
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053
054

Mantis: Lightweight Calibrated Foundation Model for User-Friendly Time
Series Classification

Anonymous Authors1

Abstract
In recent years, there has been increasing inter-
est in developing foundation models for time
series data that can generalize across diverse
downstream tasks. While numerous forecasting-
oriented foundation models have been introduced,
there is a notable scarcity of models tailored for
time series classification. To address this gap, we
present Mantis, a new open-source foundation
model for time series classification based on the
Vision Transformer (ViT) architecture that has
been pre-trained using a contrastive learning ap-
proach. Our experimental results show that Man-
tis outperforms existing foundation models both
when the backbone is frozen and when fine-tuned,
while achieving the lowest calibration error. In
addition, we propose several adapters to handle
the multivariate setting, reducing memory require-
ments and modeling channel interdependence.

1 Introduction
The advent of large foundation models (Bommasani et al.,
2021) in computer vision (He et al., 2015; Dosovitskiy et al.,
2021) and natural language processing (Achiam et al., 2023;
Touvron et al., 2023) has significantly transformed research
and applications. These models are pre-trained on exten-
sive, diverse datasets to generalize across a wide range of
downstream tasks, simplifying model design and reducing
the need for large amounts of labeled data.

In recent years, foundation models for time series (TSFMs)
have emerged as a growing area of research. For time se-
ries forecasting, many models have been proposed—either
trained from scratch on large-scale data (Woo et al., 2024;
Wang et al., 2024; Ansari et al., 2024) or adapted from
pre-trained language models (Gruver et al., 2024). Some
TSFMs target multiple tasks at once, such as forecasting,

1Anonymous Institution, Anonymous City, Anonymous Region,
Anonymous Country. Correspondence to: Anonymous Author
<anon.email@domain.com>.

Preliminary work. Under review by the International Conference
on Machine Learning (ICML). Do not distribute.

classification, and imputation (Zhou et al., 2023; Goswami
et al., 2024). However, general-purpose designs may under-
perform on classification tasks, as pre-training objectives
like masked reconstruction or next-step prediction are not
always ideal for discriminative learning.

Despite the broad use of time series classification (Bagnall
et al., 2018; Dau et al., 2019; Dempster et al., 2020), rel-
atively few foundation models are tailored specifically for
it. To address this gap, we introduce Mantis, a lightweight,
high-performance foundation model for time series classifi-
cation. Drawing on recent advances in time series represen-
tation learning (Eldele et al., 2021; Zhang et al., 2022) and
transformer-based architectures (Nie et al., 2023; Ilbert et al.,
2024; Lin et al., 2024), Mantis uses a patch-based encoder
combined with a Vision Transformer (ViT) backbone (Doso-
vitskiy et al., 2021). It is contrastively pre-trained on 1.89M
univariate time series and contains 8M parameters.

We conduct extensive experiments to demonstrate the supe-
rior performance and calibration of Mantis across a wide
range of classification tasks. Additionally, to improve scal-
ability for multivariate datasets, we explore lightweight
channel-level adapters that reduce the number of input chan-
nels prior to encoding. While not the focus of this work,
these adapters are described in Appendix D.

2 Methodology
In this section, we give the main technical details of Mantis.

2.1 Problem Setup

We aim to train a time series classification foundation model,
an encoder F : Rt → Rq, that maps a fixed-length univari-
ate time series x ∈ Rt to a latent representation in Rq.
During pre-training, we use a large unlabeled dataset X0

to learn task-agnostic representations. In the fine-tuning
stage, given a labeled dataset (X,Y), we either: (1) ex-
tract embeddings Z = {F (x) |x ∈ X} to train a classifier
h : Rq → {1, . . . ,K}, or (2) jointly fine-tune a classifica-
tion head h : Rq → RK atop F by minimizing supervised
loss.

For multivariate time series x ∈ Rd×t, each channel

1

055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107
108
109

Submission and Formatting Instructions for ICML 2025

Token Generator Unit

instance
norm

conv

mean
pooling

diff

conv

mean
pooling

µ by
patch

scalar
encoder

σ by
patch

scalar
encoder

linear

layer
norm

Mantis

input

token
generator unit

vit unit

embedding

projector prediction
head

output for
pre-training prediction

ViT Unit

class token

positional
encoding

6×

layer norm

multi-head
attention

layer norm

mlp

Figure 1: Architecture. By symbol + we denote the sum operator, while || designates the vector concatenation operator.

xi is encoded independently: z = concat(F (xi))
d
i=1 ∈

Rd×q. To reduce dimensionality when d is large, we
introduce an adapter a : Rd×t → Rdnew×t and define
z = concat(F (a(x)i))

dnew
i=1.

To assess prediction confidence, we apply softmax σ :
RK → ∆K to model outputs, and define confidence
as conf(x) = max[σ(h F (x))] and predicted label as
ŷ = argmax[σ(h F (x))].

2.2 Architecture

The architecture of Mantis is based the Vision Transformer
(ViT, (Dosovitskiy et al., 2021)) adapted to the time series
domain through a new token generator unit (see Figure 1).

Input Processing. To handle the diversity of time series
inputs such as varying sequence lengths and unit scales,
Mantis performs several pre-processing steps before token
generation. Inspired by fixed-resolution inputs in computer
vision, we provide the model with interpolated input se-
quences of length 512. To address unit variability, we ap-
ply instance-level standardization: for each input channel,
we subtract the mean and divide by the standard deviation
across time steps. This normalization is embedded directly
into the model’s forward pass.

Token Generation. After normalization, the sequence is
encoded into tokens. Unlike prior approaches that split se-
quences directly into patches (Lin et al., 2024; Nie et al.,
2023), we apply a 1D convolution followed by mean pooling
to generate 32 patches, each representing 256 convolutional
features. To enhance robustness to trends and improve sta-
tionarity, we also compute the first-order difference of the
time series and process it similarly to create another set of
32 patches. To retain scale-specific information, we split the
raw signal into 32 non-overlapping patches, compute per-

patch mean and standard deviation, and encode them using
the Multi-Scaled Scalar Encoder (Lin et al., 2024). The fea-
tures from the original signal, its differential, and statistical
encodings are concatenated, passed through a linear projec-
tor, and then normalized using layer normalization (Ba et al.,
2016), yielding the final sequence of 32 tokens of dimension
256.

