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ABSTRACT

The challenges faced by neural networks on tabular data are well-documented and
have hampered the progress of tabular foundation models. Techniques leveraging
in-context learning (ICL) have shown promise here, allowing for dynamic adapta-
tion to unseen data. ICL can provide predictions for entirely new datasets without
further training or hyperparameter tuning, therefore providing very fast inference
when encountering a novel task. However, scaling ICL for tabular data remains
an issue: approaches based on large language models cannot efficiently process
numeric tables, and tabular-specific techniques have not been able to effectively
harness the power of real data to improve performance and generalization. We
are able to overcome these challenges by training tabular-specific ICL-based ar-
chitectures on real data with self-supervised learning and retrieval, combining the
best of both worlds. Our resulting model – the Tabular Discriminative Pre-trained
Transformer (TabDPT) – achieves state-of-the-art performance on the CC18 (clas-
sification) and CTR23 (regression) benchmarks with no task-specific fine-tuning,
demonstrating the adapatability and speed of ICL once the model is pre-trained.
TabDPT also demonstrates strong scaling as both model size and amount of
available data increase, pointing towards future improvements simply through the
curation of larger tabular pre-training datasets and training larger models.

1 INTRODUCTION
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Figure 1: Scaling behaviour for our models. For real
data (solid), increasing the model or data size leads to
improvements predictable by power laws. Synthetic
data (dotted) becomes less useful than real data as the
models grow larger. Details are in Section 5.2.

Tabular foundation models (TFMs) have re-
cently emerged as a critical area of re-
search (van Breugel & van der Schaar, 2024)
given the importance of tabular data in real-
world applications. However, the high hetero-
geneity of tables, low availability of high qual-
ity data, and the lack of obvious inductive bias
have made it especially challenging to adapt
neural architectures to tabular data (Grinsztajn
et al., 2022; McElfresh et al., 2023). Conse-
quently, deep learning techniques and TFMs
have not been established as the standard for
solving discriminative tabular tasks, with tree-
based frameworks such as XGBoost (Chen &
Guestrin, 2016) or CatBoost (Prokhorenkova
et al., 2018) remaining the default. These ap-
proaches have demonstrated the practical ability to more gracefully handle the idiosyncrasies of
tabular data, although they require costly rounds of training and hyperparameter tuning on each
new dataset to achieve good results. Indeed, it is unlikely that tree-based models will ever provide
training-free generalization to unseen data – which we have grown to expect of foundation models in
other domains – and as such we continue to pursue neural approaches, despite the current challenges.

In-context learning (ICL) – referring to the phenomenon where a model generalizes to new tasks
using only in-context template examples with no additional fine-tuning – is one avenue showing
promise in building neural networks that can dynamically adapt to input data. ICL was first observed
in large language models (LLMs) (Brown et al., 2020), which have even demonstrated some ability
to perform inference on smaller tabular datasets (Han et al., 2024; Gardner et al., 2024). Since
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tables are not text, though, it is challenging to apply LLMs to tabular data. The cell-based, textual
tokenization in particular is highly inefficient and makes context size a major limitation (Fang et al.,
2024). This has hindered the adoption of LLM-based ICL techniques in practical tabular settings.
An alternative technique directly trained to perform ICL is the transformer-based TabPFN (Holl-
mann et al., 2023), designed specifically for tabular data. TabPFN is pre-trained exclusively on
synthetic data (Müller et al., 2022) and is able to more efficiently use its context by avoiding
cell-based tokenization: instead, the rows essentially act as tokens. While the performance of
TabPFN is impressive (McElfresh et al., 2023), especially since the lack of task-specific fine-tuning
greatly speeds up inference time, the lack of training on real data leaves something to be desired: we
conjecture that the synthetic data generation procedure used in training is not sufficiently diverse,
and improving it is a highly non-trivial task. Furthermore, it cannot natively perform regression,
and struggles as dataset size increases, greatly limiting its potential as a TFM.

Given the adaptability and efficiency of ICL, we would like to scale it to both handle larger datasets
and benefit from real pre-training data. The former can be accomplished using retrieval-based
training for more efficient use of the context; Thomas et al. (2024) showed that this can improve
performance when fine-tuning on specific tasks, and we demonstrate here that it can also be
adapted to the pre-training phase. As for the latter, we can turn to self-supervised learning (SSL)
techniques to augment the relatively low amount of quality pre-training tabular data that is publicly
available. Specifically, we perform random column prediction to enhance the amount of training
data, analogously to what has been done in language (Devlin et al., 2019) and vision (He et al.,
2022). Combining a transformer-based ICL with retrieval-based SSL results in our method – the
Tabular Discriminative Pre-trained Transformer (TabDPT) – which demonstrates impressive
performance even on brand new tabular tasks. We summarize our contributions below:

1. We introduce TabDPT as a TFM that performs both classification and regression on unseen
datasets with no additional training or hyperparameter tuning, backed by transformer-
based ICL, retrieval-based self-supervised pre-training, and retrieval-based inference.

2. We comprehensively evaluate TabDPT on the OpenML-CC18 (Bischl et al., 2021) and
OpenML-CTR23 (Fischer et al., 2023) benchmarks, showing state-of-the-art performance
on unseen datasets even when compared with methods that train on that data with 30
rounds of per-dataset hyperparameter tuning. Our runtime is therefore also much lower
than these baselines once we have a pre-trained model.

3. As there is no single accepted benchmark in the tabular domain, we introduce the idea of
using duel-based ranking methods (Elo, 1967; Glickman, 2012) to evaluate the relative
performance of models even when pairwise comparison across all datasets is unavailable,
mimicking similar developments in LLMs (Chiang et al., 2024).

4. We show that the performance of TabDPT scales with both model size and amount of train-
ing data, with Figure 1 in particular demonstrating the power of pre-training with real data.

5. We will release all code, which includes the weights of the trained TabDPT,1 methods for
training TabDPT, a comprehensive evaluation suite, and a library for detecting leakage in
tabular datasets which confirms that we are not training on downstream data.2

2 RELATED WORK

Tabular Foundation Models (TFMs) Although TFMs lag behind foundation models in other do-
mains (van Breugel & van der Schaar, 2024), a variety of attempts with different base architectures
have emerged. Most similar to ours is TabPFN (Hollmann et al., 2023); TabDPT’s architecture re-
lies heavily on this model – albeit with a separate regression head and a retrieval component – but
uses a completely different self-supervised pre-training procedure with real data. Both TabDPT and
TabPFN are trained to do ICL directly. Another class of ICL-based approaches to build TFMs is to
adapt existing LLMs, which can be done, e.g., for discriminative (Hegselmann et al., 2023; Gard-
ner et al., 2024) and generative (Borisov et al., 2022; Wen et al., 2024) tabular tasks. While these
techniques can naturally handle textual information in the form of table metadata, column names,
and categorical features, they cannot as easily handle the numerical content of tables as we discuss
1 https://github.com/layer6ai-labs/TabDPT
2 The training, evaluation, and dataset libraries will be released at a later date.
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in Section 3.1; this is also borne out in their weaker performance overall (Fang et al., 2024). Fi-
nally, there are other tabular-specific architectures, including graph (Kim et al., 2024) and diffusion-
based (van Breugel et al., 2024; Lin et al., 2024) techniques for prediction and generation, respec-
tively, showing the ability to also incorporate textual information into the overall modelling pipeline.
However, these models are not able to generalize to unseen tasks without supervised fine-tuning.

Self-Supervised Learning and Generalization in the Tabular Domain SSL has proven to be suc-
cessful for text and images (Devlin et al., 2019; Dosovitskiy et al., 2021), but has not demonstrated
the same level of success on tabular data. Many tabular SSL methods cannot generalize beyond the
dataset they were pre-trained on (Huang et al., 2020; Yoon et al., 2020; Majmundar et al., 2022; Sui
et al., 2024). This raises the question of whether tabular SSL methods can benefit from cross-task
training. The answer to this appears increasingly likely to be in the affirmative, as it has been shown
very recently that even tree-based methods benefit from tuning their default hyperparameters across
tasks (Holzmüller et al., 2024); this same work, following (Rubachev et al., 2022), demonstrates
that basic MLPs can also be competitive in predictive tabular tasks when leveraging SSL. Con-
sequently, tabular SSL methods have begun to show generalization across tasks and competitive
performance (Zhu et al., 2023; Ye et al., 2023). However, they still require task specific fine-tuning
and hyper-parameter tuning, which can be time- and resource-intensive. The only other tabular
SSL method we have seen that is able to generalize across tasks without task-specific fine-tuning
is by Gardner et al. (2024). However, this 8 billion parameter model still only has a maximum
context size of 32 data points – as it is LLM-based – and its performance is not competitive. To our
knowledge, we are the first to demonstrate competitive performance and successful generalization
of tabular SSL across tasks without task-specific fine-tuning or hyperparameter tuning.

