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Figure 1: Overview of our pose-free 4D Gaussian Splatting. Given a monocular video sequence of a
dynamic scene (left), our method directly reconstructs the 4D scene without pre-computed camera
poses (right). Dynamic control points guide the deformation of Gaussian points to model motion,
producing high-quality novel views across different time steps.

Abstract

Novel view synthesis from monocular videos of dynamic scenes with unknown
camera poses remains a fundamental challenge in computer vision and graphics.
While recent advances in 3D representations such as Neural Radiance Fields
(NeRF) and 3D Gaussian Splatting (3DGS) have shown promising results for static
scenes, they struggle with dynamic content and typically rely on pre-computed
camera poses. We present 4D3R, a pose-free dynamic neural rendering framework
that decouples static and dynamic components through a two-stage approach.
Our method first leverages 3D foundational models for initial pose and geometry
estimation, followed by motion-aware refinement. 4D3R introduces two key
technical innovations: (1) a motion-aware bundle adjustment (MA-BA) module
that combines transformer-based learned priors with SAM2 for robust dynamic
object segmentation, enabling more accurate camera pose refinement; and (2)
an efficient Motion-Aware Gaussian Splatting (MA-GS) representation that uses
control points with a deformation field MLP and linear blend skinning to model
dynamic motion, significantly reducing computational cost while maintaining high-
quality reconstruction. Extensive experiments on real-world dynamic datasets
demonstrate that our approach achieves up to 1.8dB PSNR improvement over
state-of-the-art methods, particularly in challenging scenarios with large dynamic
objects, while reducing computational requirements by 5× compared to previous
dynamic scene representations.
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1 Introduction

Novel view rendering from monocular videos of dynamic scenes remains a fundamental challenge
in both computer graphics and computer vision communities. While static scene reconstruction
has seen significant advances with methods like 3D Gaussian Splatting (3DGS) [25, 58, 29] and
Neural Radiance Fields (NeRF) [38, 20, 3, 1, 2], dynamic scenes present substantially greater
challenges. Unlike static environments, dynamic scenes require modeling intricate 3D environments
with temporal coherence while handling complex camera viewpoints. These approaches leverage
Gaussian primitives or neural layers but face severe challenges in capturing scene evolution with
high fidelity, especially when addressing substantial changes in handling dynamic content such as
managing motion, ensuring temporal consistency, and maintaining efficient scene representations.

Adapting 3DGS to dynamic scenes has led to the development of various 4D-GS approaches [60, 22]
that incorporate deformation fields modeled by multi-layer perceptrons (MLPs), motion bases, or 4D
representations. Despite achieving quantitative improvements, these methods typically rely on pre-
computed camera poses from multi-view systems or Structure-from-Motion pipelines, which often
fail in scenes with significant dynamic content. This dependency on ground truth or pre-estimated
camera poses severely limits their applicability in real-world environments.

Estimation of 6-DoF camera poses typically involves establishing 2D-3D correspondences followed
by solving the Perspective-n-Point (PnP) [19] problem with RANSAC [14]. Approaches for predicting
2D-3D correspondences can be broadly categorized into two main directions: Structure-from-Motion
(SfM) methods such as COLMAP [47, 48], and scene coordinate regression (SCR) [49]. SfM
methods detect and describe key points in 2D images [53, 11], linking them to corresponding 3D
coordinates [34, 46]. Although these methods are effective, they still face challenges including
high computational overhead, significant storage requirements, and potential privacy concerns when
processing sensitive data [51]. In contrast, SCR methods [49, 5, 56, 71] utilize deep neural networks
(DNNs) to directly predict the 3D coordinates of the image pixels, followed by running PnP with
RANSAC for camera pose estimation. These approaches offer notable advantages such as higher
accuracy in smaller scenes, reduced training times, and minimizing storage requirements. Taking
advantage of these benefits, this paper adopts SCR over traditional SfM methods for camera pose
estimation. Furthermore, DUSt3R [56] employs a Vision Transformer (ViT)-based architecture to
predict 3D coordinates using a data-driven approach and in the following work, MonST3R [71]
extends DUSt3R to dynamic scenes by fine-tuning the model on suitable dynamic datasets. However,
treating pose estimation and scene reconstruction as separate tasks in dynamic environments typically
leads to suboptimal performance.

A straightforward approach to addressing the pose-free novel view synthesis problem is to directly
combine MonST3R [71] with 4D-GS methods [22]. However, the accuracy of camera poses predicted
by MonST3R is not sufficiently stable, causing 4D-GS methods to struggle with reconstructing accu-
rate scenes and resulting in poor rendering quality. Particularly, these methods often fail in scenarios
involving moving objects that occupy a significant portion of the image. Since correspondences
between 2D keypoints and 3D points are established based on static scene elements, dynamic objects
are commonly deemed to be outliers during the RANSAC process. This assumption breaks down
in the presence of large or dominant moving objects, further degrading performance in dynamic
environments.