ViT Unit. These tokens are then passed to a ViT mod-
ule. We prepend a learnable class token, which is used to
aggregate information across the sequence. Positional in-
formation is added using sinusoidal embeddings (Vaswani
et al., 2017). The resulting sequence of 33 tokens is pro-
cessed by six standard transformer layers with 8 attention
heads each. During pre-training, we apply dropout with a
rate of 10%. The final output of the model is the class token
embedding produced by the last transformer layer.

Projector and Prediction Head. Depending on the us-
age stage, the final embedding is passed through different
heads. During pre-training, we use a linear projection on
top of layer normalization to produce representations for
contrastive similarity learning. During fine-tuning, we re-
place this with a classification head that outputs class logits
for downstream tasks.

2.3 Pre-training

We pre-train Mantis in a self-supervised way using a con-
trastive learning approach that aims to train an encoder that
outputs similar representations for two random augmenta-
tions of the same sample (positive pair) and dissimilar repre-
sentations for augmentations of two different samples (neg-
ative pair). More formally, let T be a considered space of
transformations (augmentations) such that ∀ϕ ∈ T ,x ∈ X
we have ϕ(x) ∈ X . To measure the similarity of two embed-

2

110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164

Submission and Formatting Instructions for ICML 2025

dings, we first project the output of the foundation model
F (x) to a new dimension using g : Rq → Rq′ and then
compute the cosine similarity between the two vectors:

scos(a,b) :=
a⊤b

∥a∥ · ∥b∥ , ∀(a,b) ∈ R2q′ .

Given a batch B = {xi}bi=1, for each example xi, we
sample two augmentation functions ϕ and ψ uniformly from
T , i.e., ϕ, ψ ∼ U(T), compute the pairwise similarities
between all the examples in the following way:

si(ϕ, ψ) = [scos (g F ϕ(xi), g F ψ(xj))]
b
j=1 ∈ Rb.

Following (Oord et al., 2018) as well as (He et al., 2020)
and denoting the cross-entropy error function by lce : Rb ×
{1, . . . , b} → R, we update the weights of F and g by
minimizing the contrastive loss which we define as

b∑
i=1

lce

(
si(ϕ, ψ)

T
, i

)
,

where T ∈ (0,+∞) is a temperature – fixed to 0.1. As
augmentation, we use RandomCropResize, which ran-
domly crops and then resizes a portion of the time series.
We vary the crop rate between 0–20% to maintain structural
integrity while introducing minor distortions.

Our pre-training dataset combines various public datasets,
totalling 1.89M time series examples (see Appendix A.1).
We pre-train the model for 100 epochs with a batch size
equal to 2048 on 4 NVIDIA Tesla V100-32GB GPUs.

3 Adapters
To efficiently handle multivariate time series and reduce
the computational cost of processing each channel indepen-
dently, we explore lightweight channel-level adapters that
project the original input into a reduced number of virtual
channels before passing it to the encoder. These adapters
are model-agnostic and preserve temporal structure while
enabling better scalability.

We evaluate both unsupervised adapters – such as PCA,
SVD, random projections, and variance-based channel se-
lection – and a supervised adapter, the Differentiable Linear
Combiner (LComb), which is trained jointly with the model.
A full description of each adapter and corresponding experi-
mental results is provided in Appendix D.

4 Experimental Results
In this section, we assess Mantis by conducting experiments,
performed on a single NVIDIA Tesla V100-32GB GPU.

4.1 Setup

Baselines. We compare Mantis against four recent founda-
tion models: UniTS (Gao et al., 2024), GPT4TS (Zhou et al.,
2023), NuTime (Lin et al., 2024), and MOMENT (Goswami
et al., 2024). In Appendix B.1, we give more details on their
architectures, scales, and pre-training strategies.

Datasets. We evaluate on diverse univariate and multi-
variate datasets, including the full UCR archive (Dau et al.,
2019), a subset of UEA (UEA-27, Bagnall et al., 2018),
and other four real-world datasets. More details on datasets
can be found in Appendix B.2.

Experiments. We assess Mantis across three tasks: (1)
Zero-shot feature extraction using a frozen encoder followed
by Random Forest learning on the embeddings, evaluated
on 159 datasets (159-D); (2) Full fine-tuning of the entire
model on 131 datasets (131-D); and (3) Calibration for un-
certainty quantification performances, on the same 131-D
subset. GPT4TS and UniTS are excluded from the zero-shot
setting as they do not support this regime.

Below we display the main experimental results. The ab-
lation study and experiments on adapters can be found in
Appendix C and D.

4.2 Zero-shot Feature Extraction Regime

NuTime MOMENT Mantis
Foundation Model

Ac
cu

ra
cy

 (T
SF

M
 +

 R
F)

0.7639 0.7663

0.7816

159-D Avg Performance

Figure 2: Accuracy of models with frozen encoder in aver-
age over 3 random seeds and 159-D datasets.

In Figure 2, we can see that on average Mantis outperforms
NuTime and MOMENT by 1.77% and 1.53%, respectively.
Mantis is the best on 74 datasets, while MOMENT and
NuTime have the best performance on 53 and 38 datasets,
respectively. Compared to other foundation models, we can
see that Mantis achieves the best balance in terms of the
complexity of the model and its accuracy. On the one hand,
Mantis outperforms a smaller model, NuTime, by increasing
the encoder’s capacity and leveraging more information
from the pre-training set. On the other hand, a much bigger

3

165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219

Submission and Formatting Instructions for ICML 2025

UniTS GPT4TS NuTime MOMENT Mantis
Foundation Model

EC
E

0.1991
0.185

0.1743

0.1297
0.1131

Avg Calibration

UniTS GPT4TS NuTime MOMENT Mantis
Foundation Model

0.0955 0.0909

0.0691
0.0797

0.0609

Avg Calibration after Isotonic Regression

UniTS GPT4TS NuTime MOMENT Mantis
Foundation Model

0.0906 0.0943
0.0755 0.0811

0.0673

Avg Calibration after Temperature Scaling

Figure 3: Averaged expected calibrated error of different methods over 131-D datasets.

model, MOMENT, with 385 million parameters does not
manage to achieve a better performance despite its size.

