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Abstract
In recent years, there has been increasing inter-
est in developing foundation models for time
series data that can generalize across diverse
downstream tasks. While numerous forecasting-
oriented foundation models have been introduced,
there is a notable scarcity of models tailored for
time series classification. To address this gap, we
present Mantis, a new open-source foundation
model for time series classification based on the
Vision Transformer (ViT) architecture that has
been pre-trained using a contrastive learning ap-
proach. Our experimental results show that Man-
tis outperforms existing foundation models both
when the backbone is frozen and when fine-tuned,
while achieving the lowest calibration error. In
addition, we propose several adapters to handle
the multivariate setting, reducing memory require-
ments and modeling channel interdependence.

1 Introduction
The advent of large foundation models (Bommasani et al.,
2021) in computer vision (He et al., 2015; Dosovitskiy et al.,
2021) and natural language processing (Achiam et al., 2023;
Touvron et al., 2023) has significantly transformed research
and applications. These models are pre-trained on exten-
sive, diverse datasets to generalize across a wide range of
downstream tasks, simplifying model design and reducing
the need for large amounts of labeled data.

In recent years, foundation models for time series (TSFMs)
have emerged as a growing area of research. For time se-
ries forecasting, many models have been proposed—either
trained from scratch on large-scale data (Woo et al., 2024;
Wang et al., 2024; Ansari et al., 2024) or adapted from
pre-trained language models (Gruver et al., 2024). Some
TSFMs target multiple tasks at once, such as forecasting,
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classification, and imputation (Zhou et al., 2023; Goswami
et al., 2024). However, general-purpose designs may under-
perform on classification tasks, as pre-training objectives
like masked reconstruction or next-step prediction are not
always ideal for discriminative learning.

Despite the broad use of time series classification (Bagnall
et al., 2018; Dau et al., 2019; Dempster et al., 2020), rel-
atively few foundation models are tailored specifically for
it. To address this gap, we introduce Mantis, a lightweight,
high-performance foundation model for time series classifi-
cation. Drawing on recent advances in time series represen-
tation learning (Eldele et al., 2021; Zhang et al., 2022) and
transformer-based architectures (Nie et al., 2023; Ilbert et al.,
2024; Lin et al., 2024), Mantis uses a patch-based encoder
combined with a Vision Transformer (ViT) backbone (Doso-
vitskiy et al., 2021). It is contrastively pre-trained on 1.89M
univariate time series and contains 8M parameters.

We conduct extensive experiments to demonstrate the supe-
rior performance and calibration of Mantis across a wide
range of classification tasks. Additionally, to improve scal-
ability for multivariate datasets, we explore lightweight
channel-level adapters that reduce the number of input chan-
nels prior to encoding. While not the focus of this work,
these adapters are described in Appendix D.

2 Methodology
In this section, we give the main technical details of Mantis.

2.1 Problem Setup

We aim to train a time series classification foundation model,
an encoder F : Rt → Rq, that maps a fixed-length univari-
ate time series x ∈ Rt to a latent representation in Rq.
During pre-training, we use a large unlabeled dataset X0

to learn task-agnostic representations. In the fine-tuning
stage, given a labeled dataset (X,Y), we either: (1) ex-
tract embeddings Z = {F (x) |x ∈ X} to train a classifier
h : Rq → {1, . . . ,K}, or (2) jointly fine-tune a classifica-
tion head h : Rq → RK atop F by minimizing supervised
loss.

For multivariate time series x ∈ Rd×t, each channel
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Figure 1: Architecture. By symbol + we denote the sum operator, while || designates the vector concatenation operator.

xi is encoded independently: z = concat(F (xi))
d
i=1 ∈

Rd×q. To reduce dimensionality when d is large, we
introduce an adapter a : Rd×t → Rdnew×t and define
z = concat(F (a(x)i))

dnew
i=1.

To assess prediction confidence, we apply softmax σ :
RK → ∆K to model outputs, and define confidence
as conf(x) = max[σ(h F (x))] and predicted label as
ŷ = argmax[σ(h F (x))].

2.2 Architecture

The architecture of Mantis is based the Vision Transformer
(ViT, (Dosovitskiy et al., 2021)) adapted to the time series
domain through a new token generator unit (see Figure 1).

