
State Abstraction Discovery
from Progressive Disaggregation Methods

Orso Forghieri
CMAP, École polytechnique, Institut Polytechnique de Paris

orso.forghieri@polytechnique.edu

Hind Castel
Télécom SudParis, Institut Polytechnique de Paris

hind.castel@telecom-sudparis.eu

Emmanuel Hyon
LIP6, Sorbonne Université

emmanuel.hyon@parisnanterre.fr

Erwan Le Pennec
CMAP, École polytechnique, Institut Polytechnique de Paris

erwan.le-pennec@polytechnique.edu

Abstract

The high dimensionality of model-based Reinforcement Learning (RL) and Markov
Decision Processes (MDPs) can be reduced using abstractions of the state and
action spaces. Although hierarchical learning and state abstraction methods have
been explored over the past decades, explicit methods to build useful abstractions
of models are rarely provided. In this work, we study the relationship between
Approximate Dynamic Programming (ADP) and State Abstraction. We provide an
estimation of the approximation made through abstraction, which can be explicitly
calculated. We also introduce a way to solve large MDPs through an abstraction
refinement process that can be applied to both discounted and total reward criteria.
This method allows finding explicit state abstractions while solving any MDP with
controlled error. We then integrate this state space disaggregation process into
classical Dynamic Programming algorithms, namely Approximate Value Iteration,
Q-Value Iteration, and Policy Iteration. We show that this method can decrease
the solving time of a wide range of models and can also describe the underlying
dynamics of the MDP without making any assumptions about the structure of the
problem. We also conduct an extensive numerical comparison and compare our
approach to existing aggregation methods to support our claims.

1 Introduction

The Markov Decision Process (MDP) serves as a comprehensive framework for addressing stochastic
dynamic control problems. Within this framework, the environment undergoes stochastic evolution,
influenced by the actions of an agent. The primary objective is to optimize expected gains through
strategic decision-making [Puterman, 2014]. The global objective is to identify the optimal sequence
of actions, referred to as a policy, that maximizes the overall return. This pursuit extends to a diverse
array of problem domains, as highlighted in a recent overview [Boucherie and van Dijk, 2017]. These
encompass challenges in inventory control, energy management, network optimization involving

1This work mainly extends the analysis of [Forghieri et al., 2024]. It summarizes the previous theoretical
results and provides a wide range of experiments and further interpretations.
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queues, and navigating stochastic shortest paths in robot exploration. Achieving near-optimal control
is crucial, necessitating precise solutions to address these problems.

Model-based methods for MDPs often struggle with high-dimensional state and action spaces,
requiring decomposition techniques. State Abstraction aims to cluster the original state space while
minimizing information loss, but the partitioning problem is a complex combinatorial challenge.
We introduce a class of iterative aggregation algorithms for infinite horizon problems with expected
discounted and total criteria. Our approach integrates state abstraction with Approximate Value
Iteration (AVI), Q-Value, and Policy Iteration (PI) algorithms, focusing on spatial abstraction to solve
the exact process using aggregation and building abstractions with bounded error. A key innovation is
progressive disaggregation during iterations, grouping states with similar evolution under the Bellman
operator to enhance efficiency. We provide a convergence proof without structural assumptions,
demonstrating reduced computational complexity and valuable abstractions. Numerical comparisons
across various models highlight our algorithm’s superiority, especially against other abstraction
methods.

The structure of the article unfolds as follows: we first link Approximate Dynamic Programming and
State Abstraction. We then explicit a way to extract an explicit State Abstraction while diminishing
an error to optimal bound. We finally benchmark our disaggregation method over a wide range of
models and establish a connection between approximate Bellman operators with State Aggregation
and the optimal Bellman operator of the abstract MDP. Subsequently, we articulate a bound on error
to optimal value function contingent on the quality of the aggregation employed and then introduce
our algorithms. Lastly, we assess the efficacy of our method through benchmarking on classical
models, showcasing its efficiency in comparison to alternative approaches.