4.3 Full Fine-tuning Regime

UniTS GPT4TS NuTime MOMENT Mantis
Foundation Model

Ac
cu

ra
cy

0.7201 0.7205

0.8224

0.7924

0.8408

131-D Avg Performance

Figure 4: Accuracy of fine-tuned models in average over 3
random seeds and 131-D datasets.

We evaluate the performance of foundation models in a
full fine-tuning setting, where task-specific prediction heads
are trained jointly with encoder layers (see Appendix B.3
for details). In Figure 4, one can see that Mantis has the
highest performance among all the considered foundation
models. We note that the reported performance results of our
competitors may diverge from those reported by the authors
of these models. This may be explained by the difference in
the chosen fine-tuning scheme. In our case, we have fixed
the scheme for a fair comparison while trying to find the
best learning rate for every model based on a validation set.
Thus, our experimental results reveal that Mantis is the most
robust to the choice of a fine-tuning scheme and does not
necessarily require tedious hyperparameter searching.

4.4 Calibration

Accurate uncertainty estimation is essential in safety-critical
systems and for reliable evaluation (Wang, 2023; Xie et al.,
2024). In this section, we assess the calibration of Mantis
and other time series foundation models, focusing on how

well their predicted confidences align with oberved accu-
racy (Guo et al., 2017). We use the Expected Calibration
Error (ECE) (Naeini et al., 2015) to quantify miscalibration,
averaging the gap between predicted confidence and empiri-
cal accuracy over 10 confidence bins (see Appendix B.4 for
details). Following the fine-tuning setup from Section 4.3,
we compute ECE over 131-D, both before and after apply-
ing post-hoc calibration. We evaluate two standard post-hoc
techniques: Temperature Scaling (Guo et al., 2017), which
regulates the amplitude of logits before applying softmax,
and Isotonic Regression (Zadrozny & Elkan, 2002), which
adjusts predicted probabilities by fitting a piecewise con-
stant function.

As shown in Figure 3, Mantis is the most calibrated model
on average, even without post-hoc adjustment—an advan-
tage when validation data is limited. All models benefit
from calibration, but Mantis consistently retains the low-
est ECE. Example of reliability diagrams are provided in
Appendix, Figure 5.

5 Conclusion and Future Work
We introduced Mantis, a lightweight foundation model for
time series classification, which outperforms larger mod-
els and achieves strong calibration. We also proposed an
adapter-based fine-tuning strategy suitable for resource-
constrained settings.

Our findings highlight key challenges in building foundation
models for time series. Notably, we observed no clear link
between model size and performance, and a substantial gap
remains between zero-shot and fine-tuning accuracy. In addi-
tion, improving the interpretability of the model output is an
important direction for future work. Specifically, ensuring
strong calibration properties of the foundation model could
enable various applications including uncertainty quantifi-
cation and unsupervised performance prediction. Recently,
Wen et al. (2024) showed that the hidden space itself can be
performance-predictive when using contrastive pre-training,
so exploring Mantis from this perspective could be promis-
ing as well.

4

220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274

Submission and Formatting Instructions for ICML 2025

References
Achiam, J., Adler, S., Agarwal, S., Ahmad, L., Akkaya, I.,

Aleman, F. L., Almeida, D., Altenschmidt, J., Altman, S.,
Anadkat, S., et al. GPT-4 technical report. arXiv preprint
arXiv:2303.08774, 2023.

Andrzejak, R. G., Lehnertz, K., Mormann, F., Rieke, C.,
David, P., and Elger, C. E. Indications of nonlinear deter-
ministic and finite-dimensional structures in time series
of brain electrical activity: Dependence on recording re-
gion and brain state. Physical Review E, 64(6):061907,
2001.

Anguita, D., Ghio, A., Oneto, L., Parra, X., Reyes-Ortiz,
J. L., et al. A public domain dataset for human activity
recognition using smartphones. In Esann, volume 3, pp.
3, 2013.

Ansari, A. F., Stella, L., Turkmen, C., Zhang, X., Mercado,
P., Shen, H., Shchur, O., Rangapuram, S. S., Arango, S. P.,
Kapoor, S., et al. Chronos: Learning the language of time
series. arXiv preprint arXiv:2403.07815, 2024.

Ba, J. L., Kiros, J. R., and Hinton, G. E. Layer normalization.
arXiv preprint arXiv:1607.06450, 2016.

Bagnall, A., Dau, H. A., Lines, J., Flynn, M., Large, J.,
Bostrom, A., Southam, P., and Keogh, E. The UEA
multivariate time series classification archive, 2018. arXiv
preprint arXiv:1811.00075, 2018.

Benechehab, A., Hili, Y. A. E., Odonnat, A., Zekri, O.,
Thomas, A., Paolo, G., Filippone, M., Redko, I., and Kégl,
B. Zero-shot model-based reinforcement learning using
large language models. arXiv preprint arXiv:2410.11711,
2024.

Bommasani, R., Hudson, D. A., Adeli, E., Altman, R.,
Arora, S., von Arx, S., Bernstein, M. S., Bohg, J., Bosse-
lut, A., Brunskill, E., et al. On the opportunities and risks
of foundation models. arXiv preprint arXiv:2108.07258,
2021.

Chicaiza, K. O. and Benalcázar, M. E. A brain-computer
interface for controlling IoT devices using EEG signals.
In 2021 IEEE Fifth Ecuador Technical Chapters Meeting
(ETCM), pp. 1–6. IEEE, 2021.

Clifford, G. D., Liu, C., Moody, B., Li-wei, H. L., Silva,
I., Li, Q., Johnson, A., and Mark, R. G. AF classifica-
tion from a short single lead ECG recording: The Phys-
ioNet/computing in cardiology challenge 2017. In 2017
Computing in Cardiology (CinC), pp. 1–4. IEEE, 2017.

Dau, H. A., Bagnall, A., Kamgar, K., Yeh, C.-C. M., Zhu,
Y., Gharghabi, S., Ratanamahatana, C. A., and Keogh,
E. The UCR time series archive. IEEE/CAA Journal of
Automatica Sinica, 6(6):1293–1305, 2019.

Dempster, A., Petitjean, F., and Webb, G. I. ROCKET:
exceptionally fast and accurate time series classification
using random convolutional kernels. Data Mining and
Knowledge Discovery, 34(5):1454–1495, 2020.

