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Abstract

Existing radiology report generation (RRG)
methods are predominantly trained using cross-
entropy (CE) loss, which only reinforces to-
kens that exactly match the reference report.
As a result, these models overlook semantically
meaningful alternatives and fail to recognize or
correct factual errors. Also, these methods lack
semantic feedback mechanisms during train-
ing, treating all tokens uniformly and failing
to prioritize critical corrections. We propose
SAT-RRG, a self-adaptive training framework
that leverages the underlying LLM in the RRG
model to dynamically identify semantically in-
correct tokens during training—without requir-
ing human annotation. Based on these pseudo-
labeled error spans, we introduce two token-
level losses: CTAL reinforces confidently cor-
rect predictions, while ETAPL penalizes over-
confident semantic errors. This dual supervi-
sion allows the model to focus learning where it
matters most: strengthening reliable tokens and
correcting factual mistakes. SAT-RRG builds
upon a unified LLM backbone for both gener-
ation and error detection, incurs no additional
inference-time cost and eliminates the need for
manual error labels. SAT-RRG achieves state-
of-the-art performance on MIMIC-CXR and
IU-Xray. Code will be released upon publica-
tion.

1 Introduction

Automating radiology report generation (RRG) has
gained attention for its potential to reduce radiol-
ogists” workload and improve diagnostic consis-
tency. Recent advancements in deep learning, par-
ticularly with encoder-decoder architectures and
large language models (LLMs) (Vaswani, 2017;
Chen et al., 2020, 2022; Wang et al., 2022a; Huang
et al., 2023; Bu et al., 2024), have shown promis-
ing results in generating textual descriptions from
radiological images. These models predict reports
word by word, treating each word as a separate

class and assigning probabilities at each step. Train-
ing typically relies on cross-entropy (CE) loss,
which maximizes the likelihood of selecting the
correct word based on a reference report.

However, CE loss enforces strict word-level
alignment between generated and reference re-
ports, making existing models overly sensitive to
exact phrasing while failing to recognize meaning-
equivalent variations. Moreover, existing RRG
methods generally lack a feedback mechanism to
assess semantic quality during training, such as
evaluating whether the generated content is tex-
tually and clinically consistent with the reference
report, let alone leveraging such feedback to guide
model updates.

In the literature, token-level feedback has been
explored in general NLG via reinforcement learn-
ing (Ziegler et al., 2019), contrastive objec-
tives (Liu et al., 2024a), or correction-based post-
hoc tuning. However these mechanisms typically
require either manually designed reward signals or
additional labeled data. However, they cannot be
effectively applied to the RRG task due to the high
cost of expert annotation.

To address this situation, we propose a novel
training framework that introduces a more adaptive
learning process for RRG. Instead of resorting to
external reward models or annotations, we tacti-
cally exploit the LLM in an RRG task for its in-
herent semantic understanding capability to obtain
dynamic, token-level supervision during training.
Since the LLM is already part of the RRG model,
our method imposes no extra structure: the model
itself evaluates and generates online token-level
labels during the training process, identifying se-
mantic inconsistencies between its predictions and
the ground truth report.

Specifically, we design an LLM-based mech-
anism to locate semantically mismatched tokens
between generated and reference reports. Unlike
existing methods, our approach dynamically ad-



justs token-level probabilities, allowing the model
to focus on correcting specific errors while rein-
forcing correct predictions. To achieve this, two
custom loss functions are designed: the Correct
Token Augment Loss (CTAL), which reduces up-
dates for correct tokens to preserve stability, and the
Error Token Adaptive Penalty Loss (ETAPL),
which penalizes incorrect tokens to enforce tar-
geted correction. Together, the two losses support
a balanced optimization that encourages accuracy
while enabling adaptive self-correction at the token
level.

Our contributions are summarized as follows:

First, we introduce a novel RRG training frame-
work that leverages the LLM’s semantic under-
standing capability to dynamically refine token-
level predictions. By pinpointing where the model
needs stronger updates, it enables a more informed
learning process, focusing on error correction while
preserving fluency and coherence. Unlike conven-
tional word-level alignment with reference reports,
our approach identifies error tokens at the phrase
level, better capturing semantic inconsistencies.
Second, to realize our framework, we propose two
custom loss functions: Correct Token Augment
Loss (CTAL), which minimizes updates for confi-
dently predicted correct tokens, reinforcing stable
predictions, and Error Token Adaptive Penalty Loss
(ETAPL), which intensifies corrections adaptively
for errors that are predicted with high-confidence,
ensuring more precise learning.
Third, Our method achieves state-of-the-art perfor-
mance on MIMIC-CXR and IU-Xray. By using the
same LLM backbone for both report generation and
error detection, it avoids significant computational
overhead and preserves inference efficiency.