To overcome these issues, this paper proposes a novel architecture for pose-free dynamic Gaussian
Splatting that integrates transformer-based motion priors for initial pose estimation and then refines it
using a Motion-Aware Bundle Adjustment (MA-BA) module. Our key insight is that the motion mask
and scene reconstruction should be jointly optimized rather than treated as isolated processes, allowing
for more accurate camera pose estimation and higher-quality novel view synthesis. Specifically, the
ViT-based transformer gives the initial dynamic mask. We sample the top-K values and turn their
location into K-point prompts for pretrained SAM2 [43]. Finally, the final dynamic mask is the
combination of the output dynamic object segments from the SAM2 and the confidence map from
the transformer. The dynamic mask serves as a static point selection when performing RANSAC,
which can reduce the noise introduced by the dynamic points.

For 4D-GS, the expensive computational cost is a huge burden since millions of GS points need to
learn a set of motion parameters. Some works design compact representations to solve this problem,
such as the sparse motion basis [23], sparse-control points [22], and k-plane [60]. We design our 4D
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Figure 2: Overview of our motion-aware 4D gaussian splatting pipeline. Our framework consists
of three main modules: (1) A 4D-aware information extractor that processes input frames through
parallel ViT encoders and decoders to extract geometric and motion information; (2) A motion-aware
bundle adjustment module that leverages motion predictions for robust camera estimation; and (3)
A motion-aware gaussian splatting module that enables dynamic scene modeling through adaptive
control points.

representation of Motion-Aware Gaussian Splatting (MA-GS) based on motion masks generated from
the MA-BA module. Specifically, we model the dynamic motion by hundreds of control points with
a deformation field MLP, and Gaussian points are using Linear Blend Skinning (LBS). The model
first trains the control points for the dynamic part and then trains the GS points.

We show the effectiveness of our approach through extensive experiments on both synthetic and
real-world dynamic scenes. Our findings demonstrate notable gains in pose estimation accuracy and
reconstruction quality over current methods. In particular, we outperform state-of-the-art techniques
on difficult dynamic scenes by achieving improvements of 1.8 in PSNR in novel view rendering
quality and more accurate pose estimation.

Our key contributions include: 1) We propose a novel motion-aware pipeline that fundamentally
integrates pose estimation with scene reconstruction, eliminating the traditional separation that
causes failures in highly dynamic scenes. 2) We introduce a theoretical framework for motion-aware
bundle adjustment that jointly optimizes camera poses and scene representation, enabling robust
performance even when moving objects dominate the scene. 3) We design a compact and efficient 4D
representation using motion-aware gaussian splatting that significantly reduces memory requirements
while maintaining rendering quality. 4) Our approach demonstrates state-of-the-art performance on
challenging dynamic scenes without requiring pre-computed poses, enabling truly monocular novel
view synthesis.

2 Related Work

2.1 Static Scene Novel View Rendering.

Novel View Synthesis aims to generate novel viewpoints from a set of observations. Recently, neural
implicit representations have shown impressive capabilities. NeRF [38] achieved breakthrough results
by representing scenes through MLPs. Subsequent work focused on acceleration through methods
like baking [21] and explicit representations [39]. 3DGS [25] introduced efficient rasterization
of anisotropic 3D Gaussians, enabling real-time rendering without quality degradation. Recent
extensions have ireal-time rendering [68, 44], camera modeling [61], faster training [35, 16, 39, 7],
and sparse view [69, 45]. However, these methods assume static scenes and known camera parameters,
limiting their practical applications.
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2.2 Dynamic Scene Novel View Rendering.

Research has expanded to capture both motion and geometry in dynamic scenes [64, 37, 66, 31, 15,
32, 30]. Initial approaches [42, 40] learned additional time-varying deformation fields. Alternative
methods [28, 16, 62] encode scene dynamics through multi-dimensional feature fields without
explicit motion modeling. Following 3DGS, recent work [60] proposes learning individual Gaussian
trajectories over time. More efficient representations have emerged, including factorized motion
bases [27] and sparse control points [22]. Another approach [65] extends spherical harmonics to 4D.
As noted in Dycheck [18], many methods focus on unrealistic scenarios, while real-world capture
involves substantial motion. To resolve motion ambiguity, recent work leverages pretrained depth
estimation [63] or trajectory tracking [24]. Our approach utilizes DUSt3R [56] for initialization and
incorporates SAM2 [43] for dynamic motion segmentation.

2.3 Pose-Free Neural Field.

Traditional NVS relies heavily on SfM [47] for camera parameters. Recent research explores
optimizing neural fields without pre-calibrated poses. iNeRF[67] estimates camera poses from
pre-trained NeRF through photometric optimization. NeRF– [59] jointly optimize camera and scene
parameters with geometric regularization. BARF [33] and GARF [10] address gradient inconsistency
in positional embeddings. Nope-NeRF [4] leverages geometric priors for accurate camera estimation.
In the 3DGS domain, CF3DGS [17] introduces progressive optimization, while InstantSplat [12]
uses DUSt3R [56] for initialization but remains limited to static scenes. ZeroGS [9] utilizes the
DUSt3R and progressive image registration for pose-free 3D GS. Our approach differs by introducing
a pose-free pipeline for dynamic scenes that decouples static backgrounds from dynamic objects.
We utilize DUSt3R’s geometric foundation model and leverage 3DGS’s explicit nature for enhanced
geometric regularization.

