEEE/CVF International Conf. on Computer Vision (ICCV)*, pp. 9297–9307,
 514 2019.

515 Holger Caesar et al. nuScenes: A multimodal dataset for autonomous driving. In *Proceedings of the*
 516 *IEEE/CVF conference on Computer Vision and Pattern Recognition (CVPR)*, pp. 11621–11631,
 517 2020.

518 Anh-Quan Cao and Raoul De Charette. Scenerf: Self-supervised Monocular 3d Scene Reconstruc-
 519 *tion with Radiance Fields*. In *Proceedings of the IEEE/CVF International Conference on Com-*
 520 *puter Vision (ICCV)*, pp. 9387–9398, 2023.

522 Anh-Quan Cao et al. MonoScene: Monocular 3D semantic scene completion. In *Proceedings of*
 523 *the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR)*, pp. 3991–4001,
 524 June 2022.

525 Yi Feng et al. ViPOcc: Leveraging visual priors from vision foundation models for single-view 3d
 526 occupancy prediction. In *Proceedings of the AAAI Conference on Artificial Intelligence (AAAI)*,
 527 pp. 3004–3012, 2025.

529 Keonhee Han et al. Boosting self-supervision for single-view scene completion via knowledge distil-
 530 *lation*. In *Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition*
 531 *(CVPR)*, pp. 9837–9847, June 2024.

532 Kaiming He et al. Identity mappings in deep residual networks. In *Proceedings of the European*
 533 *Conference on Computer Vision (ECCV)*, pp. 630–645, 2016.

535 Yuanhui Huang et al. Tri-perspective view for vision-based 3d semantic occupancy prediction. In
 536 *Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR)*,
 537 pp. 9223–9232, June 2023.

538 Yuanhui Huang et al. Selfocc: Self-supervised vision-based 3d occupancy prediction. In *Pro-*
 539 *ceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR)*, pp.
 19946–19956, 2024a.

540 Yuanhui Huang et al. Selfocc: Self-supervised vision-based 3d occupancy prediction. In *Proceedings of the IEEE/CVF conference on computer vision and pattern recognition (CVPR)*, pp. 541 19946–19956, 2024b.

543 Aleksandar Jevtić et al. Feed-forward SceneDINO for unsupervised semantic scene completion. In *IEEE/CVF International Conference on Computer Vision (ICCV)*, 2025. in press.

546 Haoyi Jiang et al. Symphonize 3d semantic scene completion with contextual instance queries. In *Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR)*, 547 pp. 20258–20267, 2024.

549 Diederik P. Kingma et al. Adam: A method for stochastic optimization. *Computing Research Repository (CoRR)*, pp. 1–15, 2014.

552 Boyi Li et al. Language-driven semantic segmentation. In *International Conference on Learning Representations (ICLR)*, pp. 1–13, 2022.

555 Heng Li et al. Occmamba: Semantic occupancy prediction with state space models. In *Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR)*, pp. 11949–556 11959, 2025.

557 Rui Li et al. Know your neighbors: Improving single-view reconstruction via spatial vision-language reasoning. In *Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR)*, pp. 9848–9858, 2024a.

561 Yiming Li et al. VoxFormer: Sparse voxel transformer for camera-based 3d semantic scene completion. In *Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR)*, pp. 9087–9098, June 2023.

564 Yiming Li et al. SSCBench: A large-scale 3d semantic scene completion benchmark for autonomous driving. In *2024 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS)*, pp. 13333–13340, 2024b.

567 Yiyi Liao et al. KITTI-360: A novel dataset and benchmarks for urban scene understanding in 569 2d and 3d. *IEEE Transactions on Pattern Analysis and Machine Intelligence*, 45(3):3292–3310, 570 2022.

571 Qihang Ma et al. Cotr: Compact occupancy transformer for vision-based 3d occupancy prediction. In *Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR)*, pp. 19936–19945, 2024.

