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Abstract001

Large language models (LLMs) require con-002
tinual knowledge updates to keep pace with003
the evolving world. While various model edit-004
ing methods have been proposed, most face005
critical challenges in lifelong learning contexts006
due to two fundamental limitations: (1) Edit007
Overshooting - parameter updates intended for008
a specific fact spill over to unrelated regions,009
causing interference with previously retained010
knowledge; and (2) Knowledge Entanglement011
- polysemantic neurons’ overlapping encoding012
of multiple concepts makes it difficult to isolate013
and edit a single fact. In this paper, we propose014
MicroEdit, a neuron-level editing method that015
performs minimal and controlled interventions016
within LLMs. By leveraging a sparse autoen-017
coder (SAE), MicroEdit disentangles knowl-018
edge representations and activates only a min-019
imal set of necessary neurons for precise pa-020
rameter updates. This targeted design enables021
fine-grained control over the editing scope, ef-022
fectively mitigating interference and preserving023
unrelated knowledge. Extensive experiments024
show that MicroEdit outperforms prior meth-025
ods and robustly handles lifelong knowledge026
editing across QA and Hallucination settings on027
LLaMA1 and Mistral2. Our code can be found028
at: https://anonymous.4open.science/r/029
MicroEdit-200B.030

1 Introduction031

Large language models (LLMs) accumulate032

substantial world knowledge during pretrain-033

ing (Roberts et al., 2020). However, as real-world034

knowledge continually evolves, these models in-035

evitably retain outdated or incorrect information,036

necessitating timely correction and updating. To037

address this limitation, lifelong knowledge edit-038

ing (Hartvigsen et al., 2024) emerges as a strategic039

solution, aiming to enable continuous and dynamic040

knowledge updates over extended time horizons.041

1meta-llama/Meta-Llama-3-8B
2mistralai/Mistral-7B-v0.1

Previous knowledge editing methods (Meng 042

et al., 2022a; Mitchell et al., 2022a) are designed 043

primarily for single or limited edits, lacking the 044

capacity to support long-term, multi-round knowl- 045

edge updates, which often leads to catastrophic 046

forgetting or model collapse. Thus, these methods 047

struggle to accommodate the evolving knowledge 048

requirements in real world scenarios. 049

Through systematic evaluation experiments with 050

LLMs, we observe that current editing methods 051

suffer from two major issues under lifelong editing 052

scenarios: (1) Edit Overshooting, where updates 053

inadvertently modify parameters unrelated to the 054

target knowledge, leading to degraded performance 055

on unrelated tasks; (2) Knowledge Entanglement, 056

a phenomenon induced by the polysemanticity of 057

neurons, where semantically overlapping represen- 058

tations may lead to unintended modifications of 059

non-target knowledge, even when edits are applied 060

to the correct parameters. Section 2 presents a de- 061

tailed quantified analysis to reveal the origins of 062

these limitations and their effects on editing relia- 063

bility and accuracy. 064

To address these issues, we propose a novel 065

knowledge editing framework that enables con- 066

trolled knowledge updates via neuron-level min- 067

imal editing within large language models. For 068

Edit Overshooting, the Sparse Autoencoder (SAE) 069

activates only a minimal subset of neurons for 070

knowledge instance, naturally limiting the scope 071

of reconstruction and parameter updates to target- 072

specific regions and reducing interference with un- 073

related parameters. For Knowledge Entanglement, 074

SAE adopts an overcomplete hidden layer, where 075

sparsely activated neurons are encouraged to learn 076

monosemantic representations. This reduces se- 077

mantic overlap in the parameter space, effectively 078

mitigating Knowledge Entanglement and enabling 079

more precise, controlled edits. The contributions 080

of this paper are summarized as follows: 081
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Figure 1: (a) The proportion of activated neurons across different layers of the LLM under varying activation
thresholds; (b) The results when only neurons above a specific threshold are activated, we evaluate outputs using
three metrics: Top-1 (exact match of the highest probable token), Top-5 (top-5 token predictions are strictly matched),
and Jaccard similarity (set overlap of top-5 predictions); (c) Results of three activation strategies: activating neurons
above the threshold (Active), randomly selected neurons (Random), and only activating neurons below the threshold
(Mutex); (d) Visualization of semantic similarity among 10 randomly selected knowledge instances; (e-f) neuron
activation similarities of these 10 knowledge instances computed by averaging across all tokens (e) or using only
the last token (f).