3 METHOD

In this section, we outline the architecture of our model, TabDPT, along with the self-supervised
learning and retrieval strategies we employ that are key for model performance.

3.1 TRANSFORMER ENCODER FOR IN-CONTEXT LEARNING ON TABULAR DATA

Our main goal in this work is to understand how to build tabular foundation models that will
scale with model size and amount of data. First, we focus on the architecture. We have found the
backbone of TabPFN (Hollmann et al., 2023) to be suitable: it is a non-autoregressive transformer
encoder wherein entire rows of incoming tabular data can attend to each other and thus play the role
of “tokens”. More precisely, for every input table with N rows and F features, we first standardize
the feature dimension to a fixed size Fmax, achieved by either padding with zeros or subsampling
features. The table is then embedded into a tensor of shape (N, d), where d represents the trans-
former’s hidden dimension, via a linear layer. We do not handle categorical or numerical variables
differently, with more details on that in Section 3.2. Subsequently, in the transformer layers, we treat
the row dimension N as the sequence length so that individual instances can attend to each other.

A row-based tabular encoding contrasts with that of LLMs which require tokenization of each cell in
the input data, inflating the memory requirements by a factor of F ×⟨Ntok⟩, where ⟨Ntok⟩ is the aver-
age number of tokens per cell. Even with techniques such as sparse attention (Child et al., 2019) and
Byte Pair Encoding (Gage, 1994), the overhead remains significant, limiting the table size that can
be processed. A similar phenomenon is observed in the image domain when comparing pixel-based
transformers (Chen et al., 2020) to ViTs (Dosovitskiy et al., 2021) which use coherent numerical
patches of images for embedding, resulting in more efficient models. Similarly, we argue that tables
should be divided into structurally meaningful units, such as rows, for more efficient processing.

By reducing memory consumption, row-based encoding permits processing a large number of rows,
which in turn enables efficient ICL on new tables. In contrast, cell-based methods (Huang et al.,
2020; Gorishniy et al., 2024; van Breugel et al., 2024) are limited in the number of rows they can
process at a time, rendering them incapable of processing full tables. In turn this prevents ICL and
requires additional training or fine-tuning on new datasets, unlike our method.

The final point to discuss on architecture is our approach for training both classification and regres-
sion with the same backbone, which is also the biggest change from the architecture of Hollmann
et al. (2023). For this, we attach two heads after the transformer layers, each consisting of two-layer
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MLPs. For classification, the outputs are logits of a predetermined maximum number of classes,3
trained using the cross-entropy loss. For regression, the output is a scalar and we simply train using
the mean-squared error (MSE) loss. We investigated recasting regression as classification, as in
previous work (Imani et al., 2024; Farebrother et al., 2024), but MSE was more effective for us.
The full architecture is depicted in Figure 2b, with additional details provided in Appendix H.

3.2 SELF-SUPERVISED LEARNING ON TABULAR DATA

Algorithm 1 Training Step of TabDPT

1: Select B random datasets {Di}Bi=1
2: for each dataset Di do
3: Generate yi from a random column ci.
4: Sample N close points with ci dropped.
5: Shuffle and pad them to obtain Xi.
6: end for
7: Stack {Xi}Bi=1 and {yi}Bi=1 into X and y.
8: Randomly divide y into yctx, yqy.
9: input, target← [X ≡ [Xctx, Xqy], yctx], yqy

10: Calculate loss and perform model update.

Although most of the datasets we use for
training are labelled datasets containing pairs
of input data X and the corresponding targets
y, we use a purely self-supervised approach
that does not treat y differently from any
other feature of X; we treat all datasets as
unlabeled. We do so to increase the number
of relationships between the features that
we can learn. We take inspiration from the
masked modelling objectives popularized in
vision (Germain et al., 2015; He et al., 2022)
and language (Devlin et al., 2019); namely,
we aim to predict one feature from a random
subset of the other features. In more detail, this involves two complementary steps.

Random Column as Target We randomly select a column from the tabular dataset that satisfies
specific criteria, such as having a sufficient number of unique values, and treat it as a target for
either classification or regression tasks. This allows the model to learn useful representations from
the data without relying on external labels. For regression, we simply standardize the values of that
column. For classification, if the number of unique values is high, we distribute the values over
random partitions and use those as target classes.

Column Shuffling and Masking We also shuffle the order of columns, and drop some, to en-
courage learning robust relationships between features independent of their positional arrangement,
improving the model’s ability to generalize to new datasets with different feature arrangements.

By combining these self-supervised learning techniques with our transformer architecture, we
create a model that is not only robust and scalable, but also capable of learning from all features of
any dataset. This allows us to learn efficiently from a limited number of training datasets, whereas
only learning from the supervised target would not contain enough learning signal for the model (cf.
Figure 4b). Detailed pseudo-code can be found in Code Block 1 and Code Block 2 in the Appendix.

3.3 TRAINING WITH END-TO-END RETRIEVAL

One of the primary challenges in training in-context transformer-based models for tabular data
is the quadratic growth of compute and memory usage with the context length. This limitation
restricts the number of support examples that can be effectively utilized within the context window.
While language-based models (Gardner et al., 2024) or TabPFN (Hollmann et al., 2023; McElfresh
et al., 2023) can handle small datasets where the entire training set can fit within the context, their
scalability to larger, more complex datasets is limited. This raises the question of how to efficiently
select and use context when dealing with larger datasets.

Recently Thomas et al. (2024) and Xu et al. (2024) showed that using a dynamic context local to
each query point greatly improves the performance and scalability of TabPFN at inference. We
hypothesized that training our model end-to-end on local context would improve the downstream
performance even further as it results in a better alignment between training and testing objectives.

This objective is similar to works such as RETRO (Borgeaud et al., 2022) or TabR (Gorishniy et al.,
2024) which have shown improved results by using retrieval during training. However, performing
an exact kNN search for each point in the minibatch during training is expensive. The main cost is
not from the search itself, but rather the fact that now each query point has its own unique context,

3 Although we show in Section 3.4 how to lift this restriction.
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Sample B datasets Get B (X, y) pairs with SSL

Approx. Retrieval

(a) Selecting a training batch

L2 norm
Transformer

(b) Overview of the architecture

Figure 2: Global overview of our method. (a) We sample different tables from different datasets
within a batch. From this, we construct a tensor X of shape (B,N, Fmax) and target y of shape
(B,N) containing class labels or regression targets. (b) We split those tensors along the second
(row) dimension to build our input [X ≡ [Xctx, Xqy], yctx] and aim to predict yqy. Trapezoids
and triangles are dense layers, with the shape indicating whether the dimension is increased or
decreased. After summing the linear embedding of X and yctx (shape (B,N, d)), we pass them into
the transformer model. Depending on whether y is a classification or regression target, we use the
appropriate head and either the cross entropy or mean-squared loss, respectively.

thus increasing GPU memory requirements. Instead, we use the approximate retrieval technique
presented by Thomas et al. (2024) where local groups of points are sampled and randomly split into
a context vector and a query vector, thus allowing context sharing between points while being more
efficient. During inference, we perform one kNN search per query point, with details in Figure 5.

We retrieve neighbours based on a simple distance (L2 or dot-product) in the normalized original fea-
ture space as done by Thomas et al. (2024). There are three main reasons for this: 1) we cannot sim-
ply learn good table embeddings – the meaning of values and features is extremely table-dependent,
and thus such embeddings would likely need to be learned in-context, defeating the purpose of re-
trieval in the first place; 2) contrary to applications like RAG (Lewis et al., 2020) where only a few
samples are retrieved, we retrieve up to 1,024 samples during training, which increases our proba-
bility of sampling at least a few relevant points; and 3) even in LLMs, sparse methods like BM25
that are closer to data space are competitive (Nogueira & Cho, 2019). We show in Figure 4b that this
technique improves the performance of our model compared to retrieval limited to inference time.

3.4 INFERENCE STRATEGIES

Recall from Section 3.1 that our architecture needs a pre-defined maximum number of features Fmax

and classes Cmax. We discuss how to overcome these limitations with inference-time techniques.

Features When the number of features in a table exceeds Fmax, we reduce the dimensionality of
the table using Principal Component Analysis (PCA) to Fmax.