3 Method

3.1 Preliminaries

3D Gaussian splatting represents scenes using a collection of colored 3D Gaussian primitives. Each
Gaussian Gj is characterized by its center position µj , covariance matrix Σj (parameterized by
rotation quaternion qj and scaling vector sj), opacity value σj , and spherical harmonic coefficients
shj for view-dependent appearance. The scene representation is thus G = {Gj : µj ,qj , sj , σj , shj}.

During rendering, these 3D Gaussians are projected onto the image plane with transformed 2D
covariance matrices Σ′. The final color at each pixel is computed through α-blending:

C(u) =
∑
i∈N

Tiαi SH(shi,vi), where Ti =

i−1∏
j=1

(1− αj) (1)

Our framework extends Gaussian Splatting to dynamic scenes with sparse control while maintaining
computational efficiency and rendering quality. For more details, please refer to the supplementary.

3.2 Problem Definition and Overview

Given a monocular video sequence V = {It}⊤t=1 capturing a dynamic scene with moving objects and
camera motion, our goal is to reconstruct a complete 4D representation of the scene. Our pipeline
estimates the following parameters: 1) Camera parameters Ct = {Kt, Rt, Tt}, where Kt ∈ R3×3

represents the intrinsic matrix, and [Rt | Tt] ∈ SE(3) denotes the extrinsic parameters. 2) Dense
depth map Dt ∈ RH×W and motion map Mt ∈ {0, 1}H×W capturing per-pixel information. 3)
Dynamic scene representation through motion-aware Gaussian Splatting parameters G, motion-aware
control points P, and a deformation field MLP Θ.

As illustrated in Fig 2, our framework combines implicit geometric estimation and explicit motion
understanding to address the unique challenges of dynamic scene reconstruction from monocular
video through three primary components: 4D-aware information extractor, Motion-Aware Bundle
Adjustment (MA-BA) and Motion-Aware Gaussian Splatting (MA-GS) representation.
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3.3 4D-Aware Information Extraction

Our 4D-aware information extractor serves as the foundation for both camera pose estimation
and scene reconstruction by leveraging pre-trained vision models to extract geometric and motion
information from monocular inputs. To have a good initialization of the Gaussian splatting, we first
employ a pre-trained ViT-based transformer model from MonST3R [71] that sequentially processes
each input frame It through an encoder-decoder block that extracts deep features to give a scene
coordinate map Xt ∈ RH×W×3 representing the 3D structure and a confidence map Wt ∈ RH×W

indicating the reliability of the predictions. We also include the optical flow from SEA-RAFT [57].

Using the scene coordinate map Xt and confidence map Wt, we obtain high-confidence points S
through a principled two-step filtering process:

S = {pi | Wt(pi) > τc ∧Dt(pi) < τd}, (2)

where τc and τd are the confidence and depth thresholds, respectively. This filtering strategy is based
on two key insights: 1) The selection of points with high confidence scores are more likely to yield
reliable geometric estimates. 2) Filtering out points at infinity with zero disparity that give unreliable
depth estimates.

Unlike previous approaches that rely solely on motion estimators, we leverage SAM2 [43] semantic
understanding ability to generate pixel-precise dynamic object segmentation Mt ∈ {0, 1}H×W , with
high-confidence points S as prompts. This method critically enables our motion-aware processing
pipeline to handle scenes dominated by dynamic content.

3.4 Motion-Aware Bundle Adjustment

Our MA-BA module introduces an approach to camera pose estimation that explicitly models the
separation between static and dynamic scene components, addressing a fundamental limitation in
traditional bundle adjustment methods. We leverage the dynamic region mask Mt to enhance the
accuracy of camera pose estimation. For frame pairs (It, It′), we introduce a masked PnP-RANSAC
approach that focuses solely on static regions:

Pstatic = {pi ∈ S | Mt(pi) = 0}. (3)

By restricting correspondence matching to static regions, we significantly reduce the likelihood of
incorrect matches due to dynamic objects. The optimization objective becomes:

E(Rt, Tt) =
∑

pi∈Pstatic

∥Π(Rtpi + Tt)− p′i∥2. (4)

where Π(·) is the camera model mapping a set of 3D points onto the image.

We further refine the camera poses through Differentiable Dense Bundle Adjustment (DBA) layer [54].
For more details, please refer to the supplementary.

3.5 Motion-Aware Gaussian Splatting

Our Motion-Aware Gaussian Splatting (MA-GS) module introduces a principled approach to dy-
namic scene representation that significantly reduces the parameter space by focusing computa-
tional resources on regions requiring deformation modeling. We adopt a set of control points
P = (pi ∈ R3, σi ∈ R+)

Np

i=1, where pi represents the 3D coordinate in the canonical space and σi

defines the radius of the Radial Basis Function (RBF) kernel. These control points are initialized
from our motion map Mt, where the static and dynamic regions are handled distinctly through our
MA-GS module.