Input Processing. To handle the diversity of time series
inputs such as varying sequence lengths and unit scales,
Mantis performs several pre-processing steps before token
generation. Inspired by fixed-resolution inputs in computer
vision, we provide the model with interpolated input se-
quences of length 512. To address unit variability, we ap-
ply instance-level standardization: for each input channel,
we subtract the mean and divide by the standard deviation
across time steps. This normalization is embedded directly
into the model’s forward pass.

Token Generation. After normalization, the sequence is
encoded into tokens. Unlike prior approaches that split se-
quences directly into patches (Lin et al., 2024; Nie et al.,
2023), we apply a 1D convolution followed by mean pooling
to generate 32 patches, each representing 256 convolutional
features. To enhance robustness to trends and improve sta-
tionarity, we also compute the first-order difference of the
time series and process it similarly to create another set of
32 patches. To retain scale-specific information, we split the
raw signal into 32 non-overlapping patches, compute per-

patch mean and standard deviation, and encode them using
the Multi-Scaled Scalar Encoder (Lin et al., 2024). The fea-
tures from the original signal, its differential, and statistical
encodings are concatenated, passed through a linear projec-
tor, and then normalized using layer normalization (Ba et al.,
2016), yielding the final sequence of 32 tokens of dimension
256.

ViT Unit. These tokens are then passed to a ViT mod-
ule. We prepend a learnable class token, which is used to
aggregate information across the sequence. Positional in-
formation is added using sinusoidal embeddings (Vaswani
et al., 2017). The resulting sequence of 33 tokens is pro-
cessed by six standard transformer layers with 8 attention
heads each. During pre-training, we apply dropout with a
rate of 10%. The final output of the model is the class token
embedding produced by the last transformer layer.

Projector and Prediction Head. Depending on the us-
age stage, the final embedding is passed through different
heads. During pre-training, we use a linear projection on
top of layer normalization to produce representations for
contrastive similarity learning. During fine-tuning, we re-
place this with a classification head that outputs class logits
for downstream tasks.

2.3 Pre-training

We pre-train Mantis in a self-supervised way using a con-
trastive learning approach that aims to train an encoder that
outputs similar representations for two random augmenta-
tions of the same sample (positive pair) and dissimilar repre-
sentations for augmentations of two different samples (neg-
ative pair). More formally, let T be a considered space of
transformations (augmentations) such that ∀ϕ ∈ T ,x ∈ X
we have ϕ(x) ∈ X . To measure the similarity of two embed-
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dings, we first project the output of the foundation model
F (x) to a new dimension using g : Rq → Rq′ and then
compute the cosine similarity between the two vectors:

scos(a,b) :=
a⊤b

∥a∥ · ∥b∥ , ∀(a,b) ∈ R2q′ .

Given a batch B = {xi}bi=1, for each example xi, we
sample two augmentation functions ϕ and ψ uniformly from
T , i.e., ϕ, ψ ∼ U(T ), compute the pairwise similarities
between all the examples in the following way:

si(ϕ, ψ) = [scos (g F ϕ(xi), g F ψ(xj))]
b
j=1 ∈ Rb.

Following (Oord et al., 2018) as well as (He et al., 2020)
and denoting the cross-entropy error function by lce : Rb ×
{1, . . . , b} → R, we update the weights of F and g by
minimizing the contrastive loss which we define as

b∑
i=1

lce

(
si(ϕ, ψ)

T
, i

)
,

where T ∈ (0,+∞) is a temperature – fixed to 0.1. As
augmentation, we use RandomCropResize, which ran-
domly crops and then resizes a portion of the time series.
We vary the crop rate between 0–20% to maintain structural
integrity while introducing minor distortions.

Our pre-training dataset combines various public datasets,
totalling 1.89M time series examples (see Appendix A.1).
We pre-train the model for 100 epochs with a batch size
equal to 2048 on 4 NVIDIA Tesla V100-32GB GPUs.

3 Adapters
To efficiently handle multivariate time series and reduce
the computational cost of processing each channel indepen-
dently, we explore lightweight channel-level adapters that
project the original input into a reduced number of virtual
channels before passing it to the encoder. These adapters
are model-agnostic and preserve temporal structure while
enabling better scalability.