• We identify two key limitation in current082

knowledge editing methods by quantified anal-083

ysis: Edit Overshooting and Knowledge En-084

tanglement, which hinder precise and reliable085

knowledge modification.086

• We develop MicroEdit, an editing method that087

performs sparse neuron-level updates via a088

pretrained SAE to enhance reliability and pre-089

cision in lifelong knowledge editing.090

• Extensive experiments are conducted on life-091

long knowledge editing across LLaMA and092

Mistral models. The results demonstrate the093

effectiveness of MicroEdit.094

2 Empirical Insights into Editing Limits095

We conduct an empirical analysis and identify two096

key factors that limit the effectiveness of current097

methods in lifelong knowledge editing scenarios.098

Inefficient Parameter Updates: Edit Overshoot-099

ing. Prior work has shown that not all neurons100

contribute equally to the computation of specific101

knowledge during inference (Geva et al., 2021; Dai102

et al., 2022). We investigate this with three empir- 103

ical studies (Figure 1(a–c)). We measure neuron 104

activation rates across layers under varying thresh- 105

olds in Figure 1(a). Early layers exhibit sparse 106

activation, which increases in deeper layers, with 107

output layers being most active. Neurons with ac- 108

tivation above 0.1 are rare in lower and middle 109

layers. In Figure 1(b), we compares original out- 110

puts with those obtained by masking low-activation 111

neurons. We find that retaining only the top 60% ac- 112

tivated neurons preserves performance, indicating 113

that inference relies on a subset of critical neurons. 114

Further experimental results in Figure 1(c) confirm 115

that only highly activated neurons are essential for 116

representing the target knowledge. These results 117

suggest that updating only the parameters associ- 118

ated with highly activated neurons is sufficient for 119

editing. However, existing methods often ignore 120

this sparsity and perform overly broad updates, af- 121

fecting irrelevant parameters, a phenomenon we 122

refer to as Edit Overshooting. The key challenge 123

lies in identifying and updating only the parameters 124

most relevant to the target knowledge. 125
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Figure 2: Overview of MicroEdit. (a) illustrates the Switch Mechanism, which distinguishes between in-scope
(Green Square) and out-of-scope (Red Square) knowledge for inference. (b) shows the knowledge modification
process using the SAE. The model’s original intermediate features are mapped to a sparse set of neurons via the
encoder. These sparse activations are then decoded through the corresponding sub-parameters of the decoder to
reconstruct a targeted representation, enabling the model to modify the original output (e.g., from Cat to Dog).

Neuron-Level Semantic Coupling: Knowledge126

Entanglement. In addition to the phenomenon127

discussed above, deep neural networks neurons are128

polysemantic, meaning that individual neurons of-129

ten encode multiple, semantically unrelated pieces130

of information (Bricken et al., 2023; Elhage et al.,131

2022). To empirically study this issue, we con-132

ducted an activation similarity analysis across dif-133

ferent knowledge statements (Figure 1 (d-f)): In134

Figure 1(d), we shows the semantic similarity be-135

tween 10 randomly selected knowledge statements.136

Figure 1(e) and (f) report neuron activation simi-137

larities computed by averaging across all tokens138

or using only the last token. Interestingly, even139

for semantically unrelated knowledge pairs, such140

as knowledge 5 "Bananas contain high amounts141

of potassium" and knowledge 8 "The Sun revolves142

around the Earth in geocentric models", we ob-143

serve up to 18% overlap in activated neurons. This144

indicates that modifying the parameters associated145

with one piece of knowledge may unintentionally146

impact others encoded by the same neurons. We147

refer to this phenomenon as Knowledge Entan-148

glement, which highlights the risk of knowledge149

interference when updating shared neural repre-150

sentations. Such representational overlap poses151

a fundamental challenge to editing precision and152

motivates the need for more disentangled update153

mechanisms. The central challenge is to isolate154

more disentangled features that uniquely represent155

the target knowledge without disrupting others.156

3 Preliminary 157

3.1 Lifelong Knowledge Editing 158

Lifelong Knowledge Editing refers to the process 159

of incrementally transforming an initial model fθ0 160

into an edited model fθT through multiple rounds 161

of knowledge updating, enabling continual incorpo- 162

ration of new information while preserving existing 163

knowledge and ensuring behavioral stability of the 164

model. We denote the model update process as 165

fθ0 → fθT , where θ0 represents the initial param- 166

eters of the language model, and θT denotes the 167

parameters after T rounds of knowledge editing. 168

Each editing objective is defined as a pair (xe, ye) 169

in edit dataset Dedit , where xe is the knowledge 170

prompt and ye is the desired output that the initial 171

model fails to produce correctly. Accordingly, the 172

editing objective can be formally defined as: 173

fθ′(xi) =

{
yi if xi ∈ Dedit

fθ0(xi) if xi /∈ Dedit
(1) 174

To evaluate the effectiveness of model editing 175

methods, we adopt the following three metrics: 176

Reliability measures the average accuracy of 177

the model on the edited samples after the T -th edit, 178

indicating whether the model successfully incorpo- 179

rates the intended knowledge change. 180

E(xe,ye)∼{(xt
e,y

t
e)}

T
t=0
1 {argmaxyfθT (y | xe) = ye}

(2) 181
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Generalization measures the average accuracy182