2 Related Work

Radiology Report Generation. Radiology report
generation (RRG) aims to produce clinically accu-
rate diagnostic narratives from radiological images.
Traditional encoder-decoder methods (Chen et al.,
2020; Liu et al., 2021a) rely on word-level CE loss,
which limits semantic flexibility and penalizes clin-
ically valid paraphrases. Recent works attempt
to mitigate this limitation through domain knowl-
edge integration and architectural innovations. For
example, METransformer (Wang et al., 2023a) in-
troduces expert tokens to refine cross-modal at-
tention; EKAGen (Bu et al., 2024) incorporates
instance-level expert knowledge to supervise atten-

tion; KiUT (Huang et al., 2023) leverages clini-
cal knowledge via U-shaped modality connections
for improved alignment. However, these meth-
ods still lack fine-grained feedback during train-
ing, treating generated reports uniformly and fail-
ing to distinguish correct from incorrect semantics.
Our method addresses this by moving beyond rigid
token-level supervision. It identifies semantically
correct tokens despite surface mismatches, allow-
ing more flexible, meaning-preserving training.

LLM-Based Report Generation. Large lan-
guage models (LLMs) such as LLaMA (Touvron
et al., 2023), Qwen (Yang et al., 2024), and their
RRG adaptations (Wang et al., 2023b; Liu et al.,
2024c) improve performance by aligning visual fea-
tures with LLM token embeddings. For instance,
R2GenGPT uses a linear visual mapper for LLM
input adaptation, while Bootstrapping utilizes in-
domain prompts and coarse-to-fine decoding. Yet,
most existing LLM-based models lack mechanisms
for token-level feedback or error-aware learning. In
contrast, we introduce a token-level error tagging
mechanism that enables precise, supervision-free
feedback on which tokens require refinement.

Token-Level Supervision and Feedback Learn-
ing. Token-level feedback has been explored in
general NLG via reinforcement learning (Ziegler
et al., 2019), contrastive objectives (Liu et al.,
2024a), or correction-based post-hoc tuning. How-
ever, such approaches often require manually de-
fined reward signals or additional labeled data, lim-
iting scalability. In medical NLP, few RRG meth-
ods apply token-level semantic supervision, due to
high annotation costs and limited modeling strate-
gies. To overcome this, we use in-context prompting
of a frozen LLM to automatically tag semantically
inconsistent tokens (<e>...</e>) in generated re-
ports. This enables scalable error detection without
human annotation. Additionally, we introduce a
dual-loss framework that penalizes overconfident
errors (ETAPL) and reinforces correct predictions
(CTAL), aligning training dynamics with clinical
accuracy. Intuitively, CTAL functions as a semantic
stabilizer, and ETAPL as a semantic corrector.

3 Methodology

An overview of our SAT-RRG framework is illus-
trated in Fig. 1, which consists of three key compo-
nents: (a) report generation (Section 3.1), (b) error
token identification (Section 3.2), and (c) inference



Algorithm 1: Training Phase of SAT-RRG

Input: Chest X-ray image Xing, Prompt P, Ground
truth report Rgr
Output: Trainable 1oss Lot

Step 1: Input Construction
Extract visual features: Z, < fimg(Ximg)
Project to embedding space: H, < MLP(Z,)
Tokenize: Pk < Tokenizer(P),

Rar ok + Tokenizer(Rgr)
Concatenate: X <— Concat(Hy, Pk, RGT_tok)
Build causal attention mask M over Rgr 1ok

Step 2: Forward Pass
9 < LLM.forward(X, mask = M)
Step 3: Self-Critique Error Detection
Generate decoded prediction: y < Argmax (%)
Detect semantic errors:
error_tokens <— LLM.detect(Rgr, y)
Teorreet < {y; | y; ¢ error_tokens}
Tevor < {y | yr € error_tokens}
Step 4: Loss Computation
»Ccorrecl — — Zj ET orrect p(yj) lOg p(yJ)
Lermor <= 3 e P(Uk) log P(Yr)
Lot =Y, 47" log p(i:)
Total loss: »Ctotal — )\(»Ccorrcct + Ecrror) + £GT
Step 5: Backpropagation
Update model using Vg Lol

process(right part of Figure 1). The training proce-
dure is detailed in Algorithm 1, and a step-by-step
example is provided in Section 3.4.

