Revisiting the Iterative Non-Autoregressive Transformer

Anonymous ACL submission

Abstract

Iterative non-autoregressive (NAR) models
share a spirit of mixed autoregressive (AR)
and fully NAR models, seeking a balance be-
tween generation quality and inference effi-
ciency. These models have recently demon-
strated impressive performance in varied gener-
ation tasks, surpassing the autoregressive (AR)
Transformer. However, they also face several
challenges that impede further development. In
this work, we target building more efficient and
competitive iterative NAR models by conduct-
ing systematic studies and analytical experi-
ments. Firstly, we conduct an oracle experi-
ment and introduce two newly proposed met-
rics to identify the potential problems existing
in current refinement processes, and look back
on the various iterative NAR models to find the
key factors for realizing our purpose. Subse-
quently, based on the analyses of the limitations
of previous inference algorithms, we propose
a simple yet effective strategy to conduct effi-
cient refinements without performance declines.
Experiments on five widely used datasets show
that our final models significantly outperform
all previous NAR models and AR Transformer,
even with fewer decoding steps on two datasets.

1 Introduction

Transformer-based models (Vaswani et al., 2017)
have achieved promising performance in various
tasks, particularly after the emergence and progress
of large language models recently (Touvron et al.,
2023a; OpenAl, 2023; Touvron et al., 2023b). How-
ever, these models adopt an autoregressive (AR)
decoding paradigm where tokens are generated one
by one in a strict left-to-right order. Consequently,
they suffer from low inference efficiency, which
even worsens as model parameters increase (Zhao
et al., 2023). Non-autoregressive (NAR) models
provide an alternative text generation paradigm (Gu
et al., 2018). Unlike AR models, NAR models can
predict all the target tokens in parallel, significantly

reducing inference latency. However, this paral-
lel decoding paradigm also leads to performance
degradation due to independent predictions lack-
ing target side dependency (Qian et al., 2021; Xiao
et al., 2022; Huang et al., 2023).

Researchers have proposed iterative NAR mod-
els to balance generation quality and inference ef-
ficiency (Lee et al., 2018; Ghazvininejad et al.,
2019; Chan et al., 2020). These models utilize
multiple decoding steps to generate the final re-
sults and retain the non-autoregressive decoding
paradigm in each step. A partial target sequence
is proposed in each decoding step and then refined
in the subsequent steps. The performance of com-
petitive iterative NAR models achieves significant
improvements through iterative refinements, sur-
passing their AR counterparts (Huang et al., 2022b;
Xiao et al., 2023). However, these models have
also revealed some flaws in the corresponding re-
search, including failure under specific model struc-
ture (Kasai et al., 2020b), declines in inference
speedup (Helcl et al., 2022) and the anisotropic
problem (Guo et al., 2023), hindering the further
development of iterative NAR models.

Therefore, how to build more efficient and com-
petitive iterative NAR models deserves further ex-
ploration. In this paper, we aim to address this
question by conducting systematic studies and ana-
lytical experiments:

* We conduct in-depth explorations of current
iterative NAR models (§3). Specifically, we
verify and further quantitatively analyze the
potential problems existing in current refine-
ment processes through an oracle experiment
(83.1) and two newly proposed metrics (§3.2).
Besides, we conduct analytical experiments
based on various iterative NAR models and
discover that different enhanced methods play
different roles in building efficient and com-
petitive models (§3.3). Then, we attempt to

realize our purpose by combining previous
superior methods, but notice performance de-
clines with previous efficient strategies (§3.4).

* We trial better strategies for iterative NAR
models to become efficient while maintain-
ing competitive performances (§4). We first
analyze the limitations of current refinement
strategies (§4.1) and then propose a simple
yet effective inference algorithm for iterative
NAR models (§4.2). Combining it with pre-
vious competitive strategies can achieve supe-
rior performance with fewer decoding steps.

Experiments on 5 widely used datasets demon-
strate the effectiveness of our models. We yield
significant performance improvements (around 0.8
BLEU score on average) over the previous best
iterative NAR models and realize completely sur-
passing AR Transformer (over 1 BLEU score on av-
erage). Besides, our models only need 4 decoding
steps to set new SOTA performance on WMT’ 14
DE—EN and WMT’16 EN—RO datasets com-
pared with previous ones with 10 decoding steps.

2 Preliminaries

Non-autoregressive Language Model Up to
now, most generative models are autoregressive
(AR) models which generate the target sequence
one by one from a left-to-right order during infer-
ence. They adopt AR factorization during train-
ing to maximize the following likelihood: Lar =
Z;le log P(yt|y<t, X;0), where y~, denotes the
previous generated target tokens, 7' denotes the
target length, X is the source sentence, and 6 de-
notes the model parameters. Unlike these AR mod-
els, non-autoregressive (NAR) language models
generate the target sequence in parallel during in-
ference, which can be further divided into fully
NAR models and iterative NAR models accord-
ing to their decoding steps. Fully NAR models
only adopt one step to generate the target sequence,
and adopt fully conditional independent factor-
ization during training to maximize the follow-
ing likelihood: Lrnar = Y, log P(y:]X;6).
Iterative NAR models adopt multiple decoding
steps to generate the target sequence and keep the
NAR property in each decoding step. They aim to
maximize the following likelihood during training:
LINAR = ZteYtgt log P(y:|Y, X;60), where Y, g
denotes the prediction target tokens of the current
decoding step and the Y denotes the generation

result of the previous decoding step. Iterative NAR
models give the chance to refine the generated re-
sult, thus significantly improving the performance
compared to fully NAR models.

