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Abstract001

Existing radiology report generation (RRG)002
methods are predominantly trained using cross-003
entropy (CE) loss, which only reinforces to-004
kens that exactly match the reference report.005
As a result, these models overlook semantically006
meaningful alternatives and fail to recognize or007
correct factual errors. Also, these methods lack008
semantic feedback mechanisms during train-009
ing, treating all tokens uniformly and failing010
to prioritize critical corrections. We propose011
SAT-RRG, a self-adaptive training framework012
that leverages the underlying LLM in the RRG013
model to dynamically identify semantically in-014
correct tokens during training—without requir-015
ing human annotation. Based on these pseudo-016
labeled error spans, we introduce two token-017
level losses: CTAL reinforces confidently cor-018
rect predictions, while ETAPL penalizes over-019
confident semantic errors. This dual supervi-020
sion allows the model to focus learning where it021
matters most: strengthening reliable tokens and022
correcting factual mistakes. SAT-RRG builds023
upon a unified LLM backbone for both gener-024
ation and error detection, incurs no additional025
inference-time cost and eliminates the need for026
manual error labels. SAT-RRG achieves state-027
of-the-art performance on MIMIC-CXR and028
IU-Xray. Code will be released upon publica-029
tion.030

1 Introduction031

Automating radiology report generation (RRG) has032

gained attention for its potential to reduce radiol-033

ogists’ workload and improve diagnostic consis-034

tency. Recent advancements in deep learning, par-035

ticularly with encoder-decoder architectures and036

large language models (LLMs) (Vaswani, 2017;037

Chen et al., 2020, 2022; Wang et al., 2022a; Huang038

et al., 2023; Bu et al., 2024), have shown promis-039

ing results in generating textual descriptions from040

radiological images. These models predict reports041

word by word, treating each word as a separate042

class and assigning probabilities at each step. Train- 043

ing typically relies on cross-entropy (CE) loss, 044

which maximizes the likelihood of selecting the 045

correct word based on a reference report. 046

However, CE loss enforces strict word-level 047

alignment between generated and reference re- 048

ports, making existing models overly sensitive to 049

exact phrasing while failing to recognize meaning- 050

equivalent variations. Moreover, existing RRG 051

methods generally lack a feedback mechanism to 052

assess semantic quality during training, such as 053

evaluating whether the generated content is tex- 054

tually and clinically consistent with the reference 055

report, let alone leveraging such feedback to guide 056

model updates. 057

In the literature, token-level feedback has been 058

explored in general NLG via reinforcement learn- 059

ing (Ziegler et al., 2019), contrastive objec- 060

tives (Liu et al., 2024a), or correction-based post- 061

hoc tuning. However these mechanisms typically 062

require either manually designed reward signals or 063

additional labeled data. However, they cannot be 064

effectively applied to the RRG task due to the high 065

cost of expert annotation. 066

To address this situation, we propose a novel 067

training framework that introduces a more adaptive 068

learning process for RRG. Instead of resorting to 069

external reward models or annotations, we tacti- 070

cally exploit the LLM in an RRG task for its in- 071

herent semantic understanding capability to obtain 072

dynamic, token-level supervision during training. 073

Since the LLM is already part of the RRG model, 074

our method imposes no extra structure: the model 075

itself evaluates and generates online token-level 076

labels during the training process, identifying se- 077

mantic inconsistencies between its predictions and 078

the ground truth report. 079

Specifically, we design an LLM-based mech- 080

anism to locate semantically mismatched tokens 081

between generated and reference reports. Unlike 082

existing methods, our approach dynamically ad- 083
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justs token-level probabilities, allowing the model084

