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Abstract

Machine learning (ML) methods have experienced significant growth in the past decade, yet
their practical application in high-impact real-world domains has been hindered by their
opacity. When ML methods are responsible for making critical decisions, stakeholders often
require insights into how to alter these decisions. Counterfactual explanations (CFEs) have
emerged as a solution, offering interpretations of opaque ML models and providing a pathway
to transition from one decision to another. However, most existing CFE methods require
access to the model’s training dataset, few methods can handle multivariate time-series, and
none of model-agnostic CFE methods can handle multivariate time-series without training
datasets. These limitations can be formidable in many scenarios. In this paper, we present
NTD-CFE, a novel reinforcement-learning-based model-agnostic CFE method that generates
CFEs when training datasets are unavailable. NTD-CFE is suitable for both static and
multivariate time-series datasets with continuous and discrete features. Users have the
flexibility to specify non-actionable, immutable, and preferred features, as well as causal
constraints . We demonstrate the performance of NTD-CFE against four baselines on several
datasets and find that, despite not having access to a training dataset, NTD-CFE finds
CFEs that make significantly fewer and significantly smaller changes to the input time-series.
These properties make CFEs more actionable, as the magnitude of change required to alter
an outcome is vastly reduced.

1 Introduction

After receiving a negative decision—a denial of a loan, a poor performance review, or a rejection from a
prestigious conference—a very natural question to ask is “What could I have done differently?” When the
decision is made by a person, that question can be answered directly by the person. Indeed, peer reviews
represent the reasons why a paper is accepted or rejected from a conference and, in the best case, give
authors actionable feedback which may lead to an acceptance in the future (assuming the underlying decision
algorithm remains unchanged). But when a decision is made or influenced by a black-box model, it can be
much harder to provide insights. Telling a loan applicant they have a “poor credit score” does not tell them
how they might approach getting approved at a later date.

Counterfactual Explanations (CFEs) (Wachter et al., 2017) were introduced to fill this gap. Given an input
to a model, a CFE is perturbed version of the input which yields a prescribed output from the model. For
instance, if Bob’s mortgage application is rejected, a CFE might suggest that Bob make $20,000 more per
year, or alternatively, make $10,000 more per year and purchase a house in a different neighborhood.

CFEs also provide a method for examining how “fair” a model is, a concern that has become paramount in
many real-world applications (Mehrabi et al., 2021; Angwin et al., 2022; Osoba et al., 2017). For instance, a
CFE that shows if Bob’s name were Alice his loan application would have been accepted points to potential
discrimination on the basis of a protected characteristic. Classic models such as logistic regression and
low-depth decision trees often called inherently interpretable (Verma et al., 2020; Murphy, 2012; Breiman,
2017) as the relative influence of input features can be read off from learned coefficients. But relations between
learned parameters and input features are much harder to discern with more complex models. Indeed, even
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a logistic regression model with pairwise interaction terms can be complicated to reason about: Perhaps a
woman who purchases a home in one neighborhood is less likely to have her application accepted than a man,
but an additional $1,000 a year in income increases her chance of acceptance significantly more than a man’s
chance.

There exist many CFE methods for static datasets (Mothilal et al., 2020; Samoilescu et al., 2021; Verma et al.,
2022). However, CFE methods for multivariate time-series data are less common due to the challenges posed
by high dimensionality (Ates et al., 2021; Theissler et al., 2022). Additionally, to the best of our knowledge,
all existing model-agnostic CFE methods for multivariate time-series require access to large collection of
samples from the training distribution of the model being explained. This requirement can be infeasible in
real-world domains especially due to privacy and other concerns.

In this paper, we introduce No-Training-Dataset reinforcement-learning-based CFE (NTD-CFE), a reinforce-
ment learning (RL) based CFE method designed for both static and multivariate time-series data containing
both continuous and discrete attributes. Remarkably, NTD-CFE operates without training datasets or similar
data samples and is model-agnostic so that it is compatible with any (even non-differentiable) predictive
models. NTD-CFE also allows the user to specify which features they prefer to change, as well as how changing
a particular feature may affect another feature, thus allowing the user to express both what counterfactuals
are feasible for them and any causal relationships between those features. While NTD-CFE works for both
static and time-series data, we focus on the harder setting of multivariate time-series data in this paper.
We compare NTD-CFE to four state-of-the-art CFE methods on eight real-world multivariate time-series
datasets. We find that NTD-CFE yields CFEs with significantly better proximity (the total magnitude of
change proposed by the CFE) and sparsity (how many features the CFE proposes to alter) compared to the
baselines.

The paper is structured as follows. We discuss related works and preliminaries in Section 2 and Section 3,
respectively. Section 4 describes the proposed algorithm NTD-CFE. Qualitative examples and quantitative
experiments with 8 real-world datasets and 5 predictive models are given in Section 5. Finally, we conclude
in Section 6.

2 Related Works

Counterfactual explanations belong to a much broader category of methods often called Explainable AI (XAI).
XAI techniques can be broadly classified into two buckets (Verma et al., 2020): (a) inherently interpretable
machine learning techniques and (b) post-hoc explanatory techniques. The first category is primarily a
restriction on the types of models that a practitioner can employ to model a phenomenon. However, models
often held out as interpretable (e.g., linear regression and low-depth decision trees (Murphy, 2012; Breiman,
2017)) may not have the capacity to capture complex phenomena. In the latter category, practitioners
attempt to “model the model” with subsequent techniques (Sun et al., 2020). These methods can be further
subdivided into global and local methods (Ates et al., 2021; Islam et al., 2021). Global methods attempt to
simulate the opaque, complex logic of the original model using interpretable methods. On the other hand,
local methods aim to explain the rationale behind a specific prediction made for a specific input. For instance,
feature-based methods such as SHAP(Lundberg & Lee, 2017), identify features that have the most significant
influence on a prediction. On the other hand, sample-based methods attempt to identify relevant samples
to clarify a prediction (Kim et al., 2016; Mothilal et al., 2020). CFEs are an example of a post-hoc, local,
sample-based explanation technique.

CFEs were introduced by Wachter et al. (2017) to explore an optimization-based technique for differentiable
predictive models. Building upon this foundation, DiCE (Mothilal et al., 2020) noted that there were
potentially many different CFEs proximal to any particular input and whether one was “better” than another
was really a matter for the CFE’s user to decide. As such, DiCE returns several diverse CFEs for any
given sample. However, the base algorithm of DiCE is not guaranteed to return CFEs which satisfy causal
constraints, and so DiCE introduced an expensive pruning step to filter “non-feasible” CFEs, i.e., those that
do not satisfy causal constraints. A method that directly incorporated these causal constraints into the
exploration phase would likely improve the time to generate CFEs.
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These optimization-based methods are, unfortunately, not model-agnostic, as they require the underlying
predictive model to be differentiable and thus exclude popular predictive models such as random forests and
k-nearest neighbors. To overcome this limitation, methods such as those of Tsirtsis et al. (2021) leverage
dynamic programming to identify an optimal counterfactual policy and subsequently utilize this policy to
find CFEs. However, due to the high memory requirements of these methods, this technique is best suited for
low-dimensional data with discrete features.

CFRL (Samoilescu et al., 2021) and FastAR (Verma et al., 2022) take a different tactic, employing techniques
from reinforcement learning (RL) to generate CFEs. CFRL first encodes samples into latent space using
autoencoders (Kingma & Welling, 2013), then an RL agent is trained to find a CFE in the latent space. Finally,
a decoder converts the latent CFE back to the input space. Similarly, FastAR converts the CFE problem to
a Markov decision process (MDP) (Sutton & Barto, 2018) and then uses proximal policy optimization (PPO)
(Schulman et al., 2017) to solve the MDP. However, the action candidates in FastAR are discrete and fixed,
making it impractical for complex multivariate time-series data. Moreover, both CFRL and FastAR require
access to training datasets.

These and several other CFE techniques cater to static data, but methods for handling multivariate time-series
data are much less prevalent (Theissler et al., 2022). For time-series data with k-nearest neighbor or random
shapelet forest models, Karlsson et al. (2020) introduce one approach. Wang et al. (2021a) focus on univariate
time-series, seeking CFEs in a latent space before decoding them back to the input space. Native-Guide
(Delaney et al., 2021) finds the nearest unlike neighbor of an original univariate time-series sample, identifies
the most influential subsequence of the neighbor, and substitutes it for the corresponding region in the original
sample. On the other hand, CoMTE (Ates et al., 2021) can handle multivariate time-series data. First, it
searches for distractor candidates, which are the original sample’s neighbors in the training dataset that are
predicted as the target class. Then, it identifies the best substitution parts on each distractor candidate.
Finally, it gives a CFE by replacing a corresponding part of the original sample with the best substitution of
the best distractor candidate.