on an extended datasetR(x, y) related to the edited183

knowledge, reflecting the model’s ability to gener-184

alize the edit to semantically similar contexts.185

E(x′
e,ye)∼{R(xt

e,y
t
e)}

T
t=0
1
{
argmaxyfθT (y | x

′
e) = ye

}
(3)186

Locality measures the relative accuracy change187

on unrelated dataO(x, y) before and after the T -th188

edit, assessing whether the edit introduces unde-189

sired side effects on the model’s original behavior.190

E(x′,y′)∼{O(xt
e,y

t
e)}

T
t=0
1
{
argmaxyfθT (y | x

′) = y′
}

(4)191

3.2 Sparse Autoencoder192

Sparse Autoencoders (SAEs) are neural architec-193

tures that learn efficient and structured representa-194

tions by encouraging sparsity in the hidden layer.195

This is typically achieved by applying a sparse196

activation function ϕ(·) to limit the number or mag-197

nitude of active neurons for each input. Wenc ∈198

Rn×d and benc is the weight and bias of SAE en-199

coder. Wdec ∈ Rn×d and bdec is the weight and200

bias of SAE decoder. Given an input vector z ∈ Rd,201

the encoder maps it to a hidden representation:202

ĥ = fenc(z) = ϕ(Wencz + benc) (5)203

The decoder reconstructs the featrue from the204

sparse code:205

ẑ = fdec(ĥ) = Wdecĥ+ bdec (6)206

The imposed sparsity promotes more interpretable207

and disentangled representations, making sparse208

autoencoders (SAEs) valuable for tasks such as209

model interpretability, concept discovery, and con-210

trollable model editing.211

4 Methodology212

To address the challenges of Edit Overshooting and213

tKnowledge Entanglement in lifelong knowledge214

editing, we propose MicroEdit, a neuron-level edit-215

ing framework consisting of two components: a216

Sparse Autoencoder (SAE) for precise localization217

and a Switch module for scope control.The overall218

framework is illustrated in Figure 2.219

4.1 SAE for Knowledge Editing220

Recent work (Geva et al., 2021; Meng et al., 2022a)221

reveals that Transformer FFNs function as key-222

value memories and are effective targets for knowl-223

edge editing. Similarly, SAE can be seen as a224

key-value structure, with Wenc as the key and 225

Wdec as the value. As shown in Figure 2(b), we 226

freeze the parameters of the LLM and the SAE en- 227

coder,updating only the SAE decoder during edit- 228

ing. We attach the SAE to the l-th layer of the LLM 229

and extract its residual input z as the SAE input 230

for each prompt. Top-k activation is adopted in 231

the SAE to enforce sparsity by retaining only the k 232

most activated neurons. The inference process of 233

the encoder is as follows: 234

ĥ = Topk(Wencz + benc) (7) 235

Unlike conventional autoencoding objectives that 236

aim to reconstruct the original input z, our goal is 237

to steer the model’s behavior toward generating the 238

desired output y. In this setting, the reconstruction 239

ẑ serves as an intervention that alters the model’s 240

internal representations to produce the target out- 241

put. To ensure that model behavior changes only 242

in a controlled and localized manner, our method 243

confines representation modifications to a minimal 244

subspace. Specifically, due to the Top-k sparse ac- 245

tivation, the modified residual ẑ is reconstructed 246

solely from a limited set of decoder vectors: 247

ẑ =
∑
i∈Ik

ĥi ·Wdec[i] + bdec (8) 248

Ik ⊂ {1, ..., n} denotes the position indices of 249

the Top-k activated neurons within the SAE. As a 250

result, the update to the model’s internal represen- 251

tation is constrained within the subspace spanned 252

by the selected decoder weights: 253

△z = ẑ− z ∈ Span(Wdec[Ik]) (9) 254

This subspace constraint naturally limits the propa- 255

gation of edits, reduces interference with unrelated 256

knowledge, and contributes to the stability of suc- 257

cessive edits. Accordingly, the loss function for the 258

editing process at round t is defined as follows: 259

Ledit = − logP (yte|ẑ(t)(xte, θ
(t−1)
dec ), θLM ) (10) 260

where θ
(t−1)
dec denotes the trainable parameters of 261

the decoder after t− 1 rounds of editing, θLM de- 262

notes the frozen parameters of the language model. 263

4.2 Switch Mechanism 264

The original SAE is trained to reconstruct ẑ to ap- 265

proximate the original hidden states z. But recon- 266

struction is not fully accurate, forcing all knowl- 267

edge to pass through the SAE during inference 268
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Table 1: Main results for ZsRE. Bold is the best result, underline denotes the second-best. T : Num Edits.

Method QA

T = 1 T = 10 T = 100 T = 1000

Rel. Gen. Loc. Avg. Rel. Gen. Loc. Avg. Rel. Gen. Loc. Avg. Rel. Gen. Loc. Avg.

LLaMA-3-8B

FT 1.00 0.99 0.02 0.67 0.69 0.64 0.01 0.45 0.64 0.57 0.02 0.41 0.62 0.56 0.02 0.40
FT-EWC 1.00 0.99 0.02 0.67 0.69 0.63 0.01 0.44 0.65 0.58 0.02 0.42 0.62 0.56 0.02 0.40
ROME 0.99 0.97 0.96 0.97 0.42 0.42 0.19 0.34 0.07 0.07 0.01 0.05 0.02 0.02 0.01 0.02
MEMIT 0.88 0.69 1.00 0.86 0.77 0.69 0.98 0.81 0.76 0.70 0.89 0.78 0.00 0.00 0.00 0.00
MEND 0.98 0.97 0.99 0.98 0.00 0.01 0.11 0.04 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
GRACE 0.90 0.28 1.00 0.73 0.90 0.28 1.00 0.73 0.90 0.28 1.00 0.78 0.90 0.39 1.00 0.76
WISE 0.95 0.95 0.84 0.91 0.86 0.80 0.99 0.88 0.71 0.64 1.00 0.78 0.61 0.57 1.00 0.73

MicroEdit 1.00 0.92 0.95 0.96 0.93 0.78 0.95 0.89 0.89 0.71 0.97 0.86 0.87 0.65 1.00 0.84
Mistral-7B

FT 1.00 0.99 0.01 0.67 0.77 0.72 0.02 0.50 0.74 0.67 0.05 0.49 0.70 0.65 0.08 0.48
FT-EWC 1.00 0.99 0.01 0.67 0.77 0.72 0.01 0.50 0.74 0.67 0.05 0.49 0.70 0.65 0.08 0.48
ROME 0.87 0.83 0.99 0.90 0.44 0.42 0.41 0.42 0.07 0.07 0.01 0.05 0.01 0.01 0.00 0.01
MEMIT 0.88 0.85 1.00 0.91 0.23 0.22 0.23 0.23 0.03 0.03 0.01 0.02 0.04 0.04 0.02 0.03
MEND 0.99 0.96 1.00 0.98 0.00 0.00 0.01 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
GRACE 0.78 0.36 1.00 0.71 0.77 0.36 1.00 0.71 0.79 0.36 1.00 0.72 0.78 0.36 1.00 0.71
WISE 0.99 0.97 0.99 0.98 0.85 0.81 0.99 0.88 0.78 0.73 1.00 0.84 0.66 0.63 1.00 0.76

