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Abstract

Iterative non-autoregressive (NAR) models001
share a spirit of mixed autoregressive (AR)002
and fully NAR models, seeking a balance be-003
tween generation quality and inference effi-004
ciency. These models have recently demon-005
strated impressive performance in varied gener-006
ation tasks, surpassing the autoregressive (AR)007
Transformer. However, they also face several008
challenges that impede further development. In009
this work, we target building more efficient and010
competitive iterative NAR models by conduct-011
ing systematic studies and analytical experi-012
ments. Firstly, we conduct an oracle experi-013
ment and introduce two newly proposed met-014
rics to identify the potential problems existing015
in current refinement processes, and look back016
on the various iterative NAR models to find the017
key factors for realizing our purpose. Subse-018
quently, based on the analyses of the limitations019
of previous inference algorithms, we propose020
a simple yet effective strategy to conduct effi-021
cient refinements without performance declines.022
Experiments on five widely used datasets show023
that our final models significantly outperform024
all previous NAR models and AR Transformer,025
even with fewer decoding steps on two datasets.026

1 Introduction027

Transformer-based models (Vaswani et al., 2017)028

have achieved promising performance in various029

tasks, particularly after the emergence and progress030

of large language models recently (Touvron et al.,031

2023a; OpenAI, 2023; Touvron et al., 2023b). How-032

ever, these models adopt an autoregressive (AR)033

decoding paradigm where tokens are generated one034

by one in a strict left-to-right order. Consequently,035

they suffer from low inference efficiency, which036

even worsens as model parameters increase (Zhao037

et al., 2023). Non-autoregressive (NAR) models038

provide an alternative text generation paradigm (Gu039

et al., 2018). Unlike AR models, NAR models can040

predict all the target tokens in parallel, significantly041

reducing inference latency. However, this paral- 042

lel decoding paradigm also leads to performance 043

degradation due to independent predictions lack- 044

ing target side dependency (Qian et al., 2021; Xiao 045

et al., 2022; Huang et al., 2023). 046

Researchers have proposed iterative NAR mod- 047

els to balance generation quality and inference ef- 048

ficiency (Lee et al., 2018; Ghazvininejad et al., 049

2019; Chan et al., 2020). These models utilize 050

multiple decoding steps to generate the final re- 051

sults and retain the non-autoregressive decoding 052

paradigm in each step. A partial target sequence 053

is proposed in each decoding step and then refined 054

in the subsequent steps. The performance of com- 055

petitive iterative NAR models achieves significant 056

improvements through iterative refinements, sur- 057

passing their AR counterparts (Huang et al., 2022b; 058

Xiao et al., 2023). However, these models have 059

also revealed some flaws in the corresponding re- 060

search, including failure under specific model struc- 061

ture (Kasai et al., 2020b), declines in inference 062

speedup (Helcl et al., 2022) and the anisotropic 063

problem (Guo et al., 2023), hindering the further 064

development of iterative NAR models. 065

Therefore, how to build more efficient and com- 066

petitive iterative NAR models deserves further ex- 067

ploration. In this paper, we aim to address this 068

question by conducting systematic studies and ana- 069

lytical experiments: 070

• We conduct in-depth explorations of current 071

iterative NAR models (§3). Specifically, we 072

verify and further quantitatively analyze the 073

potential problems existing in current refine- 074

ment processes through an oracle experiment 075

(§3.1) and two newly proposed metrics (§3.2). 076

Besides, we conduct analytical experiments 077

based on various iterative NAR models and 078

discover that different enhanced methods play 079

different roles in building efficient and com- 080

petitive models (§3.3). Then, we attempt to 081
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realize our purpose by combining previous082

superior methods, but notice performance de-083

clines with previous efficient strategies (§3.4).084

• We trial better strategies for iterative NAR085

models to become efficient while maintain-086

ing competitive performances (§4). We first087

analyze the limitations of current refinement088

strategies (§4.1) and then propose a simple089

yet effective inference algorithm for iterative090

NAR models (§4.2). Combining it with pre-091

vious competitive strategies can achieve supe-092

rior performance with fewer decoding steps.093

Experiments on 5 widely used datasets demon-094

strate the effectiveness of our models. We yield095

significant performance improvements (around 0.8096

BLEU score on average) over the previous best097

iterative NAR models and realize completely sur-098

passing AR Transformer (over 1 BLEU score on av-099

erage). Besides, our models only need 4 decoding100

steps to set new SOTA performance on WMT’14101

DE→EN and WMT’16 EN→RO datasets com-102

pared with previous ones with 10 decoding steps.103

2 Preliminaries104

Non-autoregressive Language Model Up to105

now, most generative models are autoregressive106

(AR) models which generate the target sequence107

one by one from a left-to-right order during infer-108

ence. They adopt AR factorization during train-109

ing to maximize the following likelihood: LAR =110 ∑T
t=1 logP (yt|y<t, X; θ), where y<t denotes the111