We also note that, on the surface, generating adversarial examples seems quite similar to generating CFEs:
both create proximal samples that yield distinct predictions from the original inputs. However, while
adversarial learning considers proximity, essential CFE properties such as actionability, feasibility, and causal
constraints are mostly ignored (Wachter et al., 2017; Verma et al., 2020; Sulem et al., 2022).

3 Preliminaries

CFEs aim to solve the following task: Given a user input x∗, a predictive model f and a target prediction
Y ′ such that f(x∗) ̸= Y ′, the goal is to find a transformation from x∗ to a new sample x′ (i.e. CFE) such
that (Verma et al., 2020; Karimi et al., 2020a; Guidotti, 2022):

• valid: f(x′) = Y ′,

• actionable: if the user cannot modify feature j, then x∗
j = x′

j ,

• sparse: the CFE x′ should differ in as few features from x∗ as possible,

• proximal: the distance between x∗ and x′ should be small in some metric, and

• plausible: x′ should satisfy all causal constraints on the input.

where xj denotes the j-th feature of x. Our method for finding CFEs will rely on reinforcement learning
(RL). In RL, an agent and an environment interact with each other (Sutton & Barto, 2018). The agent takes
an action at on a state st at time step t. The environment receives at and st from the agent and returns
the next state st+1 and a reward Rt+1 to the agent. The goal of the agent is to maximize the expected
cumulative (discounted) reward. RL can be categorized as model-free RL and model-based RL. In model-free
RL (Mnih et al., 2015; Haarnoja et al., 2018), the agent learns a policy from real experience when a model of
the environment is not available to the agent. In model-based RL (Silver et al., 2017; Ha & Schmidhuber,
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Algorithm 1 NTD-CFE. Best viewed in color. Typical RL code is colored in gray.
1: Input: the original user input x∗, a predictive model f , a target class Y ′, a reward function R, a state

transition function Fp, a proximity measure Dpxmt, a proximity weight λpxmt, feature feasibility weights
Wfsib, maximum number of episodes ME , maximum number of interventions per episode MT , discrete
feature indicators Ddis, numbers of possible values of the discrete features {Ndis,d|d ∈ Ddis}.

2: Optional Input: non-actionable feature indicators Dnon-act, immutable feature indicators Dimmu, causal
constraints CSCM, feature range constraints Crange, in-distribution detector Fin_dist, a discount factor γ,
a learning rate α, a regularization weight λWD

3: Output: a CFE O∗

4: O = {∅}
5: E := 0
6: while E < ME do
7: τ = {∅} # Keep a record of (state, action, reward) pairs
8: t := 0
9: xt := x∗

10: while t < MT do
11: at ∼ πθ(·|xt) # Sample an action from the RL policy network
12: xt+1 := Fp(xt, at) # State transition from the current x to the next x
13: (Optionally, update xt+1 according to Crange, CSCM and Dimmu)
14: rt+1 := R (f(xt+1), Y ′, Dpxmt(x∗, xt+1, Wfsib), λpxmt) # Compute the reward
15: τ := τ ∪ (xt, at, rt+1) # Add the pair to the record
16: if f(xt+1) = Y ′ and xt+1 /∈ O then # If a new valid CFE is found
17: O := O ∪ xt+1 (Optionally, if also Fin_dist(xt+1) = True)
18: t := t + 1
19: Break
20: end if
21: t := t + 1
22: end while
23: T := t
24: for t = 0, 1, . . . , T − 1 do # Update network parameters
25: G :=

∑T
t′=t+1 γt′−t−1 · rt′

26: θ := θ + α · γt · G · ∇ ln πθ(at|xt)
27: end for
28: E := E + 1
29: end while
30: O∗ := mini Dpxmt(x∗, Oi, Wfsib) # Return the valid CFE with the lowest proximity

2018), the agent plans a policy from simulated experience generated by a model of the environment. This
model of the environment is either learned or given. Furthermore, a policy-based RL algorithm (Williams,
1992; Schulman et al., 2017; 2015) typically samples actions from a policy network πθ parameterized by
neural networks with parameters θ. Given a state, πθ is trained to return the best action that maximizes the
expected cumulative reward.

4 The proposed method: NTD-CFE

In this work, we propose No-Training-Dataset reinforcement-learning-based CFE (NTD-CFE), formulating
CFE as an RL problem. In this setup, the RL environment is the CFE predictive model f . The RL state
s is a sequence of CFEs beginning at the original user input x∗ and ending in a final generated CFE O∗.
An action taken by the RL agent represents a small perturbation on the way from x∗ to O∗. A reward is a
function of the predictive model and other objectives we introduce to maintain the properties discussed in
Section 3 (more details below).
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One-hot encoding is applied for categorical features. We assume that the prediction function of f computes
quickly, which is a common assumption in model-based RL (Sutton & Barto, 2018). We also assume that
continuous features in the original user input x∗ are standardized to have mean 0 and variance 1.

NTD-CFE pseudocode is given in Algorithm 1. Let x∗ ∈ RK×D denote a user input sample, where K and D
denote the total number of time steps and features, respectively. To provide for plausibility, the D features
can optionally be divided into actionable features Dact, which the user can directly change; non-actionable
features Dnon-act, which may change due to causal constraints but which the user cannot directly change;
and immutable features Dimmu, which may be used by the predictive model but which cannot change. x∗ is
static if K = 1 or temporal if K > 1. The time complexity of the algorithm is O(ME · MT ).

Action (Line 11 of Algorithm 1) πθ represents an RL policy network parameterized by neural networks
with parameters θ. Each action a sampled from πθ is 3-dimensional a = {atime, afeat, astre}, where atime
denotes the time step of the intervention, afeat denotes which feature to intervene on, and astre corresponds
to the strength of the intervention. To be more specific, let DC and DD denote the numbers of actionable
continuous and discrete features, respectively, where DC + DD = |Dact| and |Dact| denotes the total
number of actionable features. Given an x, the neural network parameterized by θ produces parameters to
define four distributions {ptime, pfeat, µDC, σDC, pNdis} := θ(x), such that ptime ∈ RK , pfeat ∈ R|Dact|, µDC ∈
RDC , σDC ∈ RDC and pNdis ∈ RNdis , where Ndis =

∑DD
i=1 Ndis,i and each p vector contains non-negative

probabilities that sum to 1. The parameters ptime and pfeat define two categorical distributions from which
atime and afeat are sampled, e.g. atime ∼ Cat(ptime) and afeat ∼ Cat(pfeat). When afeat is a continuous
feature, the corresponding mean and standard deviation parameters µDC,afeat and σDC,afeat define a normal
distribution from which we sample how strong the intervention is for this continuous feature, e.g. astre ∼
N(µDC,afeat , σ2

DC,afeat
). When afeat is a discrete feature, the corresponding parameters pNdis,afeat define a

categorical distribution from which we sample what the interventional value is for this discrete feature, e.g.
astre ∼ Cat(pNdis,afeat).

State Transition (Line 12 of Algorithm 1) The state transition function Fp can be any appropriate
function for an application domain. In Section 5, we define Fp(xt, at = {atime, afeat, astre}) as:

x
{k,d}
t+1 :=


x

{k,d}
t + astre for k ≥ atime and d = afeat (when feature d is continuous)

astre for k ≥ atime and d = afeat (when feature d is discrete)
x

{k,d}
t otherwise

where x
{k,d}
t denotes the d-th feature of the t-th x at the time step k.

Constraints (Line 13 of Algorithm 1) Regarding causal constraints CSCM, many existing works require
a complete causal graph or complete structural causal model (SCM) (Peters et al., 2017; Karimi et al., 2020b;
2021). However, complete SCMs are often unavailable in practice (Verma et al., 2020; 2022). NTD-CFE works
with partial SCMs. An (partial) SCM can be encoded as a set of rules. After the state transition function Fp

takes place, NTD-CFE checks for whether the new state violates any rules in CSCM. If a rule is violated,
NTD-CFE acts accordingly. For example, it may choose to discard the change or set the corresponding value
of the new state to a limiting value.

Reward and Proximity (Line 14 of Algorithm 1 ) We define the reward function R as:

r := R (f(x), Y ′, Dpxmt(x∗, x, Wfsib), λpxmt) =
{

1 − λpxmt · Dpxmt(x∗, x, Wfsib) if f(x) = Y ′

0 otherwise

It combines a prediction reward (1 or 0) and a weighted proximity loss Dpxmt. Dpxmt is 0 when f(x) ̸= Y ′.
Otherwise, in difficult settings where f(x) ̸= Y ′ dominates over f(x) = Y ′, the RL agent would learn to
produce CFEs that are too close to the original user input, which results in invalid CFEs. λpxmt ensures that
the reward is positive when f(x) = Y ′.
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The proximity measure Dpxmt can be any suitable measures for the application domain. In Section 5, we
define Dpxmt as the L1-norm for continuous features and as the L0-norm for discrete features, weighted by
Wfsib:

Dpxmt(xd, x′d
, W d

fsib) =
{∑K

k=1 |x{k,d} − x′{k,d}| · W d
fsib (if feature d is continuous)∑K

k=1 I(x{k,d} ̸= x′{k,d}) · W d
fsib (if feature d is discrete)

(1)

W d
fsib denotes the feasibility to change the d-th feature, which encodes the user’s preference on altering

this feature. xd denotes the d-th feature of x, and x{k,d} denotes the d-th feature of x at the time step k.
NTD-CFE prefers to generate CFEs by altering features associated with small Wfsib. If a user does not
specify preference on features, Wfsib is 1 for all features.