MicroEdit 0.95 0.68 1.00 0.88 0.91 0.78 1.00 0.89 0.86 0.73 1.00 0.86 0.80 0.68 0.98 0.82

may distort non-target information and compro-269

mise model stability. Motivated by the SAE’s capa-270

bility in anomaly detection, we introduce a switch271

mechanism to distinguish between in-scope knowl-272

edge and out-of-scope knowledge as illustrated in273

Figure 2(a).274

Specifically, the switch mechanism computes275

SAE output ẑ for all inputs, but substitutes ẑ for276

the original hidden state z only when the input is in-277

scope. Otherwise, z is retained and propagated un-278

changed. This design ensures that unrelated knowl-279

edge remains unaffected during the editing process.280

To support this mechanism, we introduce the Aver-281

age Reconstruction Distance (ARD) as follows:282

Lrec = ARD(xedit) =
1

α · S

S∑
s=1

∥ẑs − zs∥22

(11)283

where S is the length of the edited tokens, D is the284

feature dimension of each token, α is the scaling285

factor. We apply a threshold τ on ARD to separate286

editable targets from high-ARD local knowledge.287

Thus, the output of MicroEdit during inference is:288

MicroEdit(z) =

{
ẑ if ARD ≤ τ

z if ARD > τ
(12)289

At the same time, we also use ARD as an auxil-290

iary loss to enlarge the gap between edited and un-291

related knowledge. However, during editing train-292

ing, we observe that jointly optimizing for editing 293

accuracy and ARD deviation is challenging. To 294

address this, we adopt a two-stage training strategy: 295

(1) First, optimize the reconstruction loss Lrec to 296

maximize deviation from the global ARD refer- 297

ence; (2) Then, optimize the combined objective 298

Lrec+Ledit, encouraging both ARD deviation and 299

accurate editing. 300

To ensure localized updates during knowledge 301

editing, we apply an explicit gradient mask to the 302

Wdec. The mask matrix is defined as: 303

M (t)[i] =

{
1, if i ∈ I(t)k

0, otherwise
(13) 304

Let G(t) = ▽Wdec
Lt be the full gradient, and 305

M (t) ∈ 0, 1n×d is the broadcasted row mask. The 306

decoder update becomes: 307

W
(t)
dec = W

(t−1)
dec − η · (M (t) ⊙G(t)) (14) 308

This ensures that only the activated neurons influ- 309

ence the decoder during each editing round. The 310

pseudo-code of our method is provided in Algo- 311

rithms 1 and 2 in appendix C.2. 312

5 Experiment 313

5.1 Experimental Setup 314

Datasets and Evaluation Metrics. Following 315

(Hartvigsen et al., 2024), we select ZsRE (Levy 316
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Table 2: Main results for SelfCheckGPT. Bold is the best result, underline denotes the second-best. - denotes
out-of-range values without comparative significance. T : Num Edits.

Hallucination

LLaMA-3-8B Mistral-7B

T = 1 T = 10 T = 100 T = 600 T = 1 T = 10 T = 100 T = 600

Method Rel. Loc. Rel. Loc. Rel. Loc. Rel. Loc. Rel. Loc. Rel. Loc. Rel. Loc. Rel. Loc.

FT 1.01 0.06 4.93 0.08 3.40 0.16 4.01 0.22 1.02 0.05 3.01 0.10 2.20 0.18 2.56 0.24
FT-EWC 1.01 0.06 4.90 0.08 3.41 0.16 4.01 0.22 1.02 0.05 3.06 0.10 2.21 0.18 2.56 0.24
ROME 1.93 0.97 8.76 0.65 - 0.02 - 0.02 1.89 0.99 2.67 0.91 - 0.02 - 0.02
MEMIT 4.37 1.00 2.69 0.99 - 0.01 - 0.00 1.60 1.00 11.32 0.93 - 0.06 - 0.06
MEND 4.17 0.98 - 0.01 - 0.00 - 0.00 3.39 0.99 - 0.01 - 0.00 - 0.00
GRACE 1.03 1.00 9.18 1.00 9.92 1.00 9.94 1.00 1.15 1.00 7.23 1.00 11.09 1.00 9.24 1.00
WISE 1.47 0.88 1.22 0.92 1.41 1.00 3.70 1.00 1.29 0.98 1.47 0.95 2.48 0.94 6.22 0.94