We evaluate both unsupervised adapters – such as PCA,
SVD, random projections, and variance-based channel se-
lection – and a supervised adapter, the Differentiable Linear
Combiner (LComb), which is trained jointly with the model.
A full description of each adapter and corresponding experi-
mental results is provided in Appendix D.

4 Experimental Results
In this section, we assess Mantis by conducting experiments,
performed on a single NVIDIA Tesla V100-32GB GPU.

4.1 Setup

Baselines. We compare Mantis against four recent founda-
tion models: UniTS (Gao et al., 2024), GPT4TS (Zhou et al.,
2023), NuTime (Lin et al., 2024), and MOMENT (Goswami
et al., 2024). In Appendix B.1, we give more details on their
architectures, scales, and pre-training strategies.

Datasets. We evaluate on diverse univariate and multi-
variate datasets, including the full UCR archive (Dau et al.,
2019), a subset of UEA (UEA-27, Bagnall et al., 2018),
and other four real-world datasets. More details on datasets
can be found in Appendix B.2.

Experiments. We assess Mantis across three tasks: (1)
Zero-shot feature extraction using a frozen encoder followed
by Random Forest learning on the embeddings, evaluated
on 159 datasets (159-D); (2) Full fine-tuning of the entire
model on 131 datasets (131-D); and (3) Calibration for un-
certainty quantification performances, on the same 131-D
subset. GPT4TS and UniTS are excluded from the zero-shot
setting as they do not support this regime.

Below we display the main experimental results. The ab-
lation study and experiments on adapters can be found in
Appendix C and D.

4.2 Zero-shot Feature Extraction Regime

NuTime MOMENT Mantis
Foundation Model

Ac
cu

ra
cy

 (T
SF

M
 +

 R
F)

0.7639 0.7663

0.7816

159-D Avg Performance

Figure 2: Accuracy of models with frozen encoder in aver-
age over 3 random seeds and 159-D datasets.

In Figure 2, we can see that on average Mantis outperforms
NuTime and MOMENT by 1.77% and 1.53%, respectively.
Mantis is the best on 74 datasets, while MOMENT and
NuTime have the best performance on 53 and 38 datasets,
respectively. Compared to other foundation models, we can
see that Mantis achieves the best balance in terms of the
complexity of the model and its accuracy. On the one hand,
Mantis outperforms a smaller model, NuTime, by increasing
the encoder’s capacity and leveraging more information
from the pre-training set. On the other hand, a much bigger
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UniTS GPT4TS NuTime MOMENT Mantis
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E
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0.1131

Avg Calibration

UniTS GPT4TS NuTime MOMENT Mantis
Foundation Model

0.0955 0.0909

0.0691
0.0797

0.0609

Avg Calibration after Isotonic Regression

UniTS GPT4TS NuTime MOMENT Mantis
Foundation Model

0.0906 0.0943
0.0755 0.0811

0.0673

Avg Calibration after Temperature Scaling

Figure 3: Averaged expected calibrated error of different methods over 131-D datasets.

model, MOMENT, with 385 million parameters does not
manage to achieve a better performance despite its size.

4.3 Full Fine-tuning Regime

UniTS GPT4TS NuTime MOMENT Mantis
Foundation Model

Ac
cu

ra
cy

0.7201 0.7205

0.8224

0.7924

0.8408

131-D Avg Performance

Figure 4: Accuracy of fine-tuned models in average over 3
random seeds and 131-D datasets.

We evaluate the performance of foundation models in a
full fine-tuning setting, where task-specific prediction heads
are trained jointly with encoder layers (see Appendix B.3
for details). In Figure 4, one can see that Mantis has the
highest performance among all the considered foundation
models. We note that the reported performance results of our
competitors may diverge from those reported by the authors
of these models. This may be explained by the difference in
the chosen fine-tuning scheme. In our case, we have fixed
the scheme for a fair comparison while trying to find the
best learning rate for every model based on a validation set.
Thus, our experimental results reveal that Mantis is the most
robust to the choice of a fine-tuning scheme and does not
necessarily require tedious hyperparameter searching.