Related Works Dealing with large spaces is a well-documented challenge in the MDP framework.
To overcome this, various strategies decompose complex MDPs into more manageable counterparts.
Notably, Factored MDPs [Guestrin et al., 2003] represent states as dynamic feature vectors and use
Dynamic Bayesian Networks for compact representation and efficient computation. Another recent
approach, Reduced-Rank MDPs [Siddiqi et al., 2010], expresses transition probabilities as scalar
products of continuous functions, offering an effective dimensionality reduction technique. A general
and promising method for MDP approximation is the hierarchical approach [Hengst, 2012], which
considers either temporal abstractions for actions persisting over time [Sutton et al., 1999], or state
abstractions by aggregating states into meaningful regions [Li et al., 2006], enhancing efficiency
in handling complex MDPs. Considering Partially Observable MDPs, Point-based Value Iteration
[Pineau et al., 2003] updates the value function of relevant states to approximate the optimal value
function. Monte-Carlo Tree Search [Coulom, 2006] relies on a model-based local policy optimization,
but will suffer from a state abstraction that loses the tree structure of the actions. Moreover, most
policy-based approaches are geared towards Deep Learning methods using policy gradient. They are
efficient in practice, but rarely ensure guarantees on quadratic or sup-norm error.

The challenge of state aggregation in Reinforcement Learning (RL) involves effectively grouping
states while ensuring the quality of the abstraction. In Model-Based RL, spatial aggregation methods
range from metric-relative approaches to deep learned representations [Starre et al., 2022]. The selec-
tion of merging criteria is crucial, with various approaches proposed in the literature. These include
bisimulation for state grouping [Dean and Givan, 1997], soft aggregation techniques where states
have probabilities of belonging to an aggregated region [Singh et al., 1994], metric-based grouping
[Abel et al., 2016] or limiting the number of regions [Ferrer-Mestres et al., 2020]. Evaluating the
quality of aggregation typically involves leveraging results from approximated dynamic programming
and stochastic optimization [Tsitsiklis and Van Roy, 1996, Abel, 2019]. Additionally, literature ex-
plores planning on a fixed aggregation [Gopalan et al., 2017], although such approaches often require
information that is not available before addressing the original MDP.

Several techniques have been proposed to construct abstractions without relying on information about
the optimal solution of MDPs [Bean et al., 1987, Rogers et al., 1991]. Notably, one introduced aggre-
gation based on the Bellman Residual, contributing significantly to the acceleration of optimization
processes [Bertsekas et al., 1988]. Recent works have emphasized the use of options in approxi-
mating MDPs for efficient planning. For instance, ones incorporate options into state abstractions
to expedite planning processes [Ciosek and Silver, 2015, Abel et al., 2020]. Others propose identi-
fying relevant subgoals to accelerate planning by temporal abstraction [Jothimurugan et al., 2021].
However, these techniques often increase computational complexity. In contrast, one can apply
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aggregation to Value Iteration (VI) to speed up computations by grouping states with similar values
[Chen et al., 2022]. While this approach improves computational speed, it does not fully leverage
spatial MDP structure. Our method addresses this gap by maintaining previous aggregations, resulting
in a more effective grouping of states with similar optimal values and trajectories through optimal
Bellman operator iteration. One further demonstrates the significance of aggregation, but highlight
the challenge of refining aggregation without worsening the distance to the optimal value function
[Tagorti et al., 2013].

2 Problem Setup

As our approach is grounded in the MDP framework, we first provide notations for Dynamic
Programming and then integrate State Abstraction definitions as well as Dynamic Programming ones.

Markov Decision Processes MDPs provide a framework for decision-making optimization
[Puterman, 2014]. Formally, a finite MDP is specified as a tuple ⟨S,A, T,R, γ⟩, where S is the set of
possible states, A is the set of actions that the agent can select, T (s, a, s′) ∈ [0, 1] is the environment
transition probability from s to s′ under action a and R (s, a) ∈ R describes the reward received
by the agent in s triggering action a. Finally, we consider bounded rewards and a discount factor
γ ∈ (0, 1] to weight the incoming reward priority.