Classification and Regression (Line 16 of Algorithm 1) Algorithm 1 describes NTD-CFE for a
classification model f . As a model-agnostic method, NTD-CFE supports not only classification but also
regression models. To work with a regression predictive model f , one can replace the first condition of Line 16
by Y ′

lower ≤ f(xt+1) ≤ Y ′
upper, where Y ′

lower and Y ′
upper represent the lower and upper bounds for the target

regression value, respectively.

Output (Lines 17 and 30 of Algorithm 1) On Line 17, if a valid CFE is reached and is not already in
the set O, then it is added to O. Optionally, an additional condition can be imposed such that a valid CFE
is added to O only if it is also plausible. Finally, on Line 30, NTD-CFE returns the CFE with the lowest
proximity from the set O.

4.1 Limitation

Without training datasets, standardizing the data becomes impractical. One approach is to leverage Wfsib
to mitigate the impact of continuous features at different scales. Assuming domain knowledge about the
ranges of feature values (which is often available in practice), one can assign smaller Wfsib to continuous
features at larger scales and larger Wfsib to continuous features at smaller scales. This approach relaxes the
standardization assumption. However, in our evaluation, we always assume that the continuous features have
a mean of 0 and a variance of 1. We leave the evaluation of this approach or a more sophisticated approach
for future work.

The performance of the proposed model is unaffected by the size of the predictive model. Instead, its
performance depends on the frequency with which the predictive model returns the desired prediction. We
assume that the desired prediction returned by the predictive model is not sparse. This is a realistic assumption
in many real-world domains. For example, numerous applicants with diverse personal characteristics applying
for credit cards receive approval from the decision model of a bank. This assumption ensures that the RL
agent receives enough reward signals to improve its performance. Without both training datasets and reward
signals, it would be extremely challenging for ML methods to solve meaningful tasks.

5 Evaluation

In this section, we provide qualitative examples and quantitative experiment results to demonstrate the
effectiveness of NTD-CFE for multivariate data-series data. The details about datasets and hyperparameters
are provided in Appendix A and Appendix C, respectively.

5.1 Qualitative Examples

We illustrate qualitative examples generated by NTD-CFE with two interpretable rule-based predictive
models and an interpretable Life Expectancy dataset. Please refer to Appendix B.1 for the definitions of
the interpretable rule-based models. All examples in this section are generated using the first sample, which
represents the country Albania, in the Life Expectancy dataset.
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5.1.1 Equal feature feasibility weights Wfsib

In Figure 1, all features have equal feasibility weights (Wfsib = 1.0) as no user preferences are set. In Figure 1a,
following the definition of rule-based model 1 (Appendix B.1), Albania’s prediction is 0 (i.e. undesired),
because “GDP-per-capita” and “health-expenditure” in the last 5 years are below 0. Accordingly, NTD-CFE
generates a CFE by increasing these values above 0. In Figure 1b, if at least one of “GDP-per-capita” or
“health-expenditure” is above 0 in the last 5 years, then rule-based model 2 predicts 1 (i.e. desired). NTD-CFE
generates a valid CFE for rule-based model 2 by raising “GDP-per-capita” above 0.

5.1.2 Different feature feasibility weights Wfsib

However, changing “GDP-per-capita” for Albania may be impractical. An alternative way to make rule-based
model 2 predict 1 is to increase “health-expenditure” above 0. NTD-CFE can achieve this in three different
ways: (1) marking “GDP-per-capita” as non-actionable; (2) assigning a small feasibility weight to “health-
expenditure;” or (3) assigning a large feasibility weight to “GDP-per-capita.” (1) is straightforward with
NTD-CFE. Hence, we only present the results for (2) and (3). In Appendix Figure 2a, the feasibility weight
Wfsib for “health-expenditure” is set to 0.1, ten times smaller than that of “GDP-per-capita,” which remains
unchanged as 1. With the reduced feasibility weight for “health-expenditure,” NTD-CFE generates a valid
CFE by modifying “health-expenditure.” In Appendix Figure 2b, the feasibility weight for “GDP-per-capita”
is set to 10, ten times greater than other features. With the high feasibility weight for “GDP-per-capita,”
NTD-CFE preserves “GDP-per-capita” and looks for other features to achieve the desired prediction. As a
result, NTD-CFE learns to alter “health-expenditure”.

Next, we show that setting small feasibility weights on irrelevant features does not affect the CFEs generated
by NTD-CFE. In Appendix Figure 2c, although the feasibility weights for irrelevant features “CO2-emissions,”
“electric-power-consumption,” and “forest-area” are set to be ten times smaller than others, NTD-CFE still
alters the relevant feature “GDP-per-capita”. Additional results for different feasibility weights are provided
in Appendix Figure 3.

5.2 Quantitative Experiments

In this section, we compare NTD-CFE to 4 baseline methods in 40 experiments, which correspond to 8
real-world datasets each evaluated with 5 predictive models. Additional experiments are provided and
analyzed in the appendix.

Datasets Eight real-world multivariate time-series datasets are used for evaluation: Life Expectancy,
NATOPS, Heartbeat, Racket Sports, Basic Motions, eRing, Japanese Vowels, and Libras. Please see
Appendix A for details.

Baseline Methods We benchmark NTD-CFE against four model-agnostic baseline methods: CoMTE
(Ates et al., 2021), Native-Guide (Delaney et al., 2021), CFRL (Samoilescu et al., 2021), and FastAR (Verma
et al., 2022). Optimization-based methods (Mothilal et al., 2020; Sulem et al., 2022; Hsieh et al., 2021) are
excluded from the comparison, because our predictive models are not restricted to differentiable models.
For Native-Guide, we follow the approach of Bahri et al. (2022) by concatenating multivariate time-series
samples into univariate time-series samples. Unlike the proposed NTD-CFE, the baselines require training
datasets, i.e. either (Xtrain, Ytrain) or (Xtrain). We omit comparisons with other methods and use these
popular methods as the representative baselines.

Predictive Models Five predictive models are employed per dataset: a long short-term memory (LSTM)
neural network, a k-nearest neighbor (KNN), a random forest and two interpretable rule models; see
Appendix B for details. Given eight datasets, there is a total of 40 predictive models.

5.2.1 Results

The methods are evaluated using five metrics. Let Ninv denote the total number of invalid samples, i.e., those
classified as the undesired class by a predictive model, Ninv_val denote the number of invalid samples for
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(a) Rule-based model 1

(b) Rule-based model 2

Figure 1: Qualitative examples with rule-based models and equal feature feasibility weights Wfsib. “Original
User Input” shows the original input with the original feature values. “Generated CFE” shows the generated
CFE with the modified features. The other two plots, “Features Changed (Original)” and “Features Changed
(CFE)”, omit most features and only show the modified features.

which a CFE method generates valid CFEs, Nval denote the number of valid CFEs generated by a CFE
method, NCFE denote the number of CFEs generated by a CFE method, and Nplau_val denote the number
of plausible and valid CFEs generated by a CFE method. We set feature feasibility weights W d

fsib = 1 for all
the features d ∈ D.

Table 1 shows the results with the eRing dataset as an example. The proposed NTD-CFE consistently has
the lowest proximity and sparsity. The results for all other datasets are given in Appendix Tables 3 to 9. We
analyze and compare the full results in this section.

Results dimmed in gray in the tables are skipped from analysis and comparison. For Plausibility Rate,
Proximity and Sparsity, we only compare the methods under 100% success rates. The reason is that if a
method always generates CFEs that are close to the original invalid user input x∗, even though these CFEs
may often be invalid due to their closeness to x∗, the plausibility rate, proximity and sparsity will always
be superior. In the extreme case, if a method always returns the original but invalid x∗, it would achieve a
perfect plausibility rate, proximity and sparsity, but at the same time fail completely as a CFE method in
terms of success rate.

Success Rate: Ninv_val
Ninv

There are two scenarios for a CFE method to fail: 1) no valid CFEs are generated;
2) no CFEs (either valid or invalid) are generated. For RL-based baselines, CFRL and FastAR fail with a 0%
success rate in 28/40 and 34/40 cases, respectively. NTD-CFE outperforms CFRL in 29/40 cases, and is on par
with CFRL in 10/40 cases. In contrast, NTD-CFE underperforms CFRL in 1/40 case. NTD-CFE outperforms
FastAR in all 40/40 cases. Compared to the other baselines, Native-Guide, CoMTA and NTD-CFE fail
with a 0% success rate in 0/40, 3/40 and 0/40 cases, respectively. NTD-CFE outperforms Native-Guide
in 8/40 cases, and is on par with it in 25/40 cases. NTD-CFE underperforms Native-Guide in 7/40 cases.
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Table 1: Quantitative results with the eRing dataset for different predictive models and methods. Our
proposed method NTD-CFE consistently achieves significantly better proximity and sparsity.

