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Abstract

Large language models (LLMs) require con-
tinual knowledge updates to keep pace with
the evolving world. While various model edit-
ing methods have been proposed, most face
critical challenges in lifelong learning contexts
due to two fundamental limitations: (1) Edit
Overshooting - parameter updates intended for
a specific fact spill over to unrelated regions,
causing interference with previously retained
knowledge; and (2) Knowledge Entanglement
- polysemantic neurons’ overlapping encoding
of multiple concepts makes it difficult to isolate
and edit a single fact. In this paper, we propose
MicroEdit, a neuron-level editing method that
performs minimal and controlled interventions
within LLMs. By leveraging a sparse autoen-
coder (SAE), MicroEdit disentangles knowl-
edge representations and activates only a min-
imal set of necessary neurons for precise pa-
rameter updates. This targeted design enables
fine-grained control over the editing scope, ef-
fectively mitigating interference and preserving
unrelated knowledge. Extensive experiments
show that MicroEdit outperforms prior meth-
ods and robustly handles lifelong knowledge
editing across QA and Hallucination settings on
LLaMA! and Mistral®. Our code can be found
at: https://anonymous.4open.science/r/
MicroEdit-200B.

1 Introduction

Large language models (LLMs) accumulate
substantial world knowledge during pretrain-
ing (Roberts et al., 2020). However, as real-world
knowledge continually evolves, these models in-
evitably retain outdated or incorrect information,
necessitating timely correction and updating. To
address this limitation, lifelong knowledge edit-
ing (Hartvigsen et al., 2024) emerges as a strategic
solution, aiming to enable continuous and dynamic
knowledge updates over extended time horizons.

"meta-llama/Meta-Llama-3-8B
*mistralai/Mistral-7B-v0.1

Previous knowledge editing methods (Meng
et al., 2022a; Mitchell et al., 2022a) are designed
primarily for single or limited edits, lacking the
capacity to support long-term, multi-round knowl-
edge updates, which often leads to catastrophic
forgetting or model collapse. Thus, these methods
struggle to accommodate the evolving knowledge
requirements in real world scenarios.

Through systematic evaluation experiments with
LLMs, we observe that current editing methods
suffer from two major issues under lifelong editing
scenarios: (1) Edit Overshooting, where updates
inadvertently modify parameters unrelated to the
target knowledge, leading to degraded performance
on unrelated tasks; (2) Knowledge Entanglement,
a phenomenon induced by the polysemanticity of
neurons, where semantically overlapping represen-
tations may lead to unintended modifications of
non-target knowledge, even when edits are applied
to the correct parameters. Section 2 presents a de-
tailed quantified analysis to reveal the origins of
these limitations and their effects on editing relia-
bility and accuracy.

To address these issues, we propose a novel
knowledge editing framework that enables con-
trolled knowledge updates via neuron-level min-
imal editing within large language models. For
Edit Overshooting, the Sparse Autoencoder (SAE)
activates only a minimal subset of neurons for
knowledge instance, naturally limiting the scope
of reconstruction and parameter updates to target-
specific regions and reducing interference with un-
related parameters. For Knowledge Entanglement,
SAE adopts an overcomplete hidden layer, where
sparsely activated neurons are encouraged to learn
monosemantic representations. This reduces se-
mantic overlap in the parameter space, effectively
mitigating Knowledge Entanglement and enabling
more precise, controlled edits. The contributions
of this paper are summarized as follows:
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Figure 1: (a) The proportion of activated neurons across different layers of the LLM under varying activation
thresholds; (b) The results when only neurons above a specific threshold are activated, we evaluate outputs using
three metrics: Top-1 (exact match of the highest probable token), Top-5 (top-5 token predictions are strictly matched),
and Jaccard similarity (set overlap of top-5 predictions); (c) Results of three activation strategies: activating neurons
above the threshold (Active), randomly selected neurons (Random), and only activating neurons below the threshold
(Mutex); (d) Visualization of semantic similarity among 10 randomly selected knowledge instances; (e-f) neuron
activation similarities of these 10 knowledge instances computed by averaging across all tokens (e) or using only

the last token (f).

* We identify two key limitation in current
knowledge editing methods by quantified anal-
ysis: Edit Overshooting and Knowledge En-
tanglement, which hinder precise and reliable
knowledge modification.

* We develop MicroEdit, an editing method that
performs sparse neuron-level updates via a
pretrained SAE to enhance reliability and pre-
cision in lifelong knowledge editing.

» Extensive experiments are conducted on life-
long knowledge editing across LLaMA and
Mistral models. The results demonstrate the
effectiveness of MicroEdit.

2 Empirical Insights into Editing Limits

We conduct an empirical analysis and identify two
key factors that limit the effectiveness of current
methods in lifelong knowledge editing scenarios.