In the first stage, we optimize the control points on the dynamic regions with the following loss:

Lcontrol =
∑
pi∈P

Mt(pi)Lrender(pi), (5)

where Mt(pi) acts as a binary mask to selectively optimize only the control points in dynamic regions
and Lrender refers to the standard photometric loss between rendered and ground truth pixels, using
L1 and DSSIM metrics. The equation selectively applies this loss only to dynamic regions via the
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Mt(pi) binary mask. This targeted optimization significantly reduces the complexity by focusing only
on regions that require deformation modeling. For dynamic control points, we learn time-varying
transformations through a specialized mapping function:

Θ : (pt, t) → (Rk
t , T

k
t ), (6)

where [Rk
t | T k

t ] ∈ SE(3) represents the six-degrees-of-freedom transformation at time t, Θ is the
deformation field MLP. For numerical stability and continuous interpolation, we represent rotations
using unit quaternions rkt ∈ H, where H denotes the space of unit quaternions. The dynamic scene
rendering process utilizes these control points through weighted transformation blending.

In the second stage, we optimize the Gaussian parameters Gj = {µj ,qj , sj , σj , shj} by applying
motion-aware constraints through a detached gradient path:

µ′
j =

{
µj if Mt(µj) = 0∑

k∈N j wjk(R
k
t (µj − pk) + pk + T k

t ) otherwise,
(7)

where wij is Linear Blend Skinning (LBS) weight [52]. Crucially, this constraint is implemented with
gradient detachment to ensure the motion-aware transformation does not affect the parameter updates
of the MLP and vice versa. This prevents competing optimization objectives between Gaussian
parameters and deformation field parameters, leading to more stable convergence and better results.
The LBS weights are computed with a normalized exponential kernel:

wjk = w̃jk/
∑
k∈N j

w̃jk, where w̃jk = exp(−d2jk/2σ
2
k). (8)

djk represents the Euclidean distance between Gaussian center µj and control point pk, and Nj

denotes the set of K-nearest neighboring control points for Gaussian j.

For orientation updates, we employ quaternion blending to ensure smooth rotational deformation:

q′j = (
∑
k∈N j

wjkr
k
t )⊗ qj , (9)

where ⊗ denotes quaternion multiplication. This formulation ensures the entire dynamic scene
experiences smooth and physically realistic deformations while maintaining computational efficiency
through our motion-aware design.

3.6 Training Strategy

As mentioned in the previous section, our training process optimizes the entire scene representation
through the two-stage procedure. Specifically, we optimize for the control points in the first stage with
Lcontrol. The second stage of optimization for the motion-aware Gaussian parameters is achieved in
the rendering loss Lrender using L1 distance and DSSIM metrics as follows:

L = Lrender + λarapLarap + λrigidLrigid, (10)
where Larap enforces local rigidity with as-rigid-as-possible regularization [50]:

Larap(pi, t1, t2) =
∑

wik∥|(pt1i − pt1k )−Ri(p
t2
i − pt2k )∥|2, (11)

and Lrigid enforces rigidity in static regions:

Lrigid =
∑
j

(1−Mt(µj))∥µ′
j − µj∥2. (12)

We employ an adaptive control point strategy that optimizes point distribution based on reconstruction
impact. We compute the gradient magnitude of the rendering loss with respect to Gaussian positions,
weighted by their influence radius:

gk =
∑

w̃j

∥∥∥∥ ∂L

∂µj

∥∥∥∥2 , (13)

where w̃j represents the LBS weights connecting Gaussian points to control points, while ∂L
∂µj

is the
gradient of the loss with respect to Gaussian positions. This gradient magnitude sum (gk) measures
each control point’s influence on reconstruction quality. During optimization, we add control points in
areas with high gk, adaptively refining the representation where needed most. This adaptive approach
ensures effective representation while maintaining high reconstruction quality across diverse dynamic
scenes with varying motion complexity.
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Table 1: Quantitative results on HyperNeRF’s [41] dataset. The best and the second best results
are denoted by pink and yellow. The rendering resolution is 960x540. “Time” in the table stands for
training times plus camera pose estimation time.
Model COLMAP PSNR(dB)↑ MS-SSIM↑ Times↓ FPS↑ Storage(MB)↓
Nerfies [40] ✓ 22.2 0.803 ∼ hours < 1 -
HyperNeRF [41] ✓ 22.4 0.814 32 hours < 1 -
TiNeuVox-B [13] ✓ 24.3 0.836 3.5 hours 1 48
3D-GS [25] ✓ 19.7 0.680 4 hours 55 52
FDNeRF [70] ✓ 24.2 0.842 - 0.05 440
4DGS [60] ✓ 25.2 0.845 5 hours 34 61
SC-GS [22] ✓ 25.3 0.841 4 hours 45 85
MonST3R+SC-GS × 20.4 0.697 2 hours 45 153
RoDynRF [36] × 23.8 0.820 28 hours <1 200
Ours × 25.6 0.844 50 mins 45 80

Table 2: Quantitative results on DyNeRF’s [28] dataset. The best and the second best results are
denoted by pink and yellow. “Time” in the table stands for training times plus pose estimation time.