Classes If a dataset contains C classes with C > Cmax, we cannot perform classification in a single
forward pass. While we could do binary classification in a one-versus-all fashion, this would require
C forward passes which may drastically impact the inference speed of our algorithm; some datasets
have hundreds of classes. A much more computationally efficient idea is to write C in base Cmax
and predict each base-Cmax digits separately. This then requires only

⌈
logCmax

(C)
⌉

forward passes,
which is very efficient. For instance, if we only train using Cmax = 10 classes and have to predict
on C ≤ 100, this requires at most two forward passes: one for each digit of the class to predict.

4 DATA

4.1 TRAINING DATA

Our training data was collected from OpenML (Vanschoren et al., 2014) and consists of a wide
range of public tabular datasets across numerous domains. To find appropriate datasets, we con-
sidered the datasets specified in the Grinsztajn et al. (2022), TabZilla (McElfresh et al., 2023), and
AMLB (Gijsbers et al., 2024) benchmarks as well as additional datasets found individually. In total,
our training data contained 123 datasets, with a total of 32M rows and 2B cells (individual values
within each table). 93 datasets had classification targets, 29 datasets had regression targets, and 1
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did not have a default target defined; however, we do generate both classification and regression
targets from each dataset with our self-supervised approach during training. The complete list of
training datasets is provided in Appendix G.

Comparison with TabLib and Tabula-8B Our training data includes orders of magnitude fewer
tables compared to Tabula-8B (Gardner et al., 2024), a tabular model based on LLama 3-8B (Dubey
et al., 2024) and trained on data from TabLib (Eggert et al., 2023) that sources tables from GitHub
and CommonCrawl. However, in the end, Tabula-8B is trained on 8B tokens mostly from very small
tables. We can estimate this to represent between 400M and 8B cells (using the fact that 8 values
are encoded into 167 tokens from their Figure 2 due to the verbosity of the encoding mechanism),
which is within the same order of magnitude as our training data.

4.2 EVALUATION DATA

For our evaluation, we consider two public benchmarks: CC18 (Bischl et al., 2021) for classification
tasks and CTR23 (Fischer et al., 2023) for regression tasks.

CC18 is a curated suite of 72 datasets with classification targets originally sourced from OpenML.
These datasets each have between 500 and 100,000 instances, less than 5,000 features, and originate
from diverse domains such as finance, biology, games, banking, industrial applications, or natural
signals such as vision or sound. Datasets were selected according to curation criteria that included
avoiding synthetic data, requiring source information, and removing datasets where a simple algo-
rithm achieved 100% accuracy. CC18 is a widely used benchmark for evaluating tabular learning
(Bahri et al., 2022; Hollmann et al., 2023; McElfresh et al., 2023).

CTR23 is a benchmark suite of 35 datasets also curated from OpenML. It follows most of the
design choices of CC18 but contains regression rather than classification tasks. In particular, it
uses the same restrictions on number of samples and features as CC18, but replaces the accuracy
restriction with a requirement that a linear model must not achieve R2 = 1 on the selected datasets.

4.3 CONTAMINATION ANALYSIS

To ensure that the datasets used for training did not contain any information about the evaluation
data, we extracted a range of metadata from each dataset and compared them across all pairs of
training and evaluation datasets. This includes: i) dataset names, ii) hashes of dataset files, iii) num-
bers of columns and rows, iv) target mean and variance, v) mean, variance, skew, and kurtosis of each
feature, and vi) coefficients of a univariate linear fit between each feature and the target if available.

To allow for efficient pairwise comparisons between all features in all datasets, we use k-d
trees (Bentley, 1975) constructed for each dataset that contain the feature statistics. Any pairs of
datasets with unusual similarities detected were manually evaluated and removed from training if
they were found to be related. Since this procedure is primarily based on automated checks, it can
be used in the future to further scale our training data.

5 EXPERIMENTS

In this section, we evaluate TabDPT against tuned baselines on different benchmarks, and then
provide a detailed analysis of TabDPT by observing its scaling properties, reporting the runtime,
and ablating key components.

5.1 EVALUATION

Benchmark Suites First we compare our method against tuned, competitive baselines including
tree-based methods such as XGBoost (Chen & Guestrin, 2016) and CatBoost (Prokhorenkova et al.,
2018), strong deep learning baselines such as TabR (Gorishniy et al., 2024) and MLP-PLR (Gor-
ishniy et al., 2022), as well as kNN (Fix, 1985). We further use McElfresh et al. (2023)’s csv file
containing the performance of a large number of algorithms per hyperparameter, split, and dataset.4
We obtain results for XGBoost, CatBoost, LightGBM, and MLP from this file. Our protocol is

4 https://drive.google.com/drive/folders/1cHisTmruPHDCYVOYnaqvTdybLngMkB8R
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Algorithm CC18 CTR23
AUC Accuracy Correlation R2

TabDPT 0.972 ± [0.971, 0.973] 0.917 ± [0.915, 0.919] 0.911 ± [0.908, 0.913] 0.831 ± [0.826, 0.835]

TabR 0.967 ± [0.965, 0.969] 0.923 ± [0.920, 0.926] 0.909 ± [0.905, 0.912] 0.825 ± [0.818, 0.831]

MLP-PLR 0.967 ± [0.965, 0.968] 0.914 ± [0.911, 0.917] 0.907 ± [0.904, 0.910] 0.827 ± [0.822, 0.832]

PFN++ (kNN) 0.970 ± [0.968, 0.972] 0.913 ± [0.910, 0.916] 0.888 ± [0.881, 0.894] 0.792 ± [0.782, 0.801]

XGBoost 0.966 ± [0.964, 0.967] 0.911 ± [0.909, 0.913] 0.904 ± [0.900, 0.907] 0.820 ± [0.814, 0.825]

LightGBM 0.962 ± [0.960, 0.964] 0.908 ± [0.906, 0.910] 0.900 ± [0.896, 0.904] 0.809 ± [0.803, 0.815]

CatBoost 0.959 ± [0.958, 0.961] 0.903 ± [0.901, 0.905] 0.897 ± [0.890, 0.903] 0.802 ± [0.794, 0.810]

TabPFN (kNN) 0.959 ± [0.955, 0.962] 0.884 ± [0.881, 0.887] N/A N/A
TabPFN 0.939 ± [0.935, 0.943] 0.852 ± [0.849, 0.855] N/A N/A
MLP 0.910 ± [0.907, 0.913] 0.863 ± [0.860, 0.866] N/A N/A
kNN 0.874 ± [0.869, 0.879] 0.866 ± [0.862, 0.871] 0.671 ± [0.654, 0.687] 0.466 ± [0.446, 0.485]

Table 1: Results on CC18 and CTR23. We report four metrics and their 95% confidence intervals.
The best algorithm is bolded for each metric. Furthermore, we underline an algorithm’s score if its
confidence interval overlaps with the highest score’s interval. TabDPT performs strongly across all
metrics on both classification and regression, although regression has much higher uncertainty.

the following: if we have access to the hyperparameter optimization (HPO) search from McElfresh
et al. (2023), we use those numbers. However, for algorithm and dataset combinations that
took 5+ hours to train, the csv entry is missing. For those cases specifically we compute the
performance with default hyperparameters.5 For CTR23, we run a HPO search with search space
similar to the TabZilla protocol for XGBoost, CatBoost, and LightGBM, using the code repository
from Gorishniy et al. (2024).6 For TabR, MLP-PLR, and kNN, we also use that repository, with the
predefined search space and 30 rounds for both CC18 and CTR23.

We choose the best hyperparameters for each dataset fold individually based on the validation
performance. In addition, we compare to other ICL baselines including TabPFN (Hollmann et al.,
2023), and TabPFN (kNN) (Thomas et al., 2024) which retrieves neighbours of each query at
inference time. We also introduce PFN++, our improved TabPFN implementation that additionally
performs regression. PFN++ has the same architecture and training procedure as TabDPT but it uses
the same synthetic data generator as Hollmann et al. (2023) for training. PFN++ (kNN) also includes
retrieval at test time similar to TabPFN (kNN). Details of PFN++ can be found in Appendix I.1.

Finally, we run all methods on at least two different splits of the data and report 95% confidence
intervals using bootstrapping on the interquartile mean (IQM) of each metric, following the rec-
ommendations of Agarwal et al. (2021). Our model, TabDPT, is a 78M parameter model with 16
transformer layers pre-trained for 600K steps. All model training and inference can be done on a
single Nvidia A100 GPU with 40 GB of memory. We observe in Table 1 that TabDPT performs com-
petitively with all the hyperparameter-tuned baselines on both classification and regression, using
only forward passes and no further tuning.