previous generated target tokens, T denotes the112

target length, X is the source sentence, and θ de-113

notes the model parameters. Unlike these AR mod-114

els, non-autoregressive (NAR) language models115

generate the target sequence in parallel during in-116

ference, which can be further divided into fully117

NAR models and iterative NAR models accord-118

ing to their decoding steps. Fully NAR models119

only adopt one step to generate the target sequence,120

and adopt fully conditional independent factor-121

ization during training to maximize the follow-122

ing likelihood: LF-NAR =
∑T

t=1 logP (yt|X; θ).123

Iterative NAR models adopt multiple decoding124

steps to generate the target sequence and keep the125

NAR property in each decoding step. They aim to126

maximize the following likelihood during training:127

LI-NAR =
∑

t∈Ytgt
logP (yt|Ŷ , X; θ), where Ytgt128

denotes the prediction target tokens of the current129

decoding step and the Ŷ denotes the generation130

result of the previous decoding step. Iterative NAR 131

models give the chance to refine the generated re- 132

sult, thus significantly improving the performance 133

compared to fully NAR models. 134

Conditional Masked Language Model Con- 135

ditional Masked Language Model (CMLM) 136

is a typical and widely-used iterative NAR 137

model (Ghazvininejad et al., 2019), which adopts 138

a Transformer-based encoder-decoder architecture 139

with some specific modifications in the decoder 140

blocks to support NAR generation manner. During 141

training, CMLM uses masked language modeling 142

tasks like BERT for training. Specifically, given 143

a training pair (X,Y ), CMLM first selects par- 144

tial tokens in Y to be masked, denoted as Ymask, 145

while the unmasked tokens as Yobs. CMLM learns 146

to predict the masked tokens Ymask, and to maxi- 147

mize: LCMLM =
∑

yt∈Ymask
logP (yt|Yobs, X; θ), 148

where θ denotes the trainable parameters. Besides, 149

CMLM also adopts an auxiliary task to predict 150

the target length. During inference, CMLM uti- 151

lizes multiple decoding steps to generate an entire 152

sequence in parallel via a specially designed Mask- 153

Predict algorithm. Given the source sentence X 154

and the total T decoding steps, CMLM first pre- 155

dicts the target length L. Then, it sends the en- 156

tire masked target sequence (i.e., L [MASK] tokens 157

since we have no target tokens in the first iteration) 158

into the decoder and predicts them. After each 159

decoding step, the model will choose a specific 160

number of tokens to mask again with the relatively 161

lowest prediction probability from the target se- 162

quence. These newly masked tokens Ymask will be 163

re-predicted in the next step. In an intermediate tth 164

step, the number of the newly masked tokens n can 165

be calculated as n = T−t
T ∗ L. 166

Follow-up Methods of CMLM Based on 167

CMLM, researchers have proposed many follow- 168

up enhanced methods from different perspectives to 169

improve the training and inference process, e.g., us- 170

ing the better masking methods (Guo et al., 2020; 171

Xiao et al., 2023) or enhanced modeling mecha- 172

nism (Kasai et al., 2020a; Cheng and Zhang, 2022; 173

Chen et al., 2024) to replace the traditional uni- 174

form masking training strategy, utilizing an ad- 175

ditional AR decoder to enhance the NAR mod- 176

eling during training (Hao et al., 2021; Liang et al., 177

2022), adopting the Locater module to determine 178

the newly masked tokens during inference (Geng 179

et al., 2021), introducing a self-correction mech- 180

anism to enhance the traditional Mask-Predict al- 181
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gorithm (Ghazvininejad et al., 2020; Huang et al.,182