to focus on correcting specific errors while rein-085

forcing correct predictions. To achieve this, two086

custom loss functions are designed: the Correct087

Token Augment Loss (CTAL), which reduces up-088

dates for correct tokens to preserve stability, and the089

Error Token Adaptive Penalty Loss (ETAPL),090

which penalizes incorrect tokens to enforce tar-091

geted correction. Together, the two losses support092

a balanced optimization that encourages accuracy093

while enabling adaptive self-correction at the token094

level.095

Our contributions are summarized as follows:096

First, we introduce a novel RRG training frame-097

work that leverages the LLM’s semantic under-098

standing capability to dynamically refine token-099

level predictions. By pinpointing where the model100

needs stronger updates, it enables a more informed101

learning process, focusing on error correction while102

preserving fluency and coherence. Unlike conven-103

tional word-level alignment with reference reports,104

our approach identifies error tokens at the phrase105

level, better capturing semantic inconsistencies.106

Second, to realize our framework, we propose two107

custom loss functions: Correct Token Augment108

Loss (CTAL), which minimizes updates for confi-109

dently predicted correct tokens, reinforcing stable110

predictions, and Error Token Adaptive Penalty Loss111

(ETAPL), which intensifies corrections adaptively112

for errors that are predicted with high-confidence,113

ensuring more precise learning.114

Third, Our method achieves state-of-the-art perfor-115

mance on MIMIC-CXR and IU-Xray. By using the116

same LLM backbone for both report generation and117

error detection, it avoids significant computational118

overhead and preserves inference efficiency.119

2 Related Work120

Radiology Report Generation. Radiology report121

generation (RRG) aims to produce clinically accu-122

rate diagnostic narratives from radiological images.123

Traditional encoder-decoder methods (Chen et al.,124

2020; Liu et al., 2021a) rely on word-level CE loss,125

which limits semantic flexibility and penalizes clin-126

ically valid paraphrases. Recent works attempt127

to mitigate this limitation through domain knowl-128

edge integration and architectural innovations. For129

example, METransformer (Wang et al., 2023a) in-130

troduces expert tokens to refine cross-modal at-131

tention; EKAGen (Bu et al., 2024) incorporates132

instance-level expert knowledge to supervise atten-133

tion; KiUT (Huang et al., 2023) leverages clini- 134

cal knowledge via U-shaped modality connections 135

for improved alignment. However, these meth- 136

ods still lack fine-grained feedback during train- 137

ing, treating generated reports uniformly and fail- 138

ing to distinguish correct from incorrect semantics. 139

Our method addresses this by moving beyond rigid 140

token-level supervision. It identifies semantically 141

correct tokens despite surface mismatches, allow- 142

ing more flexible, meaning-preserving training. 143

LLM-Based Report Generation. Large lan- 144

guage models (LLMs) such as LLaMA (Touvron 145

et al., 2023), Qwen (Yang et al., 2024), and their 146

RRG adaptations (Wang et al., 2023b; Liu et al., 147

2024c) improve performance by aligning visual fea- 148

tures with LLM token embeddings. For instance, 149

R2GenGPT uses a linear visual mapper for LLM 150

input adaptation, while Bootstrapping utilizes in- 151

domain prompts and coarse-to-fine decoding. Yet, 152

most existing LLM-based models lack mechanisms 153

for token-level feedback or error-aware learning. In 154

contrast, we introduce a token-level error tagging 155

mechanism that enables precise, supervision-free 156

feedback on which tokens require refinement. 157

Token-Level Supervision and Feedback Learn- 158

ing. Token-level feedback has been explored in 159

general NLG via reinforcement learning (Ziegler 160

et al., 2019), contrastive objectives (Liu et al., 161

2024a), or correction-based post-hoc tuning. How- 162

ever, such approaches often require manually de- 163

fined reward signals or additional labeled data, lim- 164

iting scalability. In medical NLP, few RRG meth- 165

ods apply token-level semantic supervision, due to 166

high annotation costs and limited modeling strate- 167

gies. To overcome this, we use in-context prompting 168

of a frozen LLM to automatically tag semantically 169

inconsistent tokens (<e>...</e>) in generated re- 170

ports. This enables scalable error detection without 171

human annotation. Additionally, we introduce a 172

dual-loss framework that penalizes overconfident 173

errors (ETAPL) and reinforces correct predictions 174

(CTAL), aligning training dynamics with clinical 175

accuracy. Intuitively, CTAL functions as a semantic 176

stabilizer, and ETAPL as a semantic corrector. 177

3 Methodology 178

An overview of our SAT-RRG framework is illus- 179

trated in Fig. 1, which consists of three key compo- 180

nents: (a) report generation (Section 3.1), (b) error 181

token identification (Section 3.2), and (c) inference 182
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Algorithm 1: Training Phase of SAT-RRG
Input: Chest X-ray image Ximg, Prompt P , Ground

truth report RGT
Output: Trainable loss Ltotal

Step 1: Input Construction
Extract visual features: Zv ← fimg(Ximg)
Project to embedding space: Hv ← MLP(Zv)
Tokenize: Ptok ← Tokenizer(P ),
RGT_tok ← Tokenizer(RGT)