Dosovitskiy, A., Beyer, L., Kolesnikov, A., Weissenborn,
D., Zhai, X., Unterthiner, T., Dehghani, M., Minderer,
M., Heigold, G., Gelly, S., Uszkoreit, J., and Houlsby, N.
An image is worth 16x16 words: Transformers for image
recognition at scale. arXiv preprint arXiv:2010.11929,
2021.

Egede, J. O., Song, S., Olugbade, T. A., Wang, C., Amanda,
C. D. C., Meng, H., Aung, M., Lane, N. D., Valstar, M.,
and Bianchi-Berthouze, N. Emopain challenge 2020:
Multimodal pain evaluation from facial and bodily ex-
pressions. In 2020 15th IEEE International Conference
on Automatic Face and Gesture Recognition (FG 2020),
pp. 849–856. IEEE, 2020.

Eldele, E., Ragab, M., Chen, Z., Wu, M., Kwoh, C. K., Li,
X., and Guan, C. Time-series representation learning via
temporal and contextual contrasting. In Proceedings of
the Thirtieth International Joint Conference on Artificial
Intelligence, IJCAI-21, pp. 2352–2359, 2021.

Gao, S., Koker, T., Queen, O., Hartvigsen, T., Tsiligkaridis,
T., and Zitnik, M. UniTS: A unified multi-task time
series model. In The Thirty-eighth Annual Conference on
Neural Information Processing Systems, 2024.

Goldberger, A. L., Amaral, L. A., Glass, L., Hausdorff,
J. M., Ivanov, P. C., Mark, R. G., Mietus, J. E., Moody,
G. B., Peng, C.-K., and Stanley, H. E. PhysioBank, Phys-
ioToolkit, and PhysioNet: components of a new research
resource for complex physiologic signals. circulation,
101(23):e215–e220, 2000.

Goswami, M., Szafer, K., Choudhry, A., Cai, Y., Li, S., and
Dubrawski, A. MOMENT: A family of open time-series
foundation models. arXiv preprint arXiv:2402.03885,
2024.

Gruver, N., Finzi, M., Qiu, S., and Wilson, A. G. Large
language models are zero-shot time series forecasters.
Advances in Neural Information Processing Systems, 36,
2024.

Guo, C., Pleiss, G., Sun, Y., and Weinberger, K. Q. On
calibration of modern neural networks. In International
conference on machine learning, pp. 1321–1330. PMLR,
2017.

Halko, N., Martinsson, P.-G., and Tropp, J. A. Finding
structure with randomness: Stochastic algorithms for
constructing approximate matrix decompositions. arXiv
preprint arXiv:0909.4061, 909, 2009.

5

275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329

Submission and Formatting Instructions for ICML 2025

He, K., Zhang, X., Ren, S., and Sun, J. Deep resid-
ual learning for image recognition. arXiv preprint
arXiv:1512.03385, 2015.

He, K., Fan, H., Wu, Y., Xie, S., and Girshick, R. Mo-
mentum contrast for unsupervised visual representation
learning. In Proceedings of the IEEE/CVF conference on
computer vision and pattern recognition, pp. 9729–9738,
2020.

Ilbert, R., Odonnat, A., Feofanov, V., Virmaux, A., Paolo, G.,
Palpanas, T., and Redko, I. SAMformer: Unlocking the
potential of transformers in time series forecasting with
sharpness-aware minimization and channel-wise atten-
tion. In Salakhutdinov, R., Kolter, Z., Heller, K., Weller,
A., Oliver, N., Scarlett, J., and Berkenkamp, F. (eds.),
Proceedings of the 41st International Conference on Ma-
chine Learning, volume 235 of Proceedings of Machine
Learning Research, pp. 20924–20954. PMLR, 21–27 Jul
2024.

Kemp, B., Zwinderman, A. H., Tuk, B., Kamphuisen, H. A.,
and Oberye, J. J. Analysis of a sleep-dependent neuronal
feedback loop: the slow-wave microcontinuity of the
EEG. IEEE Transactions on Biomedical Engineering, 47
(9):1185–1194, 2000.

Lessmeier, C., Kimotho, J. K., Zimmer, D., and Sextro, W.
Condition monitoring of bearing damage in electrome-
chanical drive systems by using motor current signals of
electric motors: A benchmark data set for data-driven
classification. PHM Society European Conference, 3(1),
2016.

Lin, C., Wen, X., Cao, W., Huang, C., Bian, J., Lin, S.,
and Wu, Z. NuTime: Numerically multi-scaled embed-
ding for large- scale time-series pretraining. Transac-
tions on Machine Learning Research, 2024. ISSN 2835-
8856. URL https://openreview.net/forum?
id=TwiSBZ0p9u.

Liu, J., Zhong, L., Wickramasuriya, J., and Vasudevan,
V. uWave: Accelerometer-based personalized gesture
recognition and its applications. Pervasive and Mobile
Computing, 5(6):657–675, 2009.

Loshchilov, I. and Hutter, F. SGDR: Stochastic gradient
descent with warm restarts. In International Conference
on Learning Representations, 2016.

Loshchilov, I., Hutter, F., et al. Fixing weight decay regu-
larization in Adam. arXiv preprint arXiv:1711.05101, 5,
2017.

Malekzadeh, M., Clegg, R. G., Cavallaro, A., and Haddadi,
H. Mobile sensor data anonymization. In Proceedings of
the international conference on internet of things design
and implementation, pp. 49–58, 2019.

Middlehurst, M., Schäfer, P., and Bagnall, A. Bake off
redux: a review and experimental evaluation of recent
time series classification algorithms. Data Mining and
Knowledge Discovery, pp. 1–74, 2024.

Naeini, M. P., Cooper, G., and Hauskrecht, M. Obtaining
well calibrated probabilities using Bayesian binning. Pro-
ceedings of the AAAI conference on artificial intelligence,
29(1), 2015.

Nie, Y., H. Nguyen, N., Sinthong, P., and Kalagnanam, J. A
time series is worth 64 words: Long-term forecasting with
transformers. In International Conference on Learning
Representations, 2023.

Oord, A. v. d., Li, Y., and Vinyals, O. Representation learn-
ing with contrastive predictive coding. arXiv preprint
arXiv:1807.03748, 2018.

Raffel, C., Shazeer, N., Roberts, A., Lee, K., Narang, S.,
Matena, M., Zhou, Y., Li, W., and Liu, P. J. Exploring
the limits of transfer learning with a unified text-to-text
transformer. Journal of machine learning research, 21
(140):1–67, 2020.