Win-Rate and Comparison with Tabula-8B In order to compare with Tabula-8B (Gardner et al.,
2024), we gather the results they have on a subset of 61 datasets from CC18 for three models:
Tabula-8B with 32-sample context length, Tabula-8B zero shot, and the random baseline. As they
only report accuracy, we compute the win-rate for each pair of algorithms by assigning an algorithm
a “win” if it achieves a higher accuracy score on CC18 or R2 score on CTR23, for a given dataset and
fold. In Figure 3a we show the win-rate matrix for a subset of methods including 32-shot Tabula-8B.

Elo Scores More generally, we propose using Elo ratings (Elo, 1967) to compare algorithms
in the tabular domain, where no single gold standard benchmark exists and diverse datasets are
commonly used for evaluation. By treating each dataset fold and algorithm pair as a “duel” for a
given performance metric, we can assign ratings based on relative performance. This method allows
for consistent comparison of algorithms over varying collections of datasets when only a subset of
all the pairwise comparisons is available.

5 This only concerns 4 large datasets, namely CIFAR10 for CatBoost, and 3 others for LightGBM.
6 https://github.com/yandex-research/tabular-dl-tabr
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(a) Win-rate matrix for a subset of the methods.
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Figure 3: Duel-based metrics computed on accuracy and R2 scores. (a) Win-rate matrix for all
datasets available for each algorithm on CC18 and CTR23. (b) Elo ratings: TabDPT, the top-
performing algorithm, is highlighted.

We provide the Elo ratings in Figure 3b, which are computed on all the TabZilla scores available
to us for the given algorithms. Furthermore, we estimate uncertainty by boostrapping over match
order permutations (Boubdir et al., 2023). We also report Glicko2 ratings (Glickman, 2012)
in Appendix E as we found Glicko2 to be less sensitive to match order and it computes uncertainty
by design, despite Elo being more popular. We include Tabula with 32 shots, 0 shots, and the
random baseline. Figure 3b paints a similar picture to the previous results: our method performs
best, followed by the strong non-foundation baselines TabR, MLP-PLR, XGBoost, LightGBM,
and CatBoost. The LLM-based foundation model, Tabula-8B, is not competitive. Note that for
baselines in TabZilla, the missing algorithm-dataset pairs are due to significant time consumption.
While one approach would be to treat these missing points as a loss for the given algorithm, we
were able to simply omit them due to the paired nature of duel-based metrics. Thus, the outcome is
more favourable for the baselines, making the leading position of TabDPT even more impressive.

5.2 SCALING LAWS FOR TABULAR DATA

To the best of our knowledge, this work presents the first analysis of scaling laws for tabular
foundation models. We observe how performance changes when systematically varying model size
by adjusting the number of layers and transformer dimensions, as well as the amount of training
data. Our models range from 33K to 78M parameters, trained on data subsets spanning from 52M
cells (104K rows) to 2B cells (32M rows). For PFN++, we limit the variation to model size, keeping
the prior-generating function fixed. Following Hoffmann et al. (2022), we adopt the joint power-law
model ℓ̂(P,D) = A/Pα+B/Dβ +E, where ℓ̂ represents the estimated loss (or another target metric),
P denotes the number of parameters, and D the number of tokens, or in our case the number of cells
in the entire training set. Notably, although we use row-based encodings, not all rows affect the
model (especially the encoder layer) equally, and thus cell count is a better measure for dataset size.
We use the improved methodology by Besiroglu et al. (2024) to estimate the parameters A,B, α, β,
and E. For the scaling exponents in particular, we find α = 0.42 and β = 0.39, which are within
the expected range and are very close to each other, mirroring Hoffmann et al. (2022)’s observation.

In Figure 1, we illustrate the scaling behavior of our models along with the power-law fit. Since we
train on both classification and regression tasks, with roughly 50% of the samples in each category,
the loss on the y-axis represents the average of the cross-entropy loss for classification and 1 − ρ
for regression, where ρ is the correlation between the prediction and true target, equivalent to MSE
for normalized vectors. Note that for visualization purposes we report, on a log-scale, the excess
loss ℓ̂(P,D)− E (the estimated loss de-biased by E) instead of the raw loss. The empirical values
(P,D, ℓ(P,D)) are reported alongside the power-law fit.

We also provide the empirical values for models using the TabPFN prior (Hollmann et al., 2023),
shown in green. These models are not fit to the joint power-law model, as the data size D is
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not known a priori. However, we can estimate the number of rows or cells seen during training,
which totals to approximately 17B rows and 860B cells for all model sizes. As shown in Figure 1,
the quality of the data – whether real or synthetic – affects both the shape of the loss curve and
the terminal loss. We hypothesize that the synthetic data generated by TabPFN contains many of
the “easy” patterns present in real-world data, but not all. This is supported by smaller models
outperforming ones trained on real data of up to 2B cells, while larger models trained on TabPFN
data perform comparably to models trained on 300-600M real cells.

From Figure 1, we observe that as the models have more parameters, their performance becomes
more predictable. However, for larger models on smaller amounts of data, the loss is greater than
predicted (and in some cases unstable, see Appendix F), which could indicate signs of overfitting.
Additionally, for the joint classification and regression loss we observe a behaviour predictable
by power-law models, but neither classification nor regression alone is explained quite as well.
In Appendix F, we discuss the scaling analysis in more detail.

Our analysis suggests an important insight: although neural network-based methods have struggled
with tabular data for a long time, performance continues to improve as model size and data quantity
increase, much like text and image data.

5.3 TRAINING AND INFERENCE SPEED

In Figure 4a, we approximate the speed of each algorithm by computing the median time it takes
to perform a full training and evaluation – including HPO search – on datasets with size larger than
10,000 rows from CC18. From this, we compute the median time to process 1,000 rows, along
with the 25th and 75th percentiles. We also note, although it is not shown, that average time is
usually much higher than median for the baselines. We report the runtimes of TabDPT models with
different context sizes, indicated by the number labelling TabDPT points. It is also worth noting
that even the biggest TabDPT model with the largest context size is at least one order of magnitude
(up to 4) faster than the baseline models. While the baseline models need to train on each dataset
separately, TabDPT is much faster thanks to its ICL capability.

In addition, since TabDPT performs inference with a fixed batch and feature size, our speed per 1,000
rows is very consistent. We also add TabDPT (subsampling) which uses a shared random context to
classify all the test points – in the style of TabPFN – allowing for even faster inference at the cost of
performance. However, while tree-based and DL baselines offer faster inference after training, their
efficiency depends on the scenario: TabDPT is advantageous for streaming data requiring frequent
retraining, whereas traditional models are preferable for fixed data needing rapid inference.

In the pre-training phase, we have also observed that TabDPT achieves a higher performance than
PFN++ within the same number of epochs especially early on during training. In Figure 13, we can
see that TabDPT obtains lower test loss given a fixed compute budget, especially for larger models.
This clearly highlights the importance of real data compared to synthetic data.

5.4 ABLATIONS

In this section, we ablate key components in our training and inference strategies. All models are
trained for 700 epochs for a fair comparison. In Figure 4b, we report the reduction in performance
by removing key components in the training or inference pipeline; a higher bar indicates a greater
reduction in performance. For computational reasons, all comparisons are done against a smaller
base model with 28M parameters and 12 layers, and the inference is done using 512 context size
with retrieval as done by Thomas et al. (2024).

Training Ablations Firstly, we assess the importance of our SSL approach, where columns are
randomly sampled as targets during training. To ablate this, we only use the original target during
training and we observe the greatest loss in performance overall, as shown under “Supervised Target
(Training)” in Figure 4b. This underscores the importance of SSL in our training process. Secondly,
using subsampling instead of retrieval during training – but still keeping retrieval during inference –
also leads to a performance drop, albeit not as drastic as before.

Inference Ablations Similarly to Thomas et al. (2024), we find that using subsampling instead of
retrieval during inference decreases performance as indicated in the second column in Figure 4b.
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Figure 4: Runtime analysis (left) and ablation study (right).

Lastly, using a smaller context size also decreases performance as expected, although it does not
decrease nearly as much as the other important components discussed above.