Concatenate: X ← Concat(Hv, Ptok, RGT_tok)
Build causal attention mask M over RGT_tok

Step 2: Forward Pass
ŷ ← LLM.forward(X,mask = M)

Step 3: Self-Critique Error Detection
Generate decoded prediction: y ← Argmax(ŷ)
Detect semantic errors:

error_tokens← LLM.detect(RGT, y)
Tcorrect ← {yj | yj /∈ error_tokens}
Terror ← {yk | yk ∈ error_tokens}

Step 4: Loss Computation
Lcorrect ← −

∑
j∈Tcorrect

p(yj) log p(yj)

Lerror ←
∑

k∈Terror
p(yk) log p(yk)

LGT ← −
∑T

i=1 y
GT
i log p(ŷi)

Total loss: Ltotal ← λ(Lcorrect + Lerror) + LGT

Step 5: Backpropagation
Update model using∇θLtotal

process(right part of Figure 1). The training proce-183

dure is detailed in Algorithm 1, and a step-by-step184

example is provided in Section 3.4.185

3.1 Report Generation186

Our report generation routine includes three compo-187

nents: (1) a visual encoder to extract features from188

the input image, (2) a visual mapper to project these189

features into the LLM’s word embedding space,190

and (3) an LLM that generates reports from both191

visual and textual prompts.192

Given an input chest X-ray image Xv, we employ193

the Swin Transformer (Liu et al., 2021b) to ex-194

tract visual features, denoted as Zv = Swin(Xv),195

where Zv represents the feature map from the last196

layer, capturing the relevant image details for re-197

port generation. To align these features with the198

LLM’s word embedding space, we apply a multi-199

layer perceptron (MLP) visual mapper, transform-200

ing them as Hv = MLP(Zv), where Hv is the201

high-dimensional visual representation compatible202

with the LLM. Next, the mapped visual features203

Hv are combined with a textual prompt P and the204

ground truth report RGT, both of which are tok-205

enized for processing by the LLM. The final input206

to the LLM is then expressed as:207

X = Concat(Hv,Tokenizer(P ),Tokenizer(RGT)),208

where P provides the context: “Generate a compre- 209

hensive and detailed diagnosis report for this chest 210

X-ray image.” The LLM generates a sequence 211

of tokens y = {y1, y2, . . . , yT }, predicted under 212

word-level cross-entropy loss. 213

3.2 Dynamic error token identification and 214

correction 215

In addition to the report generation routine, we in- 216

troduce an error correction process that uses the 217

LLM’s semantic understanding to detect phrase- 218

level discrepancies between generated and refer- 219

ence reports. As shown in Fig. 1 (b), the error token 220

identification process classifies tokens as correct or 221

erroneous based on semantic consistency. Specifi- 222

cally, by feeding the LLaMA3 both the reference 223

and generated reports, marking meaning-altering 224

discrepancies with <e></e> while leaving correct 225

tokens unmarked. Our prompt provides rules to 226

help the LLM recognize semantic errors and alter- 227

native expressions with the same meaning. We also 228

use a few-shot approach, providing examples to 229

achieve the desired results. (Check prompt detail 230

in Section: 5). Some examples will be provided in 231

Fig. 4 in the experimental part. 232

Fig. 4 shows examples of error tokens. The 233

<e></e> tags are applied only to clear semantic 234

errors in the generated report. For example, “right 235

lower lobe pneumonia" contradicts the ground truth 236

“no evidence of pneumonia", while “no pleural effu- 237

sion" conflicts with “small right and moderate left 238

pleural effusion", marking both as errors. Semanti- 239

cally consistent expressions, such as "no evidence 240

of pneumonia" vs "there is no focal consolidation 241

concerning for pneumonia", are not tagged as er- 242

rors since they are semantically consistent despite 243

different wording. This allows us to identify se- 244

mantic errors rather than lexical differences. 245

Distinguishing between correct and erroneous 246

tokens enables applying targeted loss functions 247

to refine the training process, as shown in Fig. 2. 248

Correct tokens receive an augment loss (LCTAL), 249

where gradient descent increases their predicted 250

probability, reinforcing confidence in accurate pre- 251

dictions. Conversely, error tokens are penalized 252

using an adaptive correction loss (LETAPL), where 253

gradient descent reduces their probability in future 254

predictions, discouraging repeated errors. The loss 255

functions are detailed in the next section. 256
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Figure 1: Overview of the SAT-RRG framework. It includes three components: (a) Report generation process, (b)
Error token identification via LLM-based semantic comparison, and (c) Inference process. Tokens or modules with
the same color represent the same entity across different stages. After the generator produces the initial predicted
report, it is passed through the LLM again for feedback. At this stage, each token in the predicted report retains its
original generation probability, since the model has not yet been updated by any loss. The LLM-based comparison
only annotates which tokens are semantically incorrect. These annotations serve as token-level supervision targets:
incorrect tokens are penalized and correct tokens reinforced via two complementary losses (ETAPL and CTAL).
The original probabilities are used by the losses to propagate training signals back into the model.