Inefficient Parameter Updates: Edit Overshoot-
ing. Prior work has shown that not all neurons
contribute equally to the computation of specific
knowledge during inference (Geva et al., 2021; Dai

et al., 2022). We investigate this with three empir-
ical studies (Figure 1(a—c)). We measure neuron
activation rates across layers under varying thresh-
olds in Figure 1(a). Early layers exhibit sparse
activation, which increases in deeper layers, with
output layers being most active. Neurons with ac-
tivation above 0.1 are rare in lower and middle
layers. In Figure 1(b), we compares original out-
puts with those obtained by masking low-activation
neurons. We find that retaining only the top 60% ac-
tivated neurons preserves performance, indicating
that inference relies on a subset of critical neurons.
Further experimental results in Figure 1(c) confirm
that only highly activated neurons are essential for
representing the target knowledge. These results
suggest that updating only the parameters associ-
ated with highly activated neurons is sufficient for
editing. However, existing methods often ignore
this sparsity and perform overly broad updates, af-
fecting irrelevant parameters, a phenomenon we
refer to as Edit Overshooting. The key challenge
lies in identifying and updating only the parameters
most relevant to the target knowledge.
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Figure 2: Overview of MicroEdit. (a) illustrates the Switch Mechanism, which distinguishes between in-scope
(Green Square) and out-of-scope (Red Square) knowledge for inference. (b) shows the knowledge modification
process using the SAE. The model’s original intermediate features are mapped to a sparse set of neurons via the
encoder. These sparse activations are then decoded through the corresponding sub-parameters of the decoder to
reconstruct a targeted representation, enabling the model to modify the original output (e.g., from Cat to Dog).

Neuron-Level Semantic Coupling: Knowledge
Entanglement. In addition to the phenomenon
discussed above, deep neural networks neurons are
polysemantic, meaning that individual neurons of-
ten encode multiple, semantically unrelated pieces
of information (Bricken et al., 2023; Elhage et al.,
2022). To empirically study this issue, we con-
ducted an activation similarity analysis across dif-
ferent knowledge statements (Figure 1 (d-f)): In
Figure 1(d), we shows the semantic similarity be-
tween 10 randomly selected knowledge statements.
Figure 1(e) and (f) report neuron activation simi-
larities computed by averaging across all tokens
or using only the last token. Interestingly, even
for semantically unrelated knowledge pairs, such
as knowledge 5 "Bananas contain high amounts
of potassium" and knowledge 8 "The Sun revolves
around the Earth in geocentric models", we ob-
serve up to 18% overlap in activated neurons. This
indicates that modifying the parameters associated
with one piece of knowledge may unintentionally
impact others encoded by the same neurons. We
refer to this phenomenon as Knowledge Entan-
glement, which highlights the risk of knowledge
interference when updating shared neural repre-
sentations. Such representational overlap poses
a fundamental challenge to editing precision and
motivates the need for more disentangled update
mechanisms. The central challenge is to isolate
more disentangled features that uniquely represent
the target knowledge without disrupting others.

3 Preliminary

3.1 Lifelong Knowledge Editing

Lifelong Knowledge Editing refers to the process
of incrementally transforming an initial model fy,
into an edited model fy,, through multiple rounds
of knowledge updating, enabling continual incorpo-
ration of new information while preserving existing
knowledge and ensuring behavioral stability of the
model. We denote the model update process as
foo — fo,» where 6 represents the initial param-
eters of the language model, and 67 denotes the
parameters after 7" rounds of knowledge editing.
Each editing objective is defined as a pair (e, ye)
in edit dataset Degj; , Where z. is the knowledge
prompt and y. is the desired output that the initial
model fails to produce correctly. Accordingly, the
editing objective can be formally defined as:

N — Yi
Jor (i) {feo(l“i)

To evaluate the effectiveness of model editing
methods, we adopt the following three metrics:

Reliability measures the average accuracy of
the model on the edited samples after the 7'-th edit,
indicating whether the model successfully incorpo-
rates the intended knowledge change.

if 23 € Degit
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Generalization measures the average accuracy
on an extended dataset R(x, y) related to the edited
knowledge, reflecting the model’s ability to gener-
alize the edit to semantically similar contexts.

B e (Rat Y L 10T 0Ty for (0 | 2) = ye )
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Locality measures the relative accuracy change
on unrelated data O(z, y) before and after the 7'-th
edit, assessing whether the edit introduces unde-
sired side effects on the model’s original behavior.
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3.2 Sparse Autoencoder

Sparse Autoencoders (SAEs) are neural architec-
tures that learn efficient and structured representa-
tions by encouraging sparsity in the hidden layer.
This is typically achieved by applying a sparse
activation function ¢(-) to limit the number or mag-
nitude of active neurons for each input. W, €
R™*% and b, is the weight and bias of SAE en-
coder. Wye. € R™*? and by, is the weight and
bias of SAE decoder. Given an input vector z € R,
the encoder maps it to a hidden representation:

}AZ = fenc(z) = (z)(WencZ + benc) 5)

The decoder reconstructs the featrue from the
sparse code:

Z= fdec(il) = Wdech + bdec (6)

The imposed sparsity promotes more interpretable
and disentangled representations, making sparse
autoencoders (SAEs) valuable for tasks such as
model interpretability, concept discovery, and con-
trollable model editing.