4.4 Calibration

Accurate uncertainty estimation is essential in safety-critical
systems and for reliable evaluation (Wang, 2023; Xie et al.,
2024). In this section, we assess the calibration of Mantis
and other time series foundation models, focusing on how

well their predicted confidences align with oberved accu-
racy (Guo et al., 2017). We use the Expected Calibration
Error (ECE) (Naeini et al., 2015) to quantify miscalibration,
averaging the gap between predicted confidence and empiri-
cal accuracy over 10 confidence bins (see Appendix B.4 for
details). Following the fine-tuning setup from Section 4.3,
we compute ECE over 131-D, both before and after apply-
ing post-hoc calibration. We evaluate two standard post-hoc
techniques: Temperature Scaling (Guo et al., 2017), which
regulates the amplitude of logits before applying softmax,
and Isotonic Regression (Zadrozny & Elkan, 2002), which
adjusts predicted probabilities by fitting a piecewise con-
stant function.

As shown in Figure 3, Mantis is the most calibrated model
on average, even without post-hoc adjustment—an advan-
tage when validation data is limited. All models benefit
from calibration, but Mantis consistently retains the low-
est ECE. Example of reliability diagrams are provided in
Appendix, Figure 5.

5 Conclusion and Future Work
We introduced Mantis, a lightweight foundation model for
time series classification, which outperforms larger mod-
els and achieves strong calibration. We also proposed an
adapter-based fine-tuning strategy suitable for resource-
constrained settings.

Our findings highlight key challenges in building foundation
models for time series. Notably, we observed no clear link
between model size and performance, and a substantial gap
remains between zero-shot and fine-tuning accuracy. In addi-
tion, improving the interpretability of the model output is an
important direction for future work. Specifically, ensuring
strong calibration properties of the foundation model could
enable various applications including uncertainty quantifi-
cation and unsupervised performance prediction. Recently,
Wen et al. (2024) showed that the hidden space itself can be
performance-predictive when using contrastive pre-training,
so exploring Mantis from this perspective could be promis-
ing as well.
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A Methodology – Additional Material

A.1 Pre-training datasets

Our pre-training dataset combines various public datasets, including UCR (Dau et al., 2019), UEA (Bagnall et al., 2018)
(all except EigenWorms and InsectWingbeat), ECG (Clifford et al., 2017), EMG (Goldberger et al., 2000), Epilepsy (An-
drzejak et al., 2001), FD-A and FD-B (Lessmeier et al., 2016), Gesture (Liu et al., 2009), HAR (Anguita et al., 2013),
SleepEEG (Kemp et al., 2000). We ensure that test sets used for evaluation in Section 4 are not part of the pre-training
dataset. The total pre-training consists of 1.89 million time series examples.

B Experimental Results – Additional Material

B.1 Baseline Details

We provide a brief overview of the four baseline models used in our experiments:

UniTS (Gao et al., 2024). UniTS is a lightweight multi-task foundation model designed for time series data. It has
approximately 1 million parameters and is trained in a supervised fashion on 38 labeled datasets from UCR and UEA.
Although originally built for multi-task learning, it serves as a competitive baseline for zero-shot and fine-tuning evaluations
due to its broad exposure to diverse tasks during training.

GPT4TS (Zhou et al., 2023). GPT4TS adapts a pre-trained GPT-2 model to time series by introducing a learnable
tokenization layer. The total number of parameters is around 80 million. We follow the authors’ recommendations for partial
fine-tuning.

NuTime (Lin et al., 2024). NuTime is a transformer-based foundation model for time series classification. It shares the
same pre-training dataset as Mantis, allowing for a fair comparison. The model emphasizes efficiency and generalization
from a relatively compact architecture.

MOMENT (Goswami et al., 2024). MOMENT is a large-scale time series foundation model based on the T5 architec-
ture (Raffel et al., 2020), with approximately 385 million parameters. It is pre-trained on an extensive dataset containing
1.13 billion time series samples across multiple tasks. While highly expressive, its size results in longer inference times and
higher computational demands.

Summary. These baselines provide a range of model sizes (from 1M to 385M parameters) and design philosophies
(lightweight supervised models, large pre-trained transformers, and hybrid approaches). This diversity allows us to
benchmark Mantis under varied conditions and usage settings.

B.2 Dataset Details

UCR Collection. The UCR Time Series Archive (Dau et al., 2019) consists of 128 univariate datasets spanning a wide
range of domains such as sensor readings, ECG signals, motion capture, and simulated data. We use the entire collection for
the zero-shot evaluation. For fine-tuning, 15 datasets are excluded due to memory limitations (e.g., long sequences or large
sample sizes).