3.3 Error-Aware Training Objectives257

While standard cross-entropy loss ensures fluency258

and grammaticality by aligning predictions with259

reference tokens, it treats all errors equally, over-260

looking the distinction between critical clinical261

mistakes and benign phrasing differences. To ad-262

dress this, we introduce two token-level auxiliary263

losses that apply differentiated supervision: one re-264

inforces confidently correct tokens, while the other265

penalizes semantic errors predicted with high con-266

fidence, enabling more precise and semantically267

aware learning.268

CTAL: Reinforcing Confidently Correct To-269

kens. Let Tcorrect denote the set of tokens iden-270

tified as semantically correct (i.e., not enclosed in271

<e>...</e>). To reinforce these tokens, we define272

the Correct Token Augmentation Loss (CTAL) as:273

LCTAL = −
∑

j∈Tcorrect

p(yj) log p(yj). (1)274

The gradient of this loss with respect to the pre-275

dicted token probability is:276

∂LCTAL

∂p(yj)
= − log p(yj)− 1. (2)277

This formulation encourages the model to further278

boost the probability of correct predictions. Cor-279

rect tokens with low confidence receive stronger280

reinforcement, while correct tokens with high con- 281

fidence are updated more conservatively, thus pro- 282

moting stable and consistent learning. ETAPL: 283

Penalizing Overconfident Semantic Errors. Let 284

Terror be the set of tokens enclosed in <e>...</e>, 285

indicating semantic inconsistencies. We define the 286

Error Token Adaptive Penalty Loss (ETAPL) as: 287

LETAPL =
∑

k∈Terror

p(yk) log p(yk). (3) 288

Its gradient with respect to the model output is: 289

∂LETAPL

∂p(yk)
= 1 + log p(yk). (4) 290

This loss penalizes tokens that are both semanti- 291

cally incorrect and predicted with high confidence. 292

Larger gradients are applied to high-confident mis- 293

takes (with higher p(yk)), reducing their future pre- 294

dicted probabilities by decreasing the correspond- 295

ing logits during backpropagation. Conversely, 296

low-confidence errors (with lower p(yk)) are pe- 297

nalized lightly, avoiding overcorrection and insta- 298

bility. Total Loss. Combining the two auxiliary 299

objectives with the standard cross-entropy loss, the 300

overall training objective is defined as: 301

Ltotal = λ · (LCTAL + LETAPL) + LGT. (5) 302

Here, LGT is the conventional cross-entropy loss 303

computed over the ground-truth report, and λ is a 304
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Figure 2: Overview of our proposed training framework with token-level supervision. During training, the predicted
report is dynamically compared to the reference report to identify correct and error tokens using the LLM’s
own semantic understanding. Tokens are categorized as correct or error using inline tags. The Correct Token
Augmentation Loss (CTAL) increases the confidence of already correct tokens by flattening their gradients,
while the Error Token Adaptive Penalty Loss (ETAPL) penalizes overconfident incorrect tokens. This dynamic
feedback enables the model to refine generation quality at the token level in an interpretable and adaptive manner.

balancing coefficient that controls the influence of305

the self-supervised token-level feedback. This joint306

formulation enables the model to reinforce confi-307

dent correct tokens, penalize overconfident errors,308

and remain aligned with reference supervision.309
The gradient of the total loss with respect to310

model parameters θ is:311

∂Ltotal

∂θ
= λ

∑
j∈Tcorrect

∂p(yj)

∂θ
· (− log p(yj)− 1)312

+ λ
∑

k∈Terror

∂p(yk)

∂θ
· (1 + log p(yk))313

−
T∑

i=1

∂p(ypred
i )

∂θ
· yGT

i

p(ypred
i )