575 Ben Mildenhall et al. NeRF: Representing scenes as neural radiance fields for view synthesis. In *Proceedings of the European Conference on Computer Vision (ECCV)*, pp. 405–421, 2020.

577 Xiaoyu Tian et al. Occ3D: A large-scale 3d occupancy prediction benchmark for autonomous driving. *Advances in Neural Information Processing Systems (NeurIPS)*, pp. 64318–64330, 2023.

580 Jiabao Wang et al. Opus: Occupancy prediction using a sparse set. In *Advances in Neural Information Processing Systems (NeurIPS)*, pp. 119861–119885, 2024.

582 Xiaofeng Wang et al. OpenOccupancy: A large scale benchmark for surrounding semantic occu-583 pancy perception. In *Proceedings of the IEEE/CVF International Conference on Computer Vision (ICCV)*, pp. 17850–17859, 2023.

585 Yuping Wang et al. UniOcc: A unified benchmark for occupancy forecasting and prediction in 586 autonomous driving. *Computing Research Repository (CoRR)*, pp. 1–14, 2025.

588 Yi Wei et al. SurroundOcc: Multi-camera 3d occupancy prediction for autonomous driving. In *Proceedings of the IEEE/CVF International Conference on Computer Vision (ICCV)*, pp. 21729–589 21740, 2023.

591 Felix Wimbauer et al. Behind the scenes: Density fields for single view reconstruction. In *Pro-593 ceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR)*, pp. 9076–9086, 2023.

594 Lihe Yang et al. Depth Anything: Unleashing the Power of Large-Scale Unlabeled Data. In *Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR)*, pp.
 595 10371–10381, 2024.
 596

597 Yanan Zhang et al. Vision-based 3D occupancy prediction in autonomous driving: A review and
 598 outlook. *Computing Research Repository (CoRR)*, pp. 1–20, 2024.
 599

600 Yunpeng Zhang et al. OccFormer: Dual-path transformer for vision-based 3d semantic occu-
 601 pancy prediction. In *Proceedings of the IEEE/CVF International Conference on Computer Vision
 602 (ICCV)*, pp. 9433–9443, October 2023.
 603

604 Bowen Zhao et al. Hybridocc: Learning hybrid explicit and implicit representations for vision-
 605 centric 3d occupancy prediction. In *IEEE Robotics and Automation Letters*, pp. 7867–7874,
 606 2024.
 607

608 A ETHICS

610 In this study, we utilize the KITTI-360 (Liao et al., 2022) and SSCBench-KITTI-360 (Li et al.,
 611 2024b) datasets for the development and evaluation of 3D occupancy prediction networks. It is im-
 612 portant to emphasize that we strictly adhere to the terms of usage for each dataset. We acknowledge
 613 that these datasets may contain images with visible faces and other personal data collected without
 614 consent. Nevertheless, we confirm that no biometric information has been processed. All images
 615 are used in accordance with the CC-BY license or in a manner compatible with the Data Analysis
 616 Permission.
 617

618 B ADDITIONAL METHODOLOGICAL DETAILS

619 B.1 THE GRADIENT OF THE RECONSTRUCTION LOSS

620 We derive the gradient of the reconstruction loss with respect to the opacity at the sampled point
 621 $x^{(i)}$ as follows:
 622

$$623 \frac{\partial \mathcal{L}_r}{\partial \alpha^{(i)}} = \frac{\partial \mathcal{L}_r}{\partial \hat{c}} \frac{\partial \hat{c}}{\partial \alpha^{(i)}} = [\hat{c} > c_{gt}]^\top \frac{\partial \hat{c}}{\partial \alpha^{(i)}}, \quad (11)$$