2022b), and etc. We include more details about183

these variants in the Appendix A due to the length184

limitation. In this work, we conduct a comprehen-185

sive analysis of the traditional CMLM and these186

follow-up methods, targeting building more effi-187

cient and competitive iterative NAR models.188

3 In-depth Explorations of Current189

Iterative NAR Models190

In this section, we conduct in-depth explorations191

of current iterative NAR models. Specifically, we192

introduce several sub-problems and make detailed193

analyses. We aim to find the key factors for build-194

ing efficient and competitive iterative NAR models.195

Problems and Explorations. Firstly, previous196

works always focus on the final generated output197

after pre-defined fixed decoding steps to evaluate it-198

erative NAR models, but overlook the fine-grained199

analysis of intermediate decoding steps throughout200

the refinement process. Consequently, some poten-201

tial problems (e.g., useless and negative decoding202

steps) during the refinement process can not be203

reflected based on the current evaluation process.204

Naturally, we wonder: how well do current refine-205

ment strategies perform for iterative NAR models206

(§3.1). We compare the performance achieved with207

the current refinement algorithm and that under an208

ideal setting. Furthermore, to quantitatively ana-209

lyze the potential problems mentioned above, we210

introduce two metrics (DRR and ROR) to evaluate211

the stability of each decoding step and the relia-212

bility of the whole refinement process. We aim213

to answer how to better evaluate the refinement214

process of different iterative NAR models (§3.2).215

Based on our proposed two metrics, we compare216

different iterative NAR models under a consistent217

re-implementation. We aim to find what are the218

key components for iterative NAR models to per-219

form better (§3.3). Finally, we conduct extended220

experiments to answer can better performance be221

achieved by combining superior methods (§3.4),222

and make a summary (§3.5).223

Experimental Settings. We adopt the vanilla224

CMLM and several typical variants which con-225

tain different improving strategies from differ-226

ent respects as mentioned in Section 2 for ex-227

ploration. We summarize them as different cate-228

gories: adopting enhanced training skills (JM-NAT,229

AMOM, Multitask-NAT), using adaptive inference230

algorithms (Disco, Rewrite-NAT), and introduc- 231

ing self-correction mechanism (SMART, CORR, 232

CMLMC). To make more consistent comparisons, 233

we re-implement all these models based on the 234

same hardware and training hyper-parameters. For 235

the evaluation dataset, we select the IWSLT’14 236

DE→EN dataset containing about 170k training 237

sentence pairs, 7k valid pairs, and 7k test pairs. We 238

train each model on the training set and then eval- 239

uate them on the test set. Following the previous 240

work (Kasai et al., 2020a), we apply sequence-level 241

knowledge distillation (Kim and Rush, 2016) for all 242

backbone models. All experiments use the Fairseq 243

library (Ott et al., 2019) with GTX 3090 GPU cards. 244

We adopt the same training hyper-parameters fol- 245

lowing CMLM realization in Fairseq. During in- 246

ference, we average the 5 best checkpoints chosen 247

by validation BLEU as our final model. Finally, 248

we evaluate the generation quality with BLEU 249

score (Papineni et al., 2002). Besides, to eliminate 250

the effects of randomness, we follow the previous 251

works to use statistical significance tests (Koehn, 252

2004) to detect if the difference in BLEU score 253

between the traditional CMLM and other enhanced 254

iterative NAR models is significant. 255

3.1 How Well do Current Refinement Strategies 256

Perform for Iterative NAR Models? 257

Exploration Process. Firstly, we design an or- 258

acle experiment with ideal settings in which we 259

can select the best-generated output from different 260

decoding steps for each testing instance. Specifi- 261

cally, we adopt 10 decoding steps during inference 262

following the common practice. Then, rather than 263

adopting the generated output of the last decoding 264

step for each test instance, we select the one with 265

the highest evaluation score (e.g., sentence BLEU) 266

as the final generated result. This setting can elim- 267

inate the impacts of the above-mentioned poten- 268

tial problems (e.g., useless and negative decoding 269

steps) in the refinement process. Finally, we com- 270

pare the results of this oracle experiment with those 271

achieved from the original settings. In this exper- 272

iment, we adopt two current main-stream models 273

with different refinement strategies: the CMLM 274

with the Mask-Predict algorithm and CORR with 275

the self-correction algorithm. 276

Main Findings. Results of the oracle experiment 277

and with original settings are shown in Table 1 278

(Choose Best v.s. Original). We can find: (1) There 279

exists much space for the improvements of current 280
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refinement methods, and the performance through281

best choice outperforms that from the last decoding282

step over 2.5 BLEU score. (2) More superior re-283

sults appear during the CORR refinement process,284

which indicates that the self-correction algorithm285

can bring some benefits. Besides, we should rec-286

ognize that we can not realize the ideal settings287

of the above oracle experiment since there is no288

ground truth during our inference process. How-289

ever, we can still verify that some problems exist290

in the current refinement process. It also motivates291

us to explore better refinement strategies in which292

we can effectively reduce or even avoid useless and293

negative refinement decoding steps.294

Model Original Choose Best
CMLM 33.55 36.14
CORR 33.76 36.45

Table 1: BLEU score of the oracle experiment (Choose
Best) and with original settings (Original).

3.2 How to Better Evaluate the Refinement295

Process of Different Iterative NAR Models?296

As the above exploration shows, the potential prob-297

lems in the refinement process (e.g., useless and298

negative decoding steps) are serious in the current299

iterative NAR models. However, the current evalu-300

ation process, where we adopt the generated output301

of the last decoding step, can not directly reflect302

these potential problems. Therefore, we introduce303

two metrics, Decline Risks of Refinements (DRR)304

and Ratio of Over-Refinements (ROR), to respec-305

tively measure the extent of these potential prob-306

lems and evaluate the stability and reliability of the307

refinement process.308

Decline Risks of Refinements. Decline Risks of309

Refinements (DRR) evaluates the stability of the310

refinement process of iterative NAR models. It311

measures the performance decline rate after one312

specific decoding step, i.e., the extent of the neg-313

ative decoding step. Specifically, given a test set314

with N examples, a fixed decoding step T , we com-315

pute the ratio of each example during the whole316

refinement process where the performance declines317

compared with the previous iteration, formatted as:318

DRR =
1

T − 1

T−1∑
t=1

|Scoreti > Scoret+1
i |

N
, (1)319

where Scoreti denotes the performance of sample i 320

in the tth step. 321

Ratio of Over-Refinements. Ratio of Over- 322

Refinements (ROR) evaluates the reliability of the 323

final generated output in iteration T . It measures 324

the failure rate of the output from the last decoding 325

step to be the best, i.e., the extent of the useless de- 326

coding steps. Specifically, given a test set with N 327

examples, a fixed decoding step T , we compute the 328

ratio of each example whose best performance is 329

achieved in the intermediate steps of the refinement 330

process, formatted as: 331

ROR =
1

T − 1

T−1∑
t=1

|Scoreti > ScoreTi |
N

, (2) 332

where Scoreti denotes the performance of sample i 333

in the tth step, ScoreTi denotes the performance of 334

sample i in the final iteration T . 335

3.3 What are the Key Components for Iterative 336

NAR Models to Perform Better? 337

Exploration Process. We look for the key com- 338

ponents for two aspects, i.e., efficient and com- 339

petitive. The former can be reflected in the stabil- 340

ity and reliability of the refinement process with 341

our proposed metrics, and the latter can be re- 342

flected in the final performance. We evaluate the 343

related enhanced CMLM methods based on our 344

re-implementations. For the models with adaptive 345

inference algorithms (Disco and RewriteNAT), in 346

Equation 1 and Equation 2, we set T as the adap- 347

tive decoding step of each sentence pair during 348

inference, and 10 for other methods following the 349

previous works. Besides, for the models that sup- 350

port two inference algorithms (e.g., CMLMC can 351

omit the self-correction process and change to the 352

original Mask-Predict algorithm), we both report 353

the results with the Mask-Predict algorithm and the 354

corresponding enhanced inference strategy. 355

Main Findings. The results are presented in Ta- 356

ble 2, we find that: (1) DRR and ROR are relatively 357

lower while decoding with adaptive inference al- 358

gorithms. These models aim to find more suitable 359

methods to decide how many and which tokens to 360

mask, and when to stop refinements during infer- 361

ence. They can achieve comparable performance 362

with fewer decoding steps, indicating that adap- 363

tive inference algorithms bring benefits to building 364

more efficient iterative NAR models. (2) Enhanced 365
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training skills bring benefits on generation quality,366