. (6)314

This gradient offers directionally interpretable315

updates: it strengthens low-confidence correct pre-316

dictions, suppresses high-confidence semantic er-317

rors, and maintains fidelity to ground-truth refer-318

ences. Together, these components form a coherent319

learning signal for semantically aware training.320

Loss Formulation and Gradient Analysis The321

gradients of our two auxiliary loss terms provide322

interpretable and directionally intuitive supervision323

signals, whichs shows in Figure 3. Specifically,324

Figure 3: Gradient dynamics of CTAL and ETAPL.
CTAL applies stronger gradients to low-confidence cor-
rect tokens, reinforcing them during training. ETAPL
imposes larger penalties on high-confidence incorrect
tokens, suppressing overconfident semantic errors. This
dual behavior facilitates stable and semantically aware
supervision.

they increase the confidence of semantically cor- 325

rect predictions and penalize overconfident errors, 326

facilitating stable and accurate training. 327
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Dataset Methods @B-1 @B-2 @B-3 @B-4 METEOR ROUGE
AdaAtt (Lu et al., 2017) 0.314 0.198 0.132 0.094 0.128 0.131
M2Transformer (Cornia et al., 2020) 0.332 0.210 0.142 0.101 0.134 0.142
R2Gen† (Chen et al., 2020) 0.353 0.218 0.145 0.103 0.142 -
R2GenCMN† (Chen et al., 2022) 0.353 0.218 0.148 0.106 0.142 -
PPKED† (Liu et al., 2021a) 0.360 0.224 0.149 0.106 0.149 0.237
METransformer† (Wang et al., 2023a) 0.386 0.250 0.169 0.124 0.152 0.291
DCL† (Li et al., 2023) - - - 0.109 0.150 0.284

MIMIC-CXR KiUT† (Huang et al., 2023) 0.393 0.243 0.159 0.113 0.160 0.285
R2GenGPT† (Wang et al., 2023b) 0.411 0.267 0.186 0.134 0.160 0.297
EKAGen† (Bu et al., 2024) 0.419 0.258 0.170 0.119 0.157 0.287
Bootstrapping† (Liu et al., 2024c) 0.402 0.262 0.180 0.128 0.175 0.291
CvT2DistilGPT2† (Nicolson et al., 2023) 0.393 0.248 0.171 0.127 - 0.155
RaDialog-RG† (Pellegrini et al., 2023) 0.346 - - 0.095 0.140 0.271
Multi-Grained† (Liu et al., 2024b) 0.346 0.226 0.159 0.117 0.163 0.290
PromptMRG† (Jin et al., 2024) 0.398 - - 0.112 0.157 0.268
Ours 0.431 0.284 0.199 0.146 0.168 0.306
AdaAtt (Lu et al., 2017) 0.284 0.207 0.150 0.126 0.165 0.311
M2Transformer (Cornia et al., 2020) 0.402 0.284 0.168 0.143 0.170 0.328
R2Gen† (Chen et al., 2020) 0.470 0.304 0.219 0.165 0.187 0.371
R2GenCMN† (Chen et al., 2022) 0.475 0.309 0.222 0.170 0.191 0.375
METransformer† (Wang et al., 2023a) 0.483 0.322 0.228 0.172 0.192 0.380
DCL† (Li et al., 2023) - - - 0.163 0.193 -

IU-Xray R2GenGPT† (Wang et al., 2023b) 0.488 0.316 0.228 0.173 0.211 0.377
Bootstrapping† (Liu et al., 2024c) 0.499 0.323 0.238 0.184 0.208 0.390
CvT2DistilGPT2† (Nicolson et al., 2023) 0.473 0.304 0.224 0.175 0.200 0.376
Multi-Grained† (Liu et al., 2024b) 0.472 0.321 0.234 0.175 0.192 0.379
PromptMRG† (Jin et al., 2024) 0.401 - - 0.098 0.160 0.281
EKAGen (Bu et al., 2024) 0.497 0.339 0.250 0.190 0.210 0.399
Ours 0.504 0.342 0.254 0.196 0.222 0.400

Table 1: Comparison on MIMIC-CXR and IU-Xray datasets(@B stands for BLUE).