6 LIMITATIONS, CONCLUSION, AND FUTURE WORK

While our model achieves very competitive performance on two popular tabular benchmarks, it is
still subject to some important limitations that have not been addressed in this work.

i) As of now, the current model cannot use textual information. Note that it is still possible to
modify the architecture to use embeddings of feature names, but we did observe overfitting when we
attempted it. We believe training the model on more tables with more features overall could lead to
improvements but we leave this to future work. ii) We still suffer from the limitation on the number
of features, and the non-invariance to the class and feature ordering, inherited from the “attention
over rows” architecture of TabPFN (Hollmann et al., 2023). The ordering dependence is mitigated
through randomization during training and we proposed inference techniques to address the former
limitations, although a better outcome would be finding a performant architecture that inherently
does not suffer from these limitations. iii) We have made some assumptions on the types of data
we handle: these are rectangular (i.e., not hierarchical or nested) tables which are i.i.d. (i.e., having
no time component or distribution shift between training data and test/inference data). iv) Unlike
foundation models in other domains, we have not shown generative (Loaiza-Ganem et al., 2024)
capabilities. We anticipate that TabDPT could be complemented with ideas from, e.g., (Ma et al.,
2023), (Ma et al., 2024) or (van Breugel et al., 2024). v) Even though our runtime on new tasks
is extremely fast compared to the baseline models, the pre-training of TabDPT is still itself time-
and resource-consuming, although we will provide the weights of TabDPT to help mitigate this.
Furthermore, there may be specific applications or settings where TabDPT and other ICL-based
techniques require additional fine-tuning, which may make them slower in comparison.

While deep learning has traditionally struggled with tabular data, our findings demonstrate that,
with the appropriate architecture and data utilization, similar scaling laws to those seen in other
domains can emerge. This suggests that tabular data is not inherently unique, and we anticipate that
larger tabular models trained on increasing amounts of data will become the norm. In this paper,
we present TabDPT as a scalable model that achieves strong performance on the CC18 and CTR23
benchmarks, but we expect the field to see the development of even larger models trained on more
expansive datasets in the future.
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REPRODUCIBILITY STATEMENT

We provide a description of the architectural details, hyperparameters and datasets used for both
evaluation and training. We intend to release the model weights, the full training and inference
code, and some data management functions such as automated tests for contamination.

ETHICS STATEMENT

We do not foresee any ethical concerns with the present research. The creation of a tabular founda-
tion model and studying the scaling of such models are unlikely to be used for harmful purposes.
Nevertheless, we do not promote the use of these models for harmful practices.
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A BITTER LESSONS

The architecture of TabDPT is based on TabPFN with some minor modifications (see Appendix H.1).
Therefore, it inherits the limitations of TabPFN. To mitigate these, we introduce inference time
techniques (see Section 3.4), although we also attempted to overcome these shortcomings during
training. The following list contains some of the ideas that either hurt the performance or did not
lead to significant improvements. We include this list to emphasize The Bitter Lesson7 and the fact
that efficient use of computation and access to high-quality data are the more important factors in
driving performance. The list is as follows:

• Different pre-processing techniques that were more robust to outliers, or variants of soft
clipping, resulted in no improvement. More advanced methods, such as Robust Scaler and
Power Transform, only ended up slowing the training process.

• Class embeddings (either through a separate network or by using class “tokens” in the
transformer layer) and computing various similarity metrics between query and class em-
beddings in a proto-network manner, with the aim of adapting to any number of classes,
hurt the performance, especially on real data.

• Different embeddings for yctx, including a dense layer for regression and a dictionary of
Cmax × d embeddings, with the rationale of informing the model about the task, did not
lead to performance improvements in large models with sufficient data.

• Specialized tokens for NaN encoding did not improve performance compared to replacing
NaNs with mean values (which are zero after preprocessing). Additionally, appending bi-
nary features to differentiate actual zeros from NaNs (indicating that the cell was replaced),
effectively doubling the number of features, also failed to improve performance.

• Architectures encoding cells as “tokens”, with vertical and horizontal attention, similar to
spatial and temporal attention in videos, proved more memory intensive. While equivari-
ance to feature order is desirable, processing tensors of size (B,N, f, d) – where B is batch
size, N is the number of rows, f the number of features, and d the embedding dimension –
uses much more memory. The simpler architecture with tensors of size (B,N, d) permits
a higher embedding dimension d.

B TRAINING AND INFERENCE DETAILS

In this section we provide some additional details on some important training decisions.

Preprocessing We chose to be very simple and general. All columns containing non-numerical
values are mapped to integers using scikit-learn’s (Pedregosa et al., 2011) LabelEncoder
function. The table is then standardized to 0 mean and unit variance, and outliers beyond 10 are
clipped.

After retrieval, we obtain a local context Xctx and their labels yctx. We make sure to standardize the
context before the forward pass of our model to avoid distribution shifts and also standardize yctx if
it is a regression target for the same reason.

Retrieval We use the faiss library8 for fast retrieval. All retrievals are done using the raw data
space after preprocessing, as in Thomas et al. (2024).

Missing Value Encoding We tried several strategies, including concatenating our features with a
mask indicating whether each value was originally a missing value or not, however we never saw
any performance gain from it. In the end, we simply zero out the missing values and let the model
learn to be robust to potentially inaccurate values in the input. Note that zeroing out is done post
normalization, meaning missing values are replaced with the mean.

Optimizer: We use the Schedule Free optimizer from Defazio et al. (2024) with
AdamW (Loshchilov & Hutter, 2019). We observed significant increase in performance and op-
timization speed compared to a cosine scheduler.

7 http://www.incompleteideas.net/IncIdeas/BitterLesson.html
8 https://github.com/facebookresearch/faiss
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Regularization By default, the training of the model can lead to gradient explosion. We have found
it critical to regularize the model. While using label smoothing is helpful, we found that increasing
the amount of weight decay was key to mitigate instabilities.

C PSEUDO-CODE ALGORITHMS

In this section, we show (semi-)pseudo-code blocks of components needed for training for our
model. Firstly, in Code Block 1, we show the PyTorch Dataloader component. In the ini-
tialization phase, we first process the downloaded data and features by filling in missing values with
the mean column values and create a faiss index for fast retrieval later on. Next. in each worker
within the getitem() function, we first sample a random dataset, then we sample a random query
within the dataset. After that, we mask out the target column and retrieve its approximate neigh-
bours. Then we process the features and targets by random sub-sampling and random partitioning.

Moreover, in Code Block 2, within each training step, we partition both the data X and targets y
into context and query points by sampling an integer uniformly from 10 to its total length (inclusive
of start point but exclusive of endpoint). We call this random evaluation position eval pos in the
code block. The points to the left of the evaluation position are then considered context (i.e., y ctx)
and the points to the right of the evaluation position are considered queries (i.e., y qy). Finally we
calculate the appropriate loss depending on the task and optimize the network.

Code Block 1: Pytorch Dataloader
1 from torch.utils.data import Dataset
2 import numpy as np
3 import random
4

5 class TrainingDataset(Dataset):
6 def __init__(self, dataset_ids):
7 self.datasets = []
8 for dataset_id in dataset_ids:
9 X <- download dataset using dataset_id

10 X <- process features of X (handle missing values, scale)
11 knn_index <- compute knn index using FAISS
12 self.dataset.append([X, knn_index])
13

14 # Random column subsample and shuffling
15 def create_random_columns(self, X):
16 N, F = X.shape
17 num_features_sampled = random.randint(F // 2, F)
18 random_features_indices = np.random.choice(F,

num_features_sampled, replace=False)
19 return X[:, random_features_indices]
20

21 # Generate a random classification or regression target for training
22 def generate_random_target(self, y, cls_threshold=10):
23 if len(np.unique(y)) > cls_threshold:
24 # if there are more than 10 unique values in the target, we

keep it as regression 70% of the time
25 if np.random.rand() > 0.3:
26 return y, "regression"
27 else:
28 # sample a random number of classes by binning and divide

into classes
29 num_class = np.random.randint(2, cls_threshold)
30 cls_boundary = np.random.choice(sorted(np.unique(y))

[1:-1], num_class-1, replace=False)
31 y = (y[:, None] > cls_boundary[None, :]).sum(1)
32 y <- label encode, shuffle y
33 return y, "classification"
34 else:
35 assert len(np.unique(y)) > 1
36 y <- label encode, shuffle y
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37 return y, "classification"
38

39 # Generate a sample for retrieval
40 def __getitem__(_):
41 # sample a random dataset
42 sample_id = np.random.choice(len(self.dataset), 1)[0]
43 X_sample, knn_index_sample = self.dataset[sample_id]
44 N, F = X_sample.shape
45

46 # sample a random query from the dataset
47 x_q = X_sample[random.randint(0, N-1)].copy()
48

49 # sample a random column to be the target
50 target_idx = random.randint(0, F-1)
51

52 # retrieve approximate neighbours using x_q with target_idx
masked

53 x_q[:, target_idx] = 0
54 X_nn <- find k neighbours using knn_index_sample with x_q as

query
55 y_nn = X_nn[:, target_idx]
56 X_nn = np.delete(X_nn, target_idx, axis=1)
57

58 # subsample and shuffle features
59 X_nn = self.create_random_columns(X_nn)
60

61 # generate random target and task
62 y_nn, task = self.generate_random_target(y_nn)
63