Conditional Masked Language Model Con-
ditional Masked Language Model (CMLM)
is a typical and widely-used iterative NAR
model (Ghazvininejad et al., 2019), which adopts
a Transformer-based encoder-decoder architecture
with some specific modifications in the decoder
blocks to support NAR generation manner. During
training, CMLM uses masked language modeling
tasks like BERT for training. Specifically, given
a training pair (X,Y’), CMLM first selects par-
tial tokens in Y to be masked, denoted as Y, 45k,
while the unmasked tokens as Y,,s. CMLM learns
to predict the masked tokens Y;,,4s%, and to maxi-
mize: Lomim = Zyterask log P(y¢|Yobs, X;0),
where 6 denotes the trainable parameters. Besides,
CMLM also adopts an auxiliary task to predict
the target length. During inference, CMLM uti-
lizes multiple decoding steps to generate an entire
sequence in parallel via a specially designed Mask-
Predict algorithm. Given the source sentence X
and the total 7" decoding steps, CMLM first pre-
dicts the target length L. Then, it sends the en-
tire masked target sequence (i.e., L. [MASK] tokens
since we have no target tokens in the first iteration)
into the decoder and predicts them. After each
decoding step, the model will choose a specific
number of tokens to mask again with the relatively
lowest prediction probability from the target se-
quence. These newly masked tokens Y, sz Will be
re-predicted in the next step. In an intermediate ¢th
step, the number of the newly masked tokens n can
be calculated as n = % x L.

Follow-up Methods of CMLM Based on
CMLM, researchers have proposed many follow-
up enhanced methods from different perspectives to
improve the training and inference process, e.g., us-
ing the better masking methods (Guo et al., 2020;
Xiao et al., 2023) or enhanced modeling mecha-
nism (Kasai et al., 2020a; Cheng and Zhang, 2022;
Chen et al., 2024) to replace the traditional uni-
form masking training strategy, utilizing an ad-
ditional AR decoder to enhance the NAR mod-
eling during training (Hao et al., 2021; Liang et al.,
2022), adopting the Locater module to determine
the newly masked tokens during inference (Geng
et al., 2021), introducing a self-correction mech-
anism to enhance the traditional Mask-Predict al-

gorithm (Ghazvininejad et al., 2020; Huang et al.,
2022b), and etc. We include more details about
these variants in the Appendix A due to the length
limitation. In this work, we conduct a comprehen-
sive analysis of the traditional CMLM and these
follow-up methods, targeting building more effi-
cient and competitive iterative NAR models.

3 In-depth Explorations of Current
Iterative NAR Models

In this section, we conduct in-depth explorations
of current iterative NAR models. Specifically, we
introduce several sub-problems and make detailed
analyses. We aim to find the key factors for build-
ing efficient and competitive iterative NAR models.

Problems and Explorations. Firstly, previous
works always focus on the final generated output
after pre-defined fixed decoding steps to evaluate it-
erative NAR models, but overlook the fine-grained
analysis of intermediate decoding steps throughout
the refinement process. Consequently, some poten-
tial problems (e.g., useless and negative decoding
steps) during the refinement process can not be
reflected based on the current evaluation process.
Naturally, we wonder: how well do current refine-
ment strategies perform for iterative NAR models
(§3.1). We compare the performance achieved with
the current refinement algorithm and that under an
ideal setting. Furthermore, to quantitatively ana-
lyze the potential problems mentioned above, we
introduce two metrics (DRR and ROR) to evaluate
the stability of each decoding step and the relia-
bility of the whole refinement process. We aim
to answer how to better evaluate the refinement
process of different iterative NAR models (§3.2).
Based on our proposed two metrics, we compare
different iterative NAR models under a consistent
re-implementation. We aim to find what are the
key components for iterative NAR models to per-
Jform better (§3.3). Finally, we conduct extended
experiments to answer can better performance be
achieved by combining superior methods (§3.4),
and make a summary (§3.5).

Experimental Settings. We adopt the vanilla
CMLM and several typical variants which con-
tain different improving strategies from differ-
ent respects as mentioned in Section 2 for ex-
ploration. We summarize them as different cate-
gories: adopting enhanced training skills (JM-NAT,
AMOM, Multitask-NAT), using adaptive inference

algorithms (Disco, Rewrite-NAT), and introduc-
ing self-correction mechanism (SMART, CORR,
CMLMC). To make more consistent comparisons,
we re-implement all these models based on the
same hardware and training hyper-parameters. For
the evaluation dataset, we select the IWSLT’ 14
DE—EN dataset containing about 170k training
sentence pairs, 7k valid pairs, and 7Tk test pairs. We
train each model on the training set and then eval-
uate them on the test set. Following the previous
work (Kasai et al., 2020a), we apply sequence-level
knowledge distillation (Kim and Rush, 2016) for all
backbone models. All experiments use the Fairseq
library (Ott et al., 2019) with GTX 3090 GPU cards.
We adopt the same training hyper-parameters fol-
lowing CMLM realization in Fairseq. During in-
ference, we average the 5 best checkpoints chosen
by validation BLEU as our final model. Finally,
we evaluate the generation quality with BLEU
score (Papineni et al., 2002). Besides, to eliminate
the effects of randomness, we follow the previous
works to use statistical significance tests (Koehn,
2004) to detect if the difference in BLEU score
between the traditional CMLM and other enhanced
iterative NAR models is significant.

3.1 How Well do Current Refinement Strategies
Perform for Iterative NAR Models?

Exploration Process. Firstly, we design an or-
acle experiment with ideal settings in which we
can select the best-generated output from different
decoding steps for each testing instance. Specifi-
cally, we adopt 10 decoding steps during inference
following the common practice. Then, rather than
adopting the generated output of the last decoding
step for each test instance, we select the one with
the highest evaluation score (e.g., sentence BLEU)
as the final generated result. This setting can elim-
inate the impacts of the above-mentioned poten-
tial problems (e.g., useless and negative decoding
steps) in the refinement process. Finally, we com-
pare the results of this oracle experiment with those
achieved from the original settings. In this exper-
iment, we adopt two current main-stream models
with different refinement strategies: the CMLM
with the Mask-Predict algorithm and CORR with
the self-correction algorithm.

Main Findings. Results of the oracle experiment
and with original settings are shown in Table 1
(Choose Best v.s. Original). We can find: (1) There
exists much space for the improvements of current

refinement methods, and the performance through
best choice outperforms that from the last decoding
step over 2.5 BLEU score. (2) More superior re-
sults appear during the CORR refinement process,
which indicates that the self-correction algorithm
can bring some benefits. Besides, we should rec-
ognize that we can not realize the ideal settings
of the above oracle experiment since there is no
ground truth during our inference process. How-
ever, we can still verify that some problems exist
in the current refinement process. It also motivates
us to explore better refinement strategies in which
we can effectively reduce or even avoid useless and
negative refinement decoding steps.