3.1 Report Generation

Our report generation routine includes three compo-
nents: (1) a visual encoder to extract features from
the input image, (2) a visual mapper to project these
features into the LLM’s word embedding space,
and (3) an LLM that generates reports from both
visual and textual prompts.

Given an input chest X-ray image X, we employ
the Swin Transformer (Liu et al., 2021b) to ex-
tract visual features, denoted as Z, = Swin(X,),
where Z, represents the feature map from the last
layer, capturing the relevant image details for re-
port generation. To align these features with the
LLM’s word embedding space, we apply a multi-
layer perceptron (MLP) visual mapper, transform-
ing them as H, = MLP(Z,), where H, is the
high-dimensional visual representation compatible
with the LLM. Next, the mapped visual features
H,, are combined with a textual prompt P and the
ground truth report Rgt, both of which are tok-
enized for processing by the LLM. The final input
to the LLM is then expressed as:

X = Concat(H,, Tokenizer(P), Tokenizer(Rgr)),

where P provides the context: “Generate a compre-
hensive and detailed diagnosis report for this chest
X-ray image.” The LLM generates a sequence
of tokens y = {y1,y2,...,yr}, predicted under
word-level cross-entropy loss.

3.2 Dynamic error token identification and
correction

In addition to the report generation routine, we in-
troduce an error correction process that uses the
LLM’s semantic understanding to detect phrase-
level discrepancies between generated and refer-
ence reports. As shown in Fig. 1 (b), the error token
identification process classifies tokens as correct or
erroneous based on semantic consistency. Specifi-
cally, by feeding the LLaMA3 both the reference
and generated reports, marking meaning-altering
discrepancies with <e></e> while leaving correct
tokens unmarked. Our prompt provides rules to
help the LLM recognize semantic errors and alter-
native expressions with the same meaning. We also
use a few-shot approach, providing examples to
achieve the desired results. (Check prompt detail
in Section: 5). Some examples will be provided in
Fig. 4 in the experimental part.

Fig. 4 shows examples of error tokens. The
<e></e> tags are applied only to clear semantic
errors in the generated report. For example, “right
lower lobe pneumonia" contradicts the ground truth
“no evidence of pneumonia”, while “no pleural effu-
sion" conflicts with “small right and moderate left
pleural effusion", marking both as errors. Semanti-
cally consistent expressions, such as "no evidence
of pneumonia" vs "there is no focal consolidation
concerning for pneumonia”, are not tagged as er-
rors since they are semantically consistent despite
different wording. This allows us to identify se-
mantic errors rather than lexical differences.

Distinguishing between correct and erroneous
tokens enables applying targeted loss functions
to refine the training process, as shown in Fig. 2.
Correct tokens receive an augment loss (Lo Ar),
where gradient descent increases their predicted
probability, reinforcing confidence in accurate pre-
dictions. Conversely, error tokens are penalized
using an adaptive correction loss (Lgr 4pr), Where
gradient descent reduces their probability in future
predictions, discouraging repeated errors. The loss
functions are detailed in the next section.



a) Report Generation (Stepl & 2 in Algo. 1)

- (f\ o
T @ “
&5 S a
£ Zy g H, 9 0“7
—> E &> = —> = .
s % cl = '
i = <
@ =]
= > Z
X-ray Image > LLaMA
= A Al A
g [
lateral view somewhat v o :
limited due to overlying ﬁ : o
motion artifact . the — 2 Co H
lungs are low in volume 5] ' o
. there is... * & ' y Seo
= [ ' Sacoh
5] '
Reference Report N !
> E , frontal and lateral views
Generate a comprehen ﬁ g of th.e chest were
-sive and detailed diagn Az obtained. there are low
-osis report for this ﬁ lgmgyolumes. consolida
chest xray image. + tionis present, no
g-' pleural effusion.
Prompt — E Predicted Report

b) Error Token Identification (Step3 & 4 in c) Inference Process

Error Generation Prompt

Algo. 1)
PoooooooooooDon o
! <e>(onsolidation is present&/e>, ' Generatelalcompreh
>t — - - - 1 -ensive and detailed
] No pleural effusion . diagnosis report for
_______________ this chest xray image.
X-ray Image Prompt
u 1
Ltotar = Lop+iLerapr i+ Loran
] 1
SAT-RRG _)*(_
______________________ 4)*( Frozen l
.
______ N H ¢ Trainable

frontal and lateral views
of the chest were
obtained . there are low
lung volumes .. no focal
consolidation pleural
effusion

lateral view somewhat
limited due to overlying
motion artifact . No
pleural effusion or
consolidation. there is...