Model COLMAP PSNR(dB)↑ MS-SSIM↑ Times↓ FPS↑ Storage(MB)↓
HyperNeRF [41] ✓ 16.9 0.638 32 hours < 1 -
TiNeuVox-B [13] ✓ 18.2 0.712 3.5 hours 1 48
3D-GS [25] ✓ 15.3 0.541 4 hours 55 52
4DGS [60] ✓ 18.9 0.740 5 hours 34 61
SC-GS [22] ✓ 19.0 0.746 4 hours 45 85
MonST3R+SC-GS × 16.4 0.624 2 hours 45 153
RoDynRF [36] × 17.8 0.620 28 hours <1 200
Ours × 19.6 0.755 50 mins 45 80

4 Experiments

4.1 Experimental Settings

Datasets. We evaluate our approach on three representative datasets: HyperNeRF’s dataset [41],
DyNeRF dataset [28], and the MPI Sintel dataset [6]. The DyNeRF dataset features controlled
dynamic scenes captured with synchronized cameras, offering a solid baseline for evaluation. We
use only one camera view for training, treating it as a monocular sequence. The HyperNeRF dataset
presents more challenging scenarios with complex object deformations and camera movements. The
MPI Sintel dataset provides ground truth camera poses, enabling quantitative evaluation of our pose
estimation accuracy.

Evaluation Metrics We evaluate using standard metrics for Novel View Synthesis: Peak Signal-to-
Noise Ratio (PSNR), Structural Similarity (SSIM), and Multi-Scale SSIM (MS-SSIM). For camera
pose estimation, we report the same metrics as [8]: Absolute Translation Error (ATE), Relative
Translation Error (RPE trans), and Relative Rotation Error (RPE rot), after applying a Sim(3)
Umeyama alignment on prediction to the ground truth.

Baselines. For a comprehensive evaluation, we compare our approach against state-of-the-art
methods in both novel view rendering and pose estimation. For novel view rendering, we consider
methods designed for static scenes like 3DGS [25], and dynamic scene methods including Nerfies [40],
HyperNeRF [41], TiNeuVox [13], 4DGS [60], FDNeRF [70], and SC-GS [22], which represent the
current state-of-the-art in dynamic scene modeling. We further compare with pose-free 4D novel
view rendering baselines RoDynRF [36] and a strong baseline combining MonST3R [71] (one of the
best dynamic pose estimation methods) with SC-GS [22] (one of the best dynamic scene modeling
methods). For pose estimation evaluation, we compare against established methods such as DROID-
SLAM [54], DPVO [55], and ParticleSFM [73], noting that these methods require camera intrinsics
as input.

Implementation Details. Our implementation uses a ViT-based transformer for 4D information
extraction, pre-trained on DUSt3R [56] and fine-tuned on MonST3R [71] datasets. For dynamic
segmentation refinement, we employ SAM2 [43] with multi-point prompting. The Motion-Aware
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(a) MonST3R Mask (b) Input Image (c) Depth Map (d) Confidence (e) Sampled Points (f) Refined Mask

Figure 3: Our motion mask refinement pipeline: (a) Initial dynamic mask from MonST3R showing
coarse segmentation, (b) Input image of tomato cutting scene, (c) Estimated depth map highlighting
object boundaries, (d) Confidence map indicating regions of dynamic motion, (e) Strategically
sampled points for mask refinement, and (f) Final refined mask after SAM2 processing showing
improved object boundary delineation. The pipeline effectively captures the dynamic nature of the
cutting motion while maintaining precise object boundaries.

Table 3: Ablation study of our proposed modules on HyperNeRF dataset.

Method PSNR(dB)↑ MS-SSIM↑ Times↓
w/o motion-map 20.4 0.697 2 hours
w/o SAM-refine 23.8 0.765 1 hours
w/o MA-GS 23.5 0.734 1.5 hours
Ours 25.6 0.844 50mins

Gaussian Splatting uses 512 control points, optimized using Adam with learning rates from 1e-4 to
1e-7 (exponential decay). All experiments run on a single NVIDIA RTX3090 GPU.

4.2 Results on Novel View Rendering

A key advantage of our approach is its superior performance on challenging scenes with dynamic
objects. On the DyNeRF dataset (Tab 2), we achieve state-of-the-art results with a PSNR of 19.6dB
and MS-SSIM of 0.775, outperforming existing methods regardless of their reliance on known camera
poses. This superior performance comes from our motion-aware components, which effectively
handle dynamic objects while maintaining accurate camera pose estimation.

Our method demonstrates exceptional computational efficiency, achieving 5× faster training time com-
pared to COLMAP-dependent methods while maintaining comparable quality. On the HyperNeRF
dataset (Tab 1 and Fig 4), we achieve results (PSNR of 25.6dB and MS-SSIM of 0.844) compet-
itive with SC-GS (25.3dB/0.841) and 4DGS (25.2dB/0.845), while significantly outpacing other
COLMAP-free approaches like RoDynRF (23.8dB/0.820) and MonST3R+SC-GS (20.4dB/0.697).