624 where $[\cdot]$ denotes the Iverson bracket, \mathcal{L}_r represents the reconstruction loss, $\alpha^{(i)}$ denotes the opacity
 625 at point $x^{(i)}$, $\hat{c} = \sum_{i=1}^N \alpha^{(i)} T^{(i)} c^{(i)}$ represents the rendered pixel color, and c_{gt} denotes the ground-
 626 truth RGB value. We take the derivative of the rendered pixel color \hat{c} and obtain the following expres-
 627 sion:
 628

$$629 \frac{\partial \hat{c}}{\partial \alpha^{(i)}} = \sum_{j=1}^N \frac{\partial}{\partial \alpha^{(i)}} \left(\alpha^{(j)} T^{(j)} c^{(j)} \right) \quad (12)$$

$$630 = T^{(i)} c^{(i)} + \sum_{j=1}^N \alpha^{(j)} c^{(j)} \frac{\partial T^{(j)}}{\partial \alpha^{(i)}},$$

631 where $\partial T^{(j)} / \partial \alpha^{(i)}$ is obtained by taking the derivative of $T^{(j)} = \prod_{k=1}^{j-1} (1 - \alpha^{(k)})$. We present the
 632 derivative by cases as follows:
 633

$$634 \frac{\partial T^{(j)}}{\partial \alpha^{(i)}} = \begin{cases} 0 & (j \leq i) \\ -T^{(i-1)} \prod_{k=i+1}^{j-1} (1 - \alpha^{(k)}) & (j > i) \end{cases}. \quad (13)$$

635 We combine the above expressions and yield the final result, expressed as follows:
 636

$$637 \frac{\partial \hat{c}}{\partial \alpha^{(i)}} = T^{(i)} c^{(i)} - T^{(i-1)} \sum_{j=i+1}^N \left(\alpha^{(i)} \prod_{k=i+1}^{j-1} (1 - \alpha^{(k)}) c^{(j)} \right) \quad (14)$$

$$\frac{\partial \mathcal{L}_r}{\partial \alpha^{(i)}} = T^{(i)}[\hat{\mathbf{c}} > \mathbf{c}_{gt}]^\top \mathbf{c}^{(i)} - T^{(i-1)} \sum_{j=i+1}^N \left(\alpha^{(i)} \prod_{k=i+1}^{j-1} (1 - \alpha^{(k)}) [\hat{\mathbf{c}} > \mathbf{c}_{gt}]^\top \mathbf{c}^{(j)} \right) \quad (15)$$

652 B.2 SAMPLING STRATEGY

654 To support the discussion in the main paper regarding the magnitude variation of the network's
 655 output induced by different sampling strategies, we provide a detailed description of the sampling
 656 strategies adopted in existing methods (Wimbauer et al., 2023; Han et al., 2024; Li et al., 2024a;
 657 Feng et al., 2025) and ours. These strategies are categorized as ray sampling and point sampling.
 658

659 B.2.1 RAY SAMPLING

660 The ray sampling strategy differs between the training and evaluation phases. During training, to
 661 reduce computational cost and accelerate network convergence, we adopt a patch sampling strategy.
 662 Specifically, we extract 64 image patches (resolution: 8×8 pixels), resulting in 4,096 sampled
 663 pixels and their corresponding rays per training iteration. This sampling strategy ensures both the
 664 spatial diversity and similarity among sampled rays, thereby facilitating network training. During
 665 evaluation, we sample all pixels from the input image to infer occupancies across the entire spatial
 666 space in the camera frustum.

667 B.2.2 POINT SAMPLING

668 After sampling rays from the input image, points are sampled along each ray for network inference.
 669 Owing to the varying depth sensitivity of pinhole cameras, existing strategies do not sample points
 670 uniformly in the Euclidean depth space. Instead, they apply uniform sampling in the inverse-depth
 671 space, which allows for denser sampling near the camera and sparser sampling in distant areas. The
 672 distance between the camera origin and the i -th sampled point on a sampled ray is expressed as
 673 follows:

$$675 t^{(i)} = 1 / \left(\left(1 - \frac{i+r}{N} \right) \frac{1}{t_n} + \frac{i+r}{N} \frac{1}{t_f} \right), \quad (16)$$