.. incorrect tokens or
phrases wrapped in
matching pairs of <e>
and </e>. Focus only on
semantic differences, ..

Predicted Report

Reference Reports

Figure 1: Overview of the SAT-RRG framework. It includes three components: (a) Report generation process, (b)
Error token identification via LLM-based semantic comparison, and (c) Inference process. Tokens or modules with
the same color represent the same entity across different stages. After the generator produces the initial predicted

report, it is passed through the LLM again for feedback.

At this stage, each token in the predicted report retains its

original generation probability, since the model has not yet been updated by any loss. The LLM-based comparison
only annotates which tokens are semantically incorrect. These annotations serve as token-level supervision targets:
incorrect tokens are penalized and correct tokens reinforced via two complementary losses (ETAPL and CTAL).
The original probabilities are used by the losses to propagate training signals back into the model.

3.3 Error-Aware Training Objectives

While standard cross-entropy loss ensures fluency
and grammaticality by aligning predictions with
reference tokens, it treats all errors equally, over-
looking the distinction between critical clinical
mistakes and benign phrasing differences. To ad-
dress this, we introduce two token-level auxiliary
losses that apply differentiated supervision: one re-
inforces confidently correct tokens, while the other
penalizes semantic errors predicted with high con-
fidence, enabling more precise and semantically
aware learning.

CTAL: Reinforcing Confidently Correct To-
kens. Let T.orect denote the set of tokens iden-
tified as semantically correct (i.e., not enclosed in
<e>...</e>). To reinforce these tokens, we define
the Correct Token Augmentation Loss (CTAL) as:

Letar = — Z p(y;)logp(y;). (1)

j ETCOITCCl

The gradient of this loss with respect to the pre-
dicted token probability is:

0 ﬁCTAL

Ip(y;)

This formulation encourages the model to further
boost the probability of correct predictions. Cor-
rect tokens with low confidence receive stronger

= —logp(y;) — 1. (2)

reinforcement, while correct tokens with high con-
fidence are updated more conservatively, thus pro-
moting stable and consistent learning. ETAPL:
Penalizing Overconfident Semantic Errors. Let
Teror be the set of tokens enclosed in <e>. . .</e>,
indicating semantic inconsistencies. We define the
Error Token Adaptive Penalty Loss (ETAPL) as:

LETAPL = Z p(yx) log p(yx). (3)
k€T eror

Its gradient with respect to the model output is:

OLETAPL
Op(yx)

This loss penalizes tokens that are both semanti-
cally incorrect and predicted with high confidence.
Larger gradients are applied to high-confident mis-
takes (with higher p(yy)), reducing their future pre-
dicted probabilities by decreasing the correspond-
ing logits during backpropagation. Conversely,
low-confidence errors (with lower p(yy)) are pe-
nalized lightly, avoiding overcorrection and insta-
bility. Total Loss. Combining the two auxiliary
objectives with the standard cross-entropy loss, the
overall training objective is defined as:

Liotal = A - (Letan + LetarL) + Lot

=1+ log p(yr). 4)

&)

Here, LgT is the conventional cross-entropy loss
computed over the ground-truth report, and A is a
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Figure 2: Overview of our proposed training framework with token-level supervision. During training, the predicted
report is dynamically compared to the reference report to identify correct and error tokens using the LLM’s
own semantic understanding. Tokens are categorized as correct or error using inline tags. The Correct Token
Augmentation Loss (CTAL) increases the confidence of already correct tokens by flattening their gradients,
while the Error Token Adaptive Penalty Loss (ETAPL) penalizes overconfident incorrect tokens. This dynamic
feedback enables the model to refine generation quality at the token level in an interpretable and adaptive manner.

balancing coefficient that controls the influence of
the self-supervised token-level feedback. This joint
formulation enables the model to reinforce confi-
dent correct tokens, penalize overconfident errors,

and remain aligned with reference supervision.
The gradient of the total loss with respect to
model parameters 6 is:
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This gradient offers directionally interpretable
updates: it strengthens low-confidence correct pre-
dictions, suppresses high-confidence semantic er-
rors, and maintains fidelity to ground-truth refer-
ences. Together, these components form a coherent
learning signal for semantically aware training.
Loss Formulation and Gradient Analysis The
gradients of our two auxiliary loss terms provide
interpretable and directionally intuitive supervision
signals, whichs shows in Figure 3. Specifically,