The objective is to maximize the expected sum of discounted immediate rewards in the upcoming
trajectory of states for an infinite horizon. The researched solution is a deterministic policy π : S 7→ A
that can decide which action to select when in state s ∈ S . For a given policy π, it is thus possible to
define the value function that gives a value to each state. It is defined as the expected return applying
the policy π, and we have ∀s ∈ S:

V π(s) = E
st+1∼T (st,at,·)

[ ∞∑
t=0

γtR (st, π(st)) |s0 = s

]
.

The planning problem is centered on maximizing the expected return. In our setting, there exists a
non necessarily unique policy π∗ such that V π∗

(s) = maxπ V
π(s) simultaneously for all states s.

It is worth noting that the optimal value function V π∗
(denoted as V ∗) is the unique solution to the

optimal Bellman Equation

V (s) = max
a∈A

(
R (s, a) + γ

∑
s′∈S

T (s, a, s′) · V (s′)

)
, (1)

for all s ∈ S [Puterman, 2014]. Along this article, we denote by (T ∗V ) (s) the right term of Equation
(1).

Dynamic Programming Any value function can be computed recursively. Hence, for a given
policy π ∈ AS , we consider here the Bellman operator

T π : V ∈ RS 7→ Rπ + γTπ · V ∈ RS .

with Rπ(s) = R (s, π(s)) and Tπ(s, s′) = T (s, π(s), s′). This Bellman operator updates any value
function V relatively to the reward and transition functions. It is a contraction for the sup-norm
and its iteration can lead to a value function solution of the Bellman equation V = T πV . One also
considers the optimal Bellman operator T ∗ defined by Equation (1).

So far, we have considered the state value function V , but a similar analysis can be conducted for the
state-action value function Q defined by

Qπ(s, a) = E
(st,at)t

[ ∞∑
t=0

γtR (st, π(st)) |s0 = s, a0 = a

]
.

The optimal Bellman operator in the Q-value case exists and is defined as

T ∗
Q : Q ∈ RS×A → R+ γT ·max

a∈A
(Q) ∈ RS×A .
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The practical solving of an MDP can be done either by maximizing the expected return V π for any
state or by minimizing the Bellman residual, namely ∥V − T ∗V ∥∞, usually iterating the Bellman
operator T ∗ [Puterman, 2014]. The Policy Iteration algorithm alternates between finding the solution
to V = T πV and updating the current policy π according to

πt+1(s)← argmax
a∈A

(
R (s, a) + γ

∑
s′∈S

T (s, a, s′)V πt(s′)

)
.

State Abstraction The concept of constructing a new MDP through state aggregation has been
explored in the literature, particularly in the examination of abstract MDPs [Li et al., 2006]. This
involves considering a ground MDP, denoted asMG = ⟨S,A, T,R, γ⟩, and creating a new abstract
MDP, denoted asMA = ⟨SA,A, TA, RA, γ⟩, from it. We first define State Aggregation.

Definition 1 (State aggregation [Tsitsiklis and Van Roy, 1996]). Let MG be an MDP and S =⊔K
k=1 Sk a partition of the state space. We attribute a weight ωk(s) ≥ 0 to each state of a region

Sk such that
∑

s∈Sk
ωk(s) = 1 and s /∈ Sk =⇒ ωk(s) = 0. We finally store the weights into a

matrix ω ∈ [0, 1]K×|S| and the state-region matching in a matrix ϕ such that ϕ[s, k] = 1s∈Sk
. We

then name the tuple
(
(Sk)1≤k≤K , ϕ, ω

)
a state aggregation.

When all states of a region are equally weighted, ω can be computed as follows: ωk(s) =
1

|Sk| , which

corresponds to ω =
(
ϕT · ϕ

)−1 · ϕT [Bertsekas et al., 1988]. Let us note that the following analysis
can also be done in the general case of unequally weighted states. From now, the State Abstraction
simply consists in building a new MDP using this aggregation.