Model ‘ Original ‘ Choose Best
CMLM | 3355 36.14
CORR 33.76 36.45

Table 1: BLEU score of the oracle experiment (Choose
Best) and with original settings (Original).

3.2 How to Better Evaluate the Refinement
Process of Different Iterative NAR Models?

As the above exploration shows, the potential prob-
lems in the refinement process (e.g., useless and
negative decoding steps) are serious in the current
iterative NAR models. However, the current evalu-
ation process, where we adopt the generated output
of the last decoding step, can not directly reflect
these potential problems. Therefore, we introduce
two metrics, Decline Risks of Refinements (DRR)
and Ratio of Over-Refinements (ROR), to respec-
tively measure the extent of these potential prob-
lems and evaluate the stability and reliability of the
refinement process.

Decline Risks of Refinements. Decline Risks of
Refinements (DRR) evaluates the stability of the
refinement process of iterative NAR models. It
measures the performance decline rate after one
specific decoding step, i.e., the extent of the neg-
ative decoding step. Specifically, given a test set
with NV examples, a fixed decoding step T, we com-
pute the ratio of each example during the whole
refinement process where the performance declines
compared with the previous iteration, formatted as:

T—1
1 Z |Score! > Score! ™|
t=1

T-1 N ’

DRR = ey

where Score! denotes the performance of sample i
in the tth step.

Ratio of Over-Refinements. Ratio of Over-
Refinements (ROR) evaluates the reliability of the
final generated output in iteration 7'. It measures
the failure rate of the output from the last decoding
step to be the best, i.e., the extent of the useless de-
coding steps. Specifically, given a test set with NV
examples, a fixed decoding step T', we compute the
ratio of each example whose best performance is
achieved in the intermediate steps of the refinement
process, formatted as:

ROR = 2)

1 <= [Score! > Score?|

T-1 Z N ’
t=1

where Score! denotes the performance of sample i

in the tth step, ScoreiT denotes the performance of

sample 7 in the final iteration 7.

3.3 What are the Key Components for Iterative
NAR Models to Perform Better?

Exploration Process. We look for the key com-
ponents for two aspects, i.e., efficient and com-
petitive. The former can be reflected in the stabil-
ity and reliability of the refinement process with
our proposed metrics, and the latter can be re-
flected in the final performance. We evaluate the
related enhanced CMLM methods based on our
re-implementations. For the models with adaptive
inference algorithms (Disco and RewriteNAT), in
Equation 1 and Equation 2, we set T" as the adap-
tive decoding step of each sentence pair during
inference, and 10 for other methods following the
previous works. Besides, for the models that sup-
port two inference algorithms (e.g., CMLMC can
omit the self-correction process and change to the
original Mask-Predict algorithm), we both report
the results with the Mask-Predict algorithm and the
corresponding enhanced inference strategy.

Main Findings. The results are presented in Ta-
ble 2, we find that: (1) DRR and ROR are relatively
lower while decoding with adaptive inference al-
gorithms. These models aim to find more suitable
methods to decide how many and which tokens to
mask, and when to stop refinements during infer-
ence. They can achieve comparable performance
with fewer decoding steps, indicating that adap-
tive inference algorithms bring benefits to building
more efficient iterative NAR models. (2) Enhanced

training skills bring benefits on generation quality,
but there is no evident improvement on DRR and
ROR. These models trained with enhanced training
skills can improve performance compared with the
vanilla CMLM, but DRR and ROR are still rela-
tively high, indicating that enhanced training skills
are useful for building more competitive iterative
NAR models, the performance improvements of
these models come from the better ability to model
token dependency during training rather than stabi-
lizing the refinement process. (3) Introducing the
self-correction mechanism can improve perfor-
mance, but DRR gets higher. These models with
the self-correction mechanism can achieve around
one BLEU score improvement. However, DRR
increases, indicating that the self-correction mech-
anism may bring more unstable factors during the
refinement process.

3.4 Can Combining Superior Methods Bring
Benefits?

Exploration Process. We can learn from the ex-
plorations in Section 3.3 that different enhanced
methods are independently beneficial to making the
models more efficient and competitive. Naturally,
we wonder: can combining superior methods bring
benefits? We further explore the following ques-
tions: (1) Since the adaptive inference algorithms
can bring promising performance with fewer decod-
ing steps, can they further improve the performance
with more steps? (2) Since adopting enhanced train-
ing skills and the self-correction mechanism can
boost performance but not stabilize the refinement
process, can we incorporate the adaptive inference
algorithms into these models to make them more
efficient? Specifically, for question 1, we force
these models (Disco and RewriteNAT) to continue
the refinement process until reaching the maximal
T decoding step. For question 2, we first com-
bine the previous superior methods of enhanced
training skills and adaptive inference algorithms
(AMOM and CMLMC, denoted as AMOMC), and
then we further apply the Locator module proposed
in RewriteNAT into AMOMC.

Main Findings. The results are shown in Table 2,
we can find that: (1) Concerning the models with
adaptive inference algorithms, the performance
even declines once we adopt more decoding steps
for them, e.g., the performance declines from 33.32
to 33.22 for Disco, from 33.91 to 33.88 for Rewrite-
NAT. Besides, DRR and ROR get much higher with

Methods Iteration BLEU DRR (%) ROR (%)
Enhanced Training Skills
CMLM 10 33.55 13.4 19.1
JM-NAT 10 32.60 14.4 17.5
Multitask-NAT 10 33.60 16.5 18.4
Disco 10 33.22 14.6 13.1
RewriteNAT } 10 33.88 12.1 144
CORR 7 10 33.65 13.3 14.1
CMLMC 10 34.02 13.1 13.8
AMOM f 10 34.68 16.3 17.9
Adaptive Inference Algorithms
Disco Adv. 33.32 11.8 6.9
RewriteNAT Adv. 33.91 7.9 1.1
Self-correction Mechanism
SMART 10 33.17 14.5 16.6
CORR 7 10 33.76 15.0 15.3
CMLMC 10 34.40 15.2 14.9
Combining Superior Methods
AMOMC 10 35.08 16.8 16.7
w/ Locator t Adv. 34.68 5.9 6.0

Table 2: DRR and ROR of different models. Adv. de-
notes adaptive decoding steps, which is always less than
10. T denotes that the BLEU improvements over CMLM
are statistically significant with p < 0.05.

more decoding steps, indicating that models with
adaptive inference algorithms do not need many de-
coding steps to achieve the best performance during
inference. (2) Further utilizing the Locator mod-
ule for AMOMC can make the refinement process
more efficient since it can achieve comparable per-
formance with fewer decoding steps and get lower
DRR and ROR, but it also leads to performance
declines compared with the original AMOMC.