676 where N denotes the number of points sampled per ray, $r \sim N(-0.5, 0.5)$ denotes a random variable
 677 from a uniform distribution, and t_n and t_f represent the near and far bounds in the rendering field,
 678 respectively. The sampled points are defined as $\mathbf{x}_c^{(i)} = \mathbf{o} + t^{(i)} \mathbf{d}$, where \mathbf{o} denotes the camera origin
 679 and \mathbf{d} represents the unit direction vector of the sampled ray. As discussed in the main paper, this
 680 non-uniform sampling strategy introduces variations in the network output magnitudes due to the
 681 depth-dependent sampling density of the points. During evaluation, instead of directly using voxel
 682 centers as input points to the network, we employ the same point sampling strategy as used during
 683 training, with the only difference being the removal of the random variable r . This eliminates the
 684 inconsistency in the spatial distribution of sampled points across both phases.
 685

686 B.3 COORDINATE-TRANSFORMED SAMPLING DETAILS

687 In the coordinate-transformed occupancy sampling process, we transform both the opacity values
 688 inferred by the network and the voxel center points from the CCS to the TCS. This transformation
 689 enables us to compute the occupancy probability for each voxel using the grid sampling algorithm.
 690 Specifically, we perform 3D grid sampling in the normalized spanning cube $[0, 1]^3$ using the bilinear
 691 interpolation mode and the border padding mode.
 692

694 C TECHNICAL DETAILS

695 C.1 TRAINING DETAILS

696 C.1.1 HYPERPARAMETERS AND CONFIGURATIONS

697 The batch size is set to 16, and the network is trained for 25 epochs. We set the loss weights, λ_r and
 698 λ_p , to 1 and 1×10^{-3} , respectively. Furthermore, since the occlusion-aware occupancy polarization
 699 mechanism directly utilizes color similarity as a prior to infer the geometric structure between

702 neighboring sampled points, it is reasonable to omit color augmentation for training. Additionally,
 703 we employ horizontal flip augmentation by randomly flipping the input image prior to feeding it into
 704 the network. To preserve the original geometric structure of the scene, a corresponding inverse flip
 705 is applied to the resulting feature maps before they undergo further processing.

707 C.1.2 DATASET

709 We train the network with both the stereo perspective-camera video sequence and the left and right
 710 fisheye-camera video sequences from the KITTI-360 dataset (Liao et al., 2022). For each fisheye
 711 image, we follow the resampling process described in Wimbauer et al. (2023) to obtain the corre-
 712 sponding image using a virtual perspective camera. To enlarge the overlap among camera frustums,
 713 we offset fisheye-camera sequences by ten timestamps relative to the stereo perspective-camera se-
 714 quence, thereby enhancing the ratio of valid color samples.

715 C.2 BENCHMARK DETAILS

717 C.2.1 DATASET ALIGNMENT

718 The SSCBench-KITTI-360 dataset (Li et al., 2024b) provides 3D occupancy ground truth along with
 719 the corresponding 2D images. However, it employs a non-public method to select 2D image frames
 720 from the KITTI-360 dataset, resulting in updated image indices. As a result, the provided occupancy
 721 ground truth cannot be directly aligned with the test images from the KITTI-360 dataset. To address
 722 this issue, we systematically scan both datasets and construct a frame correspondence lookup table
 723 by identifying exact matches between 2D images.

725 C.2.2 TRANSFORMATION BETWEEN COORDINATE SYSTEMS

726 In the SSCBench-KITTI-360 dataset, ground-truth 3D occupancy annotations are provided at a
 727 lower temporal resolution to reduce storage cost. Specifically, for every five consecutively re-
 728 indexed frames, only one frame is associated with a 3D occupancy label. Fortunately, based on our
 729 experimental verification, all selected frames are accompanied by ground-truth poses from the origi-
 730 nal KITTI-360 dataset. This enables us to compute the relative pose transformation between a query
 731 frame in the test split and its nearest adjacent frame with ground-truth 3D occupancy annotations.
 732 Consequently, we can derive the transformation from the voxel coordinate system of the annotated
 733 occupancy grid to the camera coordinate system of the test frame.