Gradient Behavior of CTAL and ETAPL

VpLerau
3 == Vplerar

Gradient Magnitude
S
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Figure 3: Gradient dynamics of CTAL and ETAPL.
CTAL applies stronger gradients to low-confidence cor-
rect tokens, reinforcing them during training. ETAPL
imposes larger penalties on high-confidence incorrect
tokens, suppressing overconfident semantic errors. This
dual behavior facilitates stable and semantically aware
supervision.

they increase the confidence of semantically cor-
rect predictions and penalize overconfident errors,
facilitating stable and accurate training.



Dataset | Methods [ @B-1 @B-2 @B-3 @B-4 METEOR ROUGE
AdaAtt (Lu et al., 2017) 0.314  0.198 0.132  0.094 0.128 0.131
M2Transformer (Cornia et al., 2020) 0.332  0.210 0.142 0.101 0.134 0.142
R2Gen' (Chen et al., 2020) 0.353 0.218 0.145 0.103 0.142 -
R2GenCMNT (Chen et al., 2022) 0.353 0.218 0.148 0.106 0.142 -
PPKED' (Liu et al., 2021a) 0.360 0.224 0.149 0.106 0.149 0.237
METransformer’ (Wang et al., 2023a) 0.386  0.250 0.169 0.124 0.152 0.291
DCL' (Li et al., 2023) - - - 0.109 0.150 0.284

MIMIC-CXR | KiUT' (Huang et al., 2023) 0.393 0.243 0.159 0.113 0.160 0.285
R2GenGPT' (Wang et al., 2023b) 0411 0.267 0.186 0.134 0.160 0.297
EKAGen! (Bu et al., 2024) 0419 0258 0.170 0.119 0.157 0.287
Bootstrapping’ (Liu et al., 2024c) 0402 0.262 0.180 0.128 0.175 0.291
CvT2DistilGPT2" (Nicolson et al., 2023) | 0.393 0.248 0.171  0.127 - 0.155
RaDialog-RG' (Pellegrini et al., 2023) 0.346 - - 0.095 0.140 0.271
Multi-Grained’ (Liu et al., 2024b) 0.346 0.226 0.159 0.117 0.163 0.290
PromptMRG' (Jin et al., 2024) 0.398 - - 0.112 0.157 0.268
Ours 0431 0.284 0.199 0.146 0.168 0.306
AdaAtt (Lu et al., 2017) 0.284 0.207 0.150 0.126 0.165 0.311
M2Transformer (Cornia et al., 2020) 0.402 0.284 0.168 0.143 0.170 0.328
R2Gen' (Chen et al., 2020) 0470 0.304 0.219 0.165 0.187 0.371
R2GenCMNT (Chen et al., 2022) 0475 0309 0.222 0.170 0.191 0.375
METransformer’ (Wang et al., 2023a) 0483 0322 0228 0.172 0.192 0.380
DCL (Li et al., 2023) - - - 0.163 0.193 -

[U-Xray R2GenGPT' (Wang et al., 2023b) 0.488 0.316 0.228 0.173 0.211 0.377
Bootstrapping_fr (Liu et al., 2024c¢) 0499 0.323 0.238 0.184 0.208 0.390
CvT2DistilGPT2" (Nicolson et al., 2023) | 0.473 0.304 0224 0.175 0.200 0.376
Multi-Grained' (Liu et al., 2024b) 0.472 0321 0234 0.175 0.192 0.379
PromptMRG' (Jin et al., 2024) 0.401 - - 0.098 0.160 0.281
EKAGen (Bu et al., 2024) 0497 0.339 0.250 0.190 0.210 0.399
Ours 0.504 0342 0.254 0.196 0.222 0.400

Table 1: Comparison on MIMIC-CXR and IU-Xray datasets(@B stands for BLUE).

3.4 Example Workflow Illustration

To clarify how our self-adaptive token-level refine-
ment framework operates, we illustrate the end-to-
end process with a concrete example. The frame-
work consists of four major steps: report genera-
tion, semantic error annotation, loss-based refine-
ment, and token probability update.

Initial Report Generation (Step 1 & 2 in Algo.

1). Given an input chest X-ray image and a textual
prompt, the frozen LLM generates a draft report:

Prediction: Consolidation is present, no
pleural effusion.