64 return X, y, task

Code Block 2: Training Loop
1

2 model = Transformer()
3 optimizer = schedulerfree.AdamWScheduleFree()
4

5 for epoch in range(num_epochs):
6 model.train()
7 for X, y, task in train_loader:
8 eval_pos = random.randint(10, len(y))
9 y_ctx, y_qy = y[:eval_pos], y[eval_pos:]

10 y_ctx = zero_pad(y_ctx, N_qy, dim=1)
11

12 output = model(torch.cat(X, y_ctx))
13

14 if task == "classification":
15 loss = cross_entropy_loss(output, y_qy)
16 elif task == "regression":
17 loss = mse_loss(ouput, y_qy)
18

19 opitmizer.zero_grad()
20 loss.backward()
21 optimizer.step()

D DETAILS ON THE RETRIEVAL

During training, it is not necessary to predict the outcome for only a single point, as the point is
not provided in advance. Instead, when multiple points belong to the same neighbourhood, a single
model call with shared context can perform prediction for all of them, optimizing both memory
and compute during training. Selecting a “local neighbourhood” of points and distributing them
between context and query achieves such an arrangement. Specifically, we begin with one point per
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dataset (B points in the batch), each with N neighbours. We obtain the input X by either padding or
dimensionality reduction, resulting in a shape of (B,N, Fmax). After constructing the random target
y of shape (B,N), we randomly split these into context and query sets along the row dimension N .

The goal is to evaluate the loss on B × Nqy points at once. If exact retrieval were performed, only
one prediction per neighbourhood would be possible. This method creates a context that is not only
local to each point but also shared across Nqy points. This approach was introduced in Thomas et al.
(2024), and more details can be found there. During inference, exact retrieval is required as the query
points are fixed. We illustrate the treatment of samples during training and retrieval in Figure 5.

Nq × Nctx

ycls
pred yreg

pred

Dtrain Deval

exact retrieval

…

Nq × 1

Model

CE MSE

M0
train

…

MB
train

…

Approx retrieval

Transform

Approx retrieval

Transform

B × N

B × N

Model

Figure 5: Contrasting the shared context and multiple datasets during training and instance specific
context for multiple points in one dataset at inference time. Details are explained in Appendix D.

E GLICKO2 RATINGS

Similar to the Elo score in Figure 3b, we plot Glicko2 ratings in Figure 6. The implications from
this figure are the same as the ones in Section 5.1.
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Figure 6: Glicko2 scores (Accuracy, R2) with error bars.

F SCALING

As some models can exhibit unstable training characterized by gradient explosion, which is espe-
cially true for larger models trained on little data, we filter out checkpoints with a training gradient

19



1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2025

norm above 0.9. We then report the performance, model size, and data size for all our models, pro-
vided they have been trained for at least 400 epochs, up to 512 epochs (the predefined maximum
epoch parameter for most models). We report several metrics in this section. Metrics averaging
classification and regression (in the same way our loss is defined) exhibit scaling laws with similar
scaling exponents. Because of the number of models and increasing computational cost, we reduce
in-context examples from 1024 to 512 to keep the experiment manageable.

For classification, cross-entropy saturates with larger models and datasets, suggesting the model
is close to the optimal loss for its size. In contrast, regression performance continues to improve,
especially with more data. We hypothesize this is because regression targets are less randomized
compared to classification, where class ordering and membership are shuffled, increasing the clas-
sification dataset’s effective size. As a result, saturating regression performance for a given model
size requires even larger datasets.
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(b) Raw points (no offset) for the average of cross
entropy and 1− correlation.

Figure 7: Comparison between the power-law fit and raw points.
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Figure 8: Comparison between the power-law fit and raw points.

20



1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2025

105 106 107 108

Model Parameters

1.4 × 10 1

1.6 × 10 1

1.8 × 10 1

2 × 10 1

2.2 × 10 1

2.4 × 10 1

2.6 × 10 1

Lo
ss

52M cells
141M cells
269M cells
598M cells
2B cells
Synthetic

Figure 9: Raw points for 1− accuracy with original y-axis.
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Figure 10: Raw points for 1− correlation with original y-axis.
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Figure 11: Raw points for 1−R2 with original y-axis.
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Figure 13: Cross entropy loss for all models sizes and data sizes vs. compute units.

G TRAINING DATASETS

Figure 14 provides an overview of the sizes and domains of the training datasets and Table 2 provides
a full list of the datasets.
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(a) Sizes of training datasets.

Human behaviour - 17

Financial/demographic - 15

Industrial/operational - 11

Medical/human sensor - 11

Biology/ecology - 11

Deterministic and simulated - 9

Vision/audio/text features - 7

Physics/astronomy - 6

Computing - 4

Other science - 4

Other or not provided - 28

(b) Breakdown of training dataset domains.

Figure 14: Breakdown of training datasets in terms of sizes and domains.

Table 2: Details for all training datasets: OpenML Dataset ID, name, dimensions (rows, features,
cells), percent of missing cells, target type (classification/regression), domain.

OpenML
Dataset ID Name # rows # feat. # cells % miss. Target

type Domain

24 mushroom 8124 22 187K 1.4 Class. Biology/ecology
30 page-blocks 5473 10 60K 0.0 Class. Vision/audio/text features
184 kropt 28056 6 196K 0.0 Class. Deterministic and simulated
273 IMDB.drama 120919 1001 121M 0.0 Class. Other or not provided
312 scene 2407 299 722K 0.0 Class. Vision/audio/text features
375 JapaneseVowels 9961 14 149K 0.0 Class. Vision/audio/text features
382 ipums la 97-small 7019 60 428K 11.4 Class. Financial/demographic
389 fbis.wc 2463 2000 4.9M 0.0 Class. Vision/audio/text features
396 la1s.wc 3204 13195 42M 0.0 Class. Vision/audio/text features
802 pbcseq 1945 18 37K 3.2 Class. Medical/human sensor
816 puma8NH 8192 8 74K 0.0 Class. Deterministic and simulated
821 house 16H 22784 16 387K 0.0 Class. Financial/demographic
843 house 8L 22784 8 205K 0.0 Class. Financial/demographic
846 elevators 16599 18 315K 0.0 Class. Other or not provided
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OpenML
Dataset ID Name # rows # feat. # cells % miss. Target

type Domain

871 pollen 3848 5 23K 0.0 Class. Biology/ecology
930 colleges usnews 1302 33 44K 18.2 Class. Other or not provided
966 analcatdata halloffame 1340 16 23K 0.1 Class. Other or not provided
981 kdd internet usage 10108 68 697K 0.4 Class. Financial/demographic
1002 ipums la 98-small 7485 55 419K 7.9 Class. Financial/demographic
1018 ipums la 99-small 8844 56 504K 7.0 Class. Financial/demographic
1036 sylva agnostic 14395 216 3.1M 0.0 Class. Biology/ecology
1037 ada prior 4562 14 68K 0.1 Class. Financial/demographic
1043 ada agnostic 4562 48 224K 0.0 Class. Financial/demographic
1044 eye movements 10936 27 306K 0.0 Class. Medical/human sensor
1111 KDDCup09 appetency 50000 230 12M 61.9 Class. Human behaviour
1112 KDDCup09 churn 50000 230 12M 61.9 Class. Industrial/operational
1116 musk 6598 167 1.1M 0.0 Class. Other science
1118 chess 28056 6 196K 0.0 Class. Deterministic and simulated
1120 MagicTelescope 19020 10 209K 0.0 Class. Physics/astronomy
1130 OVA Lung 1545 10935 17M 0.0 Class. Biology/ecology
1142 OVA Endometrium 1545 10935 17M 0.0 Class. Biology/ecology
1169 airlines 539383 7 4.3M 0.0 Class. Industrial/operational
1444 PizzaCutter3 1043 37 40K 0.0 Class. Other or not provided
1453 PieChart3 1077 37 41K 0.0 Class. Other or not provided
1457 amazon-commerce-reviews 1500 10000 15M 0.0 Class. Vision/audio/text features
1459 artificial-characters 10218 7 82K 0.0 Class. Deterministic and simulated
1466 cardiotocography 2126 35 77K 0.0 Class. Medical/human sensor
1471 eeg-eye-state 14980 14 225K 0.0 Class. Medical/human sensor
1476 gas-drift 13910 128 1.8M 0.0 Class. Other science