Definition 2 (Abstract MDP [Li et al., 2006]). LetMG be an MDP and
(
(Sk)1≤k≤K , ϕ, ω

)
a state

aggregation. We represent each region Sk by an abstract state sk. The abstract MDPMA can be
therefore defined by SA = {sk, 1 ≤ k ≤ K}, AA = A, TA = ω · T · ϕ and RA = ω ·R.

The interest of State Abstraction is to reduce the size of the original MDP, gathering states with
similar properties like a close optimal value, a close optimal policy or a close optimal Q-value
[Abel et al., 2016]. It can be used to approximate the ground optimal policy, but also to highlight a
structure in the ground MDP.

Approximate Dynamic Programming While Dynamic Programming involves applying an op-
erator to enhance the current solution, Approximate Dynamic Programming focuses on updating
an approximated version of the value function [Powell, 2007]. In our context, we adopt the linear
parameterization

Vθ(s) =

K∑
k=1

θk1s∈Sk
,

with (Sk)1≤k≤K a state aggregation. Those value functions are constant over each region Sk. The
approximate Bellman operator relative to this family of functions (denoted ΠT ∗) is made of the
optimal Bellman operator and a projection matrix Π that averages the value on each region to obtain
a piecewise constant value function.

Definition 3 (Projected optimal Bellman operator [Tsitsiklis and Van Roy, 1996]). Let us note P the
set of value functions that are piecewise constant relatively to (Sk)k. We assume that the states are
equally weighted in each partition: ωk(s) =

1
|Sk| . Then, the operator ΠT ∗ that checks

∀V ∈ RS , ΠT ∗V ∈ argmin
V ′∈P

∥V ′ − T ∗V ∥2

is the projected optimal Bellman operator ΠT ∗ = ϕ · ω · T ∗ where ϕ and ω are described in
Definition 1.

We define in the same way the projected Bellman operators ΠT ∗
Q and ΠT π for any policy π with

Π = ϕ · ω.
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3 Projected Bellman Operators and State Abstraction

We describe here the relationship between the Least Squares approximate Bellman operator and State
Abstraction and provide evaluations for its complexity.

Projected Bellman operator and Abstract MDP We consider here the unique fixed point of the
projected Bellman operator that satisfies Q = ΠT ∗

QQ. We claim that this fixed point Q̃, which is
piecewise constant as ω averages values, is exactly the optimal Q-value function of the associated
Abstract MDP when written in a contracted form i.e. without repetitions. We note that this property
generalizes to the Bellman operator T π , but not to T ∗.
Proposition 1 (Projected Bellman fixed point and Abstract MDP [Forghieri et al., 2024]). Let
((Sk)k, ϕ, ω) be an aggregation of S and Q̃ = ϕ · Q be the unique fixed point of the operator
ΠT ∗

Q that checks Q = ΠT ∗
QQ. Then Q is the optimal Q-value function of the abstract MDPMA

associated to ((Sk)k, ϕ, ω) as described in Definition 2.

We notice that this property is also checked for the operator T π̃ where π̃ is a piecewise-constant
policy relatively to (Sk)k but not for T ∗. In Proposition 1, we claim that the solution to Q = ΠT ∗

QQ
is also the optimal Q-value function of the abstract MDP.

In Proposition 2, we state the convergence of iteration of the operator ΠT ∗ when applied to any
V0 ∈ RS . This property is also true for the operators ΠT ∗

Q and ΠT π [Forghieri et al., 2024].
Proposition 2 (Convergence of Projected Bellman operator iteration [Bertsekas et al., 1988]). Let
((Sk)k, ϕ, ω) be any aggregation of S. Then the sequence{

V0 ∈ RS

Vt+1 := ϕ · ω · T ∗Vt

converges to the fixed point equation solution V = ϕ · ω · T ∗V .

In Table 1, we summarize the complexity of each projected Bellman operator.

Operator ΠT ∗ ΠT ∗
Q ΠT π

Complexity |S|K |A| K2 |A| K2

Table 1: Complexity of the different projected Bellman operators.