Each token is associated with a model-predicted
confidence (probability). For example:

Token Probability
Consolidation 0.85
is 0.90
present 0.92
no 0.98
pleural 0.96
effusion 0.93

Self-Critiqued Error Annotation (Step 3 in

Algo. 1). The same LLM is used to compare the
generated report against the reference report:

Reference: No pleural effusion or consol-
idation.

Using few-shot prompting and semantic reasoning,
the model identifies that the phrase “consolidation
is present” contradicts the ground truth, and thus
annotates it with error tags:

Annotated:<e>Consolidation is
present</e>, no pleural effusion.

Token-Level Supervision via CTAL and
ETAPL ((Step 4 in Algo. 1). The identified
correct tokens (No, pleural, effusion) are
reinforced using the CTAL, which increases
their predicted probability. In contrast, the
erroneous tokens (consolidation, is, present)
are penalized using the ETAPL, which pushes their
probabilities downward, especially if the initial
confidence was high.

Parameter Update (Step 5 in Algo. 1). After
applying the adaptive loss, the token probabilities
are adjusted via backpropagation. The resulting
updates are as follows:




Token Initial Type Updated
Consolidation 0.85 Penalize  0.60
is 0.90 Penalize  0.65
present 0.92 Penalize 0.58
no 0.98 Reinforce 0.99
pleural 0.96 Reinforce 0.98
effusion 0.93 Reinforce 0.97

This token-level correction mechanism enables
the model to learn not just from the reference report
but from its own semantic inconsistencies, driving
more precise and fluent report generation over time.

4 Experiments

Datasets Our experiment was conducted on
MIMIC-CXR and IU-Xray, the two most com-
monly used datasets for RRG tasks.

MIMIC-CXR (Johnson et al., 2019) is a large
dataset with 377,110 chest radiographs and
227,835 reports from 64,588 patients, collected at
Beth Israel Deaconess Medical Center (2011-2016).
We follow the partitioning protocol from Chen et
al. (Chen et al., 2020), using 270,790 images for
training and 3,858 for testing for fair evaluation.
[U-Xray (Demner-Fushman et al., 2016) is a
widely used dataset for radiology report generation,
containing 3,955 reports and 7,470 chest X-ray im-
ages. We follow the data split protocol from Chen
et al. (Chen et al., 2020), partitioning the dataset
into training, validation, and test sets with a 7:1:2
ratio, and evaluating the test set for consistency.
Implementation Details We leverage LLaMA3-
3B! as the large language model (LLM) and Swin
Transformer? as the visual encoder. The loss bal-
ancing coefficient )\ is set to 0.5. Training is con-
ducted on two NVIDIA A6000 GPUs (48GB each)
with a mini-batch size of 24 and a learning rate of
5e-5. For inference, we apply beam search with
a beam width of 3 to balance computational effi-
ciency and output quality.

Evaluation Metrics We assess the generated
diagnostic reports using standard NLG metrics,
including BLEU (Papineni et al., 2002), ME-
TEOR (Banerjee and Lavie, 2005), and ROUGE-
L (Lin, 2004), following the standard evalua-
tion protocol®. For clinical relevance evaluation,
CheXBert (Irvin et al., 2019) is excluded due to

"https://huggingface.co/meta-1lama/Llama-3.2-3B
Zhttps://huggingface.co/microsoft/swin-base-patch4-
window7-224

3https://github.com/tylin/coco-caption

past inconsistencies in the calculation (e.g., mi-
cro/macro/weighted variants) and lack of trans-
parency in prior works, hindering fair comparisons.
Instead, we adopt more robust metrics—RadGraph
F1 (Jain et al., 2021), BERTScore (Zhang et al.,
2019), and RadCliQ (Yu et al., 2023)—that better
align with experts’ assessments. Notably, RadCliQ
integrates CheXBert in a standardized manner.
Main Results We compare our model with state-
of-the-art (SOTA) methods on the MIMIC-CXR
and IU-Xray datasets, as shown in Table 1, respec-
tively. Table 2 presents comparisons of clinical
metrics. Methods marked with { are quoted from
their original papers, while others were re-run us-
ing publicly released code on the same training-test
partition as our method.