but there is no evident improvement on DRR and367

ROR. These models trained with enhanced training368

skills can improve performance compared with the369

vanilla CMLM, but DRR and ROR are still rela-370

tively high, indicating that enhanced training skills371

are useful for building more competitive iterative372

NAR models, the performance improvements of373

these models come from the better ability to model374

token dependency during training rather than stabi-375

lizing the refinement process. (3) Introducing the376

self-correction mechanism can improve perfor-377

mance, but DRR gets higher. These models with378

the self-correction mechanism can achieve around379

one BLEU score improvement. However, DRR380

increases, indicating that the self-correction mech-381

anism may bring more unstable factors during the382

refinement process.383

3.4 Can Combining Superior Methods Bring384

Benefits?385

Exploration Process. We can learn from the ex-386

plorations in Section 3.3 that different enhanced387

methods are independently beneficial to making the388

models more efficient and competitive. Naturally,389

we wonder: can combining superior methods bring390

benefits? We further explore the following ques-391

tions: (1) Since the adaptive inference algorithms392

can bring promising performance with fewer decod-393

ing steps, can they further improve the performance394

with more steps? (2) Since adopting enhanced train-395

ing skills and the self-correction mechanism can396

boost performance but not stabilize the refinement397

process, can we incorporate the adaptive inference398

algorithms into these models to make them more399

efficient? Specifically, for question 1, we force400

these models (Disco and RewriteNAT) to continue401

the refinement process until reaching the maximal402

T decoding step. For question 2, we first com-403

bine the previous superior methods of enhanced404

training skills and adaptive inference algorithms405

(AMOM and CMLMC, denoted as AMOMC), and406

then we further apply the Locator module proposed407

in RewriteNAT into AMOMC.408

Main Findings. The results are shown in Table 2,409

we can find that: (1) Concerning the models with410

adaptive inference algorithms, the performance411

even declines once we adopt more decoding steps412

for them, e.g., the performance declines from 33.32413

to 33.22 for Disco, from 33.91 to 33.88 for Rewrite-414

NAT. Besides, DRR and ROR get much higher with415

Methods Iteration BLEU DRR (%) ROR (%)
Enhanced Training Skills
CMLM 10 33.55 13.4 19.1
JM-NAT 10 32.60 14.4 17.5
Multitask-NAT 10 33.60 16.5 18.4
Disco 10 33.22 14.6 13.1
RewriteNAT † 10 33.88 12.1 14.4
CORR † 10 33.65 13.3 14.1
CMLMC † 10 34.02 13.1 13.8
AMOM † 10 34.68 16.3 17.9
Adaptive Inference Algorithms
Disco Adv. 33.32 11.8 6.9
RewriteNAT † Adv. 33.91 7.9 1.1
Self-correction Mechanism
SMART 10 33.17 14.5 16.6
CORR † 10 33.76 15.0 15.3
CMLMC † 10 34.40 15.2 14.9
Combining Superior Methods
AMOMC † 10 35.08 16.8 16.7

w/ Locator † Adv. 34.68 5.9 6.0

Table 2: DRR and ROR of different models. Adv. de-
notes adaptive decoding steps, which is always less than
10. † denotes that the BLEU improvements over CMLM
are statistically significant with p < 0.05.

more decoding steps, indicating that models with 416

adaptive inference algorithms do not need many de- 417

coding steps to achieve the best performance during 418

inference. (2) Further utilizing the Locator mod- 419

ule for AMOMC can make the refinement process 420

more efficient since it can achieve comparable per- 421

formance with fewer decoding steps and get lower 422

DRR and ROR, but it also leads to performance 423

declines compared with the original AMOMC. 424

3.5 Summary 425

Now, we summarize our above explorations. We 426

first analyze the potential problems existing in cur- 427

rent refinement methods through an oracle experi- 428

ment and two proposed metrics. We encourage the 429

researchers to pay more attention to the intermedi- 430

ate decoding steps. Next, we conduct comparative 431

experiments to look for the key components for 432

building more efficient and competitive iterative 433

NAR models, and then further combine superior 434

methods to realize our purpose. However, we find 435

that the current efficient strategy leads to perfor- 436

mance declines. This motivates us to explore better 437

strategies for building efficient iterative NAR mod- 438

els while maintaining competitive performance. 439

4 Trials for Better Efficient Strategies 440

In this section, we explore better strategies for it- 441

erative NAR models to become efficient in the re- 442
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finement process while maintaining competitive443