UEA Collection. The UEA archive (Bagnall et al., 2018) includes 30 multivariate time series datasets. We exclude three
datasets with insufficient test samples or extremely short sequence lengths and downsample InsectWingbeat for efficiency.
This yields 27 datasets, denoted UEA-27. For fine-tuning and calibration, an additional 11 datasets from UEA are excluded
due to GPU memory constraints or excessive channel count. For ablation study of Mantis, 7 datasets from UEA are excluded
due to excessive channel count.

Additional Datasets. We also include four real-world datasets used in prior time series foundation model evaluations:

• Blink (Chicaiza & Benalcázar, 2021): Eye-blink detection using EEG signals.

• MotionSenseHAR (Malekzadeh et al., 2019): Human activity recognition from smartphone motion sensors.

• EMOPain (Egede et al., 2020): Multimodal pain detection in physical therapy contexts.

• SharePriceIncrease (Middlehurst et al., 2024): Binary classification of share price movements.
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These datasets are included in zero-shot evaluation, and two of them are included in fine-tuning and calibration experiments
(excluding EMOPain and MotionSenseHAR due to memory constraints). For ablation study of Mantis, EMOPain is excluded
due to eccessive number of channels.

Dataset Splits. We use the official train/test splits provided in the respective archives for all datasets. For fine-tuning and
calibration experiments, 20% of the training set is further held out as a validation set for hyperparameter selection.

Summary.

• 159-D: Used in zero-shot evaluation. Includes full UCR, UEA-27, and 4 additional datasets.

• 131-D: Used in fine-tuning and calibration. Excludes datasets based on computational constraints of all models.

• 151-D: Used for ablation study. Excludes datasets based on computational constraints of Mantis only – those with a
large number of channels.

B.3 Full fine-tuning

In the full fine-tuning setup, we use the same procedure for all models, ensuring a fair comparison. More specifically, for
each task, we append a prediction head after an encoder and fine-tune certain layers on the training data. For all the models,
we fix a fine-tuning scheme: we minimize the cross-entropy loss for 100 epochs with a batch size equal to 256, using
an AdamW optimizer (Loshchilov et al., 2017) with a weight decay of 0.05. For each model and each dataset, we test 3
learning rates 10−4, 2 · 10−4, 10−3 and select the best using the validation set (with 80% - 20% as train - validation split).
For GPT4TS, we follow their paper and fine-tune the layers specified by the authors, and fine-tuning the whole architecture
for all the other models.

B.4 Calibration

We study the calibration properties of Mantis and other time series classification foundation models, and introduce here
some formal definition. We say a model is calibrated if, for a given confidence level α, the probability that the model
predicts the true class is equal to α (Guo et al., 2017):

P(Y = ŷ | conf(X) = α) = α, ∀α ∈ [0, 1],

where ŷ and conf(X) denote the predicted label and model’s confidence of a random variable X, respectively, which were
formally defined in Section 2.1. We consider the Expected Calibration Error (ECE, (Naeini et al., 2015)) as a metric to
evaluate the calibration on a test set {xi, yi}ni=1. We discretize the interval [0, 1] into m disjoint bins: Bj ∩Bk = ∅, ∀j ̸=
k, 1 ≤ j, k ≤ m and ∪m

j=1Bj = [0, 1]. As commonly done in the literature, we split the interval into 10 equally spaced bins.
Then, denoting the predicted label for xi by ŷi, the ECE is defined as follows:

ECE =
1

n

m∑
j=1

∣∣∣∣∣∣∣∣
∑

1≤i≤n
conf(xi)∈Bj

I(ŷi = yi)− conf(xi)

∣∣∣∣∣∣∣∣ .

C Ablation Study
In this section, we perform several ablation experiments for a more thorough analysis of Mantis. First, we validate some of
our architecture choices. More specifically, we test whether the incorporation of features extracted from the differential of a
time series, proposed in Section 2.2, improves the quality of embeddings. For this, we have pre-trained another version
of our foundation model where the differential feature extraction part was removed from the Token Generator Unit. In
Figure 6, we plot the average zero-shot feature extraction performance of the two versions of Mantis. One can see that the
incorporation of the differential block noticeably improves the accuracy score. When comparing Figure 2 and Figure 6, it is
interesting to notice that Mantis without the differential block still slightly outperforms NuTime and MOMENT in the case
of zero-shot feature extraction.