3.5 Summary

Now, we summarize our above explorations. We
first analyze the potential problems existing in cur-
rent refinement methods through an oracle experi-
ment and two proposed metrics. We encourage the
researchers to pay more attention to the intermedi-
ate decoding steps. Next, we conduct comparative
experiments to look for the key components for
building more efficient and competitive iterative
NAR models, and then further combine superior
methods to realize our purpose. However, we find
that the current efficient strategy leads to perfor-
mance declines. This motivates us to explore better
strategies for building efficient iterative NAR mod-
els while maintaining competitive performance.

4 Trials for Better Efficient Strategies

In this section, we explore better strategies for it-
erative NAR models to become efficient in the re-

finement process while maintaining competitive
performance. We conduct a detailed analysis of
original refinement methods and then propose a
simple yet effective strategy to realize our purpose.

Problems and Explorations. Firstly, the Mask-
Predict algorithm exhibits higher DRR and ROR
than adaptive inference algorithms in Table 2.
Therefore, we aim to explore: what makes the
Mask-Predict algorithm fail to do efficient refine-
ments (§4.1). Besides, although current adaptive
inference algorithms are advantageous for reducing
the decoding steps, they also lead to performance
declines. Therefore, we analyze the correspond-
ing reasons and further investigate: are there more
effective inference algorithms for iterative NAR
models (§4.2). Finally, we analyze the aforemen-
tioned questions and point out future directions for
iterative NAR models (§4.3).

Experimental Settings. During the analysis on
the failure of the Mask-Predict algorithm, we adopt
the CMLM checkpoint achieved from the above ex-
ploration process. For the explorations of more
effective inference algorithms, we adopt more
datasets except IWSLT 14 DE—EN to evaluate
our proposed methods. Specifically, we choose
two WMT datasets that are widely used in previous
NAR works, WMT’ 16 English—Roman (En<+Ro)
and WMT’14 English—German (En<>De) lan-
guage pairs. The training data sizes are about 0.6M
and 4.5M for En<+Ro and En«+De. The test data
are from the corresponding newest data, which con-
tains around 3,000 and 7,000 samples, respectively.
Besides, the training and evaluation settings are the
same as those mentioned in Section 3.

4.1 What Makes the Mask-Predict Algorithm
Fail to Do Efficient Refinements?

We attribute the success of the adaptive inference
algorithm to the reasonable strategy to determine
"which token should be masked in the next decoding
step?" Comparatively, the Mask-Predict algorithm
relies on predicted confidence to select masked
tokens in the subsequent decoding step. How-
ever, we have identified two shortcomings with
this confidence-based refinement process:

1) The independent confidence updating strat-
egy for each token is sub-optimal. In the Mask-
Predict algorithm, the prediction confidence is up-
dated only for masked tokens during each decod-
ing step. On the other hand, the confidence for

unmasked tokens remains the same as the last de-
coding step when it was predicted. This denotes
that the prediction confidences of masked and un-
masked tokens are derived from different decoding
steps and under different masking conditions. Con-
sequently, this inconsistency poses challenges in
determining which tokens should be masked in
the subsequent decoding step. This shortcoming
is also supported by the comparison presented in
Table 2. Several models which can update the confi-
dence scores of all the tokens in the same decoding
step can alleviate this problem to some extent, e.g.,
Disco, RewriteNAT, and CMLMC all achieve lower
DRR and ROR even without adopting adaptive in-
ference algorithms during inference.

2) The prediction confidence of CMLM is not
strongly related to the generation quality. As
discussed in Section 2, CMLM selects the predic-
tion probability as the confidence to choose newly
masked tokens. This approach assumes that to-
kens with higher prediction probability scores are
more reliable. However, previous works have also
highlighted several issues. Ding et al. observe that
some specific tokens, such as high-frequency words
and conjunctions, consistently exhibit high confi-
dence, leading to repetitive output and neglect of
low-frequency but important words. Additionally,
Liang et al. note that the function words dominate
the high probability region of the output distribu-
tion, making it challenging to generate informa-
tive tokens using the Mask-Predict algorithm with
CMLM. However, no substantial experiment exists
to present the irrelevance between the prediction
confidence and final generation output. Thus, we
perform a simple experiment to verify this.

Exploration Process. We explore the confidence
distribution during inference. We first randomly
mask several tokens in the target sequence and
send them into CMLM to obtain the prediction con-
fidence. Then, since the Mask-Predict algorithm
always selects tokens with the highest prediction
probability, we wonder whether the probability of
masked ground truth tokens ranks first, e.g., given
the test sentence "Thank you." We first replace the
token "you" with the [MASK] token, then we send
the sequence "Thank [MASK] ."” into CMLM, and
verify whether the prediction probability of token
"you" ranks first. If not, the highest prediction
confidence does not equal the correct token.