Furthermore, our approach excels in resource utilization, maintaining a competitive 45 FPS during
inference while requiring only 80MB of memory. This is substantially more efficient than competing
methods such as MonST3R+SC-GS (153MB) and RoDynRF (200MB). The efficiency stems from
our compact motion-aware representation and efficient motion mask generation pipeline, as illustrated
in Fig 2.

5 Ablation Studies

To validate the effectiveness of our key components, we conduct comprehensive ablation studies
shown in Tab 3:

Motion-aware Map Removing the motion-aware map leads to a significant performance drop of
5.2dB in terms of PSNR. This substantial drop confirms our theoretical insight that accurate dynamic-
static decomposition is fundamental for handling scenes with large moving objects, addressing the
limitation of previous methods like MonST3R that assume dynamic objects occupy only a small
portion of the scene.
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Figure 4: Qualitative comparison with baselines.

SAM-based Refinement Without our SAM2-based refinement module, performance decreases to
23.8dB/0.765. The 1.8dB performance gap validates our hypothesis that combining transformer-based
motion priors with foundation model segmentation creates a synergistic effect, as shown in Fig 3.
The refined masks enable more reliable static point selection during RANSAC, reducing noise from
dynamic regions.

Motion-aware Gaussian Splatting (MA-GS) Excluding MA-GS results in degraded performance
(23.5dB/0.734) while increasing training time by 2x. These results confirm our theoretical prediction
that focusing computational resources on motion-significant regions through our control point mecha-
nism substantially improves both efficiency and quality. The improved efficiency (50 mins vs 1.5
hours) demonstrates that our compact representation successfully reduces the search space compared
to methods requiring optimization of motion parameters for all Gaussian points.

6 Limitation and Broader Impact

Despite our method’s improvements, limitations exist: it requires textured frames with sufficient static
regions, assumes distinguishable dynamic objects, and struggles with complex non-rigid deformations.
While enabling positive applications in AR/VR and remote collaboration, potential misuse exists in
surveillance or unauthorized 3D reconstruction. We recommend consent mechanisms for human-
centric applications and privacy-preserving rendering techniques. Future work should explore
multi-modal sensing, self-supervised segmentation, and privacy-aware reconstruction protocols.

7 Conclusion

We presented a novel motion-aware framework for pose-free dynamic novel view synthesis from
monocular videos. Our method integrates three key innovations: a 4D-aware information extractor
leveraging pre-trained foundation models, a motion-aware bundle adjustment module for robust
camera pose estimation, and a compact motion-aware Gaussian splatting representation. Extensive
experiments show that our method significantly reduces computational overhead while achieving
state-of-the-art performance in pose estimation accuracy and novel view synthesis quality. Compared
to COLMAP-dependent methods, our approach achieves 5x faster training times and outperforms
existing methods by 1.8dB in PSNR. For more intricate dynamic scenes, future research might
investigate adding temporal consistency constraints. Furthermore, examining self-supervised learn-
ing strategies for motion mask creation may help lessen dependency on pre-trained models while
preserving strong performance.
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A Preliminaries

The representation of 3D scenes with Gaussian splatting employs a collection of colored 3D Gaussian
primitives. Each Gaussian primitive G is characterized by its center µ in 3D space and a corresponding
3D covariance matrix Σ, conforming to:

G(x) = exp

(
−1

2
(x− µ)⊤Σ−1(x− µ)

)
. (14)

To facilitate optimization, we decompose the covariance matrix Σ into RSS⊤R⊤, where R rep-
resents a rotation matrix encoded by a quaternion q ∈ SO(3), and S denotes a scaling matrix
parameterized by a 3D vector s. The complete parameterization of each Gaussian includes an opacity
value σ governing its rendering influence, alongside spherical harmonic (SH) coefficients sh that
capture view-dependent appearance variations.

The scene representation therefore consists of a set G = {Gj : µj ,qj , sj , σj , shj}, where µj is the
position, qj is the orientation, sj is the scale, σj is the standard deviation, and shj is the spherical
harmonics coefficients. The rendering pipeline projects these 3D Gaussians onto the image plane,
where they undergo efficient α-blending. During projection, the 2D covariance matrix Σ′ and center
µ′ are computed as:

Σ′ = JWΣW⊤J⊤, µ′ = JWµ, (15)
where J is the Jacobian matrix of the linear approximation of the projective transformation and W is
the rotation matrix of the viewpoint. The final color C(u) at pixel u emerges from neural point-based
α-blending:

C(u) =
∑
i∈N

Tiαi SH(shi,vi), where Ti =

i−1∏
j=1

(1− αj). (16)

Here, N shows the number of Gaussians that overlap with the pixel u. In this formulation, SH(·, ·)
represents the spherical harmonic function evaluated with respect to the view-direction vi. The
α-value for each Gaussian is determined by:

αi = σi exp

(
−1

2
(p− µ′

i)
⊤Σ′

i
−1

(p− µ′
i)

)
, (17)

where µ′
i and Σ′

i correspond to the projected center and covariance matrix of Gaussian Gi. Real-
time and high-fidelity image synthesis is achieved through the optimization of Gaussian parameters
{Gj : µj ,qj , sj , σj , shj} coupled with adaptive density adjustment. We propose a framework that
builds on the foundation of Gaussian Splatting for dynamic scenes by adding sparse control, without
compromising computational efficiency and rendering quality.