In the second part of our ablation study, we raise the following questions: (a) is pre-training really useful, or it is sufficient
to train Mantis from scratch on each dataset?, (b) should we fine-tune the head or the whole model?, (c) can Mantis be
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Figure 5: The reliability diagram on the test set after post-hoc temperature scaling on the validation set for three different
datasets. The gray histogram illustrates the distribution of the confidence score across the test set.
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Figure 6: Averaged accuracy of Mantis w/ and w/o the differential block over 3 random seeds and 159-D datasets.

fine-tuned with default hyperparameters, and how much we can gain from the model selection? To answer these questions,
we empirically compare the following fine-tuning regimes:

• The setup which we further call RF, and which we used for the zero-shot feature extraction experiment: the encoder of
Mantis is frozen, and embeddings are used as features to train a Random Forest classifier.

• The encoder of Mantis is frozen, and the task is solved by fine-tuning a classification head, which, in our case, is
layer normalization step + linear layer. The purpose of comparing this strategy, further called Head, with RF is to
see the impact of the choice of a classifier (linear vs non-linear, differentiable vs non-differentiable) on the overall
performance.

• The encoder is randomly initialized and fine-tuned together with a classification head. This baseline, which we further
call Scratch, is introduced to see whether or not pre-training of Mantis is useful.

• Finally, the strategy further called Full consists in fine-tuning the pre-trained encoder together with a classification
head.

In order to answer question (c), for every method, we report two scores: the test accuracy of the model at the last epoch (i.e.,
at the end of fine-tuning), and the best test accuracy of the model across all fine-tuning epochs. While the last epoch score
gives a pessimistic evaluation of the performance as no model selection is performed, the best epoch score is an optimistic
evaluation as it indicates the best achievable performance. In this experiment, we fix the fine-tuning scheme: the number of
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epochs is 100, the batch size is 256, the optimizer is AdamW with the weight decay of 0.05 and the learning rate set to
2 · 10−4 and adjusted following the cosine annealing decay strategy (Loshchilov & Hutter, 2016) with 10 warm-up epochs.
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Figure 7: Performance of different fine-tuning methods averaged over 3 random seeds and 151-D datasets.

Figure 7 depicts the average performance over the 151-D benchmark both for the last and best epoch. First, we can see that
the pre-training of Mantis is visibly useful as Full outperforms Scratch by 5.08% and 3.92% in the last and best epoch
score, respectively. On the other hand, using a frozen pre-trained encoder is rather suboptimal in terms of performance, and
full fine-tuning is preferred. This observation points out an important direction of future work, namely, to advance time
series classification foundation models in terms of zero-shot performance.

Another observation from Figure 7 is that fine-tuning the head with a frozen encoder may be suboptimal, and training a
Random Forest on embeddings gives a slightly better accuracy score. Finally, by comparing the performance results for the
last and best epoch, we conclude that although model selection is important to improve the overall performance (+1.89% for
Full), using directly the model from the last epoch gives already good performance. This shows that Mantis can be applied
in practice without the need to tediously search for optimal values of hyperparameters.

D Adapters

D.1 Introduction and proposed approach

Handling multivariate time series is a key challenge for foundation models, since different classification tasks involve
varying channel counts. Like other foundation models (Goswami et al., 2024; Lin et al., 2024), Mantis is pre-trained on
univariate data and applied to multivariate settings by treating channels independently. However, this approach may demand
excessive resources and ignore channel correlations during the feature extraction.

To address these concerns, we study a simple approach of using a channel-level adapter a : Rd → Rdnew that precedes the
foundation model and transforms the original d channels into new dnew ones. We consider this definition of an adapter due
to its high flexibility: (a) not only Mantis but any foundation model can be plugged in, (b) channel-level transformation
prevents from disrupting the temporal structure, (c) adaptation to the computation budget by determining the number of
encoded channels.