Main Findings. We conduct analytic experi-
ments on the validation and test set. Results are

Model Iterations WMT’14 WMT’16
EN—DE DE—EN | EN—RO RO—EN
AR Transformer (Vaswani et al., 2017) N 27.30 31.29 - -
Transformer* N 28.41 32.28 34.23 34.28
Refine-NAT (Lee et al., 2018) 10 21.61 25.48 27.11 30.19
Levenshtein (Gu et al., 2019) Adv. 27.73 - 33.02 -
CMLM (Ghazvininejad et al., 2019) 10 27.03 30.53 33.08 33.31
DisCo (Kasai et al., 2020a) Adv. 27.34 - 33.25 33.22
SMART (Ghazvininejad et al., 2020) 10 27.65 31.27 33.85 33.53
JM-NAT (Guo et al., 2020) 10 27.69 32.24 33.52 33.72
RDP (Ding et al., 2020) 10 27.80 - 33.70 -
Iterative NAR LFR (Ding et al., 2021) 10 27.80 - - 33.90
RewriteNAR (Geng et al., 2021) Adv. 27.83 31.52 33.63 34.09
MvCR-NAT (Xie et al., 2021) 10 27.39 31.18 33.38 33.56
CORR (Huang et al., 2022b) 10 28.19 31.31 34.31 34.08
CMLMC (Huang et al., 2022b) 10 28.37 31.41 34.57 34.13
CCMLM (Cheng and Zhang, 2022) 10 27.93 31.57 33.88 34.18
AMOM (Xiao et al., 2023) 10 27.57 31.67 34.62 34.82
EECR (Chen et al., 2024) 10 28.04 31.65 34.33 34.32
4 28.35 32.72 34.80 35.08
. AMOMC 10 2890 3325 35.01 3526
Ours
4 28.82 33.25 35.15 35.15
AMOMC + ARSCORER f 10 29.17 33.33 35.27 35.48

Table 3: Results on 4 WMT machine translation tasks. * denotes the results of our implementations. { denotes that
the BLEU improvements over AMOMC are statistically significant with p < 0.05.

Set | Win (%) | Lose (%)
Valid 54.61 45.39
Test 54.10 45.90

Table 4: Win denotes the model predicts the ground
truth token as the final results, Lose denotes the vice.

shown in Table 4. We find that only around 54
percent of tokens meet our expectations, i.e., these
ground truth tokens have the highest prediction
probabilities. This shows that the prediction confi-
dence achieved from the model itself is not strongly
related to the correct tokens. This also provides ev-
idence that utilizing an extra module to score the
predicted tokens, such as the Locator, proves to be
more effective than the model itself. We attribute
this failure to the conditional independent factor-
ization for CMLM learning, which causes CMLM
to fail to capture the target-side dependency well
during training (Gu and Kong, 2021).

4.2 Are There More Effective Inference
Algorithms for Iterative NAR Models?

The explorations in Section 4.1 explain that why
adaptive inference algorithms are more effective
than the traditional Mask-Predict algorithm. How-
ever, noticing that adopting the Locater also leads
to performance declines, we first analyze the corre-

sponding reason. Since the Locator module assigns
zero-one discrete scores for predicted tokens, i.e.,
the token will be masked again in the next decoding
step once it is scored as zero, and not be masked if
it is scored as one. We point out that this scoring
mechanism is too absolute, e.g., there is no differ-
ence for unreliable tokens which are all scored as
zero, and once the scores for all tokens are one,
there are no subsequent actions for further improv-
ing the generation quality. To explore the potential
of a more effective extra scoring module for it-
erative NAR models, we intended to replace the
zero-one discrete score with a zero-one continuous
distribution, in which we can design the refinement
process more flexibly and constantly.

Exploration Process. We aim to find a simple
yet effective mechanism to score each token within
a sentence, and then we can depend on these scores
to determine which tokens should be masked in
the subsequent decoding step. Motivated by the
previous practice that a pre-trained AR model can
successfully serve as an effective scorer on the
sentence-lever to evaluate the fluency of sentences,
we can extend it as a token-level scorer, named
ARSCORER in the remaining space of this paper.
Specifically, we utilize the generated tokens from
each decoding step as inputs for a pre-trained AR
model. The AR model conducts its prediction on

this input sequence in an autoregressive manner.
Subsequently, we obtain the corresponding predic-
tion distribution and use the probability associated
with the input token index as the final score. The
scores range from zero to one after undergoing
the normalized softmax operation. Comparatively,
adopting ARSCORER offers several advantages
over the Mask-Predict algorithm, which have also
been mentioned in the previous section: (1) The
AR model can assess the validity of each token
in the whole sentence and update the correspond-
ing prediction probability of each token after each
decoding step of NAR model. (2) Previous stud-
ies have shown that models trained with autore-
gressive factorization excel in capturing target side
dependencies compared to NAR models (Huang
et al., 2022a). Besides, these AR models do not
suffer from the multi-modality problem. Therefore,
adopting extra ARSCORE to provide the prediction
score is more robust and effective.

Main Findings. The results on various WMT
datasets are shown in Table 3, we can find that: (1)
Combining superior methods (AMOMC) achieves
significant performance improvements, outper-
forming all baseline models around 0.8 BLEU
score. (2) Adopting ARSCORER can quickly
achieve competitive performance, i.e., it can get
comparable even better performance with only 4
decoding steps compared with AMOMC with 10
decoding steps, outperforming all baseline models
and AR counterparts significantly. (3) Adopting
ARSCORER outperforms AMOMC in all evalua-
tion settings, especially with relatively fewer decod-
ing steps, indicating ARSCORER can bring benefit
for building efficient iterative NAR models.

Further Analysis. We further compare the back-
bones models with those with ARSCORER based
on our proposed two metrics, DRR and ROR, as
mentioned in Section 3.2. Results on IWSLT’ 14
DE—EN and WMT’ 16 EN—RO datasets are pre-
sented in Table 5. We can find that: (1) The mod-
els with ARSCORER can achieve lower DRR and
ROR compared with the corresponding baselines.
(2) DRR and ROR are higher on the WMT’16
EN—RO dataset across all models, indicating that
this dataset is relatively difficult to learn.