Predictive Ninv Methods Success Validity Plausibility Proximity Sparsity
Model Rate Rate Rate

LSTM 14

CoMTE 100.0% 100.0% 100.0% 346.746 260.0
Native-Guide 100.0% 100.0% 100.0% 316.502 260.0

CFRL 0.0% 0.0% — — —
FastAR 0.0% 0.0% — — —

NTD-CFE 100.0% 100.0% 100.0% 54.682 31.214

KNN 16

CoMTE 100.0% 100.0% 100.0% 338.141 260.0
Native-Guide 100.0% 100.0% 93.75% 3.789 × 1011 229.938

CFRL 100.0% 100.0% 100.0% 321.046 260.0
FastAR 0.0% 0.0% — — —

NTD-CFE 100.0% 100.0% 100.0% 144.937 86.688

Random
Forest 15

CoMTE 100.0% 100.0% 100.0% 340.338 260.0
Native-Guide 100.0% 100.0% 93.333% 3.275 × 1012 246.467

CFRL 0.0% 0.0% — — —
FastAR 0.0% 0.0% — — —

NTD-CFE 100.0% 100.0% 100.0% 68.882 46.733

Rule
Based

1
29

CoMTE 0.0% — — — —
Native-Guide 100.0% 100.0% 44.828% 9.928 × 1014 256.552

CFRL 0.0% 0.0% — — —
FastAR 0.0% 0.0% — — —

NTD-CFE 100.0% 100.0% 100.0% 103.953 63.345

Rule
Based

2
25

CoMTE 100.0% 100.0% 100.0% 347.295 260.0
Native-Guide 100.0% 100.0% 88.0% 5.075 × 1013 245.4

CFRL 0.0% 0.0% — — —
FastAR 0.0% 0.0% — — —

NTD-CFE 100.0% 100.0% 100.0% 31.301 14.76

However, the minimum success rate of Native-Guide is 30.855%, which is better than that of NTD-CFE
(0.68%). NTD-CFE underperforms CoMTE in success rate. NTD-CFE produces lower success rates than
CoMTE in 11/40 cases, achieves the same success rates in 26/40 cases, and outperforms it in only 3/40 cases.
Please see below for more about CoMTE.

It is important to note that: 1) We provide training datasets to the baselines (because they require training
datasets to operate), but not to NTD-CFE. This additional information provided only to the baselines gives
them an advantage over NTD-CFE. Without training datasets, the methods stop working except NTD-CFE.
2) In Appendix Table 18 we show that the success rate of NTD-CFE can be further improved, e.g. from
0.68% to 76.87%.

Validity Rate: Nval
NCFE

Both NTD-CFE and CoMTE ensure perfect validity rates by design; they either
produce a valid CFE or do not produce a CFE at all. In contrast, the other three baselines may return
invalid CFEs; therefore, their validity rates may not be perfect. Furthermore, there are 3 cases where CoMTE
fails completely with a 0% success rate (Tables 1, 4 and 8, explanations below). This results in undefined
validity rates for CoMTE because NCFE = 0. Hence, NTD-CFE outperforms all baselines in the experiments
in terms of validity rate (i.e., 100% for all 40 cases). However, if there were cases where NTD-CFE fail with a
0% success rate, the validity rate for NTD-CFE would also be undefined.

Plausibility Rate: Nplau_val
Nval

The comparisons to CFRL and FastAR are skipped because more than half of
the experiments yield 0% success rates, and therefore, undefined plausibility rates. NTD-CFE outperforms and
is on par with Native-Guide in 14/24 and 1/24 cases, respectively. NTD-CFE underperforms Native-Guide in

9



Under review as submission to TMLR

9/24 cases. NTD-CFE is on par with CoMTE in 8/26 cases and underperforms it in 18/26 cases. In summary,
in terms of plausibility rate, CoMTE outperforms the proposed NTD-CFE, and NTD-CFE outperforms
Native-Guide. Again, the baselines have the advantage by utilizing additional training information that is
not provided to NTD-CFE.

Additionally, one can enforce plausibility in NTD-CFE (Line 17 of Algorithm 1). NTD-CFE achieves 100%
plausibility rates at the cost of lower success rates and higher proximity and sparsity. Please see Appendix D
for details.

Proximity and Sparsity Proximity and Sparsity are defined as the L1-norm or L0-norm, respectively, of
the difference between a CFE and the original x∗ (Verma et al., 2022; Samoilescu et al., 2021). Due to the
aforementioned reason, proximity and sparsity are computed only with valid CFEs. Therefore, comparison
with FastAR is skipped. NTD-CFE outperforms all the baselines in proximity and sparsity in all cases. It
also surpasses the baselines by a large margin. For example, there are 3, 7 or 14 cases where the proximity of
NTD-CFE is at least 20 times, 10 times or 5 times lower than that of all the baselines, respectively (e.g.,
16.183 vs. 220.552 in Appendix Table 6). Similarly, there are 2, 4 or 20 cases where the sparsity of NTD-CFE
is at least 50 times, 20 times or 10 times lower than that of all the baselines, respectively (e.g., 20.587 vs.
1224.0 in Appendix Table 4).

Comparison with RL-based methods. NTD-CFE outperforms the two RL-based methods, CFRL and
FastAR, in all the metrics. CFRL and FastAR often fail to generate valid CFEs for complex multivariate
time-series data. Please note that this is not a criticism of CFRL or FastAR, because they are not designed
for multivariate time-series data.

Comparison with CoMTE Although CoMTE outperforms NTD-CFE in success rate and in plausibility
rate, it is important to highlight that: 1) CoMTE requires a training dataset, while NTD-CFE does not. The
better performance of CoMTE over NTD-CFE comes at the cost of needing more information and reduced
versatility in practical applications. 2) CoMTE relies on finding distractors correctly classified as the target
class. Tables 1, 4 and 8 for rule-based model 1 show that when the predictive models classify all training
samples as the undesired class, CoMTE fails completely with a 0% success rate. In contrast, NTD-CFE is
more versatile and can operate in such difficult situations. 3) Appendix Table 18 shows that the success rates
of NTD-CFE can be improved by increasing the maximum number of episodes ME or the maximum number
of interventions per episode MT , which correspond to more exhaustive RL search.

6 Conclusion

In this paper, we introduce NTD-CFE, a model-agnostic reinforcement learning based method that generates
counterfactual explanations for static and multivariate time-series data. NTD-CFE operates without requiring
a training dataset, is compatible with both classification and regression predictive models, handles continuous
and discrete features, and offers functionalities such as feature feasibility (i.e. user preference), feature
actionability and causal constraints. We illustrate the effectiveness of NTD-CFE through qualitative examples
and benchmark it against four state-of-the-art methods using eight real-world multivariate time-series datasets.
Our results consistently show that NTD-CFE produces counterfactual explanations with significantly better
proximity and sparsity. Future research includes extending the work to large language models, exploring more
advanced reinforcement learning algorithms to potentially enhance performance, relaxing assumptions such as
data standardization, and exploring alternation solutions other than reinforcement learning for counterfactual
explanation without training datasets.
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A Datasets

Eight real-world multivariate time-series datasets are used for evaluation in Section 5.2: Life Expectancy 1,
eRing 2, NATOPS 3, Heartbeat 4, Racket Sports 5, Basic Motions 6, Japanese Vowels 7, and Libras 8.

Life Expectancy. The Life Expectancy dataset has 119 samples. Each sample has 16 time steps (from
2000 to 2015) and 17 features per time step. All the features are interpretable. Please see Table 2 for feature
names and types. We remove “Country Name” and “Year” from the list of input features and use “Life
Expectancy” in 2015 as the label. Therefore, the dataset has K = 16 and D = 14 in our notation. We set
Y = 1 if “Life Expectancy” in 2015 is greater or equal to 75 as the target class and otherwise Y = 0 as the
undesired class.

eRing The eRing dataset has 30 samples. Each sample has 65 time steps and 4 features per time step, i.e.
K = 65 and D = 4. All the features in this dataset are continuous. There are six classes and we use the last
three classes as the target classes.

NATOPS. The NATOPS dataset contains sensory data on hands, elbows, wrists and thumbs to classify
movement types. It has 180 samples. Each sample has 51 time steps and 24 features per time step, i.e. K = 51
and D = 24. All the features in this dataset are continuous. There are 6 classes of different movements. We
set class 4 to 6 as the target classes.