Touvron, H., Lavril, T., Izacard, G., Martinet, X., Lachaux,
M.-A., Lacroix, T., Rozière, B., Goyal, N., Hambro, E.,
Azhar, F., et al. Llama: Open and efficient foundation lan-
guage models. arXiv preprint arXiv:2302.13971, 2023.

Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones,
L., Gomez, A. N., Kaiser, L. u., and Polosukhin, I.
Attention is all you need. In Guyon, I., Luxburg, U. V.,
Bengio, S., Wallach, H., Fergus, R., Vishwanathan, S.,
and Garnett, R. (eds.), Advances in Neural Information
Processing Systems, volume 30. Curran Associates, Inc.,
2017. URL https://proceedings.neurips.
cc/paper_files/paper/2017/file/
3f5ee243547dee91fbd053c1c4a845aa-Paper.
pdf.

Wang, C. Calibration in deep learning: A survey of the
state-of-the-art. arXiv preprint arXiv:2308.01222, 2023.

Wang, Y., Qiu, Y., Chen, P., Zhao, K., Shu, Y., Rao, Z., Pan,
L., Yang, B., and Guo, C. ROSE: Register assisted gen-
eral time series forecasting with decomposed frequency
learning. arXiv preprint arXiv:2405.17478, 2024.

Wen, S., Feofanov, V., and Zhang, J. Measuring pre-training
data quality without labels for time series foundation
models. arXiv preprint arXiv:2412.06368, 2024.

Woo, G., Liu, C., Kumar, A., Xiong, C., Savarese, S., and Sa-
hoo, D. Unified training of universal time series forecast-
ing transformers. In Salakhutdinov, R., Kolter, Z., Heller,
K., Weller, A., Oliver, N., Scarlett, J., and Berkenkamp, F.
(eds.), Proceedings of the 41st International Conference

6

https://openreview.net/forum?id=TwiSBZ0p9u
https://openreview.net/forum?id=TwiSBZ0p9u
https://proceedings.neurips.cc/paper_files/paper/2017/file/3f5ee243547dee91fbd053c1c4a845aa-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2017/file/3f5ee243547dee91fbd053c1c4a845aa-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2017/file/3f5ee243547dee91fbd053c1c4a845aa-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2017/file/3f5ee243547dee91fbd053c1c4a845aa-Paper.pdf

330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384

Submission and Formatting Instructions for ICML 2025

on Machine Learning, volume 235 of Proceedings of Ma-
chine Learning Research, pp. 53140–53164. PMLR, 21–
27 Jul 2024. URL https://proceedings.mlr.
press/v235/woo24a.html.

Xie, R., Odonnat, A., Feofanov, V., Deng, W., Zhang, J.,
and An, B. MANO: Exploiting matrix norm for unsuper-
vised accuracy estimation under distribution shifts. arXiv
preprint arXiv:2405.18979, 2024.

Zadrozny, B. and Elkan, C. Transforming classifier scores
into accurate multiclass probability estimates. In Proceed-
ings of the eighth ACM SIGKDD international conference
on Knowledge discovery and data mining, pp. 694–699,
2002.

Zhang, X., Zhao, Z., Tsiligkaridis, T., and Zitnik, M.
Self-supervised contrastive pre-training for time series
via time-frequency consistency. In Koyejo, S., Mohamed,
S., Agarwal, A., Belgrave, D., Cho, K., and Oh, A. (eds.),
Advances in Neural Information Processing Systems,
volume 35, pp. 3988–4003. Curran Associates, Inc.,
2022. URL https://proceedings.neurips.
cc/paper_files/paper/2022/file/
194b8dac525581c346e30a2cebe9a369-Paper-Conference.
pdf.

Zhou, T., Niu, P., Sun, L., Jin, R., et al. One fits all:
Power general time series analysis by pretrained LM.
Advances in neural information processing systems, 36:
43322–43355, 2023.

7

https://proceedings.mlr.press/v235/woo24a.html
https://proceedings.mlr.press/v235/woo24a.html
https://proceedings.neurips.cc/paper_files/paper/2022/file/194b8dac525581c346e30a2cebe9a369-Paper-Conference.pdf
https://proceedings.neurips.cc/paper_files/paper/2022/file/194b8dac525581c346e30a2cebe9a369-Paper-Conference.pdf
https://proceedings.neurips.cc/paper_files/paper/2022/file/194b8dac525581c346e30a2cebe9a369-Paper-Conference.pdf
https://proceedings.neurips.cc/paper_files/paper/2022/file/194b8dac525581c346e30a2cebe9a369-Paper-Conference.pdf

385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439

Submission and Formatting Instructions for ICML 2025

A Methodology – Additional Material

A.1 Pre-training datasets

Our pre-training dataset combines various public datasets, including UCR (Dau et al., 2019), UEA (Bagnall et al., 2018)
(all except EigenWorms and InsectWingbeat), ECG (Clifford et al., 2017), EMG (Goldberger et al., 2000), Epilepsy (An-
drzejak et al., 2001), FD-A and FD-B (Lessmeier et al., 2016), Gesture (Liu et al., 2009), HAR (Anguita et al., 2013),
SleepEEG (Kemp et al., 2000). We ensure that test sets used for evaluation in Section 4 are not part of the pre-training
dataset. The total pre-training consists of 1.89 million time series examples.

B Experimental Results – Additional Material

B.1 Baseline Details

We provide a brief overview of the four baseline models used in our experiments:

UniTS (Gao et al., 2024). UniTS is a lightweight multi-task foundation model designed for time series data. It has
approximately 1 million parameters and is trained in a supervised fashion on 38 labeled datasets from UCR and UEA.
Although originally built for multi-task learning, it serves as a competitive baseline for zero-shot and fine-tuning evaluations
due to its broad exposure to diverse tasks during training.

GPT4TS (Zhou et al., 2023). GPT4TS adapts a pre-trained GPT-2 model to time series by introducing a learnable
tokenization layer. The total number of parameters is around 80 million. We follow the authors’ recommendations for partial
fine-tuning.

NuTime (Lin et al., 2024). NuTime is a transformer-based foundation model for time series classification. It shares the
same pre-training dataset as Mantis, allowing for a fair comparison. The model emphasizes efficiency and generalization
from a relatively compact architecture.