performance. We conduct a detailed analysis of444

original refinement methods and then propose a445

simple yet effective strategy to realize our purpose.446

Problems and Explorations. Firstly, the Mask-447

Predict algorithm exhibits higher DRR and ROR448

than adaptive inference algorithms in Table 2.449

Therefore, we aim to explore: what makes the450

Mask-Predict algorithm fail to do efficient refine-451

ments (§4.1). Besides, although current adaptive452

inference algorithms are advantageous for reducing453

the decoding steps, they also lead to performance454

declines. Therefore, we analyze the correspond-455

ing reasons and further investigate: are there more456

effective inference algorithms for iterative NAR457

models (§4.2). Finally, we analyze the aforemen-458

tioned questions and point out future directions for459

iterative NAR models (§4.3).460

Experimental Settings. During the analysis on461

the failure of the Mask-Predict algorithm, we adopt462

the CMLM checkpoint achieved from the above ex-463

ploration process. For the explorations of more464

effective inference algorithms, we adopt more465

datasets except IWSLT’14 DE→EN to evaluate466

our proposed methods. Specifically, we choose467

two WMT datasets that are widely used in previous468

NAR works, WMT’16 English→Roman (En↔Ro)469

and WMT’14 English→German (En↔De) lan-470

guage pairs. The training data sizes are about 0.6M471

and 4.5M for En↔Ro and En↔De. The test data472

are from the corresponding newest data, which con-473

tains around 3,000 and 7,000 samples, respectively.474

Besides, the training and evaluation settings are the475

same as those mentioned in Section 3.476

4.1 What Makes the Mask-Predict Algorithm477

Fail to Do Efficient Refinements?478

We attribute the success of the adaptive inference479

algorithm to the reasonable strategy to determine480

"which token should be masked in the next decoding481

step?" Comparatively, the Mask-Predict algorithm482

relies on predicted confidence to select masked483

tokens in the subsequent decoding step. How-484

ever, we have identified two shortcomings with485

this confidence-based refinement process:486

1) The independent confidence updating strat-487

egy for each token is sub-optimal. In the Mask-488

Predict algorithm, the prediction confidence is up-489

dated only for masked tokens during each decod-490

ing step. On the other hand, the confidence for491

unmasked tokens remains the same as the last de- 492

coding step when it was predicted. This denotes 493

that the prediction confidences of masked and un- 494

masked tokens are derived from different decoding 495

steps and under different masking conditions. Con- 496

sequently, this inconsistency poses challenges in 497

determining which tokens should be masked in 498

the subsequent decoding step. This shortcoming 499

is also supported by the comparison presented in 500

Table 2. Several models which can update the confi- 501

dence scores of all the tokens in the same decoding 502

step can alleviate this problem to some extent, e.g., 503

Disco, RewriteNAT, and CMLMC all achieve lower 504

DRR and ROR even without adopting adaptive in- 505

ference algorithms during inference. 506

2) The prediction confidence of CMLM is not 507

strongly related to the generation quality. As 508

discussed in Section 2, CMLM selects the predic- 509

tion probability as the confidence to choose newly 510

masked tokens. This approach assumes that to- 511

kens with higher prediction probability scores are 512

more reliable. However, previous works have also 513

highlighted several issues. Ding et al. observe that 514

some specific tokens, such as high-frequency words 515

and conjunctions, consistently exhibit high confi- 516

dence, leading to repetitive output and neglect of 517

low-frequency but important words. Additionally, 518

Liang et al. note that the function words dominate 519

the high probability region of the output distribu- 520

tion, making it challenging to generate informa- 521

tive tokens using the Mask-Predict algorithm with 522

CMLM. However, no substantial experiment exists 523

to present the irrelevance between the prediction 524

confidence and final generation output. Thus, we 525

perform a simple experiment to verify this. 526

Exploration Process. We explore the confidence 527

distribution during inference. We first randomly 528

mask several tokens in the target sequence and 529

send them into CMLM to obtain the prediction con- 530

fidence. Then, since the Mask-Predict algorithm 531

always selects tokens with the highest prediction 532

probability, we wonder whether the probability of 533

masked ground truth tokens ranks first, e.g., given 534

the test sentence "Thank you." We first replace the 535

token "you" with the [MASK] token, then we send 536

the sequence "Thank [MASK] ." into CMLM, and 537

verify whether the prediction probability of token 538

"you" ranks first. If not, the highest prediction 539

confidence does not equal the correct token. 540

Main Findings. We conduct analytic experi- 541

ments on the validation and test set. Results are 542
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Model Iterations WMT’14 WMT’16
EN→DE DE→EN EN→RO RO→EN

AR Transformer (Vaswani et al., 2017) N 27.30 31.29 - -
Transformer* N 28.41 32.28 34.23 34.28

Iterative NAR

Refine-NAT (Lee et al., 2018) 10 21.61 25.48 27.11 30.19
Levenshtein (Gu et al., 2019) Adv. 27.73 - 33.02 -
CMLM (Ghazvininejad et al., 2019) 10 27.03 30.53 33.08 33.31
DisCo (Kasai et al., 2020a) Adv. 27.34 - 33.25 33.22
SMART (Ghazvininejad et al., 2020) 10 27.65 31.27 33.85 33.53
JM-NAT (Guo et al., 2020) 10 27.69 32.24 33.52 33.72
RDP (Ding et al., 2020) 10 27.80 - 33.70 -
LFR (Ding et al., 2021) 10 27.80 - - 33.90
RewriteNAR (Geng et al., 2021) Adv. 27.83 31.52 33.63 34.09
MvCR-NAT (Xie et al., 2021) 10 27.39 31.18 33.38 33.56
CORR (Huang et al., 2022b) 10 28.19 31.31 34.31 34.08
CMLMC (Huang et al., 2022b) 10 28.37 31.41 34.57 34.13
CCMLM (Cheng and Zhang, 2022) 10 27.93 31.57 33.88 34.18
AMOM (Xiao et al., 2023) 10 27.57 31.67 34.62 34.82
EECR (Chen et al., 2024) 10 28.04 31.65 34.33 34.32

Ours*
AMOMC 4 28.35 32.72 34.80 35.08

10 28.90 33.25 35.01 35.26

AMOMC + ARSCORER † 4 28.82 33.25 35.15 35.15
10 29.17 33.33 35.27 35.48

Table 3: Results on 4 WMT machine translation tasks. * denotes the results of our implementations. † denotes that
the BLEU improvements over AMOMC are statistically significant with p < 0.05.

Set Win (%) Lose (%)
Valid 54.61 45.39
Test 54.10 45.90

Table 4: Win denotes the model predicts the ground
truth token as the final results, Lose denotes the vice.