MicroEdit 1.10 0.99 1.04 1.00 1.10 1.00 2.26 1.00 1.22 1.00 1.04 1.00 1.24 1.00 2.20 1.00

et al., 2017) as a closed-book question-answering317

dataset to evaluate knowledge editing capabilities,318

and SelfCheckGPT (Potsawee et al., 2023) as a319

benchmark for hallucination correction. For zsRE,320

we assess MicroEdit using three metrics: Reliabil-321

ity, Generalization, and Locality. For the halluci-322

nation dataset, the Generalization is not applicable,323

we instead use Perplexity (PPL) to evaluate Relia-324

bility, while still computing Locality to assess the325

model performance after editing.326

Models and Baselines. We evaluate our pro-327

posed method, MicroEdit, on two widely used328

large language models, LLaMA-3-8B and Mistral-329

7B. Meanwhile, we employ the corresponding330

SAEs: sae-llama-3-8b-32x from EleutherAI3 and331

mistral-7b-res-wg from SAE Lens (Joseph et al.,332

2024). Comparisons are made against a broad333

range of baselines, including direct parameter mod-334

ification methods such as standard fine-tuning335

(FT), continual learning-based fine-tuning with336

Elastic Weight Consolidation (FT-EWC), Locate-337

then-edit approaches (ROME, MEMIT), and meta-338

learning based method (MEND). We further com-339

pare against parameter-preserving methods, includ-340

ing hidden state modification (GRACE), and side341

MLP memory augmentation (WISE). More details342

about baselines can be found in Appendix B.343

5.2 Main Results344

To demonstrate the effectiveness of MicroEdit, we345

conduct experiments on two foundational language346

models under both QA and Hallucination settings.347

The results are shown in Table 1 and Table 2.348

Across nearly all configurations, MicroEdit consis-349

3EleutherAI/sae-llama-3-8b-32x

Table 3: Scaling to 3K and 5K edits. Bold is the best
result. ZsRE. LLaMA-3-8B.

Method T = 3000 T = 5000

Rel. Gen. Loc. Avg. Rel. Gen. Loc. Avg.

GRACE 0.89 0.28 1.00 0.72 0.90 0.27 1.00 0.66
WISE 0.47 0.44 1.00 0.64 0.42 0.40 1.0 0.61
MicroEdit 0.83 0.59 1.00 0.81 0.80 0.54 1.00 0.78

tently achieves strong performance, especially in 350

long-term sequential editing scenarios. In contrast, 351

fine-tuning-based methods tend to overfit rapidly. 352

The locate-then-edit approach suffers from signifi- 353

cant Edit Overshooting problem during sequential 354

edits, often leading to model collapse. MEND fails 355

entirely after multiple rounds of editing. GRACE 356

performs well in terms of reliability and locality, 357

but demonstrates limited generalization capability. 358

While WISE accounts for knowledge storage con- 359

straints, it is still affected by Knowledge Entangle- 360

ment, leading to performance drop as the number 361

of edits T increases. 362

In addition, we scale the experiment to 3K and 363

5K edits. As shown in Table 3, MicroEdit outper- 364

forms the strongest baselines GRACE and WISE, 365

with a 12% improvement over the second-best 366

method at 5K edits. GRACE maintains high re- 367

liability but suffers from poor generalization, while 368

WISE shows performance degradation as the num- 369

ber of edits increases. Only MicroEdit achieves 370

stable and balanced performance under extremely 371

long sequential editing, demonstrating its effective- 372

ness in liflong knowledge editing scenarios. 373

5.3 Ablation Study 374

We conduct a series of ablation studies to evaluate 375

the impact of key components as shown in Table 4. 376
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(c)(b)(a)

Figure 3: (a) Performance of MicroEdit across different layers of LLaMA-3-8B; (b–c) The ARD of ZsRE and
SelfCheckGPT data during the inference stage. LLaMA-3-8B.

Table 4: Results of ablation study using 1K edits. Bold
font indicates the best result. ZsRE. LLaMA-3-8B.

Rel. Gen. Loc. Avg.

MicroEdit 0.87 0.65 1.00 0.84
- TopK activation 0.27 0.27 1.00 0.51
- Shunting Mechanism 0.85 0.64 0.67 0.72
- Distance Regularization 0.50 0.43 1.00 0.64