The complexities of projected operators are smaller than the |S|3 |A| complexity for T ∗. Having
established that computing projected operators is more straightforward than traditional ones, we
introduce an algorithm that combines region value updates and disaggregation process.

4 Disaggregation and State Abstraction production

In this section, we first estimate the approximation made using State Abstraction through an explicit
bound and then describe a disaggregation process that tends to diminish that bound.
Theorem 1 (Optimal Error Bound with Arbitrary Partition [Forghieri et al., 2024]). Let Ṽ ∈ RS be
any piecewise constant value function. Its distance to the optimal value function V ∗ can be bounded
as follows:

∥Ṽ − V ∗∥∞ ≤
1

1− γ
max

1≤k≤K
SpanSk

(
T ∗Ṽ

)
+

1

1− γ
∥Ṽ −ΠT ∗Ṽ ∥∞ , (2)

where SpanSk
(V ) := maxs∈Sk

V (s)−mins∈Sk
V (s).

We furthermore note that max1≤k≤K SpanSk

(
T ∗Ṽ

)
measures how much the aggregation groups

states having the same value and that ∥Ṽ − ΠT ∗Ṽ ∥∞ estimates the optimality of the current
piecewise value function relatively to the projected Bellman operator. Let us note that the quantity
∥Ṽ −ΠT ∗Ṽ ∥∞ can be arbitrarily reduced iterating ΠT ∗ as the operator ΠT ∗ contracts space with
a factor γ. Inequation 2 can also be formulated using ΠT ∗

Q and ΠT πG for any piecewise constant
policy πG.
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Disaggregation process We therefore propose an algorithm with initialization Ṽ0 = (0)s∈S and a
unique region S1 = S. We then iterate the two following steps successively:

• Apply ΠT ∗ until ∥Ṽ −ΠT ∗Ṽ ∥∞ is smaller than ε

• Compute Vt+1 := T ∗Vt. Divide each region until maxs∈Sk
Vt+1−mins∈Sk

Vt+1 is smaller
than ε for each region k ∈ J1 ; KK.

When applying this process, we separate states having different trajectories through VI. In fact,
it considers an abstract MDP, computes an approximation of its value function, and then refines
the current abstraction through the operator UpdateRegion, which breaks heterogeneous regions.
Moreover, although the ΠT ∗ operator changes at each region division step, the goal is also to take
advantage of the time savings from the projected Bellman operator application compared to the
optimal ground one. We provide the pseudocode of Progressive Disaggregation Value Iteration
(PDVI) in Algorithm 1. We also name PDQVI and PDPI the action-value and policy versions of this
method.

Algorithm 1 Progressive Disaggregation Value Iteration
Input:M = ⟨S,A, T,R, γ⟩, ε > 0
Output: A value V , an aggregation (Sk)k of the state space

1: K := 1, S1 := S, V0 := (0)1≤k≤K

2: while
∥Vt −ΠT ∗Vt∥∞ + max

1≤k≤K
SpanSk

(T ∗Vt) > 2ε

do
3: Vt+1 := T ∗ (ϕ · Vt)
4: if max1≤k≤K SpanSk

(Vt+1) > ε then
5: (Sk)k = UpdateRegion(k, Vk, (Sk)k, ε)
6: end if
7: while ∥Vt −ΠT ∗Vt∥∞ > ε do
8: Vt+1 ← ΠT ∗Vt
9: end while

10: end while
11: return (V, (Sk)k)

The operator UpdateRegion(k, Vk, {Sk}k, ε) simply divides any region that has a highly variable
value function V (Sk): if region k satisfies maxs∈Sk

V (s) −mins∈Sk
V (s) > ε, it is divided into

smaller blocks where the value function V varies by less than ε. Algorithm 1 is based on the
criterion specified in Equation 1. We also note that this method can be transposed to Q-VI (that
we name Progressive Disaggregation Q-Value Iteration, PDQVI) and to the Policy Evaluation step
of Modified Policy Iteration (that we name Progressive Disaggregation Policy Iteration Modified,
PDPIM). Moreover, we emphasize that the operator UpdateRegion presented here can be replaced
with any operator that refines regions, as long as the new operator divides at least one region when
applied.