MOMENT (Goswami et al., 2024). MOMENT is a large-scale time series foundation model based on the T5 architec-
ture (Raffel et al., 2020), with approximately 385 million parameters. It is pre-trained on an extensive dataset containing
1.13 billion time series samples across multiple tasks. While highly expressive, its size results in longer inference times and
higher computational demands.

Summary. These baselines provide a range of model sizes (from 1M to 385M parameters) and design philosophies
(lightweight supervised models, large pre-trained transformers, and hybrid approaches). This diversity allows us to
benchmark Mantis under varied conditions and usage settings.

B.2 Dataset Details

UCR Collection. The UCR Time Series Archive (Dau et al., 2019) consists of 128 univariate datasets spanning a wide
range of domains such as sensor readings, ECG signals, motion capture, and simulated data. We use the entire collection for
the zero-shot evaluation. For fine-tuning, 15 datasets are excluded due to memory limitations (e.g., long sequences or large
sample sizes).

UEA Collection. The UEA archive (Bagnall et al., 2018) includes 30 multivariate time series datasets. We exclude three
datasets with insufficient test samples or extremely short sequence lengths and downsample InsectWingbeat for efficiency.
This yields 27 datasets, denoted UEA-27. For fine-tuning and calibration, an additional 11 datasets from UEA are excluded
due to GPU memory constraints or excessive channel count. For ablation study of Mantis, 7 datasets from UEA are excluded
due to excessive channel count.

Additional Datasets. We also include four real-world datasets used in prior time series foundation model evaluations:

• Blink (Chicaiza & Benalcázar, 2021): Eye-blink detection using EEG signals.

• MotionSenseHAR (Malekzadeh et al., 2019): Human activity recognition from smartphone motion sensors.

• EMOPain (Egede et al., 2020): Multimodal pain detection in physical therapy contexts.

• SharePriceIncrease (Middlehurst et al., 2024): Binary classification of share price movements.

8

440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494

Submission and Formatting Instructions for ICML 2025

These datasets are included in zero-shot evaluation, and two of them are included in fine-tuning and calibration experiments
(excluding EMOPain and MotionSenseHAR due to memory constraints). For ablation study of Mantis, EMOPain is excluded
due to eccessive number of channels.

Dataset Splits. We use the official train/test splits provided in the respective archives for all datasets. For fine-tuning and
calibration experiments, 20% of the training set is further held out as a validation set for hyperparameter selection.

Summary.

• 159-D: Used in zero-shot evaluation. Includes full UCR, UEA-27, and 4 additional datasets.

• 131-D: Used in fine-tuning and calibration. Excludes datasets based on computational constraints of all models.

• 151-D: Used for ablation study. Excludes datasets based on computational constraints of Mantis only – those with a
large number of channels.

B.3 Full fine-tuning

In the full fine-tuning setup, we use the same procedure for all models, ensuring a fair comparison. More specifically, for
each task, we append a prediction head after an encoder and fine-tune certain layers on the training data. For all the models,
we fix a fine-tuning scheme: we minimize the cross-entropy loss for 100 epochs with a batch size equal to 256, using
an AdamW optimizer (Loshchilov et al., 2017) with a weight decay of 0.05. For each model and each dataset, we test 3
learning rates 10−4, 2 · 10−4, 10−3 and select the best using the validation set (with 80% - 20% as train - validation split).
For GPT4TS, we follow their paper and fine-tune the layers specified by the authors, and fine-tuning the whole architecture
for all the other models.

B.4 Calibration

We study the calibration properties of Mantis and other time series classification foundation models, and introduce here
some formal definition. We say a model is calibrated if, for a given confidence level α, the probability that the model
predicts the true class is equal to α (Guo et al., 2017):

P(Y = ŷ | conf(X) = α) = α, ∀α ∈ [0, 1],

where ŷ and conf(X) denote the predicted label and model’s confidence of a random variable X, respectively, which were
formally defined in Section 2.1. We consider the Expected Calibration Error (ECE, (Naeini et al., 2015)) as a metric to
evaluate the calibration on a test set {xi, yi}ni=1. We discretize the interval [0, 1] into m disjoint bins: Bj ∩Bk = ∅, ∀j ̸=
k, 1 ≤ j, k ≤ m and ∪m

j=1Bj = [0, 1]. As commonly done in the literature, we split the interval into 10 equally spaced bins.
Then, denoting the predicted label for xi by ŷi, the ECE is defined as follows:

ECE =
1

n

m∑
j=1

∣∣∣∣∣∣∣∣
∑

1≤i≤n
conf(xi)∈Bj

I(ŷi = yi)− conf(xi)

∣∣∣∣∣∣∣∣ .

C Ablation Study
In this section, we perform several ablation experiments for a more thorough analysis of Mantis. First, we validate some of
our architecture choices. More specifically, we test whether the incorporation of features extracted from the differential of a
time series, proposed in Section 2.2, improves the quality of embeddings. For this, we have pre-trained another version
of our foundation model where the differential feature extraction part was removed from the Token Generator Unit. In
Figure 6, we plot the average zero-shot feature extraction performance of the two versions of Mantis. One can see that the
incorporation of the differential block noticeably improves the accuracy score. When comparing Figure 2 and Figure 6, it is
interesting to notice that Mantis without the differential block still slightly outperforms NuTime and MOMENT in the case
of zero-shot feature extraction.

In the second part of our ablation study, we raise the following questions: (a) is pre-training really useful, or it is sufficient
to train Mantis from scratch on each dataset?, (b) should we fine-tune the head or the whole model?, (c) can Mantis be

9

495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549

Submission and Formatting Instructions for ICML 2025

0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
Confidence

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

Ac
cu

ra
cy

ChlorineConcentration

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
Confidence

AllGestureWiimoteX

0.5 0.6 0.7 0.8 0.9 1.0
Confidence

FordB

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Av
g

fra
ct

io
n

of
 sa

m
pl

es
 p

er
 b

in

Models
UniTS GPT4TS NuTime MOMENT Mantis

Figure 5: The reliability diagram on the test set after post-hoc temperature scaling on the validation set for three different
datasets. The gray histogram illustrates the distribution of the confidence score across the test set.

w/o Diff w/ Diff
Version of Mantis

Ac
cu

ra
cy

 (T
SF

M
 +

 R
F)

0.7687

0.7816

159-D Avg Performance

Figure 6: Averaged accuracy of Mantis w/ and w/o the differential block over 3 random seeds and 159-D datasets.

fine-tuned with default hyperparameters, and how much we can gain from the model selection? To answer these questions,
we empirically compare the following fine-tuning regimes:

• The setup which we further call RF, and which we used for the zero-shot feature extraction experiment: the encoder of
Mantis is frozen, and embeddings are used as features to train a Random Forest classifier.