shown in Table 4. We find that only around 54543

percent of tokens meet our expectations, i.e., these544

ground truth tokens have the highest prediction545

probabilities. This shows that the prediction confi-546

dence achieved from the model itself is not strongly547

related to the correct tokens. This also provides ev-548

idence that utilizing an extra module to score the549

predicted tokens, such as the Locator, proves to be550

more effective than the model itself. We attribute551

this failure to the conditional independent factor-552

ization for CMLM learning, which causes CMLM553

to fail to capture the target-side dependency well554

during training (Gu and Kong, 2021).555

4.2 Are There More Effective Inference556

Algorithms for Iterative NAR Models?557

The explorations in Section 4.1 explain that why558

adaptive inference algorithms are more effective559

than the traditional Mask-Predict algorithm. How-560

ever, noticing that adopting the Locater also leads561

to performance declines, we first analyze the corre-562

sponding reason. Since the Locator module assigns 563

zero-one discrete scores for predicted tokens, i.e., 564

the token will be masked again in the next decoding 565

step once it is scored as zero, and not be masked if 566

it is scored as one. We point out that this scoring 567

mechanism is too absolute, e.g., there is no differ- 568

ence for unreliable tokens which are all scored as 569

zero, and once the scores for all tokens are one, 570

there are no subsequent actions for further improv- 571

ing the generation quality. To explore the potential 572

of a more effective extra scoring module for it- 573

erative NAR models, we intended to replace the 574

zero-one discrete score with a zero-one continuous 575

distribution, in which we can design the refinement 576

process more flexibly and constantly. 577

Exploration Process. We aim to find a simple 578

yet effective mechanism to score each token within 579

a sentence, and then we can depend on these scores 580

to determine which tokens should be masked in 581

the subsequent decoding step. Motivated by the 582

previous practice that a pre-trained AR model can 583

successfully serve as an effective scorer on the 584

sentence-lever to evaluate the fluency of sentences, 585

we can extend it as a token-level scorer, named 586

ARSCORER in the remaining space of this paper. 587

Specifically, we utilize the generated tokens from 588

each decoding step as inputs for a pre-trained AR 589

model. The AR model conducts its prediction on 590

7



this input sequence in an autoregressive manner.591

Subsequently, we obtain the corresponding predic-592

tion distribution and use the probability associated593

with the input token index as the final score. The594

scores range from zero to one after undergoing595

the normalized softmax operation. Comparatively,596

adopting ARSCORER offers several advantages597

over the Mask-Predict algorithm, which have also598

been mentioned in the previous section: (1) The599

AR model can assess the validity of each token600

in the whole sentence and update the correspond-601

ing prediction probability of each token after each602

decoding step of NAR model. (2) Previous stud-603

ies have shown that models trained with autore-604

gressive factorization excel in capturing target side605

dependencies compared to NAR models (Huang606

et al., 2022a). Besides, these AR models do not607

suffer from the multi-modality problem. Therefore,608

adopting extra ARSCORE to provide the prediction609

score is more robust and effective.610

Main Findings. The results on various WMT611

datasets are shown in Table 3, we can find that: (1)612

Combining superior methods (AMOMC) achieves613

significant performance improvements, outper-614

forming all baseline models around 0.8 BLEU615

score. (2) Adopting ARSCORER can quickly616

achieve competitive performance, i.e., it can get617

comparable even better performance with only 4618

decoding steps compared with AMOMC with 10619

decoding steps, outperforming all baseline models620

and AR counterparts significantly. (3) Adopting621

ARSCORER outperforms AMOMC in all evalua-622

tion settings, especially with relatively fewer decod-623

ing steps, indicating ARSCORER can bring benefit624

for building efficient iterative NAR models.625

Further Analysis. We further compare the back-626

bones models with those with ARSCORER based627

on our proposed two metrics, DRR and ROR, as628

mentioned in Section 3.2. Results on IWSLT’14629

DE→EN and WMT’16 EN→RO datasets are pre-630

sented in Table 5. We can find that: (1) The mod-631

els with ARSCORER can achieve lower DRR and632

ROR compared with the corresponding baselines.633

(2) DRR and ROR are higher on the WMT’16634

EN→RO dataset across all models, indicating that635

this dataset is relatively difficult to learn.636

4.3 Summary637

In this section, we aim to explore the potential for638

better efficient strategies. We begin by examin-639

ing the limitations of the Mask-Predict algorithm640

Methods Iteration BLEU DRR (%) ROR (%)

IWSLT’14 DE→EN
CMLM 10 33.55 13.4 19.1

+ ARSCORER 10 34.05 10.0 13.4
AMOMC 10 35.08 16.8 16.7

+ ARSCORER 10 35.61 9.8 13.6

WMT’16 EN→RO
CMLM 10 33.19 17.1 20.1

+ ARSCORER 10 33.55 10.9 14.8
AMOMC 10 35.03 21.4 24.4

+ ARSCORER 10 35.27 15.8 19.0

Table 5: Results of DRR and ROR with ARSCORER.

in facilitating consistent and efficient refinements. 641

Through thorough analysis and corresponding ex- 642

perimentation, we attribute these limitations to the 643

independent confidence updating strategies and the 644

unrelated prediction confidence to generation out- 645

put. Consequently, we endeavor to identify a supe- 646

rior strategy to address these issues. Fortunately, 647

by adopting the pre-trained AR models to serve as 648

a scorer, iterative NAR models can conduct steady 649

and effective refinements, thereby achieving supe- 650

rior performance with even fewer decoding steps, 651

and getting closer to the efficient iterative NAR 652

models. It is worth noting that there are other viable 653

options for scoring, such as adopting a pre-trained 654

language model or even current well-known large 655

language models, we leave this as future work. 656

5 Conclusion and Future Outlook 657

In this paper, we conduct extensive experiments 658

and detailed analysis to address: how to build 659

more effective and competitive iterative NAR mod- 660

els. By combining competitive strategies and the 661

newly proposed ARSCORER, our final models set 662

the new state-of-the-art results on five widely-used 663

datasets even with fewer decoding steps and lead to 664

completely outperforming their AR counterparts. 665

In the future, we will extend our explorations to 666

more scenarios since CMLM-based iterative NAR 667

models have been successfully applied in speech 668

and video-related fields (Higuchi et al., 2021). Be- 669

sides, there is also a need to explore methods for 670

conducting efficient denoising steps for diffusion 671

models (Sohl-Dickstein et al., 2015) since they suf- 672

fer greatly from low efficiency with numerous de- 673

noising steps (Tang et al., 2023; Gong et al., 2023). 674

Lastly, recent advancements in LLMs (Touvron 675

et al., 2023b) hold promise in serving as better 676

scorers for iterative NAR models. 677
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Limitations678

Firstly, since CMLM-based iterative NAR models679

have been applied to various language generation680

tasks, we only conduct our explorations on ma-681

chine translation task. Besides, although CMLM-682

based methods are one of the most widely-used and683

well-known iterative NAR models, there exist other684

categories of iterative NAR models, such as editing-685

based models (Stern et al., 2019; Gu et al., 2019),686

denoising based models (Lee et al., 2018; Savinov687

et al., 2021), we only consider CMLM-based meth-688

ods in this paper. Besides, our proposed efficient689

strategy, ARSCORER, relies on a pre-trained AR690

model to serve as a scorer for each token, it brings691

some extra costs to achieve this AR model and the692

corresponding prediction confidence.693
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Jindřich Helcl, Barry Haddow, and Alexandra Birch. 767
2022. Non-autoregressive machine translation: 768
It’s not as fast as it seems. arXiv preprint 769
arXiv:2205.01966. 770

Yosuke Higuchi, Hirofumi Inaguma, Shinji Watanabe, 771
Tetsuji Ogawa, and Tetsunori Kobayashi. 2021. Im- 772
proved mask-ctc for non-autoregressive end-to-end 773
asr. In ICASSP 2021, pages 8363–8367. IEEE. 774