1477 gas-drift-different-
concentrations 13910 129 1.8M 0.0 Class. Other science

1479 hill-valley 1212 100 122K 0.0 Class. Deterministic and simulated
1481 kr-vs-k 28056 6 196K 0.0 Class. Deterministic and simulated
1483 ldpa 164860 7 1.3M 0.0 Class. Medical/human sensor
1493 one-hundred-plants-texture 1599 64 104K 0.0 Class. Biology/ecology
1503 spoken-arabic-digit 263256 14 3.9M 0.0 Class. Vision/audio/text features
1507 twonorm 7400 20 155K 0.0 Class. Deterministic and simulated
1509 walking-activity 149332 4 747K 0.0 Class. Medical/human sensor
1567 poker-hand 1025009 10 11M 0.0 Class. Deterministic and simulated
1568 nursery 12958 8 117K 0.0 Class. Financial/demographic
1596 covertype 581012 54 32M 0.0 Class. Biology/ecology
3050 QSAR-TID-11 5742 1024 5.9M 0.0 Reg. Medical/human sensor
3277 QSAR-TID-10980 5766 1024 5.9M 0.0 Reg. Medical/human sensor
4135 Amazon employee access 32769 9 328K 0.0 Class. Industrial/operational
4535 Census-Income 299285 42 13M 0.0 None Financial/demographic
4549 Buzzinsocialmedia Twitter 583250 77 45M 0.0 Reg. Human behaviour
23380 cjs 2796 33 95K 73.8 Class. Biology/ecology
23512 higgs 98050 28 2.8M 0.0 Class. Physics/astronomy
40536 SpeedDating 8378 120 1.0M 1.8 Class. Human behaviour

40646 GAMETES Epistasis 2-Way
20atts 0.1H EDM-1 1 1600 20 34K 0.0 Class. Biology/ecology

40679 magic 19020 10 209K 0.0 Class. Physics/astronomy
40680 mofn-3-7-10 1324 10 15K 0.0 Class. Other or not provided
40685 shuttle 58000 9 580K 0.0 Class. Physics/astronomy
40706 parity5 plus 5 1124 10 12K 0.0 Class. Deterministic and simulated
40733 yeast 1269 8 11K 0.0 Class. Biology/ecology
40900 Satellite 5100 36 189K 0.0 Class. Physics/astronomy
41138 APSFailure 76000 170 13M 8.3 Class. Industrial/operational
41142 christine 5418 1636 8.9M 0.0 Class. Other or not provided
41143 jasmine 2984 144 433K 0.0 Class. Other or not provided
41144 madeline 3140 259 816K 0.0 Class. Other or not provided
41145 philippine 5832 308 1.8M 0.0 Class. Other or not provided
41146 sylvine 5124 20 108K 0.0 Class. Other or not provided
41147 albert 425240 78 34M 8.2 Class. Other or not provided
41150 MiniBooNE 130064 50 6.6M 0.0 Class. Physics/astronomy
41156 ada 4147 48 203K 0.0 Class. Other or not provided
41159 guillermo 20000 4296 86M 0.0 Class. Other or not provided
41161 riccardo 20000 4296 86M 0.0 Class. Other or not provided
41162 kick 72983 32 2.4M 6.4 Class. Industrial/operational
41163 dilbert 10000 2000 20M 0.0 Class. Other or not provided
41164 fabert 8237 800 6.6M 0.0 Class. Other or not provided
41165 robert 10000 7200 72M 0.0 Class. Other or not provided
41166 volkert 58310 180 11M 0.0 Class. Other or not provided
41167 dionis 416188 60 25M 0.0 Class. Other or not provided
41168 jannis 83733 54 4.6M 0.0 Class. Other or not provided
41169 helena 65196 27 1.8M 0.0 Class. Other or not provided
41434 Click prediction small 39948 11 479K 0.0 Class. Human behaviour
41540 black friday 166821 9 1.7M 0.0 Reg. Human behaviour

41980 SAT11-HAND-runtime-
Reg. 4440 116 519K 5.3 Reg. Computing

42563 house prices nominal 1460 79 117K 6.0 Reg. Financial/demographic
42572 Santander transaction value 4459 4991 22M 0.0 Reg. Human behaviour
42705 Yolanda 400000 100 40M 0.0 Reg. Other or not provided
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OpenML
Dataset ID Name # rows # feat. # cells % miss. Target

type Domain

42724 OnlineNewsPopularity 39644 59 2.4M 0.0 Reg. Human behaviour
42727 colleges 7063 44 318K 33.5 Reg. Other or not provided
42728 Airlines DepDelay 10M 10000000 9 100M 0.0 Reg. Industrial/operational
42730 us crime 1994 126 253K 15.6 Reg. Financial/demographic
42732 sf-police-incidents 2215023 8 20M 0.0 Class. Human behaviour
42734 okcupid-stem 50789 19 1.0M 16.0 Class. Human behaviour
42742 porto-seguro 595212 57 35M 2.5 Class. Human behaviour
42746 KDDCup99 4898431 41 206M 0.0 Class. Computing
43071 MIP-2016-Reg. 1090 144 158K 0.0 Reg. Computing
43072 KDDCup09-Upselling 50000 14891 745M 2.6 Class. Human behaviour
44055 analcatdata supreme 4052 7 32K 0.0 Reg. Other or not provided
44056 visualizing soil 8641 4 43K 0.0 Reg. Biology/ecology

44061 Mercedes Benz Greener
Manufacturing 4209 359 1.5M 0.0 Reg. Industrial/operational

44063 Bike Sharing Demand 17379 11 209K 0.0 Reg. Human behaviour
44065 nyc-taxi-green-dec-2016 581835 16 9.9M 0.0 Reg. Human behaviour
44068 particulate-matter-ukair-2017 394299 6 2.8M 0.0 Reg. Other or not provided

44069 SGEMM GPU kernel
performance 241600 9 2.4M 0.0 Reg. Computing

44089 credit 16714 10 184K 0.0 Class. Financial/demographic
44122 pol 10082 26 272K 0.0 Class. Industrial/operational
44136 wine quality 6497 11 78K 0.0 Reg. Human behaviour
44137 Ailerons 13750 33 468K 0.0 Reg. Other or not provided
44145 sulfur 10081 6 71K 0.0 Reg. Other science
45020 default-of-credit-card-clients 13272 20 279K 0.0 Class. Financial/demographic
45022 Diabetes130US 71090 7 569K 0.0 Class. Medical/human sensor
45026 heloc 10000 22 230K 0.0 Class. Financial/demographic
45032 yprop 4 1 8885 42 382K 0.0 Reg. Medical/human sensor
45038 road-safety 111762 32 3.7M 0.0 Class. Human behaviour
45039 compas-two-years 4966 11 60K 0.0 Class. Human behaviour
45041 topo 2 1 8885 255 2.3M 0.0 Reg. Medical/human sensor
45043 seattlecrime6 52031 4 260K 0.0 Reg. Human behaviour
45045 delays zurich transport 5465575 11 66M 0.0 Reg. Industrial/operational
45046 Allstate Claims Severity 188318 124 24M 0.0 Reg. Industrial/operational
45047 Airlines DepDelay 1M 1000000 5 6.0M 0.0 Reg. Industrial/operational

H MODEL ARCHITECTURE AND HYPERPARAMETERS

H.1 ARCHITECTURE DETAILS

The model architecture comprises multiple transformer encoder layers, an input encoder, and task-
specific output heads. The key architectural parameters are summarized in Tables 4 and 5.

Table 4: Architectural Parameters

Parameter Value
Number of Attention Heads 4
Feedforward Network Factor 2
Maximum Number of Classes 10
Maximum Number of Features 100
Normalization First Yes
Dropout Rate 0.0

Table 5: Number of Layers and Transformer Dimensions

Number of Layers Transformer Dimension
3 32
4 64
5 96
6 256
10 384
12 512
16 768
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Main Differences with TabPFN’s Architecture: Our backbone is built on the TabPFN one. The
most salient changes are: 1) using pre-norm transformer layers, 2) using an RMS normalization layer
for the input. TabPFN had to normalize by the number of original features before padding, while
this layer eliminates the need, and 3) the two output heads. While we have tried many architectural
changes, the simplest choices ended up being the most scalable (see Appendix A). TabPFN also uses
12 layers and d = 512 which is the second-largest size we tried.

H.2 COMPONENT OVERVIEW

• Input Encoder: Projects input features to the transformer input dimension.
• Transformer Encoder: Consists of multiple layers with specified attention heads and feed-

forward dimensions based on the number of layers.
• Output Heads: Separate heads for classification and regression tasks.

H.3 TRAINING PROCEDURE

• Schedule-free optimizer (Defazio et al., 2024) with a learning rate of 5× 10−4 and weight
decay of 5× 10−2 is used for training.

• Batch size is 256.
• Model parameters are in brain float 16-bit (bfloat16) format.
• Label smoothing is applied with a factor of 0.1.
• Total length of query and context during training is 1024.