First adapters that we introduce are classical dimension reduction approaches like Principal Component Analysis that are
computationally efficient and unsupervised. However, they are normally limited to 2D data matrices, so we train them on the
data reshaped to (n× t, d), where n is the number of training examples. This allows us to focus on correlations between
channels over all time steps, learning the rotation matrix W ∈ Rdnew×d that linearly combines the original channels into new
ones. Overall, these four adapters rely on this strategy:

• Principal Component Analysis (PCA) seeks to find an orthogonal basis of principal components where few components
capture most of the data variance.
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• Truncated Singular Value Decomposition (SVD, (Halko et al., 2009)) is similar to PCA, but it applies SVD decomposi-
tion directly on the non-centered data matrix.

• Random Projection (Rand Proj) is a trivial baseline that randomly generates the rotation matrix W ∈ Rdnew×d.

• Variance-Based Channel Selection (Var Selector) performs feature selection by keeping channels with the highest
variance. This approach can be useful when channels with low variance can be discarded without affecting the overall
performance.

Although these adapters are computationally very efficient, they are not supervised, which may lead to suboptimal
performance. Therefore, we introduce one more adapter:

• Differentiable Linear Combiner (LComb) performs a linear projection to D channels by learning it via backpropagation
together with the encoder and head.

D.2 Experimental results

Table 1: Performance comparison between different adapters when Mantis is fully-fine-tuned to a multi-channel time series
classification task. The UEA-27 data collection is considered in this experiment, and the results are averaged over 3 random
seeds. The number of selected channels is fixed to be ≤ 10. NoAdapter means that all channels are independently fed to
the TSFM, and NaN in its performance results marks the cases when the model has not fitted to a single V100-32GB GPU
card’s memory. Best Result summarizes the performance when the best strategy per dataset is chosen.

d No Adapter
Standalone Adapter Diff. Adapter Best Result

PCA SVD Rand Proj Var Selector LComb

ArticularyWordRecognition 9 0.9933±0.0 0.9922±0.0019 0.9878±0.0038 0.9811±0.0038 0.9933±0.0 0.9744±0.0069 0.9933±0.0

BasicMotions 6 1.0±0.0 1.0±0.0 1.0±0.0 1.0±0.0 1.0±0.0 1.0±0.0 1.0±0.0

CharacterTrajectories 3 0.9928±0.0004 0.9947±0.0004 0.9923±0.0012 0.9912±0.0016 0.9928±0.0004 0.993±0.0018 0.9947±0.0004

Cricket 6 1.0±0.0 0.9861±0.0 0.9769±0.008 0.9722±0.0 1.0±0.0 0.9907±0.008 1.0±0.0

DuckDuckGeese 1345 NaN 0.5733±0.0115 0.6±0.02 0.54±0.0872 0.5133±0.0231 0.54±0.0693 0.6±0.02

ERing 4 0.9926±0.0074 0.9778±0.0064 0.9753±0.0113 0.9642±0.0043 0.9926±0.0074 0.9778±0.0064 0.9926±0.0074

EigenWorms 6 0.8372±0.0044 0.8448±0.0117 0.8601±0.0192 0.8117±0.0233 0.8372±0.0044 0.8066±0.0384 0.8601±0.0192

Epilepsy 3 1.0±0.0 0.9976±0.0042 0.9976±0.0042 0.9976±0.0042 1.0±0.0 1.0±0.0 1.0±0.0

EthanolConcentration 3 0.4208±0.0195 0.2928±0.0101 0.3029±0.0122 0.384±0.0503 0.4208±0.0195 0.4081±0.0275 0.4208±0.0195

FaceDetection 144 NaN 0.6026±0.0054 0.6064±0.0037 0.5638±0.0065 0.5696±0.0027 0.6272±0.013 0.6272±0.013

FingerMovements 28 NaN 0.5833±0.0058 0.57±0.06 0.5467±0.0289 0.6167±0.0058 0.58±0.0265 0.6167±0.0058

HandMovementDirection 10 0.4009±0.0206 0.5135±0.027 0.482±0.0546 0.4279±0.0512 0.4009±0.0206 0.4414±0.0624 0.5135±0.027

Handwriting 3 0.482±0.0157 0.4529±0.0129 0.4588±0.0224 0.4235±0.0418 0.482±0.0157 0.5839±0.0283 0.5839±0.0283

Heartbeat 61 NaN 0.7561±0.0098 0.7626±0.0123 0.7707±0.0098 0.7951±0.0129 0.774±0.0123 0.7951±0.0129