Building adapted abstraction In Algorithm 1, starting from a single region, we separated states
having a different optimal Bellman update T ∗Ṽt. Consequently, we grouped states with similar
optimal values in the same region. This property is formalized in the Proposition 4.
Proposition 3 (Final abstraction characterization [Forghieri et al., 2024]). Let S =

⊔
k Sk the final

state space partition. Then, the following inequation is checked:

∀k ∈ J1 ; KK, ∀s, s′ ∈ Sk, |V ∗(s)− V ∗(s′)| ≤ 4ε

1− γ
.

Assuming the final abstraction is not trivial, we built an abstraction that contains information about
the MDP structure: each region contains homogeneous states with similar behavior, as indicated by
their similar optimal Bellman updates. Since the Bellman update reflects the link between a state and
the related ones, we grouped states with similar relationships to the rest of the state space and similar
rewards. In this work, we succeeded in building abstractions that associate states with similar optimal
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values. For instance, the Four Rooms model with 100 states was reduced to a smaller model with
only 18 states. In the following section, we conduct an experiment that includes a runtime benchmark
and descriptions of the practical abstraction constructed.

5 Application

We conducted a benchmark1 of our approach on multiple scalable models. We compared PDVI,
PDQVI and PDPI to usual VI, Modified PI, as well as Bertsekas’ approach [Bertsekas et al., 1988]
and Chen’s Adaptive Aggregation [Chen et al., 2022]. These last two methods leverage aggregation-
disaggregation processes to accelerate dynamic programming updates. However, unlike our approach,
Bertsekas and Chen do not gather information on the MDP throughout the process. In particular,
Bertsekas’ method is based on Policy Iteration. Its policy evaluation benefits from accelerated
convergence by grouping states and updating blocks of the current value function using a linear
approximation of the exact Bellman iteration. However, this method involves small matrix inversions,
which slows down the process. Chen’s approach consists of applying Temporal-Difference block
updates to the current value function alongside exact Value Iteration steps. This approach, however,
suffers from slow transition sampling and stochastic approximation updates.

In our method, we first start with a trivial one-state abstraction. As explicited in Proposition 1,
we used the span criterion to refine those abstraction. One main point of the method is that we
disaggregate and thus distinguish states having different trajectories through the exact Bellman
update. At the end of the process, it is then possible to extract a non-trivial State Abstraction which
transcripts the underlying dynamics of the model. Our comparison with a diverse set of solving
methods shows that our disaggregation algorithms outperform other methods on most of the models
while explaining their structures. We selected multiple types of models for our study, including a
Stochastic Shortest Path problem (Four Rooms [Hengst, 2012]), two toy control models (Mountain
Car [Moore, 1990] and Sutton’s racetrack [Sutton and Barto, 2018]), two real-world models (tandem
queues [Tournaire et al., 2022] and hydro-valley management [Carpentier et al., 2018]) and randomly
generated MDPs [Archibald et al., 1995]. As VI has been shown to be efficient for small discount
factors and Policy Iteration for larger ones [Kaelbling et al., 1996], we considered a high discount
factor (up to 0.9999) and diverse problems where both value-based and policy-based approaches
perform well. The state space size was also increased to up to a million states. We ran our experiments
on one thread of a CPU Intel Xeon @ 3.00GHz, using Python with numpy and scipy sparse matrices
with at most 64GB of RAM. We present the results in the following.