I ADDITIONAL EXPERIMENTS

I.1 DETAILS OF PFN++

PFN++ In addition to our main model TabDPT, we also introduce PFN++, which is an improved
version of the original TabPFN (Hollmann et al., 2023). PFN++ uses the same prior generator
as Hollmann et al. (2023) but it shares the same model architecture and training procedure as Tab-
DPT, detailed in Appendix H.

Moreover, unlike TabPFN, PFN++ can also perform regression. In addition to TabPFN’s classifica-
tion targets, we create synthetic regression targets for training PFN++ during the prior fitting stage.
In the TabPFN implementation, targets are first sampled from a Structural Causal Model (SCM), then
they are binned and transformed into classification targets. We slightly modify this method for re-
gression purposes by taking the raw outputs from the SCM and normalizing them using the Z-score.

TabPFN We use the officially released checkpoint of TabPFN9 for our experiments. In Hollmann
et al. (2023), the TabPFN model is optionally ensembled by randomly shuffling features and classes.
We omit feature or class ensembling in all of our experiments across all models to ensure fair
comparisons.

PFN++ vs. TabPFN We compare the performance of PFN++ and the original TabPFN in Table 6.
We use the same 28M parameter model for both methods. The experimental results are obtained us-
ing the 30 datasets from CC18 used by Hollmann et al. (2023). We experiment with 2 different folds
defined by McElfresh et al. (2023). The final results reported for AUC and Accuracy are averaged
over 2 folds and 30 datasets. The results show that PFN++ outperforms TabPFN on both metrics.

Algorithm AUC Accuracy

TabPFN 0.8939 0.8262
PFN++ 0.9063 0.8421

Table 6: Average AUC and accuracy for TabPFN and PFN++ on 30 selected datasets used by Holl-
mann et al. (2023). PFN++ outperforms TabPFN on both metrics.

9 https://github.com/automl/TabPFN/blob/main/tabpfn/models_diff/prior_
diff_real_checkpoint_n_0_epoch_42.cpkt
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I.2 ADDITIONAL RESULTS ON CC18 AND CTR23

We report here the results for the mean estimator using bootstrapping. Note that the confidence
intervals are larger as this estimator is less robust to outliers. This is notably the case as some small
datasets (such as forest-fire) have splits of vastly different complexity.

Algorithm CC18 CTR23
AUC Accuracy Correlation R2

TabDPT 0.929 [0.927-0.930] 0.873 [0.872-0.875] 0.833 [0.823-0.842] 0.729 [0.712-0.745]

TabR 0.925 [0.922-0.928] 0.874 [0.871-0.877] 0.828 [0.814-0.842] 0.714 [0.692-0.737]

XGBoost 0.925 [0.923-0.926] 0.868 [0.867-0.870] 0.827 [0.818-0.837] 0.711 [0.698-0.724]

LightGBM 0.922 [0.920-0.923] 0.863 [0.862-0.865] 0.825 [0.816-0.834] 0.713 [0.697-0.729]

CatBoost 0.924 [0.922-0.925] 0.865 [0.863-0.866] 0.822 [0.808-0.836] 0.703 [0.682-0.723]

PFN++ (kNN) 0.927 [0.924-0.931] 0.870 [0.868-0.873] 0.811 [0.799-0.822] 0.699 [0.686-0.713]

MLP-PLR 0.912 [0.905-0.919] 0.869 [0.865-0.872] 0.829 [0.821-0.838] 0.716 [0.699-0.732]

TabPFN (kNN) 0.918 [0.915-0.921] 0.850 [0.847-0.853] N/A N/A
TabPFN 0.898 [0.895-0.901] 0.812 [0.810-0.814] N/A N/A
MLP 0.866 [0.864-0.868] 0.808 [0.806-0.810] N/A N/A
kNN 0.843 [0.839-0.847] 0.821 [0.818-0.825] 0.639 [0.626-0.652] 0.462 [0.445-0.480]

Table 7: Results on CC18 and CTR23. We report four metrics and their 95% confidence intervals.
The best algorithm is bolded for each metric. Furthermore, we underline an algorithm’s score if its
confidence interval contains the bolded score. TabDPT performs strongly across all metrics on both
classification and regression, although regression has much higher uncertainty.
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Figure 15: Comparison for Number of Rows. For this figure and this figure only, the buckets are
quantiles of the data. We can observe that TabDPT’s relative performance is slightly lower for larger
datasets from CC18.
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Figure 16: Comparison for Number of Features.
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Figure 17: Comparison for Fraction of Categorical Features.
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Figure 18: Comparison for Fraction of Missing Values. Figure is missing for CTR23 as there are
too few datasets with missing values to construct statistically meaningful bins.
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I.3 FEW-SHOT LEARNING RESULTS

We furthermore assess the performance of TabDPT on a unsupervised few shot learning setting. We
consider the protocol from STUNT (Nam et al., 2023) on their 10-shot experiment and use the results
for STUNT (Nam et al., 2023), CACTUs (Hsu et al., 2018), VIME+LR and ICT available in their
paper. Algorithms are evaluated on seven tasks from CC18 and evaluated on accuracy. 10 labelled
examples per class are available, the rest of the training is considered unlabelled. TabDPT only using
the 10-shots per class performs similarly to the kNN baseline. While it is a non-trivial baseline, it is
not competitive with modern few-shot methods such as STUNT. However STUNT also uses up to
thousands of unlabelled examples for pretraining on each dataset. Note that TabDPT is furthermore
rarely trained on small contexts (uniformly sampled between 10 and 1024 during training), so we
use a simple method to make use of the unlabelled data and use larger context. We simply predict
the class probabilities for the unlabelled training set using the 10 shots as context. Then we take the
top-1000 points where our certainty is highest and use them and their predicted labels and the 10
shots as context. This results in TabDPT (semi), a semi-supervised technique using pseudo-labels.
This method outperforms STUNT on 5 / 7 datasets and on the average accuracy (averaged over 50
seeds). Furthermore, it requires only forward passes while STUNT requires pretraining for each
task.

Method cmc karhunen optdigit diabetes semeion pixel dna Avg
TabDPT (semi) 43.46 94.17 90.20 69.00 80.23 93.93 73.99 77.85
STUNT 42.01 86.95 89.91 72.82 74.74 89.90 80.96 76.76
CACTUs 42.14 85.48 87.92 70.75 68.22 87.21 84.40 75.16
VIME + LR 37.92 86.63 89.63 66.56 77.66 88.71 74.73 74.55
TabDPT 43.80 90.16 88.40 68.88 74.02 88.04 65.61 74.13
kNN 41.07 85.63 87.44 71.32 74.64 87.52 71.15 74.11
ICT 38.00 88.25 90.84 67.63 74.67 89.13 69.55 74.01

Table 8: Accuracy for a 10-shot classification methods across 7 CC18 datasets. The remainder of
the training set is accessible but considered unlabelled. While unsupervised meta-learning methods
STUNT and CACTUs perform well, TabDPT (semi) achieves higher accuracy on this suite.

I.4 LARGE DATASETS AND FINE-TUNING RESULTS

On very large datasets, TabDPT’s performance can decrease. We hypothesize this is due to the
limited context length and the retrieval procedure being less effective on very large sample sizes to
build a good ”local summary” of the data TabDPT can use. We show nevertheless that finetuning the
model can alleviate some of this performance loss on several large datasets taken from Gorishniy
et al. (2021).

Model CA ↓ AD ↑ AL ↑ EP ↑ YE ↓ YA ↓ MI ↓

TabNet 0.510 0.850 0.954 0.890 8.909 0.823 0.751
SNN 0.493 0.854 0.954 0.897 8.895 0.761 0.751
AutoInt 0.474 0.859 0.945 0.895 8.882 0.768 0.750
GrowNet 0.487 0.857 NaN 0.897 8.827 0.765 0.751
MLP 0.499 0.852 0.954 0.898 8.853 0.757 0.747
DCN2 0.484 0.853 0.955 0.898 8.890 0.757 0.749
NODE 0.464 0.858 0.918 0.896 8.784 0.753 0.745
ResNet 0.486 0.854 0.963 0.897 8.846 0.757 0.748
FT-T 0.459 0.859 0.960 0.898 8.855 0.756 0.746
TabDPT 0.451 0.858 0.940 0.826 8.908 0.771 0.757
TabDPT (fine-tune) 0.418 0.862 0.949 0.826 8.73 0.766 0.759

Table 9: Accuracy and RMSE for several large datasets from Gorishniy et al. (2021) for different
neural network-based baselines. All results except for TabDPT and its fune-tuned version are taken
from Gorishniy et al. (2021).
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