InsectWingbeatSubset 200 NaN 0.4703±0.0051 0.4733±0.0127 0.4803±0.0302 0.591±0.005 0.236±0.0125 0.591±0.005

JapaneseVowels 12 0.9811±0.0054 0.9802±0.0031 0.9811±0.0 0.9577±0.0271 0.9784±0.0047 0.9577±0.0128 0.9811±0.0054

LSST 6 0.7109±0.0015 0.6795±0.0027 0.6894±0.0021 0.6929±0.0207 0.7109±0.0015 0.6941±0.0053 0.7109±0.0015

Libras 2 0.9389±0.0 0.937±0.0032 0.9481±0.0064 0.8111±0.1392 0.9389±0.0 0.9704±0.0032 0.9704±0.0032

MotorImagery 64 NaN 0.5933±0.0351 0.5833±0.0208 0.5867±0.0379 0.6±0.01 0.59±0.0173 0.6±0.01

NATOPS 24 0.937±0.0116 0.9537±0.0064 0.9611±0.0 0.8926±0.0032 0.8981±0.0116 0.8796±0.017 0.9611±0.0

PEMS-SF 963 NaN 0.8536±0.0067 0.8304±0.0145 0.7457±0.0473 0.9114±0.0067 0.7476±0.0219 0.9114±0.0067

PhonemeSpectra 11 0.3421±0.0023 0.3351±0.009 0.3215±0.0052 0.3492±0.0033 0.344±0.0052 0.3547±0.0047 0.3547±0.0047

RacketSports 6 0.9408±0.0 0.9123±0.0152 0.9101±0.0076 0.9167±0.0038 0.9408±0.0 0.9254±0.0038 0.9408±0.0

SelfRegulationSCP1 6 0.9135±0.0071 0.917±0.0052 0.9113±0.0034 0.9135±0.0079 0.9135±0.0071 0.901±0.009 0.917±0.0052

SelfRegulationSCP2 7 0.5389±0.0096 0.5648±0.0449 0.5685±0.0251 0.5611±0.0455 0.5389±0.0096 0.5482±0.021 0.5685±0.0251

SpokenArabicDigits 13 0.987±0.0009 0.9933±0.0014 0.9906±0.0019 0.988±0.0027 0.9864±0.0028 0.9882±0.0016 0.9933±0.0014

UWaveGestureLibrary 3 0.9438±0.0108 0.8583±0.0079 0.8552±0.0095 0.8635±0.0737 0.9438±0.0108 0.9177±0.0048 0.9438±0.0108

In this section, we study the performance of Mantis when it is combined with one of the adapters we introduced above.
For PCA, SVD, RandProj and VarSelector, the new number of channels is equal to D′ = min{D, 10}, while for
LComb is always fixed to D′ = 10. Table 1 depicts the empirical comparison between the adapters and the case when we
treat all channels independently (tagged as NoAdapter). Below, we discuss the experimental results.

Dimension reduction: When the number of channels is too large, the full fine-tuning is limited as treating all channels
independently is computationally costly. In Table 1, one can see that starting from 28 channels (fixing the batch size to 256),
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the optimization of Mantis does not fit the memory of a single V100-32GB GPU card, which results in 7 NaN values in the
NoAdapter column. Nevertheless, applying one of the five adapters solves the issue, allowing the full fine-tuning and
increasing the performance.

Channel interactions: Adapters also mix the original channels allowing them to interact before sending them to the
encoder (Benechehab et al., 2024). Our experiments reveal that the utility of adapters from this perspective is rather
dataset-dependent: while for datasets like RacketSports and UWaveGestureLibrary, adapters do not bring any improvement
compared NoAdapter, transforming original channels brings a large improvement for datasets like Handwriting and
HandMovementDirection.

Channel selection: In situations where certain channels are not useful and can be simply discarded, VarSelector has
the highest performance, which we can observe on FingerMovements and InsectWingbeat datasets.

Differentiable adapter: Although LComb yields high performance on some datasets, overall, it is less efficient than PCA, SVD
and VarSelector. Since LComb is fine-tuned together with the encoder and the head, we suggest that the optimization
of the adapter is intricate, so searching for a better optimization scheme can be a good future work.
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