Heartbeat. The Heartbeat dataset has 204 samples. Each sample has 405 time steps and 61 features per
time step, i.e. K = 405 and D = 61. All the features in this dataset are continuous. There are two classes:
normal heartbeat (target class) and abnormal heartbeat (undesired class).

Racket Sports The Racket Sports dataset has 151 samples. Each sample has 30 time steps and 6 features
per time step, i.e. K = 30 and D = 6. All the features in this dataset are continuous. There are four classes:
“Badminton Smash”, “Badminton Clear”, “Squash Forehand Boast” and “Squash Backhand Boast”. We use
the last two classes as the target classes.

Basic Motions The Basic Motions dataset has 40 samples. Each sample has 100 time steps and 6 features
per time step, i.e. K = 100 and D = 6. All the features in this dataset are continuous. There are four classes:
“Badminton”, “Running”, “Standing” and “Walking”. We use “Standing” as the target class.

Japanese Vowels The Japanese Vowels dataset has 270 samples. Each sample has 29 time steps and 12
features per time step, i.e. K = 29 and D = 12. All the features in this dataset are continuous. There are
nine classes and we use the last five classes as the target classes.

Libras The Libras dataset has 180 samples. Each sample has 45 time steps and 2 features per time step,
i.e. K = 45 and D = 2. All the features in this dataset are continuous. There are 15 classes and we use the
last eight classes as the target classes.

All the categorical features are one-hot encoded. All the continuous features are standardized to have mean 0
and variance 1.

1https://www.kaggle.com/datasets/vrec99/life-expectancy-2000-2015
2https://www.timeseriesclassification.com/description.php?Dataset=ERing
3http://www.timeseriesclassification.com/description.php?Dataset=NATOPS
4http://www.timeseriesclassification.com/description.php?Dataset=Heartbeat
5https://www.timeseriesclassification.com/description.php?Dataset=RacketSports
6https://www.timeseriesclassification.com/description.php?Dataset=BasicMotions
7https://www.timeseriesclassification.com/description.php?Dataset=JapaneseVowels
8https://www.timeseriesclassification.com/description.php?Dataset=Libras
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B Predictive Models Used in Section 5.2

Since NTD-CFE is model-agnostic, we expect it to work for predictive models with arbitrary hyperparameter
values and architectures. In Section 5.2, we evaluate the methods using five predictive models: two interpretable
rule- based models, a long short-term memory (LSTM) neural network, a K-nearest neighbor (KNNs), and a
random forest.

B.1 Rule-based predictive models

Two interpretable rule-based predictive models are implemented for each dataset.

Rule-based models for the Life Expectancy dataset

We employed two interpretable rule-based predictive models for the Life Expectancy dataset in Section 5.1
and Section 5.2. Let d1, d2, d3, d4, d5 denote the features “least-developed”, “GDP-per-capita”, “health-
expenditure”, “people-using-at-least-basic-drinking-water-services” and “people-practicing-open-defecation”,
respectively. We define the first rule-based model as:

f(x) =
{

Y ′ if x{k,d1} = 0 ∧ x{k,d2} > 0 ∧ x{k,d3} > 0 ∧ x{k,d4} > 0 ∧ x{k,d5} < 0 for K − 4 ≤ k ≤ K

Y otherwise

and the second rule-based model as:

f(x) =
{

Y ′ if x{k,d1} = 0 ∧
(
x{k,d2} > 0 ∨ x{k,d3} > 0

)
∧ x{k,d4} > 0 ∧ x{k,d5} < 0 for K − 4 ≤ k ≤ K

Y otherwise

where Y ′ is the target class and Y is the undesired class.

Rule-based models for the NATOPS dataset

Let d1 and d2 denote the features “Hand tip left, X coordinate” and “Hand tip right, X coordinate”, respectively.
We define the first rule-based model as:

f(x) =
{

Y ′ if x{k,d1} > 0 ∧ x{k,d2} > 0 for K − 9 ≤ k ≤ K

Y otherwise

and the second rule-based model as:

f(x) =
{

Y ′ if x{k,d1} > 0 ∨ x{k,d2} > 0 for K − 9 ≤ k ≤ K

Y otherwise

where Y ′ is one of the target classes and Y is one of the undesired classes.

Rule-based models for the Heartbeat dataset

Let di denote the i-th feature. We define the first rule-based model as:

f(x) =
{

Y ′ if x{k,d1} > 0 ∧ x{k,d2} > 0 ∧ x{k,d3} > 0 for K − 4 ≤ k ≤ K

Y otherwise

and the second rule-based model as:

f(x) =
{

Y ′ if x{k,d1} > 0 ∨ x{k,d2} > 0 ∨ x{k,d3} > 0 for K − 4 ≤ k ≤ K

Y otherwise

where Y ′ is the target class and Y is the undesired class.
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(a) Rule-based model 2 Weight health 0.1

(b) Rule-based model 2 Weight GDP 10

(c) Rule-based model 2 Weight CO2 Elec Forest 0.1

Figure 2: Qualitative examples with rule-based model 2 and different feature feasibility weights Wfsib.

Rule-based models for the Racket Sports dataset

Let di denote the i-th feature. We define the first rule-based model as:

f(x) =
{

Y ′ if x{k,d1} > 0 ∧ x{k,d5} > 0 for K − 4 ≤ k ≤ K

Y otherwise

and the second rule-based model as:

f(x) =
{

Y ′ if x{k,d1} > 0 ∨ x{k,d5} > 0 for K − 4 ≤ k ≤ K

Y otherwise

where Y ′ is the target class and Y is the undesired class.
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(a) Rule-based model 2 Weight GDP 0.1

(b) Rule-based model 2 Weight health 10

Figure 3: Qualitative examples with rule-based model 2 and different feature feasibility weights Wfsib. Among
relevant features to the predictive model prediction, NTD-CFE prefers the features with smaller Wfsib.

Rule-based models for the Basic Motions dataset

Let di denote the i-th feature. We define the first rule-based model as:

f(x) =
{

Y ′ if x{k,d1} > 0 ∧ x{k,d3} > 0 ∧ x{k,d6} > 0 for K − 9 ≤ k ≤ K

Y otherwise

and the second rule-based model as:

f(x) =
{

Y ′ if x{k,d1} > 0 ∨ x{k,d3} > 0 ∨ x{k,d6} > 0 for K − 9 ≤ k ≤ K

Y otherwise

where Y ′ is the target class “Standing”, and Y is the undesired class.

Rule-based models for the eRing dataset

Let di denote the i-th feature. We define the first rule-based model as:

f(x) =
{

Y ′ if x{k,d2} > 0 ∧ x{k,d3} > 0 for K − 9 ≤ k ≤ K

Y otherwise

and the second rule-based model as:

f(x) =
{

Y ′ if x{k,d2} > 0 ∨ x{k,d3} > 0 for K − 9 ≤ k ≤ K

Y otherwise

where Y ′ is the target class and Y is the undesired class.
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Rule-based models for the Japanese Vowels dataset

Let di denote the i-th feature. We define the first rule-based model as:

f(x) =
{

Y ′ if x{k,d1} > 0 ∧ x{k,d6} > 0 ∧ x{k,d12} > 0 for K − 19 ≤ k ≤ K

Y otherwise

and the second rule-based model as:

f(x) =
{

Y ′ if x{k,d1} > 0 ∨ x{k,d6} > 0 ∨ x{k,d12} > 0 for K − 19 ≤ k ≤ K

Y otherwise

where Y ′ is the target class and Y is the undesired class.

Rule-based models for the Libras dataset

Let di denote the i-th feature. We define the first rule-based model as:

f(x) =
{

Y ′ if x{k,d1} > 0 ∧ x{k,d2} > 0 for K − 19 ≤ k ≤ K

Y otherwise

and the second rule-based model as:

f(x) =
{

Y ′ if x{k,d1} > 0 ∨ x{k,d2} > 0 for K − 19 ≤ k ≤ K

Y otherwise

where Y ′ is the target class and Y is the undesired class.

B.2 Other Predictive Models

Besides the rule-based models, each of the following predictive models is also used for each dataset.

long short-term memory (LSTM). The first layer of the neural network is a LSTM layer with 30 hidden
states, followed by two linear layers. The first linear layer takes input of dimension of 30 and produces an
output of dimension 60, then passes the output to a ReLU activation function. The second linear layer takes
input of dimension of 60 and produces an output, then passes the output to a sigmoid activation function.
We train the LSTM with learning rate 0.001 and weight decay 0.001 for 5000 epochs.

K-nearest neighbor (KNN). The number of neighbors to use for prediction is
√

N , where N denotes the
number of samples in the dataset.

Random Forest. The number of trees is 100. The minimum number of samples required to split an
internal node is 2. The minimum number of samples required to be at a leaf node is 1.