As shown inTable 1, our model outperforms
these SOTA methods across almost all metrics
on both datasets, including image captioning
models (Lu et al., 2017; Cornia et al., 2020),
transformer-based encoder-decoder (Chen et al.,
2020, 2022; Liu et al., 2021a; Wang et al.,
2022b; Huang et al., 2023; Bu et al., 2024), and
LLM-based methods (Wang et al., 2023b; Liu
et al., 2024c; Pellegrini et al., 2023). Specifi-
cally, our model surpasses the LLM-based mod-
els R2GenGPT (Wang et al., 2023b) and Boot-
strapping (Liu et al., 2024¢) in BLEU score, with
improvements of 7.5% and 12.5%, despite these
two methods using larger LLMs (7B) compared to
ours (3B). Additionally, methods leveraging dis-
ease knowledge (Bu et al., 2024; Huang et al.,
2023) lack feedback mechanisms for guided learn-
ing, while Multi-Grained (Liu et al., 2024b) em-
ploys sentence-level contrastive learning but lacks
token-level supervision, limiting its effectiveness.
EKAGen, which uses 300x300 images instead of
the standard 224x224, is not directly compara-
ble but still underperforms our approach. On IU-
Xray, our model consistently demonstrates strong
performance. Beyond NLG metrics, overall, it
achieves better performance on clinical relevance
metrics—RadGraph F1, BERTScore, and RadCliQ.
This improvement stems from our self-generated
token-level supervision, which dynamically refines
predictions by reinforcing correct tokens and sup-
pressing incorrect ones.

Ablation Study Table 3 shows the ablation study
results for the model’s loss components. Both the
CTAL loss (Lcorrect) and ETAPL 10ss (Lepror) indi-
vidually improve performance over the baseline,
which excludes both losses. The best results occur



Methods RadGraph F1 (1) Bert Score (1) RadCliQ ({)
R2Gen (Chen et al., 2020) 0.172 0.406 1.228
R2GenCMN (Chen et al., 2022) 0.182 0.418 1.182
CvT2DistilGPT2 (Nicolson et al., 2023) 0.196 0.374 1.220
RaDialog-RG' (Pellegrini et al., 2023) - 0.400 -
R2GenGPT (Wang et al., 2023b) 0.187 0.415 1.207
PromptMRG (Jin et al., 2024) 0.190 0.357 1.169
EKAGen'! (Bu et al., 2024) 0.199 0.412 1.126
Ours 0.205 0.422 1.150

Note: EKAGen uses 300x300 images while the others use 224x224 images. We exclude CheXBert due to
inconsistencies in prior evaluations and lack of transparency, which hinder fair comparison. Notably, RadCliQ

integrates CheXBert in a standardized manner.

Table 2: Evaluation of Clinic-related Metrics on MIMIC-CXR.

Dataset |LE™Y Lowe|@B-1 @B-2 @B-3 @B-4 METEOR ROUGE_L
0.423 0.273 0.188 0.135 0.166 0.295
Mimic-cxr v 0.426 0.277 0.192 0.139 0.166 0.298
v 10428 0.281 0.196 0.141 0.167 0.303
v v 10431 0.284 0.199 0.146 0.168 0.306
Table 3: Ablation study for loss components.
""""""" Ground TruthReport | ReportBeforeTLS | ReportAferTLS

impression : no evidence of pneumonia or impression : <e>small left pleural effusion</e> .
decompensated congestive heart failure . stable | impression : <e>right lower lobe pneumonia</e> . findings : pa and lateral chest views were obtained
findings associated with the patients known lung | findings : there is a new opacity in the <e>right with patient in upright position . analysis is
malignancy . findings : pa and lateral radiograph of lower lobe concerning for pneumonia</e> . there is.  performed in direct comparison with the next
the chest once again demonstrate a right upper lobe, <e>no pleural effusion</e> or pneumothorax . = preceding similar study of . heart size is normal .
mass with a fiducial marker in place as well as a | cardiomediastinal silhouette and hilar contours are | cardiomediastinal contours are normal . there is
right perihilar mass . this is consistent with the unremarkable . <e>left pectoral pacemaker with =~ <e>a small left pleural effusion</e> . there is no
patients known malignancy . once again seen are a = leads in the right atrium and right ventricle</e> is | pneumothorax . there is no focal consolidation
small right and moderate left pleural effusion with | unchanged . <e>median sternotomy wires</e> are | concerning for pneumonia . there is no pulmonary

considerable left lower lobe atelectasis or intact .

consolidation

edema . bony structures are unremarkable .

Figure 4: Comparison of error tokens in the generated report before and after TLS. The highlighted errors are
marked in corresponding colors to show the corrections made.

when both losses are combined, highlighting their
complementary effects in enhancing the quality of
the generated reports.