B Differentiable Dense Bundle Adjustment (DBA) layer

We further refine the camera poses through the Differentiable Dense Bundle Adjustment (DBA)
layer [54], which incorporates optical flow information to improve geometry estimation. This
approach is particularly effective in dynamic scenes as it allows us to focus optimization on static
regions while accounting for motion consistency in dynamic areas:

EDBA(C
′
t, d

′
t) =

∑
(i,j)∈E

(1−Mt(i))∥p∗ij −Πe(C
′
ij ◦Π−1

e (pi, d
′
i))∥2Σij

, (18)

where C ′
t is the camera pose and d′t is the depth values. ∥ · ∥Σij is the Mahalanobis distance weighted

by the confidence scores, (i, j) ∈ E denotes an overlapping field-of-view with shared points between
image Ii and Ij , p∗ij is the sum of optical flow rij and pij , and the term (1−Mt(i)) ensures that only
static regions contribute to the optimization.

The system optimizes for updated camera pose C ′
t and depth values d′t through a sparse matrix

formulation ∆ξt and ∆dt, which is the normal equation derived from the cost function in Eqn.( 18):[
B E
E⊤ C

] [
∆ξt
∆dt

]
=

[
v
w

]
(19)
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Two-Stage Optimization Process
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Figure 5: Two-Stage Optimization Process for Motion-Aware Gaussian Splatting. Stage 1 optimizes
control points in dynamic regions (red) using control point loss, while static regions (gray) remain
fixed. Stage 2 performs Gaussian optimization (blue ellipses) through Linear Blend Skinning, with
connection lines showing influence weights between control points and Gaussians.

where E models the coupling between pose and depth parameters, C captures the depth-depth
relationships, B represents the pose-pose interactions, v and w are the gradient terms corresponding
to pose updates and depth updates, respectively.

C Two-stage Optimization Strategy in MAGS

Our two-stage optimization strategy reduces computational cost by focusing on dynamic regions only,
as described in Sec. 3.5 of the main paper. We illustrate the strategy in Fig 5, which demonstrates
our approach to efficient motion-aware scene reconstruction. In the first stage, we selectively
optimize control points only within regions identified as dynamic by our motion segmentation
module, significantly reducing the computational burden compared to methods that optimize all
scene parameters simultaneously. The dynamic region boundary (indicated by the dashed red outline)
separates areas requiring deformation modeling from static background elements. During the second
stage, Gaussian primitives are optimized using Linear Blend Skinning weights computed through
normalized exponential kernels based on spatial proximity to control points. The varying opacity
of connection lines visualizes the influence magnitude of each control point on nearby Gaussian
primitives, with stronger connections (darker lines) indicating higher LBS weights. This strategic
separation of optimization stages enables our method to achieve both computational efficiency and
high-quality reconstruction by concentrating computational resources where motion occurs while
maintaining stable anchoring in static regions.
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Table 4: Quantitative evaluation of camera poses estimation on the MPI Sintel dataset. The best
and the second best results are denoted by pink and yellow. The methods of the top block discard
the dynamic components and do not reconstruct the dynamic scenes; thus they cannot render novel
views. We exclude the COLMAP results since it fails to produce poses in 5 out of 14 sequences.

Method ATE↓ RPE trans↓ RPE rot↓
DROID-SLAM* [54] 0.175 0.084 1.912
DPVO* [55] 0.115 0.072 1.975
ParticleSFM [73] 0.129 0.031 0.535
LEAP-VO* [8] 0.089 0.066 1.250
Robust-CVD [26] 0.360 0.154 3.443
CasualSAM [72] 0.141 0.035 0.615
DUSt3R [56] w/ mask 0.417 0.250 5.796
MonST3R [71] 0.108 0.042 0.732
NeRF– [67] 0.433 0.220 3.088
BARF [33] 0.447 0.203 6.353
RoDynRF [36] 0.089 0.073 1.313
Ours 0.086 0.035 0.639
* requires ground truth camera intrinsics as input

D LBS parameter learning

As shown in Eqn. (8) of the main paper, the LBS weights are computed with a normalized exponential
kernel. Our motion-aware framework significantly improves the efficiency and stability of LBS
parameter learning through three key mechanisms:

1) Focusing control point optimization exclusively on dynamic regions identified by our motion mask,
which concentrates computational resources where they’re most needed.

2) Preserving static points’ positions during the GS optimization process, which provides stable
anchors for the scene representation.

3) Substantially reducing the number of points requiring LBS parameter learning, which improves
both computational efficiency and optimization stability.