C Hyperparameters used in Section 5

We use a unique set of hyperparameter values for NTD-CFE throughout the paper, unless otherwise stated,
without fine-tuning them:

• proximity weight λpxmt = 0.001

• maximum number of interventions per episode MT = 100

• maximum number of episodes ME = 100

• discount factor γ = 0.99
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• learning rate α = 0.0001

• regularization weight λWD = 0.0

The RL policy network contains two hidden linear layers with 1000 and 100 neurons, respectively. Adam
(Kingma & Ba, 2014) is used as the optimizer.

It is important to note that NTD-CFE is not a supervised learning algorithm. As a reinforcement learning
method, NTD-CFE does not rely on training datasets. Instead, it interacts with the environment (i.e., the
predictive model f) for optimization. We select the set of hyperparameter values that works best for the
Life Expectancy dataset from ten candidate sets of hyperparameter values. Although a more exhaustive
hyperparameter search could potentially find another set of hyperparameters that produces better results, we
leave this for future work. For the baseline methods, we use the hyperparameter values and architectures that
are provided as default in their code 9. All the experiments are conducted on CPU and with 32GB of RAM.

D Quantitative Experiments: NTD-CFE Versus NTD-CFEin_dist

In this section, we compare NTD-CFE, which does not enforce plausibility, with NTD-CFEin_dist, which
enforces plausibility. For NTD-CFEin_dist, Fin_dist(x) = True is applied (Line 17 of Algorithm 1) while any
other hyperparameter values remain unchanged. We employ local outlier factor (LOF) (Breunig et al., 2000)
as the (optional) oracular in-distribution detector Fin_dist. LOF is a common method for assessing plausibility
in CFE literature (Kanamori et al., 2020; Delaney et al., 2021; Wang et al., 2021b). It employs KNNs to
measure the degree to which a data point is unusual compared to others.

As shown in Tables 10 to 17, NTD-CFEin_dist achieves plausibility rates of 100%. However, its success rates
are lower than those of NTD-CFE in 22/39 cases. We further compare their proximity and sparsity under
the same success rates. Although NTD-CFEin_dist gets higher proximity in 8/17 cases and higher sparsity in
7/17 cases, the changes in the values are small.

9The code is publicly available at:
CoMTE: https://github.com/peaclab/CoMTE
Native-Guide: https://github.com/e-delaney/Instance-Based_CFE_TSC
CFRL: https://docs.seldon.io/projects/alibi/en/stable/methods/CFRL.html
FastAR: https://github.com/vsahil/FastAR-RL-for-generating-AR
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Table 2: Features in the Life Expectancy dataset.

Features Type

Country Name Categorical
Year Categorical
Continent Categorical
Least Developed Categorical
Population Continuous
CO2 Emissions Continuous
Health Expenditure Continuous
Electric Power Consumption Continuous
Forest Area Continuous
GDP per Capita Continuous
Individuals Using the Internet Continuous
Military Expenditure Continuous
People Practicing Open Defecation Continuous
People Using at Least Basic Drinking Water Services Continuous
Obesity Among Adults Continuous
Beer Consumption per Capita Continuous

Label: Life Expectancy Categorical
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Table 3: Quantitative results with the Life Expectancy dataset.

Predictive Ninv Methods Success Validity Plausibility Proximity Sparsity
Model Rate Rate Rate

LSTM 63

CoMTE 100.0% 100.0% 100.0% 37.475 201.54
Native-Guide 100.0% 100.0% 85.714% 30.674 190.238

CFRL 0.0% 0.0% — — —
FastAR 1.587% 1.587% 100.0% 0.45 1.0

NTD-CFE 98.413% 100.0% 80.645% 10.893 64.065

KNN 68

CoMTE 100.0% 100.0% 100.0% 46.366 204.176
Native-Guide 100.0% 100.0% 48.529% 1.452 × 1012 200.574

CFRL 100.0% 100.0% 100.0% 44.264 206.824
FastAR 0.0% 0.0% — — —

NTD-CFE 85.294% 100.0% 58.621% 19.756 82.879

Random
Forest 62

CoMTE 100.0% 100.0% 100.0% 33.752 199.468
Native-Guide 100.0% 100.0% 79.032% 2.834 × 1013 200.548

CFRL 100.0% 100.0% 100.0% 44.684 207.484
FastAR 0.0% 0.0% — — —

NTD-CFE 100.0% 100.0% 96.774% 8.724 49.661

Rule-
Based

1
87

CoMTE 100.0% 100.0% 100.0% 47.542 203.747
Native-Guide 65.517% 65.517% 66.667% 8.580 × 1013 193.526

CFRL 0.0% 0.0% — — —
FastAR 0.0% 0.0% — — —

NTD-CFE 82.759% 100.0% 88.889% 10.566 49.25

Rule-
Based

2
55

CoMTE 100.0% 100.0% 100.0% 47.108 203.327
Native-Guide 72.727% 72.727% 60.0% 7.749 × 1013 183.025

CFRL 0.0% 0.0% — — —
FastAR 0.0% 0.0% — — —

NTD-CFE 81.818% 100.0% 86.667% 11.238 52.667
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Table 4: Quantitative results with the NATOPS dataset.

Predictive Ninv Methods Success Validity Plausibility Proximity Sparsity
Model Rate Rate Rate

LSTM 90

CoMTE 100.0% 100.0% 100.0% 1285.262 1224.0
Native-Guide 100.0% 100.0% 63.333% 1.270 × 1013 1158.133

CFRL 0.0% 0.0% — — —
FastAR 0.0% 0.0% — — —

NTD-CFE 100.0% 100.0% 28.889% 227.184 135.1

KNN 93

CoMTE 100.0% 100.0% 100.0% 1284.259 1224.0
Native-Guide 100.0% 100.0% 55.914% 6.332 × 1013 1213.172

CFRL 0.0% 0.0% — — —
FastAR 0.0% 0.0% — — —

NTD-CFE 6.452% 100.0% 50.0% 588.817 496.333

Random
Forest 90

CoMTE 100.0% 100.0% 100.0% 1285.888 1224.0
Native-Guide 100.0% 100.0% 28.889% 3.193 × 1012 927.722

CFRL 100.0% 100.0% 0.0% 1277.502 1224.0
FastAR 0.0% 0.0% — — —

NTD-CFE 100.0% 100.0% 45.556% 228.323 157.733

Rule-
Based

1
178

CoMTE 0.0% — — — —
Native-Guide 66.854% 66.854% 17.647% 1.349 × 1014 1207.563

CFRL 0.0% 0.0% — — —
FastAR 0.0% 0.0% — — —

NTD-CFE 96.629% 100.0% 86.047% 188.263 144.105

Rule-
Based

2
126

CoMTE 100.0% 100.0% 100.0% 1294.181 1224.0
Native-Guide 93.651% 93.651% 72.881% 1.445 × 1014 1208.458

CFRL 0.0% 0.0% — — —
FastAR 0.0% 0.0% — — —

NTD-CFE 100.0% 100.0% 100.0% 33.756 20.587
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Table 5: Quantitative results with the Heartbeat dataset.

Predictive Ninv Methods Success Validity Plausibility Proximity Sparsity
Model Rate Rate Rate

CoMTE 100.0% 100.0% 100.0% 621.692 609.926
Native-Guide 100.0% 100.0% 77.206% 1.075 × 1011 591.346

LSTM 136 CFRL 2.941% 2.941% 100.0% 627.946 610.0
FastAR 0.0% 0.0% — — —

NTD-CFE 97.794% 100.0% 88.722% 16.825 12.12

CoMTE 100.0% 100.0% 100.0% 626.788 609.948
Native-Guide 97.396% 97.396% 60.963% 4.749 × 1012 600.824

KNN 192 CFRL 0.0% 0.0% — — —
FastAR 0.0% 0.0% — — —

NTD-CFE 72.396% 100.0% 30.935% 145.611 132.288

CoMTE 100.0% 100.0% 100.0% 622.636 609.864
Random Native-Guide 65.986% 65.986% 79.381% 1.877 × 1012 600.68
Forest 147 CFRL 0.0% 0.0% — — —

FastAR 0.0% 0.0% — — —
NTD-CFE 0.68% 100.0% 0.0% 57.664 48.0

CoMTE 100.0% 100.0% 100.0% 624.442 609.883
Rule Native-Guide 99.415% 99.415% 78.235% 5.192 × 1012 571.535

Based 1 171 CFRL 0.0% 0.0% — — —
FastAR 0.0% 0.0% — — —

NTD-CFE 70.175% 100.0% 43.333% 173.931 162.692

CoMTE 100.0% 100.0% 100.0% 619.454 609.917
Rule Native-Guide 100.0% 100.0% 82.5% 2.236 × 1011 589.658

Based 2 120 CFRL 0.0% 0.0% — — —
FastAR 0.0% 0.0% — — —

NTD-CFE 100.0% 100.0% 90.833% 13.842 9.008
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Table 6: Quantitative results with the Racket Sports dataset.