Fei Huang, Pei Ke, and Minlie Huang. 2023. [tacl] 775
directed acyclic transformer pre-training for high- 776
quality non-autoregressive text generation. In The 777
61st Annual Meeting Of The Association For Compu- 778
tational Linguistics. 779

Fei Huang, Tianhua Tao, Hao Zhou, Lei Li, and Minlie 780
Huang. 2022a. On the learning of non-autoregressive 781
transformers. In International Conference on Ma- 782
chine Learning, pages 9356–9376. PMLR. 783

9



Xiao Shi Huang, Felipe Perez, and Maksims Volkovs.784
2022b. Improving non-autoregressive translation785
models without distillation. In International Con-786
ference on Learning Representations.787

Jungo Kasai, James Cross, Marjan Ghazvininejad, and788
Jiatao Gu. 2020a. Parallel machine translation with789
disentangled context transformer. arXiv preprint790
arXiv:2001.05136.791

Jungo Kasai, Nikolaos Pappas, Hao Peng, James Cross,792
and Noah Smith. 2020b. Deep encoder, shallow793
decoder: Reevaluating non-autoregressive machine794
translation. In ICLR.795

Yoon Kim and Alexander M Rush. 2016. Sequence-796
level knowledge distillation. In EMNLP, pages 1317–797
1327.798

Philipp Koehn. 2004. Statistical significance tests for799
machine translation evaluation. In Proceedings of800
the 2004 conference on empirical methods in natural801
language processing, pages 388–395.802

Jason Lee, Elman Mansimov, and Kyunghyun Cho.803
2018. Deterministic non-autoregressive neural se-804
quence modeling by iterative refinement. In Proceed-805
ings of the 2018 Conference on Empirical Methods806
in Natural Language Processing, pages 1173–1182.807

Xiaobo Liang, Zecheng Tang, Juntao Li, and Min Zhang.808
2023. Open-ended long text generation via masked809
language modeling. In ACL.810

Xiaobo Liang, Lijun Wu, Juntao Li, and Min Zhang.811
2022. Janus: Joint autoregressive and non-812
autoregressive training with auxiliary loss for se-813
quence generation. In EMNLP, pages 1067–1073.814

OpenAI. 2023. Gpt-4 technical report.815

Myle Ott, Sergey Edunov, Alexei Baevski, Angela Fan,816
Sam Gross, Nathan Ng, David Grangier, and Michael817
Auli. 2019. fairseq: A fast, extensible toolkit for818
sequence modeling. In Proceedings of NAACL-HLT819
2019: Demonstrations.820

Kishore Papineni, Salim Roukos, Todd Ward, and Wei-821
Jing Zhu. 2002. Bleu: a method for automatic evalu-822
ation of machine translation. In Proceedings of the823
40th annual meeting of the Association for Computa-824
tional Linguistics, pages 311–318.825

Lihua Qian, Hao Zhou, Yu Bao, Mingxuan Wang, Lin826
Qiu, Weinan Zhang, Yong Yu, and Lei Li. 2021.827
Glancing transformer for non-autoregressive neural828
machine translation. In Proceedings of the 59th An-829
nual Meeting of the Association for Computational830
Linguistics and the 11th International Joint Confer-831
ence on Natural Language Processing, pages 1993–832
2003.833

Nikolay Savinov, Junyoung Chung, Mikolaj Binkowski,834
Erich Elsen, and Aaron van den Oord. 2021. Step-835
unrolled denoising autoencoders for text generation.836
arXiv preprint arXiv:2112.06749.837

Jascha Sohl-Dickstein, Eric Weiss, Niru Mah- 838
eswaranathan, and Surya Ganguli. 2015. Deep un- 839
supervised learning using nonequilibrium thermody- 840
namics. In ICML, pages 2256–2265. PMLR. 841

Mitchell Stern, William Chan, Jamie Kiros, and Jakob 842
Uszkoreit. 2019. Insertion transformer: Flexible se- 843
quence generation via insertion operations. In ICML, 844
pages 5976–5985. PMLR. 845

Zecheng Tang, Pinzheng Wang, Keyan Zhou, Juntao 846
Li, Ziqiang Cao, and Min Zhang. 2023. Can diffu- 847
sion model achieve better performance in text gener- 848
ation? bridging the gap between training and infer- 849
ence! arXiv preprint arXiv:2305.04465. 850

Hugo Touvron, Thibaut Lavril, Gautier Izacard, Xavier 851
Martinet, Marie-Anne Lachaux, Timothée Lacroix, 852
Baptiste Rozière, Naman Goyal, Eric Hambro, Faisal 853
Azhar, Aurelien Rodriguez, Armand Joulin, Edouard 854
Grave, and Guillaume Lample. 2023a. Llama: Open 855
and efficient foundation language models. arXiv 856
preprint arXiv:2302.13971. 857

Hugo Touvron, Louis Martin, Kevin Stone, Peter Al- 858
bert, Amjad Almahairi, Yasmine Babaei, Nikolay 859
Bashlykov, Soumya Batra, Prajjwal Bhargava, Shruti 860
Bhosale, et al. 2023b. Llama 2: Open founda- 861
tion and fine-tuned chat models. arXiv preprint 862
arXiv:2307.09288. 863

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob 864
Uszkoreit, Llion Jones, Aidan N Gomez, Łukasz 865
Kaiser, and Illia Polosukhin. 2017. Attention is all 866
you need. In Advances in Neural Information Pro- 867
cessing Systems, pages 5998–6008. 868

Yisheng Xiao, Lijun Wu, Junliang Guo, Juntao Li, 869
Min Zhang, Tao Qin, and Tie-yan Liu. 2022. A 870
survey on non-autoregressive generation for neural 871
machine translation and beyond. arXiv preprint 872
arXiv:2204.09269. 873

Yisheng Xiao, Ruiyang Xu, Lijun Wu, Juntao Li, Tao 874
Qin, Tie-Yan Liu, and Min Zhang. 2023. Amom: 875
Adaptive masking over masking for conditional 876
masked language model. Proceedings of the AAAI 877
Conference on Artificial Intelligence, 37(11):13789– 878
13797. 879