E Results on Pose Estimation

Tab 4 presents our pose estimation results on the MPI Sintel dataset, where our method demonstrates
exceptional performance across all metrics. The methods in the upper portion of the table discard
dynamic components and cannot render novel views. COLMAP results are excluded because it fails
to produce poses in 5 out of 14 sequences, which further illustrates the challenges faced by COLMAP-
dependent methods in handling general scenes with complex camera motions. We achieved an ATE
of 0.086, showing comparable accuracy to the SOTA method LEAP-VO (0.089) and significantly
outperforming methods like BARF (0.447) and NeRF– (0.433). For relative pose errors, our method
achieves 0.035 for translation and 0.639 for rotation, matching or exceeding the performance of
specialized pose estimation methods.

The strong pose estimation performance can be attributed to several factors. First, our MA-BA
effectively leverages the dynamic masks refined by our mask refinement pipeline, reducing the
noise introduced by dynamic objects during pose optimization. Second, integrating SAM2 for mask
refinement significantly improves the accuracy of dynamic object segmentation, leading to more
reliable static point selection for RANSAC-based pose estimation.

F Technical Discussion and Analysis

F.1 Technical Contributions

Our motion-aware framework delivers three key innovations: (1) an integrated MA-BA module
that combines transformer-based motion priors with SAM2’s segmentation capabilities in a unified
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pipeline; (2) a gradient-detached dynamic control point mechanism that strategically allocates
computational resources to motion-significant regions; and (3) an end-to-end pose-free approach
that eliminates dependency on pre-computed camera poses. Empirical validation confirms these
innovations deliver substantial improvements, with a 1.3dB PSNR gain over combined baseline
components.

F.2 Scene Coordinate Regression Advantages

Our approach leverages Scene Coordinate Regression (SCR) over Structure from Motion (SfM) for its
dual benefits: SCR not only delivers faster and more accurate results but also generates high-quality
dynamic masks through our motion-aware bundle adjustment module. This creates a synergistic
pipeline where dynamic region identification directly informs reconstruction, enabling more efficient
processing while maintaining or exceeding the accuracy of traditional SfM approaches.

F.3 Two-Stage Optimization Strategy

Our framework employs a two-stage strategy that separates motion estimation from reconstruction.
The first stage establishes coherent motion estimates (16-19 PSNR) without optimizing Gaussian
points directly. Control points define the deformation field but don’t serve as Gaussian centers.
Gaussians are initialized independently during the second stage, guided by the established motion
field, enabling more stable convergence and higher-quality results.

F.4 Control Point Efficiency

Our control point approach delivers two significant advantages: (1) a 5× improvement in training
time by focusing optimization efforts only on dynamic regions; and (2) a remarkably compact
representation requiring only 80MB of storage compared to 153-200MB for competing methods.
These efficiency gains enable handling of challenging scenes with large motion magnitudes and
longer sequences, as demonstrated by superior performance on the DyNeRF dataset.

F.5 Deformation Modeling

Our approach employs As-Rigid-As-Possible (ARAP) regularization as a flexible prior for both rigid
and non-rigid deformations. For soft-body objects, this acts as a smoothness constraint rather than
enforcing strict rigidity. The system adaptively allocates more control points to highly deformable
regions, creating a finer deformation grid where needed. This approach successfully handles soft
objects, as demonstrated in the "peel-banana" sequence.

F.6 Implementation Parameters

Our implementation uses 512 control points by default, initialized uniformly with higher density in
dynamic regions. Performance remains robust across a range of control point quantities (100-1000),
reflecting the effectiveness of our adaptive allocation strategy that focuses computational resources
based on motion significance rather than a fixed distribution.
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NeurIPS Paper Checklist

1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer:[Yes]

Justification: The claims do reflect the paper’s contributions and scope.

Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?

Answer: [Yes]

Justification: Discuss in the main paper.

Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?

Answer: [Yes]
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Justification: Yes. paper provide the assumptions and a complete proof.
Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?
Answer: [Yes]
Justification: the paper discloses all the information needed to reproduce the main experi-
mental results.
Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?
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Answer: [Yes]
Justification: The paper will provide open access to the data and code after accepted.
Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental setting/details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?
Answer: [Yes]
Justification: the paper specify all the training and test details.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.
7. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?
Answer: [No]
Justification: I mainly report PSNR and SSIM.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
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• It is OK to report 1-sigma error bars, but one should state it. The authors should
preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments compute resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?
Answer: [Yes]
Justification: I include the resource details like GPU and training time.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code of ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?
Answer: [Yes]
Justification: The paper follows the NeurIPS Code of Ethics.
Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).
10. Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?
Answer: [Yes]
Justification: Discuss in the supp.
Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
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generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?
Answer: [NA]
Justification: the paper poses no such risks.
Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?
Answer: [Yes]
Justification: The paper cites all original papers.
Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the

package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?
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Answer: [NA]

Justification: the paper does not release new assets.

Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and research with human subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]

Justification: paper does not involve crowdsourcing nor research with human subjects.

Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional review board (IRB) approvals or equivalent for research with human
subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA]

Justification: the paper does not involve crowdsourcing nor research with human subjects.

Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

16. Declaration of LLM usage
Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.

Answer: [NA]
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Justification: the core method development in this research does not involve LLMs as any
important, original, or non-standard components.
Guidelines:

• The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

• Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.
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