4 Methodology

To address the challenges of Edit Overshooting and
tKnowledge Entanglement in lifelong knowledge
editing, we propose MicroEdit, a neuron-level edit-
ing framework consisting of two components: a
Sparse Autoencoder (SAE) for precise localization
and a Switch module for scope control.The overall
framework is illustrated in Figure 2.

4.1 SAE for Knowledge Editing

Recent work (Geva et al., 2021; Meng et al., 2022a)
reveals that Transformer FFNs function as key-
value memories and are effective targets for knowl-
edge editing. Similarly, SAE can be seen as a

key-value structure, with W, as the key and
Wiee as the value. As shown in Figure 2(b), we
freeze the parameters of the LLM and the SAE en-
coder,updating only the SAE decoder during edit-
ing. We attach the SAE to the [-th layer of the LLM
and extract its residual input z as the SAE input
for each prompt. Top-k activation is adopted in
the SAE to enforce sparsity by retaining only the k
most activated neurons. The inference process of
the encoder is as follows:

iL = Topk(WencZ + benc) (N

Unlike conventional autoencoding objectives that
aim to reconstruct the original input z, our goal is
to steer the model’s behavior toward generating the
desired output y. In this setting, the reconstruction
Z serves as an intervention that alters the model’s
internal representations to produce the target out-
put. To ensure that model behavior changes only
in a controlled and localized manner, our method
confines representation modifications to a minimal
subspace. Specifically, due to the Top-k sparse ac-
tivation, the modified residual z is reconstructed
solely from a limited set of decoder vectors:

zZ= Z iLz . Wdec[i] + bdec (8)
1€Ly

T, C {1,...,n} denotes the position indices of
the Top-k activated neurons within the SAE. As a
result, the update to the model’s internal represen-
tation is constrained within the subspace spanned
by the selected decoder weights:

Az =2z — z € Span(Waec[Z]) )

This subspace constraint naturally limits the propa-
gation of edits, reduces interference with unrelated
knowledge, and contributes to the stability of suc-
cessive edits. Accordingly, the loss function for the
editing process at round ¢ is defined as follows:
. —1

Loaie = —log P(yt|2") (2, 0. ")),0ar) (10)
where ng;l) denotes the trainable parameters of
the decoder after ¢ — 1 rounds of editing, 7 s de-
notes the frozen parameters of the language model.

4.2 Switch Mechanism

The original SAE is trained to reconstruct z to ap-
proximate the original hidden states z. But recon-
struction is not fully accurate, forcing all knowl-
edge to pass through the SAE during inference



Table 1: Main results for ZsRE. Bold is the best result, underline denotes the second-best. 7" : Num Edits.

Method | QA

| T=1 \ T =10 \ T = 100 \ T = 1000

| Rel. Gen. Loc. | Avg. | Rel. Gen. Loc. | Avg. | Rel. Gen. Loc. | Avg. | Rel. Gen. Loc. | Avg.

LLaMA-3-8B
FT 1.00 099 002|067 |069 064 001] 045|064 057 002] 041|062 056 0.02 ]| 040
FT-EWC | 1.00 0.99 0.02 [ 0.67 | 0.69 0.63 001 | 044 | 0.65 058 0.02 | 042 |0.62 0.56 0.02 | 0.40
ROME 0.99 097 096|097 [ 042 042 0.19 | 034 | 0.07 007 0.01 | 0.05 | 002 0.02 001 | 0.02
MEMIT | 088 0.69 1.00 | 086|077 0.69 098|081 |0.76 0.70 0.89 | 0.78 | 0.00 0.00 0.00 | 0.00
MEND 098 0.97 099 | 098 |0.00 0.01 0.11|0.04 |0.00 0.00 0.00| 000|000 000 0.0 | 0.00
GRACE [090 028 1.00 [ 0.73 | 0.90 028 1.00 [ 0.73 | 0.90 028 1.00 | 0.78 | 0.90 039 1.00 | 0.76
WISE 095 095 084|091 |08 080 099|088 |071 064 1.00] 078 | 0.61 0.57 1.00 | 0.73
MicroEdit | .00 092 095 | 0.96 | 0.93 0.78 0.95 | 0.89 | 0.89 0.71 0.97 | 0.86 | 0.87 0.65 1.00 | 0.84
Mistral-7B

FT 1.00 099 001 | 067|077 072 0.02] 050|074 067 005|049 070 065 0.08 ]| 048
FL-EWC | 1.00 0.99 001 | 067 | 077 0.72 001 | 050 | 0.74 0.67 0.05| 0.49 | 0.70 0.65 0.08 | 0.48
ROME 0.87 0.83 099 | 090 | 0.44 042 041 | 042|007 007 001 | 005|001 001 000|001
MEMIT | 088 0.85 1.00 [ 091 | 023 022 023|023 |003 003 001002004 004 002]| 0.03
MEND 0.99 096 1.00 | 0.98 | 0.00 0.00 0.01 | 0.00 | 0.00 0.00 0.00 | 0.00 | 0.00 0.00 0.00 | 0.00
GRACE |0.78 036 1.00 | 0.71 | 0.77 0.36 1.00 | 0.71 | 0.79 036 1.00 | 0.72 [ 0.78 0.36 1.00 | 0.71
WISE 099 097 099098 [0.85 081 099 | 088|078 073 1.00 | 0.84 | 0.66 0.63 1.00 | 0.76
MicroEdit | 0.95 0.68 1.00 | 0.88 | 0.91 0.78 1.00 | 0.89 | 0.86 0.73 1.00 | 0.86 | 0.80 0.68 0.98 | 0.82

may distort non-target information and compro-
mise model stability. Motivated by the SAE’s capa-
bility in anomaly detection, we introduce a switch
mechanism to distinguish between in-scope knowl-
edge and out-of-scope knowledge as illustrated in
Figure 2(a).