4.3 Summary

In this section, we aim to explore the potential for
better efficient strategies. We begin by examin-
ing the limitations of the Mask-Predict algorithm

Methods Iteration BLEU DRR (%) ROR (%)

IWSLT’14 DE—EN

CMLM 10 33.55 134 19.1
+ ARSCORER 10 34.05 10.0 13.4

AMOMC 10 35.08 16.8 16.7
+ ARSCORER 10 35.61 9.8 13.6

WMT’16 EN—RO

CMLM 10 33.19 17.1 20.1
+ ARSCORER 10 33.55 10.9 14.8

AMOMC 10 35.03 21.4 244
+ ARSCORER 10 35.27 15.8 19.0

Table 5: Results of DRR and ROR with ARSCORER.

in facilitating consistent and efficient refinements.
Through thorough analysis and corresponding ex-
perimentation, we attribute these limitations to the
independent confidence updating strategies and the
unrelated prediction confidence to generation out-
put. Consequently, we endeavor to identify a supe-
rior strategy to address these issues. Fortunately,
by adopting the pre-trained AR models to serve as
a scorer, iterative NAR models can conduct steady
and effective refinements, thereby achieving supe-
rior performance with even fewer decoding steps,
and getting closer to the efficient iterative NAR
models. It is worth noting that there are other viable
options for scoring, such as adopting a pre-trained
language model or even current well-known large
language models, we leave this as future work.

5 Conclusion and Future Outlook

In this paper, we conduct extensive experiments
and detailed analysis to address: how to build
more effective and competitive iterative NAR mod-
els. By combining competitive strategies and the
newly proposed ARSCORER, our final models set
the new state-of-the-art results on five widely-used
datasets even with fewer decoding steps and lead to
completely outperforming their AR counterparts.

In the future, we will extend our explorations to
more scenarios since CMLM-based iterative NAR
models have been successfully applied in speech
and video-related fields (Higuchi et al., 2021). Be-
sides, there is also a need to explore methods for
conducting efficient denoising steps for diffusion
models (Sohl-Dickstein et al., 2015) since they suf-
fer greatly from low efficiency with numerous de-
noising steps (Tang et al., 2023; Gong et al., 2023).
Lastly, recent advancements in LLMs (Touvron
et al., 2023b) hold promise in serving as better
scorers for iterative NAR models.

Limitations

Firstly, since CMLM-based iterative NAR models
have been applied to various language generation
tasks, we only conduct our explorations on ma-
chine translation task. Besides, although CMLM-
based methods are one of the most widely-used and
well-known iterative NAR models, there exist other
categories of iterative NAR models, such as editing-
based models (Stern et al., 2019; Gu et al., 2019),
denoising based models (Lee et al., 2018; Savinov
et al., 2021), we only consider CMLM-based meth-
ods in this paper. Besides, our proposed efficient
strategy, ARSCORER, relies on a pre-trained AR
model to serve as a scorer for each token, it brings
some extra costs to achieve this AR model and the
corresponding prediction confidence.

References

William Chan, Chitwan Saharia, Geoffrey Hinton, Mo-
hammad Norouzi, and Navdeep Jaitly. 2020. Imputer:
Sequence modelling via imputation and dynamic pro-
gramming. In ICML, pages 1403-1413. PMLR.

Xinran Chen, Sufeng Duan, and Gongshen Liu. 2024.
Improving non-autoregressive machine translation
with error exposure and consistency regularization.
arXiv preprint arXiv:2402.09725.

Hao Cheng and Zhihua Zhang. 2022. Con-nat: Con-
trastive non-autoregressive neural machine transla-
tion. In Findings of the Association for Computa-
tional Linguistics: EMNLP 2022, pages 6219-6231.

Liang Ding, Longyue Wang, Xuebo Liu, Derek F
Wong, Dacheng Tao, and Zhaopeng Tu. 2020. Un-
derstanding and improving lexical choice in non-
autoregressive translation. In /ICLR.

Liang Ding, Longyue Wang, Xuebo Liu, Derek F Wong,
Dacheng Tao, and zhaopeng Tu. 2021. Rejuvenat-
ing low-frequency words: Making the most of par-
allel data in non-autoregressive translation. In ACL-
IJCNLP, pages 3431-3441.

Xinwei Geng, Xiaocheng Feng, and Bing Qin. 2021.
Learning to rewrite for non-autoregressive neural ma-
chine translation. In Proceedings of the 2021 Con-
ference on Empirical Methods in Natural Language
Processing, pages 3297-3308.

Marjan Ghazvininejad, Omer Levy, Yinhan Liu, and
Luke Zettlemoyer. 2019. Mask-predict: Parallel de-
coding of conditional masked language models. In
Proceedings of the 2019 Conference on Empirical
Methods in Natural Language Processing and the 9th
International Joint Conference on Natural Language
Processing, pages 6112-6121.

Marjan Ghazvininejad, Omer Levy, and Luke Zettle-
moyer. 2020. Semi-autoregressive training im-
proves mask-predict decoding. arXiv preprint
arXiv:2001.08785.

Shansan Gong, Mukai Li, Jiangtao Feng, Zhiyong Wu,
and Lingpeng Kong. 2023. Diffuseq-v2: Bridg-
ing discrete and continuous text spaces for accel-
erated seq2seq diffusion models. arXiv preprint
arXiv:2310.05793.

Jiatao Gu, James Bradbury, Caiming Xiong, Victor OK
Li, and Richard Socher. 2018. Non-autoregressive
neural machine translation. In International Confer-
ence on Learning Representations.

Jiatao Gu and Xiang Kong. 2021. Fully non-
autoregressive neural machine translation: Tricks of
the trade. In Findings of the Association for Com-
putational Linguistics: ACL-IJCNLP 2021, pages
120-133.

Jiatao Gu, Changhan Wang, and Junbo Zhao. 2019. Lev-
enshtein transformer. In Advances in Neural Infor-
mation Processing Systems, volume 32, pages 11181-
11191.

Junliang Guo, Linli Xu, and Enhong Chen. 2020.
Jointly masked sequence-to-sequence model for non-
autoregressive neural machine translation. In Pro-
ceedings of the 58th Annual Meeting of the Associa-
tion for Computational Linguistics, pages 376-385.

Pei Guo, Yisheng Xiao, Juntao Li, Yixin Ji, and Min
Zhang. 2023. Isotropy-enhanced conditional masked
language models. In Findings of the Association
for Computational Linguistics: EMNLP 2023, pages
8278-8289.

Yongchang Hao, Shilin He, Wenxiang Jiao, Zhaopeng
Tu, Michael Lyu, and Xing Wang. 2021. Multi-task
learning with shared encoder for non-autoregressive
machine translation. In Proceedings of the 2021
Conference of the North American Chapter of the
Association for Computational Linguistics: Human
Language Technologies, pages 3989-3996.