Pan Xie, Zexian Li, and Xiaohui Hu. 2021. Mvsr- 880
nat: Multi-view subset regularization for non- 881
autoregressive machine translation. arXiv preprint 882
arXiv:2108.08447. 883

Wayne Xin Zhao, Kun Zhou, Junyi Li, Tianyi Tang, 884
Xiaolei Wang, Yupeng Hou, Yingqian Min, Beichen 885
Zhang, Junjie Zhang, Zican Dong, et al. 2023. A 886
survey of large language models. arXiv preprint 887
arXiv:2303.18223. 888

A Details for Follow-up Methods 889

We supplement the details for follow-up methods of 890

CMLM we adopted for explorations as mentioned 891

in Section 2. 892

10



JM-NAT Guo et al. introduce a jointly masked893

sequence-to-sequence model. Unlike the tradi-894

tional CMLM which only masks the target se-895

quence during training, JM-NAT also masks the896

source sequence to help train the encoder more897

rigorously. Besides, in order to alleviate the prob-898

lem of translating duplicate words, they propose to899

train the decoder based on the consecutive masking900

of the decoder input with an ngram loss function901

rather than the original uniform masking.902

Disco Kasai et al. propose an attention-masking903

based model, Disentangled Context (DisCo) trans-904

former. During training, Disco is learned to pre-905

dict each target token given an arbitrary subset of906

the other reference tokens, which is more efficient907

than just predicting masked tokens in the origi-908

nal CMLM. During inference, unlike the previous909

Mask-Predict algorithm which just updates masked910

tokens in each decoding step (i.e., predicting Ymask911

based on Yobs), Disco introduces an easy-first pol-912

icy which where each token will be predicted in913

each step dependent on relatively easier tokens (i.e.,914

predicting each Yi based on Y<i, where Y<i de-915

notes tokens whose prediction confidence is higher916

than Yi in the previous iteration). Disco stops de-917

coding when no new tokens are generated in one918

specific decoding step. This easy-first policy can919

largely improving the inference latency.920

Multitask-NAT Hao et al. introduces Multitask-921

NAT which utilizes a shared encoder and separated922

decoders for both AR and NAR modeling during923

training. They assume that AR training can bring924

benefits for NAR training and aim to adopt multi-925

task learning to transfer the AR knowledge to NAR926

models through encoder sharing.927

RewriteNAT Geng et al. propose RewriteNAT, a928

new framework that contains a Locator and Revisor929

module that locate the incorrect words within pre-930

viously generated translations and then revise them,931

respectively. Specifically, the Locator module can932

transform the problem of determining which tokens933

to be masked in the next decoding step into into a934

binary classification problem instead of depending935

on the self-predicted confidence, i.e., the Locator936

will predict a special symbol ([MASK] or [KEEP])937

for each token. Once the token is predicted as938

[MASK], it will be masked again, and vice versa.939

RewriteNAT can finish the generation process once940

the Locator module predicts all the target tokens as941

[KEEP].942

SMART Ghazvininejad et al. introduce Semi- 943

Autoregressive Training (SMART) to help the train- 944

ing process better match the Mask-Predict algo- 945

rithm with multiple decoding steps. Specifically, 946

since the model can not see the ground truth tokens 947

during inference, it only takes the model prediction 948

in the previous decoding steps as partially-observed 949

tokens to make predictions. This leads to incon- 950

sistency compared with training methods. Thus 951

SMART first constructs a mixed training example 952

and then encourages the model to recover from the 953

model prediction errors during training, 954

CMLMC Huang et al. propose Condi- 955

tional Masked Language Model with Correction 956

(CMLMC) which incorporates a self-correction 957

mechanism into traditional CMLM and several 958

modifications on the decoder structure such as ex- 959

posing the positional encodings and incorporating 960

causal attention layers to differentiate adjacent to- 961

kens. CORR is the corresponding variant which 962

only adopts the self-correction mechanism without 963

the structure modifications in CMLMC. Specif- 964

ically, except for adopting masking methods in 965

target sequence during training, CMLMC aslo re- 966

places the partial unmasked tokens with model pre- 967

dictions based on a fully masked target sequence. 968

Then CMLMC learns to predict the masked tokens 969

and correct the replaced tokens simultaneously dur- 970

ing training. During inference, this self-correction 971

mechanism helps the model to correct the unreli- 972

able tokens in the unmasked subset. 973

AMOM Xiao et al. propose an Adaptive Mask- 974

ing Over Masking (AMOM) strategy based on 975

CMLM which contains two different adaptive 976

masking mechanisms which work on the inputs 977

of encoder and decoder respectively. Specifically, 978

based on the ratio of the target sequence, AMOM 979

also masks the specific number of tokens in the 980

source sequence to make the encoder optimization 981

easier. Besides, AMOM conducts an extra masking 982

step where the masking ratio of the target sequence 983

in this step is adaptive to the correction ratio of 984

the model prediction. This two-step masking strat- 985

egy can help the model capture the masking ratio 986

changes in various decoding steps during inference. 987

B Training Hyper-parameters 988

During our experiments, we set training hyper- 989

parameters for CMLM in the same way as CMLM 990

realization in the Fariseq library, and for AMOMC, 991
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we follow those adopted in CMLMC (Huang et al.,992

2022b). Now, we present these training hyper-993

parameters in Table 6.994

Models Parameters IWSLT’14 DE→EN WMT’14 EN↔DE WMT’16 EN↔RO

CMLM

learning rate 5e-4 7e-4 5e-4
warmup_step 4k 10k 10k

dropout 0.3 0.2 0.3
update_step 300k 300k 300k

AMOMC

learning rate 5e-4 7e-4 5e-4
warmup_step 30k 40k 15k

dropout 0.3 0.2 0.3
update_step 175k 150k 120k

Table 6: Training hyper-parameters for CMLM and
AMOMC.
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