Specifically, the switch mechanism computes
SAE output z for all inputs, but substitutes z for
the original hidden state z only when the input is in-
scope. Otherwise, z is retained and propagated un-
changed. This design ensures that unrelated knowl-
edge remains unaffected during the editing process.
To support this mechanism, we introduce the Aver-
age Reconstruction Distance (ARD) as follows:

S
1 .
ﬁrec = ARD(xedit) = ﬁ Z HZS - ZSH%
s=1

e8Y)
where S is the length of the edited tokens, D is the
feature dimension of each token, « is the scaling
factor. We apply a threshold 7 on ARD to separate
editable targets from high-ARD local knowledge.
Thus, the output of MicroEdit during inference is:

% if ARD <

MicroEdit(z) =
z ifARD > 71

12)

At the same time, we also use ARD as an auxil-
iary loss to enlarge the gap between edited and un-
related knowledge. However, during editing train-

ing, we observe that jointly optimizing for editing
accuracy and ARD deviation is challenging. To
address this, we adopt a two-stage training strategy:
(1) First, optimize the reconstruction loss L. to
maximize deviation from the global ARD refer-
ence; (2) Then, optimize the combined objective
Lrec + Legit, encouraging both ARD deviation and
accurate editing.

To ensure localized updates during knowledge
editing, we apply an explicit gradient mask to the
W 4ee. The mask matrix is defined as:

1, ifiezd”

MO[i] =
i 0, otherwise

(13)
Let G®) = Vw,.. L' be the full gradient, and
M® € 0,174 is the broadcasted row mask. The
decoder update becomes:

W(t) _ =D _ n- (M(t) ® G(t))

dec dec

(14)

This ensures that only the activated neurons influ-
ence the decoder during each editing round. The
pseudo-code of our method is provided in Algo-
rithms 1 and 2 in appendix C.2.

S Experiment

5.1 Experimental Setup

Datasets and Evaluation Metrics. Following
(Hartvigsen et al., 2024), we select ZsRE (Levy



Table 2: Main results for SelfCheckGPT. Bold is the best result, underline denotes the second-best. - denotes
out-of-range values without comparative significance. 7' : Num Edits.

Hallucination

| LLaMA-3-8B \ Mistral-7B

| T=1 | T=10 | T=10 | T=600 | T=1 | T=10 | T=100 | T =600
Method | Rel. Loc. | Rel. Loc. | Rel. Loc. | Rel. Loc. | Rel. Loc. | Rel. Loc. | Rel. Loc. | Rel. Loc.
FT 101 006|493 008|340 0.16|401 022|102 005| 301 0.10] 220 0.18]256 024
FL-EWC | 101 0.06 [ 490 008 | 341 0.16 [ 401 022 | 1.02 005 | 3.06 0.10 | 221 0.18 | 2.56 0.24
ROME 193 097|876 065 | - 002 - 002|189 099|267 091 | - 002| - 002
MEMIT |437 1.00 [269 099 | - 001 | - 000|160 100 | 1132 093 | - 006| - 006
MEND  [4.17 098 | - 001 | - 000| - 000|339 099 - 00| - 000| - 000
GRACE | 1.03 1.00 [ 9.18 1.00 [ 992 100 [9.94 100 | 1.15 1.00 | 723 1.00 | 11.09 1.00 | 9.24 1.00
WISE 147 088|122 092|141 100|370 100|129 098 | 147 095 | 248 094|622 094
MicroEdit | 1.10 0.99 | 1.04 1.00 | 1.10 1.00 | 226 1.00 | 1.22 1.00 | 1.04 1.00 | 1.24 1.00 | 220 1.00

et al., 2017) as a closed-book question-answering
dataset to evaluate knowledge editing capabilities,
and SelfCheckGPT (Potsawee et al., 2023) as a
benchmark for hallucination correction. For zsRE,
we assess MicroEdit using three metrics: Reliabil-
ity, Generalization, and Locality. For the halluci-
nation dataset, the Generalization is not applicable,
we instead use Perplexity (PPL) to evaluate Relia-
bility, while still computing Locality to assess the
model performance after editing.