Predictive Ninv Methods Success Validity Plausibility Proximity Sparsity
Model Rate Rate Rate

CoMTE 100.0% 100.0% 100.0% 214.707 180.0
Native-Guide 100.0% 100.0% 75.641% 202.626 161.59

LSTM 78 CFRL 0.0% 0.0% — — —
FastAR 14.103% 14.103% 100.0% 1.786 1.091

NTD-CFE 100.0% 100.0% 98.718% 16.734 8.295

CoMTE 100.0% 100.0% 100.0% 217.73 180.0
Native-Guide 100.0% 100.0% 76.786% 5.320 × 1012 172.723

KNN 112 CFRL 0.0% 0.0% — — —
FastAR 0.0% 0.0% — — —

NTD-CFE 100.0% 100.0% 66.964% 54.974 29.366

CoMTE 100.0% 100.0% 100.0% 214.105 180.0
Random Native-Guide 98.78% 98.78% 77.778% 3.529 × 1012 167.222
Forest 82 CFRL 0.0% 0.0% — — —

FastAR 0.0% 0.0% — — —
NTD-CFE 100.0% 100.0% 90.244% 43.695 26.232

CoMTE 100.0% 100.0% 100.0% 222.762 180.0
Rule Native-Guide 94.595% 94.595% 67.619% 1.170 × 1014 172.486

Based 1 111 CFRL 0.0% 0.0% — — —
FastAR 0.0% 0.0% — — —

NTD-CFE 98.198% 100.0% 93.578% 24.46 13.385

CoMTE 100.0% 100.0% 100.0% 220.552 180.0
Rule Native-Guide 100.0% 100.0% 75.0% 228.065 170.125

Based 2 16 CFRL 0.0% 0.0% — — —
FastAR 0.0% 0.0% — — —

NTD-CFE 100.0% 100.0% 100.0% 16.183 9.438
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Table 7: Quantitative results with the Basic Motions dataset.

Predictive Ninv Methods Success Validity Plausibility Proximity Sparsity
Model Rate Rate Rate

CoMTE 100.0% 100.0% 100.0% 782.188 600.0
Native-Guide 100.0% 100.0% 85.714% 699.261 527.429

LSTM 14 CFRL 100.0% 100.0% 100.0% 802.065 600.0
FastAR 7.143% 7.143% 100.0% 2.85 1.0

NTD-CFE 100.0% 100.0% 100.0% 87.828 38.429

CoMTE 100.0% 100.0% 100.0% 761.556 600.0
Native-Guide 100.0% 100.0% 78.947% 706.719 562.526

KNN 19 CFRL 100.0% 100.0% 100.0% 795.277 600.0
FastAR 0.0% 0.0% — — —

NTD-CFE 100.0% 100.0% 94.737% 206.984 121.421

CoMTE 100.0% 100.0% 100.0% 751.741 600.0
Random Native-Guide 100.0% 100.0% 80.0% 721.01 574.9
Forest 20 CFRL 100.0% 100.0% 100.0% 773.104 600.0

FastAR 0.0% 0.0% — — —
NTD-CFE 100.0% 100.0% 50.0% 305.677 182.25

CoMTE 100.0% 100.0% 100.0% 896.874 600.0
Rule Native-Guide 97.143% 97.143% 88.235% 804.033 584.971

Based 1 35 CFRL 0.0% 0.0% — — —
FastAR 0.0% 0.0% — — —

NTD-CFE 97.143% 100.0% 73.529% 133.66 80.559

CoMTE 100.0% 100.0% 100.0% 703.79 600.0
Rule Native-Guide 100.0% 100.0% 75.0% 687.975 562.0

Based 2 8 CFRL 0.0% 0.0% — — —
FastAR 0.0% 0.0% — — —

NTD-CFE 100.0% 100.0% 100.0% 44.01 19.25
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Table 8: Quantitative results with the Japanese Vowels dataset.

Predictive Ninv Methods Success Validity Plausibility Proximity Sparsity
Model Rate Rate Rate

CoMTE 100.0% 100.0% 100.0% 330.771 300.0
Native-Guide 100.0% 100.0% 88.43% 3.725 × 1012 281.05

LSTM 121 CFRL 100.0% 100.0% 100.0% 335.712 300.0
FastAR 0.0% 0.0% — — —

NTD-CFE 100.0% 100.0% 99.174% 35.3 19.413

CoMTE 100.0% 100.0% 100.0% 331.845 300.0
Native-Guide 100.0% 100.0% 85.484% 3.574 × 1012 283.419

KNN 124 CFRL 100.0% 100.0% 100.0% 334.799 300.0
FastAR 1.613% 1.613% 100.0% 1.6 1.0

NTD-CFE 100.0% 100.0% 71.774% 104.147 62.073

CoMTE 100.0% 100.0% 100.0% 331.467 300.0
Random Native-Guide 100.0% 100.0% 89.167% 9.824 × 1012 290.233
Forest 120 CFRL 100.0% 100.0% 100.0% 334.707 300.0

FastAR 0.0% 0.0% — — —
NTD-CFE 100.0% 100.0% 90.0% 83.856 52.55

CoMTE 0.0% — — — —
Rule Native-Guide 30.855% 30.855% 78.313% 3.032 × 1013 300.0

Based 1 269 CFRL 0.0% 0.0% — — —
FastAR 0.0% 0.0% — — —

NTD-CFE 53.903% 100.0% 57.241% 166.07 123.869

CoMTE 100.0% 100.0% 100.0% 330.597 300.0
Rule Native-Guide 67.114% 67.114% 77.0% 6.965 × 1012 289.92

Based 2 149 CFRL 0.0% 0.0% — — —
FastAR 0.0% 0.0% — — —

NTD-CFE 100.0% 100.0% 97.987% 38.206 18.436
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Table 9: Quantitative results with the Libras dataset.

Predictive Ninv Methods Success Validity Plausibility Proximity Sparsity
Model Rate Rate Rate

CoMTE 100.0% 100.0% 100.0% 120.329 89.494
Native-Guide 100.0% 100.0% 64.045% 111.969 88.382

LSTM 89 CFRL 0.0% 0.0% — — —
FastAR 59.551% 59.551% 64.151% 2.037 1.094

NTD-CFE 100.0% 100.0% 32.584% 21.421 12.73

CoMTE 100.0% 100.0% 100.0% 118.379 88.989
Native-Guide 100.0% 100.0% 51.685% 126.318 89.213

KNN 89 CFRL 100.0% 100.0% 100.0% 139.54 90.0
FastAR 1.124% 1.124% 0.0% 4.4 3.0

NTD-CFE 100.0% 100.0% 14.607% 45.306 24.112

CoMTE 100.0% 100.0% 100.0% 108.074 88.393
Random Native-Guide 100.0% 100.0% 75.0% 111.086 87.143
Forest 84 CFRL 0.0% 0.0% — — —

FastAR 0.0% 0.0% — — —
NTD-CFE 100.0% 100.0% 13.095% 50.151 27.024

CoMTE 100.0% 100.0% 100.0% 144.053 88.836
Rule Native-Guide 100.0% 100.0% 87.069% 135.861 88.836

Based 1 116 CFRL 0.0% 0.0% — — —
FastAR 0.0% 0.0% — — —

NTD-CFE 100.0% 100.0% 6.034% 74.67 39.647

CoMTE 100.0% 100.0% 100.0% 131.461 90.0
Rule Native-Guide 100.0% 100.0% 98.113% 135.119 90.0

Based 2 53 CFRL 0.0% 0.0% — — —
FastAR 0.0% 0.0% — — —

NTD-CFE 100.0% 100.0% 20.755% 45.037 23.962
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Table 10: Compare NTD-CFE and NTD-CFEin_dist with the Life Expectancy dataset.

Predictive Ninv Methods Success Validity Plausibility Proximity Sparsity
Model Rate Rate Rate

LSTM 63 NTD-CFE 98.413% 100.0% 80.645% 10.893 64.065
NTD-CFEin_dist 93.651% 100.0% 100.0% 12.546 57.695

KNN 68 NTD-CFE 85.294% 100.0% 58.621% 19.756 82.879
NTD-CFEin_dist 79.412% 100.0% 100.0% 25.653 82.241

Random
Forest 62 NTD-CFE 100.0% 100.0% 96.774% 8.724 49.661

NTD-CFEin_dist 100.0% 100.0% 100.0% 8.984 49.242

Rule
Based 1 87 NTD-CFE 82.759% 100.0% 88.889% 10.566 49.25

NTD-CFEin_dist 79.31% 100.0% 100.0% 10.063 46.014

Rule
Based 2 55 NTD-CFE 81.818% 100.0% 86.667% 11.238 52.667

NTD-CFEin_dist 76.364% 100.0% 100.0% 9.329 46.69

Table 11: Compare NTD-CFE and NTD-CFEin_dist with the NATOPS dataset.