5.1 Random models

Random models have been largely used in the literature to benchmark MDP solvers
[Archibald et al., 1995, Grand-Clément and Kroer, 2021, Bhatnagar et al., 2009]. The transition
functions T (s, a, .) are randomly drawn on S and the reward follows a centered normal distri-
bution with choosen variance. We set |S| = 500 and |A| = 50 and a variable proportion of nonzero
entries (named density) in the transition matrix. As the density of the transition matrix impacted
the most the optimal value function shape, we set a maximum of diversity in this parameter going
from 1% (almost empty matrix) to 65% (two over three pairs of state are connected by a nonzero
transition) of nonzero entries. As shown in Table 2, our disaggregation methods demonstrate their
advantages for both value and policy-based approaches. Small transition matrices densities induce
independent states while higher densities of transition matrices smooth the optimal value function.

Table 2: Random MDPs solving time (s). |S| = 500, |A| = 50, γ = 0.99, ε = 10−2.

Density PDVI PDQVI PDPI VI PIM Bertsekas Chen

1% 6.6 8.0 1.1 113.3 3.0 2.8 >1h
10% 7.5 15.2 1.6 300 1.7 2.5 >1h
25% 6.2 24.1 0.7 752 1.1 1.5 >1h
45% 7.6 36.3 0.6 1398 1.8 2.0 >1h
65% 6.7 50.3 1.6 1915 2.7 3.3 >1h

1The code is available at https://github.com/OrsoF/state_space_disaggregation.git
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5.2 Toy models

This section introduces the results we obtained applying our method to the Four Rooms, Mountain
Car and racetrack models. The rooms grid model [Hengst, 2012] is made of four rooms with doors.
The goal is to reach a given square, the exit. Each action (N , S, E or W ) leads to the adjacent state
with a probability 0.8, otherwise we stay in place.

The Mountain Car problem [Moore, 1990] is an MDP where the car, starting in a valley, must use
limited acceleration actions to reach the goal by optimizing its position and velocity through two
actions, left and right accelerations. The state space is made of couple of real values representing the
car position and velocity. The reward penalizes each move with a −1 value until the upper hill is
reached. We present the solving time in Table 3, Table 4 and Table 5.

The Sutton’s racetrack model [Sutton and Barto, 2018] involves driving a racecar while selecting
directions and speed. It is a stochastic model where there is a probability of slipping and going off
the road. The goal is to reach the exit of the track as quickly as possible.

Table 3: Four Rooms model solving time (s). Discount γ = 0.9999, final precision ε = 10−3.

|S| PDVI PDQVI PDPI VI PIM Bertsekas Chen

900 25.3 9.2 12.4 15.0 66.0 170.6 640.9
19600 375.6 14.6 1131.9 223.2 4199.7 4726.9 3240.3

193600 11712.5 160.3 >24h 2520.2 >24h >24h 12844.1
1000000 >24h 1622.4 >24h 16658.8 >24h >24h >24h

Table 4: Mountain Car model solving time (s). Discount γ = 0.9999, final precision ε = 10−3.

|S| PDVI PDQVI PDPI VI PIM Bertsekas Chen

400 24.8 12.0 4.0 0.1 0.2 3.8 0.1
19600 1463.8 92.2 761.6 146.4 2041.1 1878.8 849.1

193600 16271.8 239.4 >24h 1561.8 >24h >24h 2697.3
1000000 >24h 437.1 >24h >24h >24h >24h >24h

Table 5: Sutton’s racetrack model solving time (s). Discount γ = 0.9999, final precision ε = 10−3.

|S| PDVI PDQVI PDPI VI PIM Bertsekas Chen

210 35.8 22.5 4.1 18.4 5.7 10.6 75.5
735 55.7 23.8 4.5 28.5 8.6 45.4 388.8
1260 75.7 25.9 4.8 48.3 12.4 77.3 407.7
2310 125.6 26.4 5.7 60.2 16.1 31.2 426.0
3360 163.9 26.5 6.8 81.1 20.2 84.1 457.3

Considering the Four Rooms model, we succeeded in extracting an exactly equivalent abstraction
through our process. For instance, the 10 × 10 model boils down to an MDP with 17 states.
Considering the model structure, we first recover the exit and then, step by step, extract states that
are at the same distance from the exit. At the same time, the current exit value information is
transmitted to the related regions, including the furthest states, which is still accelerating the learning
process. These properties were also observed in the Mountain Car model, where we reduced the
state space from 100 states to only 20 with an exact contraction of the MDP. We also found that
our disaggregation method is quite robust to small perturbations: it still discovers the shortest path
structure of the Four Rooms model even when adding a small random value to the reward (e.g., −1.1
instead of −1) or making slight changes to the transition probabilities. The method uncovers the
structure of the problem by distinguishing between dangerous states (near the track boundaries) and
safer states (towards the center of the track).