Models and Baselines. We evaluate our pro-
posed method, MicroEdit, on two widely used
large language models, LLaMA-3-8B and Mistral-
7B. Meanwhile, we employ the corresponding
SAEs: sae-llama-3-8b-32x from EleutherAI® and
mistral-7b-res-wg from SAE Lens (Joseph et al.,
2024). Comparisons are made against a broad
range of baselines, including direct parameter mod-
ification methods such as standard fine-tuning
(FT), continual learning-based fine-tuning with
Elastic Weight Consolidation (FT-EWC), Locate-
then-edit approaches (ROME, MEMIT), and meta-
learning based method (MEND). We further com-
pare against parameter-preserving methods, includ-
ing hidden state modification (GRACE), and side
MLP memory augmentation (WISE). More details
about baselines can be found in Appendix B.

5.2 Main Results

To demonstrate the effectiveness of MicroEdit, we
conduct experiments on two foundational language
models under both QA and Hallucination settings.
The results are shown in Table 1 and Table 2.
Across nearly all configurations, MicroEdit consis-

3EleutherAl/sae-llama-3-8b-32x

Table 3: Scaling to 3K and 5K edits. Bold is the best
result. ZsRE. LLaMA-3-8B.

Method T = 3000 | T = 5000

Rel. Gen. Loc. Avg. ‘ Rel. Gen. Loc. Avg.
GRACE 0.89 028 1.00 072|090 0.27 1.00 0.66
WISE 047 044 1.00 0.64 | 042 040 1.0 0.61
MicroEdit 0.83 0.59 1.00 0.81 | 0.80 0.54 1.00 0.78

tently achieves strong performance, especially in
long-term sequential editing scenarios. In contrast,
fine-tuning-based methods tend to overfit rapidly.
The locate-then-edit approach suffers from signifi-
cant Edit Overshooting problem during sequential
edits, often leading to model collapse. MEND fails
entirely after multiple rounds of editing. GRACE
performs well in terms of reliability and locality,
but demonstrates limited generalization capability.
While WISE accounts for knowledge storage con-
straints, it is still affected by Knowledge Entangle-
ment, leading to performance drop as the number
of edits 7" increases.

In addition, we scale the experiment to 3K and
5K edits. As shown in Table 3, MicroEdit outper-
forms the strongest baselines GRACE and WISE,
with a 12% improvement over the second-best
method at 5K edits. GRACE maintains high re-
liability but suffers from poor generalization, while
WISE shows performance degradation as the num-
ber of edits increases. Only MicroEdit achieves
stable and balanced performance under extremely
long sequential editing, demonstrating its effective-
ness in liflong knowledge editing scenarios.

5.3 Ablation Study

We conduct a series of ablation studies to evaluate
the impact of key components as shown in Table 4.
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Figure 3: (a) Performance of MicroEdit across different layers of LLaMA-3-8B; (b—c) The ARD of ZsRE and
SelfCheckGPT data during the inference stage. LLaMA-3-8B.

Table 4: Results of ablation study using 1K edits. Bold
font indicates the best result. ZsRE. LLaMA-3-8B.

Rel. Gen. Loc. | Avg.
MicroEdit 087 0.65 1.00 | 0.84
- TopK activation 027 0.27 1.00 | 0.51
- Shunting Mechanism 0.85 0.64 0.67 | 0.72
- Distance Regularization 0.50 0.43 1.00 | 0.64

(1) Ablating the Top-k sparse activation leads
to a substantial performance drop, rendering the
editing module nearly ineffective. This degradation
arises from two key factors. First, the lack of spar-
sity amplifies Edit Overshooting, resulting in pro-
nounced forgetting of unrelated knowledge. Sec-
ond, without sparsity constraints, ARD becomes
difficult to regulate, undermining the effectiveness
of the switch mechanism and further weakening
the editing capability.

(2) The absence of the switch mechanism leads
to a notable degradation in Locality, as existing
SAE cannot reliably reconstruct the full range of
original representations. However, model retains
around 67% performance, showing a degree of ro-
bustness. This indicates that the switch mechanism
can effectively isolate non-target knowledge during
editing, enhancing both precision and stability.

(3) Without the Distance Regularization editing
step, the model struggles to keep ARD below the
global average while optimizing toward the edit-
ing target, leading to uncontrolled ARD increases,
which hinder the separation of in-scope and out-
of-scope knowledge, ultimately degrading editing
performance.

5.4 Detailed Analysis and Discussion

Effect of Editing Layer on SAE Behavior. To
examine the effect of layer depth on MicroEdit, we
conduct editing experiments at early, middle, and

late layers. The results in Figure 3(a) show that edit-
ing at early layers leads to suboptimal performance,
as these layers mainly capture low-level linguis-
tic patterns, which makes it difficult to precisely
localize target knowledge. Performance improves
in the middle layers and reaches its peak in the
later layers. We attribute this to the hierarchical
structure of language models, where semantic rep-
resentations become increasingly refined in deeper
layers. Late layers tend to encode factual knowl-
edge more explicitly, enabling more targeted and
stable edits. Editing at these layers aligns better
with the model’s representational structure, allow-
ing MicroEdit to more precisely locate and modify
neurons associated with the target knowledge, lead-
ing to more effective and robust outcomes.