• The encoder of Mantis is frozen, and the task is solved by fine-tuning a classification head, which, in our case, is
layer normalization step + linear layer. The purpose of comparing this strategy, further called Head, with RF is to
see the impact of the choice of a classifier (linear vs non-linear, differentiable vs non-differentiable) on the overall
performance.

• The encoder is randomly initialized and fine-tuned together with a classification head. This baseline, which we further
call Scratch, is introduced to see whether or not pre-training of Mantis is useful.

• Finally, the strategy further called Full consists in fine-tuning the pre-trained encoder together with a classification
head.

In order to answer question (c), for every method, we report two scores: the test accuracy of the model at the last epoch (i.e.,
at the end of fine-tuning), and the best test accuracy of the model across all fine-tuning epochs. While the last epoch score
gives a pessimistic evaluation of the performance as no model selection is performed, the best epoch score is an optimistic
evaluation as it indicates the best achievable performance. In this experiment, we fix the fine-tuning scheme: the number of

10

550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604

Submission and Formatting Instructions for ICML 2025

epochs is 100, the batch size is 256, the optimizer is AdamW with the weight decay of 0.05 and the learning rate set to
2 · 10−4 and adjusted following the cosine annealing decay strategy (Loshchilov & Hutter, 2016) with 10 warm-up epochs.

RF Head Scratch Full
Fine-Tuning Method

Ac
cu

ra
cy

0.7883
0.7745

0.7928

0.8436

Mantis, Last Epoch 151-D Avg Performance

RF Head Scratch Full
Fine-Tuning Method

Ac
cu

ra
cy

0.7883 0.7798

0.8233

0.8625

Mantis, Best Epoch 151-D Avg Performance

Figure 7: Performance of different fine-tuning methods averaged over 3 random seeds and 151-D datasets.

Figure 7 depicts the average performance over the 151-D benchmark both for the last and best epoch. First, we can see that
the pre-training of Mantis is visibly useful as Full outperforms Scratch by 5.08% and 3.92% in the last and best epoch
score, respectively. On the other hand, using a frozen pre-trained encoder is rather suboptimal in terms of performance, and
full fine-tuning is preferred. This observation points out an important direction of future work, namely, to advance time
series classification foundation models in terms of zero-shot performance.

Another observation from Figure 7 is that fine-tuning the head with a frozen encoder may be suboptimal, and training a
Random Forest on embeddings gives a slightly better accuracy score. Finally, by comparing the performance results for the
last and best epoch, we conclude that although model selection is important to improve the overall performance (+1.89% for
Full), using directly the model from the last epoch gives already good performance. This shows that Mantis can be applied
in practice without the need to tediously search for optimal values of hyperparameters.

D Adapters

D.1 Introduction and proposed approach

Handling multivariate time series is a key challenge for foundation models, since different classification tasks involve
varying channel counts. Like other foundation models (Goswami et al., 2024; Lin et al., 2024), Mantis is pre-trained on
univariate data and applied to multivariate settings by treating channels independently. However, this approach may demand
excessive resources and ignore channel correlations during the feature extraction.

To address these concerns, we study a simple approach of using a channel-level adapter a : Rd → Rdnew that precedes the
foundation model and transforms the original d channels into new dnew ones. We consider this definition of an adapter due
to its high flexibility: (a) not only Mantis but any foundation model can be plugged in, (b) channel-level transformation
prevents from disrupting the temporal structure, (c) adaptation to the computation budget by determining the number of
encoded channels.

First adapters that we introduce are classical dimension reduction approaches like Principal Component Analysis that are
computationally efficient and unsupervised. However, they are normally limited to 2D data matrices, so we train them on the
data reshaped to (n× t, d), where n is the number of training examples. This allows us to focus on correlations between
channels over all time steps, learning the rotation matrix W ∈ Rdnew×d that linearly combines the original channels into new
ones. Overall, these four adapters rely on this strategy:

• Principal Component Analysis (PCA) seeks to find an orthogonal basis of principal components where few components
capture most of the data variance.

11

605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659

Submission and Formatting Instructions for ICML 2025

• Truncated Singular Value Decomposition (SVD, (Halko et al., 2009)) is similar to PCA, but it applies SVD decomposi-
tion directly on the non-centered data matrix.

• Random Projection (Rand Proj) is a trivial baseline that randomly generates the rotation matrix W ∈ Rdnew×d.

• Variance-Based Channel Selection (Var Selector) performs feature selection by keeping channels with the highest
variance. This approach can be useful when channels with low variance can be discarded without affecting the overall
performance.

Although these adapters are computationally very efficient, they are not supervised, which may lead to suboptimal
performance. Therefore, we introduce one more adapter:

• Differentiable Linear Combiner (LComb) performs a linear projection to D channels by learning it via backpropagation
together with the encoder and head.

D.2 Experimental results

Table 1: Performance comparison between different adapters when Mantis is fully-fine-tuned to a multi-channel time series
classification task. The UEA-27 data collection is considered in this experiment, and the results are averaged over 3 random
seeds. The number of selected channels is fixed to be ≤ 10. NoAdapter means that all channels are independently fed to
the TSFM, and NaN in its performance results marks the cases when the model has not fitted to a single V100-32GB GPU
card’s memory. Best Result summarizes the performance when the best strategy per dataset is chosen.

d No Adapter
Standalone Adapter Diff. Adapter Best Result

PCA SVD Rand Proj Var Selector LComb

ArticularyWordRecognition 9 0.9933±0.0 0.9922±0.0019 0.9878±0.0038 0.9811±0.0038 0.9933±0.0 0.9744±0.0069 0.9933±0.0

BasicMotions 6 1.0±0.0 1.0±0.0 1.0±0.0 1.0±0.0 1.0±0.0 1.0±0.0 1.0±0.0

CharacterTrajectories 3 0.9928±0.0004 0.9947±0.0004 0.9923±0.0012 0.9912±0.0016 0.9928±0.0004 0.993±0.0018 0.9947±0.0004