Predictive Ninv Methods Success Validity Plausibility Proximity Sparsity
Model Rate Rate Rate

LSTM 90 NTD-CFE 100.0% 100.0% 28.889% 227.184 135.1
NTD-CFEin_dist 40.0% 100.0% 100.0% 192.739 125.5

KNN 93 NTD-CFE 6.452% 100.0% 50.0% 588.817 496.333
NTD-CFEin_dist 3.226% 100.0% 100.0% 109.59 67.0

Random
Forest 90 NTD-CFE 100.0% 100.0% 45.556% 228.323 157.733

NTD-CFEin_dist 63.333% 100.0% 100.0% 212.14 156.333

Rule
Based 1 178 NTD-CFE 96.629% 100.0% 86.047% 188.263 144.105

NTD-CFEin_dist 90.449% 100.0% 100.0% 133.034 95.646

Rule
Based 2 126 NTD-CFE 100.0% 100.0% 100.0% 33.756 20.587

NTD-CFEin_dist 100.0% 100.0% 100.0% 33.756 20.587
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Table 12: Compare NTD-CFE and NTD-CFEin_dist with the Heartbeat dataset.

Predictive Ninv Methods Success Validity Plausibility Proximity Sparsity
Model Rate Rate Rate

LSTM 136 NTD-CFE 97.794% 100.0% 88.722% 16.825 12.12
NTD-CFEin_dist 97.794% 100.0% 100.0% 19.104 14.714

KNN 192 NTD-CFE 72.396% 100.0% 30.935% 145.611 132.288
NTD-CFEin_dist 25.521% 100.0% 100.0% 87.665 77.245

Random
Forest 147 NTD-CFE 0.68% 100.0% 0.0% 57.664 48.0

NTD-CFEin_dist 0.0% — — — —

Rule
Based 1 171 NTD-CFE 70.175% 100.0% 43.333% 173.931 162.692

NTD-CFEin_dist 30.994% 100.0% 100.0% 83.472 75.906

Rule
Based 2 120 NTD-CFE 100.0% 100.0% 90.833% 13.842 9.008

NTD-CFEin_dist 99.167% 100.0% 100.0% 14.205 9.613

Table 13: Compare NTD-CFE and NTD-CFEin_dist with the Racket Sports dataset.

Predictive Ninv Methods Success Validity Plausibility Proximity Sparsity
Model Rate Rate Rate

LSTM 78 NTD-CFE 100.0% 100.0% 98.718% 16.734 8.295
NTD-CFEin_dist 100.0% 100.0% 100.0% 16.961 8.423

KNN 112 NTD-CFE 100.0% 100.0% 66.964% 54.974 29.366
NTD-CFEin_dist 100.0% 100.0% 100.0% 64.028 36.42

Random
Forest 82 NTD-CFE 100.0% 100.0% 90.244% 43.695 26.232

NTD-CFEin_dist 100.0% 100.0% 100.0% 44.611 27.768

Rule
Based 1 111 NTD-CFE 98.198% 100.0% 93.578% 24.46 13.385

NTD-CFEin_dist 98.198% 100.0% 100.0% 25.226 13.633

Rule
Based 2 16 NTD-CFE 100.0% 100.0% 100.0% 16.183 9.438

NTD-CFEin_dist 100.0% 100.0% 100.0% 16.183 9.438
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Table 14: Compare NTD-CFE and NTD-CFEin_dist with the Basic Motions dataset.

Predictive Ninv Methods Success Validity Plausibility Proximity Sparsity
Model Rate Rate Rate

LSTM 14 NTD-CFE 100.0% 100.0% 100.0% 87.828 38.429
NTD-CFEin_dist 100.0% 100.0% 100.0% 87.828 38.429

KNN 19 NTD-CFE 100.0% 100.0% 94.737% 206.984 121.421
NTD-CFEin_dist 100.0% 100.0% 100.0% 223.681 128.368

Random
Forest 20 NTD-CFE 100.0% 100.0% 50.0% 305.677 182.25

NTD-CFEin_dist 95.0% 100.0% 100.0% 321.474 199.895

Rule
Based 1 35 NTD-CFE 97.143% 100.0% 73.529% 133.66 80.559

NTD-CFEin_dist 97.143% 100.0% 100.0% 157.419 104.824

Rule
Based 2 8 NTD-CFE 100.0% 100.0% 100.0% 44.01 19.25

NTD-CFEin_dist 100.0% 100.0% 100.0% 44.01 19.25

Table 15: Compare NTD-CFE and NTD-CFEin_dist with the eRing dataset.

Predictive Ninv Methods Success Validity Plausibility Proximity Sparsity
Model Rate Rate Rate

LSTM 14 NTD-CFE 100.0% 100.0% 100.0% 54.682 31.214
NTD-CFEin_dist 100.0% 100.0% 100.0% 54.682 31.214

KNN 16 NTD-CFE 100.0% 100.0% 100.0% 144.937 86.688
NTD-CFEin_dist 100.0% 100.0% 100.0% 144.937 86.688

Random
Forest 15 NTD-CFE 100.0% 100.0% 100.0% 68.882 46.733

NTD-CFEin_dist 100.0% 100.0% 100.0% 68.882 46.733

Rule
Based 1 29 NTD-CFE 100.0% 100.0% 100.0% 103.953 63.345

NTD-CFEin_dist 100.0% 100.0% 100.0% 103.953 63.345

Rule
Based 2 25 NTD-CFE 100.0% 100.0% 100.0% 31.301 14.76

NTD-CFEin_dist 100.0% 100.0% 100.0% 31.301 14.76
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Table 16: Compare NTD-CFE and NTD-CFEin_dist with the Japanese Vowels dataset.

Predictive Ninv Methods Success Validity Plausibility Proximity Sparsity
Model Rate Rate Rate

LSTM 121 NTD-CFE 100.0% 100.0% 99.174% 35.3 19.413
NTD-CFEin_dist 99.174% 100.0% 100.0% 35.753 19.833

KNN 124 NTD-CFE 100.0% 100.0% 71.774% 104.147 62.073
NTD-CFEin_dist 94.355% 100.0% 100.0% 114.437 74.667

Random
Forest 120 NTD-CFE 100.0% 100.0% 90.0% 83.856 52.55

NTD-CFEin_dist 98.333% 100.0% 100.0% 85.103 54.314

Rule
Based 1 269 NTD-CFE 53.903% 100.0% 57.241% 166.07 123.869

NTD-CFEin_dist 34.201% 100.0% 100.0% 135.475 98.674

Rule
Based 2 149 NTD-CFE 100.0% 100.0% 97.987% 38.206 18.436

NTD-CFEin_dist 99.329% 100.0% 100.0% 38.038 18.926

Table 17: Compare NTD-CFE and NTD-CFEin_dist with the Libras dataset.

Predictive Ninv Methods Success Validity Plausibility Proximity Sparsity
Model Rate Rate Rate

LSTM 89 NTD-CFE 100.0% 100.0% 32.584% 21.421 12.73
NTD-CFEin_dist 93.258% 100.0% 100.0% 39.937 23.831

KNN 89 NTD-CFE 100.0% 100.0% 14.607% 45.306 24.112
NTD-CFEin_dist 88.764% 100.0% 100.0% 63.915 37.215

Random
Forest 84 NTD-CFE 100.0% 100.0% 13.095% 50.151 27.024

NTD-CFEin_dist 88.095% 100.0% 100.0% 61.098 40.635

Rule
Based 1 116 NTD-CFE 100.0% 100.0% 6.034% 74.67 39.647

NTD-CFEin_dist 50.862% 100.0% 100.0% 87.461 50.695

Rule
Based 2 53 NTD-CFE 100.0% 100.0% 20.755% 45.037 23.962

NTD-CFEin_dist 84.906% 100.0% 100.0% 75.344 38.289
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Table 18: This table shows that success rates are improved with increased maximum number of episodes ME

and maximum number of interventions per episode MT , which correspond to more exhaustive RL search. We
only test against the cases from Tables 1 and 3 to 9 in which the default hyperparameters give success rates
below 50%.

NTD-CFE Hyperparameters Success Rate Validity Rate Plausibility Rate Proximity Sparsity

ME = 100, MT = 100 0.68% 100.0% 0.0% 57.664 48.0
ME = 1000, MT = 100 10.204% 100.0% 20.0% 267.045 253.2
ME = 1000, MT = 1000 76.87% 100.0% 4.425% 444.993 417.336

(a) Dataset: Heartbeat. Predictive model: random forest.

NTD-CFE Hyperparameters Success Rate Validity Rate Plausibility Rate Proximity Sparsity

ME = 100, MT = 100 6.452% 100.0% 50.0% 588.817 496.333
ME = 1000, MT = 100 12.903% 100.0% 33.333% 711.761 595.583
ME = 10000, MT = 100 26.882% 100.0% 16.0% 782.599 627.96

(b) Dataset: NATOPS. Predictive model: KNN.
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