746 Figure 6: An illustration of the coordinate sys-
 747 tem transformation is provided in the bird's-eye
 748 view of the occupancy ground truth. Specifically,
 749 it depicts the transformation from the voxel co-
 750 ordinate system associated with the j -th frame to
 751 the camera coordinate system of the i -th frame.
 752 This transformation enables subsequent computa-
 753 tion of the frustum mask and the visibility mask.

755 era coordinate system can be obtained using the following expression:

$$756 \mathbf{T}_{v \rightarrow c} = \mathbf{T}_i^{-1} \mathbf{T}_j \mathbf{T}_{l \rightarrow c} \mathbf{T}_{v \rightarrow l}. \quad (17)$$

756 C.2.3 MASK GENERATION
757

758 Based on the transformation defined in Eq. 17, we construct the frustum mask M_f and the visibility
759 mask M_v corresponding to the 3D occupancy ground truth. For each voxel center $v_c^{(i)}$, we define
760 binary values $m_f^{(i)}$ and $m_v^{(i)}$ in this voxel to represent its frustum and visibility status, respectively.
761 Given the projected image coordinates (u, v) that correspond to the voxel center $v_c^{(i)}$, the value in
762 the frustum mask is defined as follows:
763

$$764 m_f^{(i)} = [0 \leq u \leq w - 1] \wedge [0 \leq v \leq h - 1], \quad (18)$$

765 where w and h denote the image width and height, respectively. In this equation, $m_f^{(i)} = 1$ indicates
766 that the voxel projects within the valid image bounds.
767

768 We apply a ray tracing algorithm to generate visibility masks based on 3D occupancy ground truth.
769 Specifically, we generate a ray for each image pixel and perform dense sampling along the ray within
770 the spatial bounds of the 3D occupancy volume. The sampling interval is set equal to the voxel size
771 to ensure that any two adjacent sampled points lie either within the same voxel or in adjacent voxels.
772 Subsequently, we query the ground-truth occupancy at each sampled location to determine whether
773 it is occupied. For a given ray, the visibility status $m_v^{(i)}$ of a point is set to 1 if the point itself and all
774 preceding points along the ray are unoccupied. These per-point visibility statuses are then mapped
775 back to their corresponding voxels, resulting in the final voxel-wise visibility mask M_v .
776

777 C.2.4 OCCUPANCY METRICS DETAILS
778

779 The expressions of the evaluation metrics used in the main paper is given as follows:
780

$$781 O_{\text{Acc}} = \frac{\sum_i [\hat{o}^{(i)} = o^{(i)}] m_f^{(i)}}{\sum_i m_f^{(i)}}, \quad (19)$$

$$782 O_{\text{Pre}} = \frac{\sum_i o^{(i)} \hat{o}^{(i)} m_f^{(i)}}{\sum_i \hat{o}^{(i)} m_f^{(i)}}, \quad (20)$$

$$783 O_{\text{Rec}} = \frac{\sum_i \hat{o}^{(i)} o^{(i)} m_f^{(i)}}{\sum_i o^{(i)} m_f^{(i)}}, \quad (21)$$

$$784 \text{IE}_{\text{Acc}} = \frac{\sum_i [\hat{o}^{(i)} = o^{(i)}] (1 - m_v^{(i)}) m_f^{(i)}}{\sum_i (1 - m_v^{(i)}) m_f^{(i)}}, \quad (22)$$

$$785 \text{IE}_{\text{Pre}} = \frac{\sum_i (1 - o^{(i)}) (1 - \hat{o}^{(i)}) (1 - m_v^{(i)}) m_f^{(i)}}{\sum_i (1 - \hat{o}^{(i)}) (1 - m_v^{(i)}) m_f^{(i)}}, \quad (23)$$

$$786 \text{IE}_{\text{Rec}} = \frac{\sum_i (1 - \hat{o}^{(i)}) (1 - o^{(i)}) (1 - m_v^{(i)}) m_f^{(i)}}{\sum_i (1 - o^{(i)}) (1 - m_v^{(i)}) m_f^{(i)}}, \quad (24)$$