(1) Ablating the Top-k sparse activation leads377

to a substantial performance drop, rendering the378

editing module nearly ineffective. This degradation379

arises from two key factors. First, the lack of spar-380

sity amplifies Edit Overshooting, resulting in pro-381

nounced forgetting of unrelated knowledge. Sec-382

ond, without sparsity constraints, ARD becomes383

difficult to regulate, undermining the effectiveness384

of the switch mechanism and further weakening385

the editing capability.386

(2) The absence of the switch mechanism leads387

to a notable degradation in Locality, as existing388

SAE cannot reliably reconstruct the full range of389

original representations. However, model retains390

around 67% performance, showing a degree of ro-391

bustness. This indicates that the switch mechanism392

can effectively isolate non-target knowledge during393

editing, enhancing both precision and stability.394

(3) Without the Distance Regularization editing395

step, the model struggles to keep ARD below the396

global average while optimizing toward the edit-397

ing target, leading to uncontrolled ARD increases,398

which hinder the separation of in-scope and out-399

of-scope knowledge, ultimately degrading editing400

performance.401

5.4 Detailed Analysis and Discussion402

Effect of Editing Layer on SAE Behavior. To403

examine the effect of layer depth on MicroEdit, we404

conduct editing experiments at early, middle, and405

late layers. The results in Figure 3(a) show that edit- 406

ing at early layers leads to suboptimal performance, 407

as these layers mainly capture low-level linguis- 408

tic patterns, which makes it difficult to precisely 409

localize target knowledge. Performance improves 410

in the middle layers and reaches its peak in the 411

later layers. We attribute this to the hierarchical 412

structure of language models, where semantic rep- 413

resentations become increasingly refined in deeper 414

layers. Late layers tend to encode factual knowl- 415

edge more explicitly, enabling more targeted and 416

stable edits. Editing at these layers aligns better 417

with the model’s representational structure, allow- 418

ing MicroEdit to more precisely locate and modify 419

neurons associated with the target knowledge, lead- 420

ing to more effective and robust outcomes. 421

Effect of k in Top-k Activation. We further 422

analyze how the choice of k affects editing perfor- 423

mance. We use the SAE trained on the LLaMA- 424

3-8B model by EleutherAI, which is roughly fol- 425

lowing the recipe detailed in (Gao et al., 2024). 426

Accordingly, this SAE is trained with k = 192 ac- 427

tivated neurons. To explore the influence of this 428

hyperparameter, we conduct experiments by vary- 429

ing the value of k. The results in Figure 4 show 430

that the original setting of k = 192 yields the best 431

performance. When k is too small, the activated 432

Figure 4: Model performance under different Top-k
settings.
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neurons fail to adequately cover all relevant knowl-433

edge features, resulting in incomplete representa-434

tion. Conversely, when k is too large, neuron shar-435

ing across different knowledge instances becomes436

more frequent, leading to interference between in-437

jected knowledge and a decline in performance. In438

light of these findings, we retain the original SAE439

setting and use k = 192 in our experiments.440

Effect of ARD Threshold on Edit-Locality441

Separation. We analyze the impact of the ARD442

threshold on editing performance. During infer-443

ence, ARD is used to distinguish between in-scope444

and out-of-scope knowledge, as shown in Fig-445

ure 3(b–c). In the hallucination experiment Fig-446

ure 3(c), a threshold of 0.55 effectively separates447

in-scope from out-of-scope knowledge. In the QA448

setting Figure 3(b), although the the separation449

is less distinct with some overlap, the model still450

achieves robust editing performance, demonstrat-451

ing strong resilience and generalization. We at-452

tribute the difference to dataset characteristics: the453

QA data has simple structure and higher semantic454

overlap, leading to limited activation variation and455

less clear ARD separation. In contrast, the Hal-456

lucination data exhibits greater semantic diversity,457

promoting more stable and separable representa-458

tions. More details are in Appendix A.1.459

6 Related Works460

6.1 Knowledge Editing461

Knowledge editing aims to modify models pre-462

cisely while maintaining their performance and sta-463

bility. ROME and MEMIT (Meng et al., 2022a,b)464

insert factual knowledge into specific layers iden-465

tified through causal tracing. While WilKE (Hu466

et al., 2024) selects specific layers for each fact. To467

isolate edit effects, AlphaEdit (Fang et al., 2025)468

applies a null-space constraint, confining changes469

to the target knowledge. Another strategy exempli-470

fied by MEND is to train a small editing network to471

generate parameter updates (Mitchell et al., 2022a;472

Tan et al., 2024). In contrast, other methods pre-473

serve original model parameters by using external474

memory or small trainable modules. SERAC and475

Grace (Mitchell et al., 2022b; Hartvigsen et al.,476

2024) keep new information in an explicit memory477

or local codebook, avoiding any change to base478

weights. T-Patcher and MELO (Huang et al., 2023;479

Yu et al., 2024) attach lightweight modules (ex-480

tra neurons or dynamic LoRA blocks, MELO (Yu481

et al., 2024), inspired by DyLoRA (Valipour et al.,482

2023), implements edits via LoRA without altering 483

the model’s core parameters. REMEDI (Hernandez 484

et al., 2024) maps natural language statements to 485

fact encodings within a model’s internal representa- 486

tions. WISE (Wang et al., 2024) use a side memory 487

to modify and store knowledge. 488

6.2 Sparse Autoencoder 489

Sparse Autoencoder is an autoencoder that learns 490

interpretable representations by enforcing sparse 491

activations in the hidden layer. k-Sparse Autoen- 492

coders are proposed by (Makhzani and Frey, 2013). 493

By retaining only the top k most highly activated 494

neurons, they effectively improves classification 495

performance and is well-suited for large-scale prob- 496

lems. Recently, Sparse Autoencoders have been 497

widely used for interpreting LLMs (Shu et al., 498

2025). By reconstructing internal activations of 499

the model into more monosemantic representations, 500

SAEs help clarify previously uninterpretable neu- 501

ron behaviors caused by polysemanticity, improv- 502

ing model transparency (Cunningham et al., 2023; 503

Bricken et al., 2023; Templeton et al., 2024). In 504

addition, numerous open-source SAE toolkits pre- 505

trained on various LLMs have been released (He 506

et al., 2024; Lieberum et al., 2024; Joseph et al., 507

2024). Research on SAEs continues to advance. 508

OpenAI has further explored existing SAE frame- 509

works and discovered clean scaling laws with re- 510

spect to autoencoder size and sparsitys (Gao et al., 511

2024). (O’Neill and Bui, 2024) leverages SAEs to 512

identify interpretable computational circuits within 513

LLMs. (Paulo et al., 2024) proposes a pipeline for 514

generating and evaluating SAE feature interpreta- 515

tions. 516

7 Conclusion 517

In this work, we identify two core challenges in 518

lifelong model editing: Edit Overshooting caused 519

by excessive updates to irrelevant parameters and 520

Knowledge Entanglement which stems from the 521

inherent polysemanticity of neurons in LLMs. To 522

alleviate these issues, we propose MicroEdit, which 523

adopts Top-k sparse activation to restrict parame- 524

ter updates and leverages the structural properties 525

of an overcomplete sparse autoencoder to encour- 526

age more monosemantic neuron representations, 527

thereby reducing representation overlap and unin- 528

tended interference. Extensive experiments demon- 529

strate that MicroEdit achieves competitive perfor- 530

mance across different scenarios and LLM models. 531
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8 Limitation532