3.4 Example Workflow Illustration328

To clarify how our self-adaptive token-level refine-329

ment framework operates, we illustrate the end-to-330

end process with a concrete example. The frame-331

work consists of four major steps: report genera-332

tion, semantic error annotation, loss-based refine-333

ment, and token probability update.334

Initial Report Generation (Step 1 & 2 in Algo.335

1). Given an input chest X-ray image and a textual336

prompt, the frozen LLM generates a draft report:337

Prediction: Consolidation is present, no338

pleural effusion.339

Each token is associated with a model-predicted340

confidence (probability). For example:341

Token Probability
Consolidation 0.85
is 0.90
present 0.92
no 0.98
pleural 0.96
effusion 0.93

342

Self-Critiqued Error Annotation (Step 3 in343

Algo. 1). The same LLM is used to compare the 344

generated report against the reference report: 345

Reference: No pleural effusion or consol- 346

idation. 347

Using few-shot prompting and semantic reasoning, 348

the model identifies that the phrase “consolidation 349

is present” contradicts the ground truth, and thus 350

annotates it with error tags: 351

Annotated:<e>Consolidation is 352

present</e>, no pleural effusion. 353

Token-Level Supervision via CTAL and 354

ETAPL ((Step 4 in Algo. 1). The identified 355

correct tokens (No, pleural, effusion) are 356

reinforced using the CTAL, which increases 357

their predicted probability. In contrast, the 358

erroneous tokens (consolidation, is, present) 359

are penalized using the ETAPL, which pushes their 360

probabilities downward, especially if the initial 361

confidence was high. 362

Parameter Update (Step 5 in Algo. 1). After 363

applying the adaptive loss, the token probabilities 364

are adjusted via backpropagation. The resulting 365

updates are as follows: 366
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367
Token Initial Type Updated
Consolidation 0.85 Penalize 0.60
is 0.90 Penalize 0.65
present 0.92 Penalize 0.58
no 0.98 Reinforce 0.99
pleural 0.96 Reinforce 0.98
effusion 0.93 Reinforce 0.97

368

This token-level correction mechanism enables369

the model to learn not just from the reference report370

but from its own semantic inconsistencies, driving371

more precise and fluent report generation over time.372

4 Experiments373

Datasets Our experiment was conducted on374

MIMIC-CXR and IU-Xray, the two most com-375

monly used datasets for RRG tasks.376

MIMIC-CXR (Johnson et al., 2019) is a large377

dataset with 377,110 chest radiographs and378

227,835 reports from 64,588 patients, collected at379

Beth Israel Deaconess Medical Center (2011-2016).380

We follow the partitioning protocol from Chen et381

al. (Chen et al., 2020), using 270,790 images for382

training and 3,858 for testing for fair evaluation.383

IU-Xray (Demner-Fushman et al., 2016) is a384

widely used dataset for radiology report generation,385

containing 3,955 reports and 7,470 chest X-ray im-386

ages. We follow the data split protocol from Chen387

et al. (Chen et al., 2020), partitioning the dataset388

into training, validation, and test sets with a 7:1:2389

ratio, and evaluating the test set for consistency.390

Implementation Details We leverage LLaMA3-391

3B1 as the large language model (LLM) and Swin392

Transformer2 as the visual encoder. The loss bal-393

ancing coefficient λ is set to 0.5. Training is con-394

ducted on two NVIDIA A6000 GPUs (48GB each)395

with a mini-batch size of 24 and a learning rate of396

5e-5. For inference, we apply beam search with397

a beam width of 3 to balance computational effi-398

ciency and output quality.399

Evaluation Metrics We assess the generated400

diagnostic reports using standard NLG metrics,401

including BLEU (Papineni et al., 2002), ME-402

TEOR (Banerjee and Lavie, 2005), and ROUGE-403

L (Lin, 2004), following the standard evalua-404

tion protocol3. For clinical relevance evaluation,405

CheXBert (Irvin et al., 2019) is excluded due to406

1https://huggingface.co/meta-llama/Llama-3.2-3B
2https://huggingface.co/microsoft/swin-base-patch4-