Cricket 6 1.0±0.0 0.9861±0.0 0.9769±0.008 0.9722±0.0 1.0±0.0 0.9907±0.008 1.0±0.0

DuckDuckGeese 1345 NaN 0.5733±0.0115 0.6±0.02 0.54±0.0872 0.5133±0.0231 0.54±0.0693 0.6±0.02

ERing 4 0.9926±0.0074 0.9778±0.0064 0.9753±0.0113 0.9642±0.0043 0.9926±0.0074 0.9778±0.0064 0.9926±0.0074

EigenWorms 6 0.8372±0.0044 0.8448±0.0117 0.8601±0.0192 0.8117±0.0233 0.8372±0.0044 0.8066±0.0384 0.8601±0.0192

Epilepsy 3 1.0±0.0 0.9976±0.0042 0.9976±0.0042 0.9976±0.0042 1.0±0.0 1.0±0.0 1.0±0.0

EthanolConcentration 3 0.4208±0.0195 0.2928±0.0101 0.3029±0.0122 0.384±0.0503 0.4208±0.0195 0.4081±0.0275 0.4208±0.0195

FaceDetection 144 NaN 0.6026±0.0054 0.6064±0.0037 0.5638±0.0065 0.5696±0.0027 0.6272±0.013 0.6272±0.013

FingerMovements 28 NaN 0.5833±0.0058 0.57±0.06 0.5467±0.0289 0.6167±0.0058 0.58±0.0265 0.6167±0.0058

HandMovementDirection 10 0.4009±0.0206 0.5135±0.027 0.482±0.0546 0.4279±0.0512 0.4009±0.0206 0.4414±0.0624 0.5135±0.027

Handwriting 3 0.482±0.0157 0.4529±0.0129 0.4588±0.0224 0.4235±0.0418 0.482±0.0157 0.5839±0.0283 0.5839±0.0283

Heartbeat 61 NaN 0.7561±0.0098 0.7626±0.0123 0.7707±0.0098 0.7951±0.0129 0.774±0.0123 0.7951±0.0129

InsectWingbeatSubset 200 NaN 0.4703±0.0051 0.4733±0.0127 0.4803±0.0302 0.591±0.005 0.236±0.0125 0.591±0.005

JapaneseVowels 12 0.9811±0.0054 0.9802±0.0031 0.9811±0.0 0.9577±0.0271 0.9784±0.0047 0.9577±0.0128 0.9811±0.0054

LSST 6 0.7109±0.0015 0.6795±0.0027 0.6894±0.0021 0.6929±0.0207 0.7109±0.0015 0.6941±0.0053 0.7109±0.0015

Libras 2 0.9389±0.0 0.937±0.0032 0.9481±0.0064 0.8111±0.1392 0.9389±0.0 0.9704±0.0032 0.9704±0.0032

MotorImagery 64 NaN 0.5933±0.0351 0.5833±0.0208 0.5867±0.0379 0.6±0.01 0.59±0.0173 0.6±0.01

NATOPS 24 0.937±0.0116 0.9537±0.0064 0.9611±0.0 0.8926±0.0032 0.8981±0.0116 0.8796±0.017 0.9611±0.0

PEMS-SF 963 NaN 0.8536±0.0067 0.8304±0.0145 0.7457±0.0473 0.9114±0.0067 0.7476±0.0219 0.9114±0.0067

PhonemeSpectra 11 0.3421±0.0023 0.3351±0.009 0.3215±0.0052 0.3492±0.0033 0.344±0.0052 0.3547±0.0047 0.3547±0.0047

RacketSports 6 0.9408±0.0 0.9123±0.0152 0.9101±0.0076 0.9167±0.0038 0.9408±0.0 0.9254±0.0038 0.9408±0.0

SelfRegulationSCP1 6 0.9135±0.0071 0.917±0.0052 0.9113±0.0034 0.9135±0.0079 0.9135±0.0071 0.901±0.009 0.917±0.0052

SelfRegulationSCP2 7 0.5389±0.0096 0.5648±0.0449 0.5685±0.0251 0.5611±0.0455 0.5389±0.0096 0.5482±0.021 0.5685±0.0251

SpokenArabicDigits 13 0.987±0.0009 0.9933±0.0014 0.9906±0.0019 0.988±0.0027 0.9864±0.0028 0.9882±0.0016 0.9933±0.0014

UWaveGestureLibrary 3 0.9438±0.0108 0.8583±0.0079 0.8552±0.0095 0.8635±0.0737 0.9438±0.0108 0.9177±0.0048 0.9438±0.0108

In this section, we study the performance of Mantis when it is combined with one of the adapters we introduced above.
For PCA, SVD, RandProj and VarSelector, the new number of channels is equal to D′ = min{D, 10}, while for
LComb is always fixed to D′ = 10. Table 1 depicts the empirical comparison between the adapters and the case when we
treat all channels independently (tagged as NoAdapter). Below, we discuss the experimental results.

Dimension reduction: When the number of channels is too large, the full fine-tuning is limited as treating all channels
independently is computationally costly. In Table 1, one can see that starting from 28 channels (fixing the batch size to 256),

12

660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714

Submission and Formatting Instructions for ICML 2025

the optimization of Mantis does not fit the memory of a single V100-32GB GPU card, which results in 7 NaN values in the
NoAdapter column. Nevertheless, applying one of the five adapters solves the issue, allowing the full fine-tuning and
increasing the performance.

Channel interactions: Adapters also mix the original channels allowing them to interact before sending them to the
encoder (Benechehab et al., 2024). Our experiments reveal that the utility of adapters from this perspective is rather
dataset-dependent: while for datasets like RacketSports and UWaveGestureLibrary, adapters do not bring any improvement
compared NoAdapter, transforming original channels brings a large improvement for datasets like Handwriting and
HandMovementDirection.

Channel selection: In situations where certain channels are not useful and can be simply discarded, VarSelector has
the highest performance, which we can observe on FingerMovements and InsectWingbeat datasets.

Differentiable adapter: Although LComb yields high performance on some datasets, overall, it is less efficient than PCA, SVD
and VarSelector. Since LComb is fine-tuned together with the encoder and the head, we suggest that the optimization
of the adapter is intricate, so searching for a better optimization scheme can be a good future work.

13