Effect of k& in Top-£ Activation. We further
analyze how the choice of k affects editing perfor-
mance. We use the SAE trained on the LLaMA-
3-8B model by EleutherAl, which is roughly fol-
lowing the recipe detailed in (Gao et al., 2024).
Accordingly, this SAE is trained with &k = 192 ac-
tivated neurons. To explore the influence of this
hyperparameter, we conduct experiments by vary-
ing the value of k. The results in Figure 4 show
that the original setting of £ = 192 yields the best
performance. When k is too small, the activated

Performance under Varying Top-K Activated Neurons
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Figure 4: Model performance under different Top-k
settings.



neurons fail to adequately cover all relevant knowl-
edge features, resulting in incomplete representa-
tion. Conversely, when £ is too large, neuron shar-
ing across different knowledge instances becomes
more frequent, leading to interference between in-
jected knowledge and a decline in performance. In
light of these findings, we retain the original SAE
setting and use k£ = 192 in our experiments.

Effect of ARD Threshold on Edit-Locality
Separation. We analyze the impact of the ARD
threshold on editing performance. During infer-
ence, ARD is used to distinguish between in-scope
and out-of-scope knowledge, as shown in Fig-
ure 3(b—c). In the hallucination experiment Fig-
ure 3(c), a threshold of 0.55 effectively separates
in-scope from out-of-scope knowledge. In the QA
setting Figure 3(b), although the the separation
is less distinct with some overlap, the model still
achieves robust editing performance, demonstrat-
ing strong resilience and generalization. We at-
tribute the difference to dataset characteristics: the
QA data has simple structure and higher semantic
overlap, leading to limited activation variation and
less clear ARD separation. In contrast, the Hal-
lucination data exhibits greater semantic diversity,
promoting more stable and separable representa-
tions. More details are in Appendix A.1.

6 Related Works

6.1 Knowledge Editing

Knowledge editing aims to modify models pre-
cisely while maintaining their performance and sta-
bility. ROME and MEMIT (Meng et al., 2022a,b)
insert factual knowledge into specific layers iden-
tified through causal tracing. While WilKE (Hu
et al., 2024) selects specific layers for each fact. To
isolate edit effects, AlphaEdit (Fang et al., 2025)
applies a null-space constraint, confining changes
to the target knowledge. Another strategy exempli-
fied by MEND is to train a small editing network to
generate parameter updates (Mitchell et al., 2022a;
Tan et al., 2024). In contrast, other methods pre-
serve original model parameters by using external
memory or small trainable modules. SERAC and
Grace (Mitchell et al., 2022b; Hartvigsen et al.,
2024) keep new information in an explicit memory
or local codebook, avoiding any change to base
weights. T-Patcher and MELO (Huang et al., 2023;
Yu et al., 2024) attach lightweight modules (ex-
tra neurons or dynamic LoRA blocks, MELO (Yu
et al., 2024), inspired by DyLoRA (Valipour et al.,

2023), implements edits via LoRA without altering
the model’s core parameters. REMEDI (Hernandez
et al., 2024) maps natural language statements to
fact encodings within a model’s internal representa-
tions. WISE (Wang et al., 2024) use a side memory
to modify and store knowledge.

6.2 Sparse Autoencoder

Sparse Autoencoder is an autoencoder that learns
interpretable representations by enforcing sparse
activations in the hidden layer. k-Sparse Autoen-
coders are proposed by (Makhzani and Frey, 2013).
By retaining only the top k most highly activated
neurons, they effectively improves classification
performance and is well-suited for large-scale prob-
lems. Recently, Sparse Autoencoders have been
widely used for interpreting LLMs (Shu et al.,
2025). By reconstructing internal activations of
the model into more monosemantic representations,
SAE:s help clarify previously uninterpretable neu-
ron behaviors caused by polysemanticity, improv-
ing model transparency (Cunningham et al., 2023;
Bricken et al., 2023; Templeton et al., 2024). In
addition, numerous open-source SAE toolkits pre-
trained on various LLMs have been released (He
et al., 2024; Lieberum et al., 2024; Joseph et al.,
2024). Research on SAEs continues to advance.
OpenAl has further explored existing SAE frame-
works and discovered clean scaling laws with re-
spect to autoencoder size and sparsitys (Gao et al.,
2024). (O’Neill and Bui, 2024) leverages SAEs to
identify interpretable computational circuits within
LLMs. (Paulo et al., 2024) proposes a pipeline for
generating and evaluating SAE feature interpreta-
tions.

7 Conclusion

In this work, we identify two core challenges in
lifelong model editing: Edit Overshooting caused
by excessive updates to irrelevant parameters and
Knowledge Entanglement which stems from the
inherent polysemanticity of neurons in LLMs. To
alleviate these issues, we propose MicroEdit, which
adopts Top-k sparse activation to restrict parame-
ter updates and leverages the structural properties
of an overcomplete sparse autoencoder to encour-
age more monosemantic neuron representations,
thereby reducing representation overlap and unin-
tended interference. Extensive experiments demon-
strate that MicroEdit achieves competitive perfor-
mance across different scenarios and LLM models.