window7-224
3https://github.com/tylin/coco-caption

past inconsistencies in the calculation (e.g., mi- 407

cro/macro/weighted variants) and lack of trans- 408

parency in prior works, hindering fair comparisons. 409

Instead, we adopt more robust metrics—RadGraph 410

F1 (Jain et al., 2021), BERTScore (Zhang et al., 411

2019), and RadCliQ (Yu et al., 2023)—that better 412

align with experts’ assessments. Notably, RadCliQ 413

integrates CheXBert in a standardized manner. 414

Main Results We compare our model with state- 415

of-the-art (SOTA) methods on the MIMIC-CXR 416

and IU-Xray datasets, as shown in Table 1, respec- 417

tively. Table 2 presents comparisons of clinical 418

metrics. Methods marked with † are quoted from 419

their original papers, while others were re-run us- 420

ing publicly released code on the same training-test 421

partition as our method. 422

As shown inTable 1, our model outperforms 423

these SOTA methods across almost all metrics 424

on both datasets, including image captioning 425

models (Lu et al., 2017; Cornia et al., 2020), 426

transformer-based encoder-decoder (Chen et al., 427

2020, 2022; Liu et al., 2021a; Wang et al., 428

2022b; Huang et al., 2023; Bu et al., 2024), and 429

LLM-based methods (Wang et al., 2023b; Liu 430

et al., 2024c; Pellegrini et al., 2023). Specifi- 431

cally, our model surpasses the LLM-based mod- 432

els R2GenGPT (Wang et al., 2023b) and Boot- 433

strapping (Liu et al., 2024c) in BLEU score, with 434

improvements of 7.5% and 12.5%, despite these 435

two methods using larger LLMs (7B) compared to 436

ours (3B). Additionally, methods leveraging dis- 437

ease knowledge (Bu et al., 2024; Huang et al., 438

2023) lack feedback mechanisms for guided learn- 439

ing, while Multi-Grained (Liu et al., 2024b) em- 440

ploys sentence-level contrastive learning but lacks 441

token-level supervision, limiting its effectiveness. 442

EKAGen, which uses 300×300 images instead of 443

the standard 224×224, is not directly compara- 444

ble but still underperforms our approach. On IU- 445

Xray, our model consistently demonstrates strong 446

performance. Beyond NLG metrics, overall, it 447

achieves better performance on clinical relevance 448

metrics—RadGraph F1, BERTScore, and RadCliQ. 449

This improvement stems from our self-generated 450

token-level supervision, which dynamically refines 451

predictions by reinforcing correct tokens and sup- 452

pressing incorrect ones. 453

Ablation Study Table 3 shows the ablation study 454

results for the model’s loss components. Both the 455

CTAL loss (Lcorrect) and ETAPL loss (Lerror) indi- 456

vidually improve performance over the baseline, 457

which excludes both losses. The best results occur 458

7



Methods RadGraph F1 (↑) Bert Score (↑) RadCliQ (↓)

R2Gen (Chen et al., 2020) 0.172 0.406 1.228
R2GenCMN (Chen et al., 2022) 0.182 0.418 1.182
CvT2DistilGPT2 (Nicolson et al., 2023) 0.196 0.374 1.220
RaDialog-RG† (Pellegrini et al., 2023) - 0.400 -
R2GenGPT (Wang et al., 2023b) 0.187 0.415 1.207
PromptMRG (Jin et al., 2024) 0.190 0.357 1.169
EKAGen†† (Bu et al., 2024) 0.199 0.412 1.126

Ours 0.205 0.422 1.150

Note: EKAGen uses 300×300 images while the others use 224×224 images. We exclude CheXBert due to
inconsistencies in prior evaluations and lack of transparency, which hinder fair comparison. Notably, RadCliQ
integrates CheXBert in a standardized manner.

Table 2: Evaluation of Clinic-related Metrics on MIMIC-CXR.

Dataset L
penalty
error Lcorrect @B-1 @B-2 @B-3 @B-4 METEOR ROUGE_L

Mimic-cxr

0.423 0.273 0.188 0.135 0.166 0.295
✓ 0.426 0.277 0.192 0.139 0.166 0.298

✓ 0.428 0.281 0.196 0.141 0.167 0.303
✓ ✓ 0.431 0.284 0.199 0.146 0.168 0.306

Table 3: Ablation study for loss components.

Figure 4: Comparison of error tokens in the generated report before and after TLS. The highlighted errors are
marked in corresponding colors to show the corrections made.