Jindfich Helcl, Barry Haddow, and Alexandra Birch.
2022. Non-autoregressive machine translation:
It’'s not as fast as it seems. arXiv preprint
arXiv:2205.01966.

Yosuke Higuchi, Hirofumi Inaguma, Shinji Watanabe,
Tetsuji Ogawa, and Tetsunori Kobayashi. 2021. Im-
proved mask-ctc for non-autoregressive end-to-end
asr. In ICASSP 2021, pages 8363—8367. IEEE.

Fei Huang, Pei Ke, and Minlie Huang. 2023. [tacl]
directed acyclic transformer pre-training for high-
quality non-autoregressive text generation. In The
61st Annual Meeting Of The Association For Compu-
tational Linguistics.

Fei Huang, Tianhua Tao, Hao Zhou, Lei Li, and Minlie
Huang. 2022a. On the learning of non-autoregressive
transformers. In International Conference on Ma-
chine Learning, pages 9356-9376. PMLR.

Xiao Shi Huang, Felipe Perez, and Maksims Volkovs.
2022b. Improving non-autoregressive translation
models without distillation. In International Con-
ference on Learning Representations.

Jungo Kasai, James Cross, Marjan Ghazvininejad, and
Jiatao Gu. 2020a. Parallel machine translation with
disentangled context transformer. arXiv preprint
arXiv:2001.05136.

Jungo Kasai, Nikolaos Pappas, Hao Peng, James Cross,
and Noah Smith. 2020b. Deep encoder, shallow
decoder: Reevaluating non-autoregressive machine
translation. In ICLR.

Yoon Kim and Alexander M Rush. 2016. Sequence-
level knowledge distillation. In EMNLP, pages 1317—
1327.

Philipp Koehn. 2004. Statistical significance tests for
machine translation evaluation. In Proceedings of
the 2004 conference on empirical methods in natural
language processing, pages 388-395.

Jason Lee, Elman Mansimov, and Kyunghyun Cho.
2018. Deterministic non-autoregressive neural se-
quence modeling by iterative refinement. In Proceed-
ings of the 2018 Conference on Empirical Methods
in Natural Language Processing, pages 1173—1182.

Xiaobo Liang, Zecheng Tang, Juntao Li, and Min Zhang.
2023. Open-ended long text generation via masked
language modeling. In ACL.

Xiaobo Liang, Lijun Wu, Juntao Li, and Min Zhang.
2022. Janus: Joint autoregressive and non-
autoregressive training with auxiliary loss for se-
quence generation. In EMNLP, pages 1067-1073.

OpenAl. 2023. Gpt-4 technical report.

Myle Ott, Sergey Edunov, Alexei Baevski, Angela Fan,
Sam Gross, Nathan Ng, David Grangier, and Michael
Auli. 2019. fairseq: A fast, extensible toolkit for
sequence modeling. In Proceedings of NAACL-HLT
2019: Demonstrations.

Kishore Papineni, Salim Roukos, Todd Ward, and Wei-
Jing Zhu. 2002. Bleu: a method for automatic evalu-
ation of machine translation. In Proceedings of the
40th annual meeting of the Association for Computa-
tional Linguistics, pages 311-318.

Lihua Qian, Hao Zhou, Yu Bao, Mingxuan Wang, Lin
Qiu, Weinan Zhang, Yong Yu, and Lei Li. 2021.
Glancing transformer for non-autoregressive neural
machine translation. In Proceedings of the 59th An-
nual Meeting of the Association for Computational
Linguistics and the 11th International Joint Confer-
ence on Natural Language Processing, pages 1993—
2003.

Nikolay Savinov, Junyoung Chung, Mikolaj Binkowski,
Erich Elsen, and Aaron van den Oord. 2021. Step-
unrolled denoising autoencoders for text generation.
arXiv preprint arXiv:2112.06749.

10

Jascha Sohl-Dickstein, Eric Weiss, Niru Mah-
eswaranathan, and Surya Ganguli. 2015. Deep un-
supervised learning using nonequilibrium thermody-
namics. In ICML, pages 2256-2265. PMLR.

Mitchell Stern, William Chan, Jamie Kiros, and Jakob
Uszkoreit. 2019. Insertion transformer: Flexible se-
quence generation via insertion operations. In ICML,
pages 5976-5985. PMLR.

Zecheng Tang, Pinzheng Wang, Keyan Zhou, Juntao
Li, Zigiang Cao, and Min Zhang. 2023. Can diffu-
sion model achieve better performance in text gener-
ation? bridging the gap between training and infer-
ence! arXiv preprint arXiv:2305.04465.

Hugo Touvron, Thibaut Lavril, Gautier Izacard, Xavier
Martinet, Marie-Anne Lachaux, Timothée Lacroix,
Baptiste Roziere, Naman Goyal, Eric Hambro, Faisal
Azhar, Aurelien Rodriguez, Armand Joulin, Edouard
Grave, and Guillaume Lample. 2023a. Llama: Open
and efficient foundation language models. arXiv
preprint arXiv:2302.13971.

Hugo Touvron, Louis Martin, Kevin Stone, Peter Al-
bert, Amjad Almahairi, Yasmine Babaei, Nikolay
Bashlykov, Soumya Batra, Prajjwal Bhargava, Shruti
Bhosale, et al. 2023b. Llama 2: Open founda-
tion and fine-tuned chat models. arXiv preprint
arXiv:2307.09288.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob
Uszkoreit, Llion Jones, Aidan N Gomez, Lukasz
Kaiser, and Illia Polosukhin. 2017. Attention is all
you need. In Advances in Neural Information Pro-
cessing Systems, pages 5998-6008.

Yisheng Xiao, Lijun Wu, Junliang Guo, Juntao Li,
Min Zhang, Tao Qin, and Tie-yan Liu. 2022. A
survey on non-autoregressive generation for neural
machine translation and beyond. arXiv preprint
arXiv:2204.09269.

Yisheng Xiao, Ruiyang Xu, Lijun Wu, Juntao Li, Tao
Qin, Tie-Yan Liu, and Min Zhang. 2023. Amom:
Adaptive masking over masking for conditional
masked language model. Proceedings of the AAAI
Conference on Artificial Intelligence, 37(11):13789—
13797.