803 where $\hat{o}^{(i)}$ and $o^{(i)}$ denote the predicted and ground-truth occupancies for the i -th voxel, respectively.
804

805 D ADDITIONAL EXPERIMENTAL RESULTS
806807 D.1 OCCLUSION-AWARE OCCUPANCY POLARIZATION
808

809 When designing the polarization mechanism, our goal is to establish an indicator that reflects
810 whether two adjacent 3D points along a ray correspond to the same object when projected into a
811

Baseline	Signal for building \mathcal{L}_p	O _{Acc}	IE _{Acc}	IE _{Rec}
BTS	Pseudo depth	0.879	0.734	0.644
	RGB intensity	0.880	0.737	0.667
KDBTS	Pseudo depth	0.878	0.724	0.679
	RGB intensity	0.879	0.725	0.682
ViPOcc	Pseudo depth	0.881	0.740	0.655
	RGB intensity	0.883	0.741	0.676

Table 6: Ablation study on the signals of occlusion-aware occupancy polarization mechanism.

given source view. Other than relying on the color difference, we exploit the difference in pseudo depth predicted by a vision foundation model (Yang et al., 2024). Specifically, for each pair of adjacent samples along a ray, we obtain their projections in the source view and examine the discrepancy of their image-level signals (e.g., color or pseudo depth) as an indicator to determine whether these projections lie on the same object.

Experimental results presented in Table 6 suggest that RGB-based indicators consistently outperform pseudo-depth-based ones across baseline models. This finding is somewhat unexpected, given that depth maps typically provide more reliable geometric cues and are generally more robust to texture ambiguity and color similarity.

We hypothesize that this phenomenon stems from the distinct signal transition characteristics across object boundaries. For two adjacent points located on different objects, the pseudo-depth differences can vary significantly depending on the geometric structure of the scene. In particular, when these points lie on different objects but have similar depth values, their pseudo-depth values are often close, making it difficult to distinguish inter-object cases from intra-object ones. In contrast, due to variations in lighting, material, and texture across different objects, RGB intensities tend to differ markedly across object boundaries, even when depth values are similar. This observation suggests that RGB intensity is generally more reliable than pseudo-depth for inferring object-level consistency. In the future, we plan to further optimize the design of the polarization mechanism by developing a lightweight object-consistency indicator that does not rely on vision foundation models or additional ground truth annotations.

D.2 3D OCCUPANCY PREDICTION VISUALIZATION

We present additional qualitative results of 3D occupancy prediction on the KITTI-360 dataset. As shown in Fig. 7, our method achieves superior geometric reconstruction performance in occluded regions compared to previous state-of-the-art approaches. This improvement can be attributed to the proposed occlusion-aware occupancy polarization mechanism, which effectively leverages complementary visual cues from alternative viewpoints to recover missing structural information.

E LIMITATIONS

Despite achieving SoTA performance, the proposed method still presents a known limitation related to the camera field of view (FOV). During training, forward-view cameras at frame t and side-view cameras at frame $t + T$ are selected (where T is a fixed parameter), and the supervisory signals are primarily derived in regions where their FOVs overlap. As illustrated in Fig. 8, the narrow horizontal FOV of the cameras results in a limited overlapping volume, thereby weakening the supervision available during training. Our future work will investigate improved dataset organization strategies to increase the volume of overlapping regions.

Figure 8: An illustration of the limitation related to camera field of view.

Figure 7: Qualitative comparison of occupancy prediction on KITTI-360 dataset: (a) RGB images; (b) BTS (Wimbauer et al., 2023) results; (c) ViPOcc (Feng et al., 2025) results; (d) our results.