when both losses are combined, highlighting their459

complementary effects in enhancing the quality of460

the generated reports.461

4.1 Qualitative Analysis462

Figure 4 shows the changes with and without token-463

level supervision (TLS), demonstrating how the er-464

rors get corrected. Before applying TLS, the model465

makes errors, such as incorrectly identifying condi-466

tions or adding irrelevant details. For example, it467

mentions "right lower lobe concerning for pneumo-468

nia" when the ground truth states "no evidence of469

pneumonia." With TLS, most errors are corrected,470

as shown in the "Report After TLS" where the471

model removes incorrect terms like "right lower472

lobe pneumonia". The colors highlight correspond-473

ing concepts across reports.474

5 Conclusion 475

We proposed SAT-RRG, a novel self-adaptive train- 476

ing framework for radiology report generation that 477

incorporates token-level semantic supervision. By 478

leveraging LLM-based feedback to identify and 479

localize semantic inconsistencies, our approach 480

enables fine-grained correction and reinforcement 481

during training. We introduce two adaptive loss 482

functions—CTAL and ETAPL—that selectively 483

guide the model to consolidate correct predictions 484

and suppress overconfident errors. Experimental 485

results on MIMIC-CXR and IU-Xray demonstrate 486

that SAT-RRG achieves SOTA performance over 487

conventional CE-based training paradigms. 488
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Limitations489

In this work, we employ a relatively lightweight490

general-purpose LLM (LLaMA3-3B) for both re-491

port generation and semantic error detection, as492

a proof-of-concept. While our approach already493

demonstrates visible performance gains, we envi-494

sion that using more powerful LLMs could further495

enhance semantic understanding and error correc-496

tion capacity.497

Despite these benefits, relying on a general-498

purpose LLM introduces dependency on its con-499

textual understanding, which may occasionally500

misidentify errors in clinically ambiguous or under-501

specified cases. Although such instances are rare,502

future work could explore domain-adapted LLMs,503

improved prompt designs, or lightweight error de-504

tection modules jointly trained with the generation505

model to further boost robustness.506

Importantly, the effectiveness of our proposed507

training framework does not hinge on perfect error508

identification. The current feedback mechanism509

already leads to significant improvements over con-510

ventional supervision. Further improvements in511

error tagging precision would only enhance our512

model’s performance, making the framework even513

more reliable and clinically useful.514
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Appendix A: Prompt for Error Token676

Annotation677

Instruction. Your task is to compare a predicted re-678

port with a ground truth medical report and identify679

specific tokens or phrases in the predicted report680

that are semantically incorrect or conflict with the681

ground truth. For this task:682

1. Incorrect tokens or phrases are defined as683

parts of the predicted report that have a differ-684

ent meaning or contradict the ground truth.685

2. Use a matching pair of <e> and </e> to wrap686

only the incorrect tokens or phrases in the687

predicted report.688

3. Ensure that every error is marked precisely.689

Do not mark entire sentences—only the spe-690

cific parts that are incorrect.691

4. Preserve the structure of the predicted report.692

Do not split paragraphs or reformat the text.693

Examples.694

• Example 1:695

– Ground truth: The lungs are clear and696

hyperinflated.697

– Predicted report: The lungs are clear and698

hyperinflation is present.699

– Analysis: The predicted report matches700

the ground truth report.701

– Output: The lungs are clear and702

hyperinflation is present.703

• Example 2:704

– Ground truth: Findings: The lungs are705

low in volume. No focal airspace consol-706

idation to suggest pneumonia.707

– Predicted report: Findings: The lungs708

are within normal volume. Focal consol-709

idation is noted in the right lower lobe,710

concerning for pneumonia.711

– Analysis: The predicted report incor-712

rectly states within normal volume and713

adds Focal consolidation, which con-714

flicts with the ground truth.715

– Output: Findings: The lungs are716

<e>within normal volume</e>.717

Focal consolidation <e>is718

noted</e> in the right lower719

lobe, concerning for pneumonia.720

• Example 3: 721

– Ground truth: Impression: There is evi- 722

dence of acute cardiopulmonary process. 723

– Predicted report: Impression: No acute 724

cardiopulmonary process. 725

– Analysis: The predicted report incor- 726

rectly negates the cardiopulmonary pro- 727

cess described in the ground truth. 728

– Output: Impression: <e>No 729

acute</e> cardiopulmonary 730

process. 731

• Example 4: 732

– Ground truth: The patient has a 12-cm 733

calcified granuloma unchanged from the 734

prior study. 735

– Predicted report: The patient has a mass 736

in the lower lung field. 737

– Analysis: The predicted report incor- 738

rectly describes a mass in the lower lung 739

field, which conflicts with the 12-cm cal- 740

cified granuloma in the ground truth. 741

– Output: The patient has a <e>mass 742

in the lower lung field</e>. 743

Analyze the following reports and return the pre- 744

dicted report with incorrect tokens or phrases 745

wrapped in matching pairs of <e> and </e>. Focus 746

only on semantic differences, and ensure no extra 747

modifications are made to the predicted report. 748
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