MicroEdit relies on a pre-trained Sparse Autoen-533

coder (SAE) as a pluggable component to extract534

and modify internal representations. While pre-535

trained SAEs are available for most mainstream536

models, applying MicroEdit to less common or537

customized models often requires training an SAE538

from scratch, introducing additional time and com-539

putational costs.540
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A Datasets Details 701

A.1 ZsRE 702

ZsRE is a classic zero-shot question-answering 703

dataset widely used in the model editing litera- 704

ture. Each record in the dataset contains a prompt- 705

answer pair (xedit, yedit) that requires editing, a 706

paraphrased prompt xgen for evaluating general- 707

ization, and a locality pair (xloc, yloc) for mea- 708

suring locality preservation. We adopt the same 709

train/test split as (Mitchell et al., 2022a), consist- 710

ing of 163,196 training examples and 19,086 test 711

examples. Notably, MEND is the only method 712

that requires fitting a hyper network on the train- 713

ing set; other methods discard the training set and 714

directly perform edits and evaluations on the test 715

set. For our experiments, We further extend the 716

experiments to 3k and 5k records. 717

A.2 SelfCheckGPT 718

Following GRACE, we adopt the SelfCheckGPT 719

dataset to evaluate the ability of knowledge editing 720

methods to alleviate hallucinations. This dataset 721

consists of factually incorrect sentences generated 722

by GPT-3, each paired with a corrected version 723

derived from Wikipedia. Compared to the ZsRE 724

dataset, SelfCheckGPT features longer, more com- 725

plex sentences that more closely resemble real- 726

world knowledge editing scenarios. Each instance 727

is formatted as either (xedit, yedit) and (xloc, yloc), 728

aligning with the standard editing and locality 729

evaluation settings. Unlike GRACE, which con- 730

ducts experiments on GPT2-XL(1.5B), we per- 731

form experiments on larger scale LLMs such as 732

LLaMA(8B) and Mistral(7B). Due to memory con- 733

straints similar to those in (Wang et al., 2024), 734

we follow the same dataset split strategy, using 735

a train/test split of 306/600 samples. Except for 736

MEND, which requires training on the training set, 737

all other methods perform edits exclusively on the 738

test set. Table7 provides illustrative examples from 739

the two datasets, and Table6 reports the correspond- 740

ing dataset statistics. 741
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Table 5: Datasets examples

Dataset Type Text

ZsRE

xedit, yedit What university did Watts Humphrey attend?
University of Michigan

xgen, yedit What university did Watts Humphrey take part in?
University of Michigan

xedit, yedit Who played desmond doss father in hacksaw ridge?
Hugo Weaving

SelfCheckGPT

xedit, yedit This is a Wikipedia passage about heinz christian pan-
der. Heinz Christian Pander (1794 - 1865) was a German
anatomist and embryologist who was born in Riga, Latvia.
He studied medicine at the University of Dorpat and later at
the University of Berlin.In 1820, he took part in a scien-
tific expedition to Bokhara as a naturalist.

xloc, yloc Tired and restlessly, drifting in and out of sleep. Hearing
crashing and banging, thinking the roof will cave in. Not
alert enough to quite know what.it was, I yelled loudly
for whoever was making those noises at such an hour to
stop. They heard and listened, I’m guessing

A.3 Analysis of the Dataset742

We conduct a visualization analysis of the Edit743

Prompts and Locality Prompts from the ZSRE and744

SelfCheckGPT datasets as Figure 5 and 6. The745

results show that representations in SelfCheckGPT746

are more clearly separated with lower semantic re-747

dundancy, making it more suitable for stable and748

low-interference long-term editing. In contrast,749

ZSRE exhibits certain semantic overlaps, increas-750

ing the risk of knowledge interference and forget-751

ting, thus posing greater challenges for long-term752

editing. Nevertheless, our method achieves strong753

performance on both datasets, demonstrating its754

robustness and effectiveness.755

B Implementation of Baselines756

FT Following (Hartvigsen et al., 2024) We use757

Fine-tuning updates model parameters by minimiz-758

ing the task-specific loss on the new data, allowing759

the model to adapt to the edited knowledge.760

FT-EWC Elastic Weight Consolidation (EWC)761

addresses the problem of catastrophic forgetting762

Table 6: Datasets statistics

SETTING EDITING DATA T Pre-edit(LLaMA/Mistral)

QA ZsRE 1000 0.27/0.36 ACC
Hallucination SelfCheckGPT 600 15.83/11.06 PPL

Figure 5: t-SNE visualization of semantic representa-
tions in the ZSRE dataset

by introducing a regularization term derived from 763

the Fisher information matrix, which quantifies the 764

importance of each parameter based on previous 765

training (Hartvigsen et al., 2024). 766

ROME (Meng et al., 2022a) utilizes causal trac- 767

ing techniques to localize factual knowledge within 768

MLP layers and performs parameter editing by 769

solving a constrained least-squares problem. Under 770

the assumption that MLP layers serve as the pri- 771

mary knowledge storage mechanism (Geva et al., 772
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Figure 6: t-SNE visualization of semantic representa-
tions in the SelfCheckGPT dataset