Pan Xie, Zexian Li, and Xiaohui Hu. 2021. Myvsr-
nat: Multi-view subset regularization for non-
autoregressive machine translation. arXiv preprint
arXiv:2108.08447.

Wayne Xin Zhao, Kun Zhou, Junyi Li, Tianyi Tang,
Xiaolei Wang, Yupeng Hou, Yingqian Min, Beichen
Zhang, Junjie Zhang, Zican Dong, et al. 2023. A
survey of large language models. arXiv preprint
arXiv:2303.18223.

A Details for Follow-up Methods

We supplement the details for follow-up methods of
CMLM we adopted for explorations as mentioned
in Section 2.

JM-NAT Guo et al. introduce a jointly masked
sequence-to-sequence model. Unlike the tradi-
tional CMLM which only masks the target se-
quence during training, JM-NAT also masks the
source sequence to help train the encoder more
rigorously. Besides, in order to alleviate the prob-
lem of translating duplicate words, they propose to
train the decoder based on the consecutive masking
of the decoder input with an ngram loss function
rather than the original uniform masking.

Disco Kasai et al. propose an attention-masking
based model, Disentangled Context (DisCo) trans-
former. During training, Disco is learned to pre-
dict each target token given an arbitrary subset of
the other reference tokens, which is more efficient
than just predicting masked tokens in the origi-
nal CMLM. During inference, unlike the previous
Mask-Predict algorithm which just updates masked
tokens in each decoding step (i.e., predicting Y,,,4 sk
based on Y,;), Disco introduces an easy-first pol-
icy which where each token will be predicted in
each step dependent on relatively easier tokens (i.e.,
predicting each Y; based on Y.;, where Y; de-
notes tokens whose prediction confidence is higher
than Y; in the previous iteration). Disco stops de-
coding when no new tokens are generated in one
specific decoding step. This easy-first policy can
largely improving the inference latency.

Multitask-NAT Hao et al. introduces Multitask-
NAT which utilizes a shared encoder and separated
decoders for both AR and NAR modeling during
training. They assume that AR training can bring
benefits for NAR training and aim to adopt multi-
task learning to transfer the AR knowledge to NAR
models through encoder sharing.

RewriteNAT Geng et al. propose RewriteNAT, a
new framework that contains a Locator and Revisor
module that locate the incorrect words within pre-
viously generated translations and then revise them,
respectively. Specifically, the Locator module can
transform the problem of determining which tokens
to be masked in the next decoding step into into a
binary classification problem instead of depending
on the self-predicted confidence, i.e., the Locator
will predict a special symbol ([MASK] or [KEEP])
for each token. Once the token is predicted as
[MASK], it will be masked again, and vice versa.
RewriteNAT can finish the generation process once
the Locator module predicts all the target tokens as
CKEEP].

11

SMART Ghazvininejad et al. introduce Semi-
Autoregressive Training (SMART) to help the train-
ing process better match the Mask-Predict algo-
rithm with multiple decoding steps. Specifically,
since the model can not see the ground truth tokens
during inference, it only takes the model prediction
in the previous decoding steps as partially-observed
tokens to make predictions. This leads to incon-
sistency compared with training methods. Thus
SMART first constructs a mixed training example
and then encourages the model to recover from the
model prediction errors during training,

CMLMC Huang et al. propose Condi-
tional Masked Language Model with Correction
(CMLMC) which incorporates a self-correction
mechanism into traditional CMLM and several
modifications on the decoder structure such as ex-
posing the positional encodings and incorporating
causal attention layers to differentiate adjacent to-
kens. CORR is the corresponding variant which
only adopts the self-correction mechanism without
the structure modifications in CMLMC. Specif-
ically, except for adopting masking methods in
target sequence during training, CMLMC aslo re-
places the partial unmasked tokens with model pre-
dictions based on a fully masked target sequence.
Then CMLMC learns to predict the masked tokens
and correct the replaced tokens simultaneously dur-
ing training. During inference, this self-correction
mechanism helps the model to correct the unreli-
able tokens in the unmasked subset.

AMOM Xiao et al. propose an Adaptive Mask-
ing Over Masking (AMOM) strategy based on
CMLM which contains two different adaptive
masking mechanisms which work on the inputs
of encoder and decoder respectively. Specifically,
based on the ratio of the target sequence, AMOM
also masks the specific number of tokens in the
source sequence to make the encoder optimization
easier. Besides, AMOM conducts an extra masking
step where the masking ratio of the target sequence
in this step is adaptive to the correction ratio of
the model prediction. This two-step masking strat-
egy can help the model capture the masking ratio
changes in various decoding steps during inference.

B Training Hyper-parameters

During our experiments, we set training hyper-
parameters for CMLM in the same way as CMLM
realization in the Fariseq library, and for AMOMC,

we follow those adopted in CMLMC (Huang et al.,
2022b). Now, we present these training hyper-
parameters in Table 6.

Models Parameters IWSLT’14 DE-EN WMT’14 EN&DE WMT’16 EN~RO

learning rate Se-4 Te-4 Se-4
warmup_step 4k 10k 10k
CMLM dropout 0.3 0.2 0.3
update_step 300k 300k 300k
learning rate Se-4 Te-4 Se-4
warmup_step 30k 40k 15k
AMOMC dropout 0.3 0.2 0.3
update_step 175k 150k 120k

Table 6: Training hyper-parameters for CMLM and
AMOMC.

	Introduction
	Preliminaries
	In-depth Explorations of Current Iterative NAR Models
	How Well do Current Refinement Strategies Perform for Iterative NAR Models?
	How to Better Evaluate the Refinement Process of Different Iterative NAR Models?
	What are the Key Components for Iterative NAR Models to Perform Better?
	Can Combining Superior Methods Bring Benefits?
	Summary

	Trials for Better Efficient Strategies
	What Makes the Mask-Predict Algorithm Fail to Do Efficient Refinements?
	Are There More Effective Inference Algorithms for Iterative NAR Models?
	Summary

	Conclusion and Future Outlook
	Details for Follow-up Methods
	Training Hyper-parameters