5.3 Real-world models

In this section, we first develop two models, Tandem Queue and Hydro Valley. We then consider
the runtimes that we obtain solving them. Finally, we describe the structure of the problem that our
method highlighted.
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We considered tandem queues management inspired from a real-world server operation
[Ohno and Ichiki, 1987]. Here, the agent scales two servers relatively to the load of two tandem
queues with parallel servers. There are 3 actions (add, keep or remove a server) for each queue, which
gives 9 actions in total. We could scale here the size of the queue and the size of the server to adjust
the state space dimension.

The Hydro Valley model [Carpentier et al., 2018] consists of a chain of dams located on the same
river. Each dam can turbinate a given amount of water, which produces electricity. The turbinated
water then flows to the next dam downstream. The reward is determined by electricity prices. The
state space comprises the volumes of water in the different dams, and the action space consists of the
turbination capacities. Both the state space and the action space can be scaled according to the dam
capacities. Using these two models, we obtained the runtimes in Table 6 and Table 7.

Table 6: Tandem Queue model solving time (s). Discount γ = 0.9999, final precision ε = 10−3.
|S| PDVI PDQVI PDPI VI PIM Bertsekas Chen

441 36.8 27.2 8.4 20.5 9.8 23.7 9775.0
5929 280.1 151.3 44.0 155.8 69.6 427.0 >24h

19600 979.4 657.4 254.2 553.2 348.8 >24h >24h

Table 7: Hydro Valley model solving time (s). Discount γ = 0.9999, final precision ε = 10−3.
|S| PDVI PDQVI PDPI VI PIM Bertsekas Chen

729 43.8 31.7 4.0 23.7 6.7 >24h >24h
15625 6008.4 4288.8 89.2 3740.4 130.3 >24h >24h
117649 >24h >24h 2051.0 >24h 2273.9 >24h >24h

We therefore note an improvement of 10% to 50% in the computing times, and that the best approach
is policy-based. This last observation can be explained by the high irregularity of the optimal
value function. Despite this irregularity, the approximate step still improves the basic Dynamic
Programming method.

We also discovered such underlying structure in both models. First, the Tandem Queue model
abstraction gathered states having a similar number of clients in the queue as well as a similar number
of servers. This simplification made the problem much more manageable as we abstracted the
essential description of the current model state. Concerning the dams, the model precisely describes
the water quantity and the upcoming water for each dam. The aggregation found allowed us to also
group states having similar quantities of water inside each dam as well as similar upcoming water
quantities.

6 Conclusion

Approaching the exact MDP solution remains a question that deeply depends on the problem structure.
In this context, we present an approximation method that combines state abstraction refinement
and approximate value iteration to accelerate traditional dynamic programming algorithms while
explaining the deep structure of the MDP.

We first focused on the link between approximate value iteration and state abstraction. We then
provided an estimation of the approximation made through state abstraction and its value function.
We concluded that this bound can be refined and contains a very interesting criterion to reduce the
state space while approximating the original MDP. A benchmark of this method demonstrated its ef-
fectiveness when applied to specific problems in comparison to the traditional dynamic programming
approach and two alternative aggregation methods.

However, algorithmic improvements can still be made. The method still struggles with some
real-world models, particularly those associated with non-smooth optimal value functions. As an
extension of this work, this challenge could be tackled through a weighted norm while conserving
the convergence guarantee. Additionally, the disaggregation process would greatly benefit from
being extended to more complex problems, such as partially observable MDPs, and in the model-free
context when associated with deep learning methods.
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