2021), ROME incrementally modifies the model by773

injecting residual terms derived from a Lagrangian774

formulation.775

MEMIT (Meng et al., 2022b) is also built on776

the assumption that the FFN functions as a knowl-777

edge key-value store, and it modifies parameters778

of specific layers via least squares fitting. Unlike779

ROME, which updates only a single layer, MEMIT780

performs joint updates across multiple layers, en-781

abling batch editing of a large number of facts. In782

sequential editing scenarios, MEMIT requires real-783

time correction whenever the model produces an784

error, often involving multiple rounds of operations785

on the original model.786

MEND MEND (Mitchell et al., 2022a) updates787

the model by introducing a hyper-network that ad-788

justs the gradients generated during standard fine-789

tuning. Specifically, it approximates the original790

gradients with a rank-1 decomposition and uses791

this representation to derive new update directions,792

which are then applied to specific layers of the tar-793

get model.794

GRACE GRACE (Hartvigsen et al., 2024) intro-795

duces a dynamic discrete key-value memory that796

evolves via key addition, expansion, and splitting.797

At inference, it retrieves the nearest key and selec-798

tively replaces the corresponding hidden activation799

to enable precise knowledge updates.800

WISE WISE (Wang et al., 2024) introduces a801

dual-memory architecture for lifelong knowledge802

editing in large language models, where immutable803

main memory preserves pretrained knowledge and 804

editable side memory stores newly edited facts. A 805

routing mechanism dynamically selects between 806

memories during inference, while a knowledge 807

sharding strategy allocates edits into disentangled 808

subspaces to prevent interference. This design ef- 809

fectively balances reliability, generalization, and 810

locality, overcoming the trade-offs faced by prior 811

editing methods. 812

C Experimental Details 813

C.1 Hyperparameters 814

In our experiments, we freeze both the parameters 815

of the base language model and the SAE encoder, 816

and train only the decoder of the SAE. For all mod- 817

els, batch size is 1, the learning rate is set to 5e-5 818

with the Adam (Kingma, 2014) optimizer and the α 819

is 600. For LLaMA-3-8B, we use the sae-llama-3- 820

8b-32x model from EleutherAI4 , with an interme- 821

diate expansion dimension of 32. We set k = 192, 822

a sparsity threshold of 0.55 for T ≥ 100, and 0.5 823

for T < 100. The SAE is inserted at layer 30. For 824

Mistral-7B, we use the 7b-res-wg model from SAE 825

Lens (Joseph et al., 2024), with an intermediate 826

expansion of 16. We set k = 400, a threshold of 827

0.15 for T ≥ 100, and 0.1 for T < 100. The SAE 828

is inserted at layer 24. 829

C.2 Pseudo Code of WISE 830

The pseudo-code of the MicroEdit editing stage is 831

in Algorithm 1, and the inference stage is Algo- 832

rithm 2. 833

C.3 Case Study 834

We present representative successful editing cases 835

from ZsRE and SelfCheckGPT datasets in Table 7. 836

4EleutherAI/sae-llama-3-8b-32x
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Table 7: Case study

State Text

Prompt What language is Garowe Principles written in?
Label Dutch

Before Edit Garowe

After Edit Dutch

Prompt This is a Wikipedia passage about carole gist. Carole Gist (born April
28, 1969) is an American beauty pageant titleholder from Detroit,
Michigan who was crowned Miss USA 1990. She was the first
African-American woman to win the Miss USA title. Gist represented
the United States at the Miss Universe 1990 pageant held in Los
Angeles, California, where she placed first runner-up to Mona Grudt
of Norway. Gist was the first African-American woman to place in
the Miss Universe pageant.

Label She was also the first contestant from Michigan to win Miss USA,
and broke the five-year streak of winners from Texas.

Before Edit Gist was born in Detroit, Michigan. She is the daughter of a Detroit
police officer and a homemaker.

After Edit She was also the first contestant from Michigan to win Miss USA,
and broke the five-year streak of winners from Texas.

Algorithm 1 Editing Stages

Input: Edit data Dedit; Edit round T ; LLM f(·);
the designated layer l in LLM; SAE encoder
fenc and decoder fdec; The trainable parameter
W

(t−1)
dec at round t; threshold τ

Output: Trained decoder parameters θdec
for each record (xte, y

t
e) from Dedit, t ∈ [T ] do,

z← f≤l(xte)
ĥ← fenc(z) = Topk(Wencz+ benc)

▷ Eq. 7
ẑ← fdec(ĥ) = W

(t−1)
dec ĥ+ bdec

▷ Eq. 8
Stage 1: Distance Regularization
L ← Lrec(z, ẑ) ▷ Eq. 11
W

(t′)
dec ←W

(t−1)
dec − η · (M (t) ⊙▽Wdec

L)
▷ Eq. 14

Stage 2: Reconstruction Editing
L ← Lrec(z, ẑ) + Ledit(f>l(ẑ), yte)

▷ Eq. 10
W

(t)
dec ←W

(t′)
dec − η · (M (t) ⊙▽Wdec

L)
▷ Eq. 14

end for
return the final SAE W T

dec

Algorithm 2 Inference Stage

Input: Test data Dtest; LLM f(·);the designated
layer l in LLM; SAE encoder fenc and decoder
fdec; threshold τ
Output: LLM output
for each query x ∈ Dtest do

z← f≤l(x)
ĥ← fenc(z) = Topk(Wencz+ benc)

▷ Eq. 7
ẑ← fdec(ĥ) = Wdecĥ+ bdec ▷ Eq. 8
if ARD(z, ẑ) ≤ τ then ▷ Eq. 13

Edited Output← f>l(ẑ)
else

Original Output← f>l(z)
end if

end for

13
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