4.1 Qualitative Analysis

Figure 4 shows the changes with and without token-
level supervision (TLS), demonstrating how the er-
rors get corrected. Before applying TLS, the model
makes errors, such as incorrectly identifying condi-
tions or adding irrelevant details. For example, it
mentions "right lower lobe concerning for pneumo-
nia" when the ground truth states "no evidence of
pneumonia.” With TLS, most errors are corrected,
as shown in the "Report After TLS" where the
model removes incorrect terms like "right lower
lobe pneumonia". The colors highlight correspond-
ing concepts across reports.

5 Conclusion

We proposed SAT-RRG, a novel self-adaptive train-
ing framework for radiology report generation that
incorporates token-level semantic supervision. By
leveraging LLM-based feedback to identify and
localize semantic inconsistencies, our approach
enables fine-grained correction and reinforcement
during training. We introduce two adaptive loss
functions—CTAL and ETAPL—that selectively
guide the model to consolidate correct predictions
and suppress overconfident errors. Experimental
results on MIMIC-CXR and [U-Xray demonstrate
that SAT-RRG achieves SOTA performance over
conventional CE-based training paradigms.



Limitations

In this work, we employ a relatively lightweight
general-purpose LLM (LLaMA3-3B) for both re-
port generation and semantic error detection, as
a proof-of-concept. While our approach already
demonstrates visible performance gains, we envi-
sion that using more powerful LLMs could further
enhance semantic understanding and error correc-
tion capacity.

Despite these benefits, relying on a general-
purpose LLM introduces dependency on its con-
textual understanding, which may occasionally
misidentify errors in clinically ambiguous or under-
specified cases. Although such instances are rare,
future work could explore domain-adapted LLMs,
improved prompt designs, or lightweight error de-
tection modules jointly trained with the generation
model to further boost robustness.

Importantly, the effectiveness of our proposed
training framework does not hinge on perfect error
identification. The current feedback mechanism
already leads to significant improvements over con-
ventional supervision. Further improvements in
error tagging precision would only enhance our
model’s performance, making the framework even
more reliable and clinically useful.
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Appendix A: Prompt for Error Token
Annotation

Instruction. Your task is to compare a predicted re-
port with a ground truth medical report and identify
specific tokens or phrases in the predicted report
that are semantically incorrect or conflict with the
ground truth. For this task:

1. Incorrect tokens or phrases are defined as
parts of the predicted report that have a differ-
ent meaning or contradict the ground truth.

2. Use a matching pair of <e> and </e> to wrap
only the incorrect tokens or phrases in the
predicted report.

3. Ensure that every error is marked precisely.
Do not mark entire sentences—only the spe-
cific parts that are incorrect.

4. Preserve the structure of the predicted report.
Do not split paragraphs or reformat the text.

Examples.

* Example 1:

— Ground truth: The lungs are clear and
hyperinflated.

— Predicted report: The lungs are clear and
hyperinflation is present.

— Analysis: The predicted report matches
the ground truth report.

— Output: The lungs are clear and
hyperinflation is present.

* Example 2:

— Ground truth: Findings: The lungs are
low in volume. No focal airspace consol-
idation to suggest pneumonia.

— Predicted report: Findings: The lungs
are within normal volume. Focal consol-
idation is noted in the right lower lobe,
concerning for pneumonia.

— Analysis: The predicted report incor-
rectly states within normal volume and
adds Focal consolidation, which con-
flicts with the ground truth.

— Output: Findings: The lungs are
<e>within normal volume</e>.
Focal consolidation <e>is
noted</e> in the right 1lower
lobe, concerning for pneumonia.
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* Example 3:

— Ground truth: Impression: There is evi-
dence of acute cardiopulmonary process.

— Predicted report: Impression: No acute
cardiopulmonary process.

— Analysis: The predicted report incor-
rectly negates the cardiopulmonary pro-
cess described in the ground truth.

— Output: Impression: <e>No
acute</e> cardiopulmonary
process.

* Example 4:

— Ground truth: The patient has a 12-cm
calcified granuloma unchanged from the
prior study.

— Predicted report: The patient has a mass
in the lower lung field.

— Analysis: The predicted report incor-
rectly describes a mass in the lower lung
field, which conflicts with the 12-cm cal-
cified granuloma in the ground truth.

— Output: The patient has a <e>mass
in the lower lung field</e>.

Analyze the following reports and return the pre-
dicted report with incorrect tokens or phrases
wrapped in matching pairs of <e> and </e>. Focus
only on semantic differences, and ensure no extra
modifications are made to the predicted report.
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