8 Limitation

MicroEdit relies on a pre-trained Sparse Autoen-
coder (SAE) as a pluggable component to extract
and modify internal representations. While pre-
trained SAEs are available for most mainstream
models, applying MicroEdit to less common or
customized models often requires training an SAE
from scratch, introducing additional time and com-
putational costs.
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A Datasets Details

A.1 ZsRE

ZsRE is a classic zero-shot question-answering
dataset widely used in the model editing litera-
ture. Each record in the dataset contains a prompt-
answer pair (Zeg;t, Yeqit) that requires editing, a
paraphrased prompt x4, for evaluating general-
ization, and a locality pair (zjoc, Yioc) for mea-
suring locality preservation. We adopt the same
train/test split as (Mitchell et al., 2022a), consist-
ing of 163,196 training examples and 19,086 test
examples. Notably, MEND is the only method
that requires fitting a hyper network on the train-
ing set; other methods discard the training set and
directly perform edits and evaluations on the test
set. For our experiments, We further extend the
experiments to 3k and 5k records.

A.2 SelfCheckGPT

Following GRACE, we adopt the SelfCheckGPT
dataset to evaluate the ability of knowledge editing
methods to alleviate hallucinations. This dataset
consists of factually incorrect sentences generated
by GPT-3, each paired with a corrected version
derived from Wikipedia. Compared to the ZsRE
dataset, SelfCheckGPT features longer, more com-
plex sentences that more closely resemble real-
world knowledge editing scenarios. Each instance
is formatted as either (xedita yedit) and (xloca yloc)a
aligning with the standard editing and locality
evaluation settings. Unlike GRACE, which con-
ducts experiments on GPT2-X1.(1.5B), we per-
form experiments on larger scale LLMs such as
LLaMA(8B) and Mistral(7B). Due to memory con-
straints similar to those in (Wang et al., 2024),
we follow the same dataset split strategy, using
a train/test split of 306/600 samples. Except for
MEND, which requires training on the training set,
all other methods perform edits exclusively on the
test set. Table7 provides illustrative examples from
the two datasets, and Table6 reports the correspond-
ing dataset statistics.
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Table 5: Datasets examples

Dataset Text

Type

Tedit, Yedit

What university did Watts Humphrey attend?

University of Michigan

7ZsRE Lgen, Yedit

What university did Watts Humphrey take part in?

University of Michigan

Tedity Yedit

Who played desmond doss father in hacksaw ridge?

Hugo Weaving

Ledity Yedit

This is a Wikipedia passage about heinz christian pan-

der. Heinz Christian Pander (1794 - 1865) was a German
anatomist and embryologist who was born in Riga, Latvia.
He studied medicine at the University of Dorpat and later at

SelfCheckGPT

the University of Berlin.In 1820, he took part in a scien-

tific expedition to Bokhara as a naturalist.

ZLlocs Yloc

Tired and restlessly, drifting in and out of sleep. Hearing

crashing and banging, thinking the roof will cave in. Not
alert enough to quite know what.it was, I yelled loudly
for whoever was making those noises at such an hour to
stop. They heard and listened, I’'m guessing

A.3 Analysis of the Dataset

We conduct a visualization analysis of the Edit
Prompts and Locality Prompts from the ZSRE and
SelfCheckGPT datasets as Figure 5 and 6. The
results show that representations in SelfCheckGPT
are more clearly separated with lower semantic re-
dundancy, making it more suitable for stable and
low-interference long-term editing. In contrast,
ZSRE exhibits certain semantic overlaps, increas-
ing the risk of knowledge interference and forget-
ting, thus posing greater challenges for long-term
editing. Nevertheless, our method achieves strong
performance on both datasets, demonstrating its
robustness and effectiveness.

B Implementation of Baselines

FT Following (Hartvigsen et al., 2024) We use
Fine-tuning updates model parameters by minimiz-
ing the task-specific loss on the new data, allowing
the model to adapt to the edited knowledge.

FT-EWC Elastic Weight Consolidation (EWC)
addresses the problem of catastrophic forgetting

Table 6: Datasets statistics

SETTING  EDITING DATA T Pre-edit(LLaMA/Mistral)
QA ZsRE 1000 0.27/0.36 ACC
Hallucination ~ SelfCheckGPT 600 15.83/11.06 PPL
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Figure 5: t-SNE visualization of semantic representa-
tions in the ZSRE dataset

by introducing a regularization term derived from
the Fisher information matrix, which quantifies the
importance of each parameter based on previous
training (Hartvigsen et al., 2024).

ROME (Meng et al., 2022a) utilizes causal trac-
ing techniques to localize factual knowledge within
MLP layers and performs parameter editing by
solving a constrained least-squares problem. Under
the assumption that MLP layers serve as the pri-
mary knowledge storage mechanism (Geva et al.,
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Figure 6: t-SNE visualization of semantic representa-
tions in the SelfCheckGPT dataset

2021), ROME incrementally modifies the model by
injecting residual terms derived from a Lagrangian
formulation.

MEMIT (Meng et al., 2022b) is also built on
the assumption that the FFN functions as a knowl-
edge key-value store, and it modifies parameters
of specific layers via least squares fitting. Unlike
ROME, which updates only a single layer, MEMIT
performs joint updates across multiple layers, en-
abling batch editing of a large number of facts. In
sequential editing scenarios, MEMIT requires real-
time correction whenever the model produces an
error, often involving multiple rounds of operations
on the original model.

MEND MEND (Mitchell et al., 2022a) updates
the model by introducing a hyper-network that ad-
justs the gradients generated during standard fine-
tuning. Specifically, it approximates the original
gradients with a rank-1 decomposition and uses
this representation to derive new update directions,
which are then applied to specific layers of the tar-
get model.

GRACE GRACE (Hartvigsen et al., 2024) intro-
duces a dynamic discrete key-value memory that
evolves via key addition, expansion, and splitting.
At inference, it retrieves the nearest key and selec-
tively replaces the corresponding hidden activation
to enable precise knowledge updates.

WISE WISE (Wang et al., 2024) introduces a
dual-memory architecture for lifelong knowledge
editing in large language models, where immutable
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main memory preserves pretrained knowledge and
editable side memory stores newly edited facts. A
routing mechanism dynamically selects between
memories during inference, while a knowledge
sharding strategy allocates edits into disentangled
subspaces to prevent interference. This design ef-
fectively balances reliability, generalization, and
locality, overcoming the trade-offs faced by prior
editing methods.

C Experimental Details

C.1 Hyperparameters

In our experiments, we freeze both the parameters
of the base language model and the SAE encoder,
and train only the decoder of the SAE. For all mod-
els, batch size is 1, the learning rate is set to Se-5
with the Adam (Kingma, 2014) optimizer and the «
is 600. For LLaMA-3-8B, we use the sae-llama-3-
8b-32x model from EleutherAI* , with an interme-
diate expansion dimension of 32. We set k = 192,
a sparsity threshold of 0.55 for 7' > 100, and 0.5
for T" < 100. The SAE is inserted at layer 30. For
Mistral-7B, we use the 7b-res-wg model from SAE
Lens (Joseph et al., 2024), with an intermediate
expansion of 16. We set k = 400, a threshold of
0.15 for T' > 100, and 0.1 for 7' < 100. The SAE
is inserted at layer 24.

C.2 Pseudo Code of WISE

The pseudo-code of the MicroEdit editing stage is
in Algorithm 1, and the inference stage is Algo-
rithm 2.

C.3 Case Study

We present representative successful editing cases
from ZsRE and SelfCheckGPT datasets in Table 7.

*EleutherAl/sae-1lama-3-8b-32x


https://huggingface.co/EleutherAI/sae-llama-3-8b-32x/tree/main

Table 7: Case study

State Text

Prompt What language is Garowe Principles written in?

Label Dutch

Before Edit @ Garowe

After Edit Dutch

Prompt This is a Wikipedia passage about carole gist. Carole Gist (born April
28, 1969) is an American beauty pageant titleholder from Detroit,
Michigan who was crowned Miss USA 1990. She was the first
African-American woman to win the Miss USA title. Gist represented
the United States at the Miss Universe 1990 pageant held in Los
Angeles, California, where she placed first runner-up to Mona Grudt
of Norway. Gist was the first African-American woman to place in
the Miss Universe pageant.

Label She was also the first contestant from Michigan to win Miss USA,
and broke the five-year streak of winners from Texas.

Before Edit @ Gist was born in Detroit, Michigan. She is the daughter of a Detroit
police officer and a homemaker.

After Edit She was also the first contestant from Michigan to win Miss USA,

and broke the five-year streak of winners from Texas.

Algorithm 1 Editing Stages

Input: Edit data Degii; Edit round 7'; LLM f(-);
the designated layer [ in LLM; SAE encoder

fenc and decoder fg..; The trainable parameter
Wézzl) at round ¢; threshold 7

Algorithm 2 Inference Stage

Output: Trained decoder parameters 04ec

for each record (¢, y!) from Deqyr, t € [T do,
z  f<!(al)
h < fenc(z) = Topk(WencZ + benc)

> Eq. 7
2 face(h) = WV R 4 bee
> Eq. 8
Stage 1: Distance Regularization
L+ Lye(2,2) > Eq. 11
W wi=D (MO o g, L)
ec dec dec
> Eq. 14
Stage 2: Reconstruction Editing
L+ E’I‘EC(Z7 i) + ﬁedit(f>l(2)a yé)
> Eq. 10
Wiet = Wiel =n- (M9 © 9w, L)
> Eq. 14
end for

return the final SAE W

13

Input: Test data Dieg; LLM f(-);the designated
layer [ in LLM; SAE encoder f.,. and decoder
fdec; threshold 7

Output: LLM output

for each query x € Dyt do

z  [<!(x)
h «+ fenc(z) = Topk(WencZ + benc)
R R > Eq. 7
Z — fdec(h) = Wiech + bdec > Eq. 8
if ARD(z,z) < 7 then > Eq. 13
Edited Output<— f>!(2)
else
Original Output + f>!(z)
end if
end for
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