
Published as a conference paper at ICLR 2024

ATTENTION-BASED ITERATIVE DECOMPOSITION
FOR TENSOR PRODUCT REPRESENTATION

Taewon Park1, Inchul Choi2,∗, Minho Lee1,2,*
1Kyungpook National University, South Korea
2ALI Co., Ltd., South Korea
{ptw7998, sharpic77, mholee}@gmail.com

ABSTRACT

In recent research, Tensor Product Representation (TPR) is applied for the sys-
tematic generalization task of deep neural networks by learning the compositional
structure of data. However, such prior works show limited performance in dis-
covering and representing the symbolic structure from unseen test data because
their decomposition to the structural representations was incomplete. In this work,
we propose an Attention-based Iterative Decomposition (AID) module designed
to enhance the decomposition operations for the structured representations en-
coded from the sequential input data with TPR. Our AID can be easily adapted to
any TPR-based model and provides enhanced systematic decomposition through a
competitive attention mechanism between input features and structured represen-
tations. In our experiments, AID shows effectiveness by significantly improving
the performance of TPR-based prior works on the series of systematic generaliza-
tion tasks. Moreover, in the quantitative and qualitative evaluations, AID produces
more compositional and well-bound structural representations than other works.1

1 INTRODUCTION

Humans can understand the compositional properties of the surrounding world and, based on their
understanding, systematically generalize over unfamiliar things. This systematic generalization abil-
ity is one of the main characteristics of human intelligence and also the central issue of deep neural
network research. However, the systematic generalization performance of deep neural networks is
still far from human-level generalization (Fodor & Pylyshyn, 1988; Lake & Baroni, 2018; Hupkes
et al., 2020; O’Reilly et al., 2022; Smolensky et al., 2022). Therefore, to improve the generalization
performance, researchers have integrated symbolic system methodologies, such as Tensor Product
Representation (TPR) (Smolensky, 1990), into neural networks.

TPR is a general method that explicitly encodes the symbolic structure of data with distributed rep-
resentations. It is constituted by the tensor product of roles vectors and fillers vectors, where each
encodes structural information and content of data. For decoding, it obtains symbol information
from the embedded representation by applying TPR decoding components, unbinding operators.
In TPR-based neuro-symbolic approaches, deep neural networks learn to extract TPR components
(roles, fillers, and unbinding operators) from the input data while training for TPR functions. Re-
cently, TPR-based neuro-symbolic approaches have showed significant improvements in the gener-
alization and capacity of neural networks (Schlag & Schmidhuber, 2018; Schlag et al., 2020; 2021;
Shi et al., 2022). However, we find that these approaches still encounter challenges in achieving
compositional generalization. This is likely attributable to their reliance on a simple MLP for de-
composition, which may not be structured to learn the compositional nature of data. Therefore,
when the model fails to sufficiently learn the systematic decomposition of TPR, it inevitably de-
grades whole TPR operations (Smolensky, 1990; Bae et al., 2022).

In another approach to systematic generalization, the attention mechanism is used with neural net-
works to capture the compositional properties and thus generate meaningful objects representations

∗corresponding authors
1The code of AID is publicly available at https://github.com/taewonpark/AID

1

https://github.com/taewonpark/AID

Published as a conference paper at ICLR 2024

Figure 1: Overview of AID assisted TPR decomposition. We illustrate the overall operations of
the AID-assisted part of the TPR-based model (with Ninputs = 5 and Ncom = 3). In the natural
language task, each input feature is a word vector for the sentence-level TPR models, while input
features are Ninputs sub-vectors partitioned from the word vector for the word-level TPR models.
From those input features, the initial TPR components are obtained with a linear projection, and
routed to structural representation slots of AID which iteratively decomposes TPR components with
a competitive attention mechanism.

by selectively attending to relevant information (Goyal et al., 2019; Locatello et al., 2020). Such
attention-based mechanisms have improved the sample efficiency and systematic generalization of
neural networks in various fields, such as computer vision (Locatello et al., 2020; Singh et al., 2022)
and reinforcement learning (Goyal et al., 2019; Yoon et al., 2023).

In this paper, to address the incomplete decomposition problem in TPR-based neural networks, we
propose a novel Attention-based Iterative Decomposition (AID) module that can more effectively
decompose sequential data into structured representations of TPR. The AID uses slot-based com-
petitive attention (Goyal et al., 2019; Locatello et al., 2020; Singh et al., 2022) to bind sequential
features to abstract structured representations (roles and fillers) of TPR, as shown in Fig. 1. While
AID adopts an iterative competitive attention method similar to Slot Attention (Locatello et al.,
2020), its distinctive contribution lies in its routing mechanism for the correct decomposition in
the TPR framework. The TPR framework relies on pre-defined structural components, roles and
fillers, to represent the underlying symbolic structure of data. To seamlessly integrate slot-based
attention with the TPR framework, AID systematically routes individual structural components of
TPR to a specific slot and refines the structured representation through competitive attention. Fur-
thermore, AID conditionally initializes each slot component based on the context-dependent input
features, instead of randomly initialized values in other slot-attention approaches. This learnable
routing mechanism of AID provides a differentiable connection between input features and TPR
components while learning to bind structured representations from input features in an end-to-end
manner. AID can easily enhance the decomposition mechanism in any TPR-based model without
introducing much computational overhead because of its parallel operations. Therefore, our method
provides a simple and efficient way to enhance systematic generalization in any TPR-based models.

In experiments, we apply AID to several recent TPR-based or TPR equivalent approaches to show
its effectiveness and flexibility. We adopt three types of TPR-related models for our study: (a) TPR-
RNN (Schlag & Schmidhuber, 2018), (b) Fast Weight Memory (FWM) (Schlag et al., 2020), and
(c) Linear Transformer (Katharopoulos et al., 2020). For comparison, we evaluate the AID-assisted
version of all models with the baseline on the synthetic systematic generalization tasks, text/visual
question-answering tasks, and even large-scale language modeling tasks. In all experimental results,
AID shows effective generalization performance improvement for all TPR models.

Our main contributions are as follows: (i) we propose a novel AID module that can easily enhance
the systematic generalization performance of any TPR-based models. (ii) we show that an itera-
tive attention with routing mechanism effectively enhances structural representations of TPR (roles,
fillers, and unbinindg operators) for unseen compositions in a systematic way. (iii) by improving
the decomposition performance, we enable the application of TPR for large-scale real-world data.

2

Published as a conference paper at ICLR 2024

2 RELATED WORK

Binding problem The binding problem, discussed by Greff et al. (2020), represents one of the
neural network’s abilities to flexibly and dynamically bind information from data to compositional
structures. This problem comprises decomposing data into representations of meaningful entities
and preserving their separation at the representational level to facilitate compositional reasoning
(Bengio et al., 2013; Lake & Baroni, 2018; Goyal et al., 2019; Webb et al., 2020; Madan et al.,
2021; Goyal & Bengio, 2022). TPR is one of the approaches for representational separation by
explicitly binding roles and fillers representations using a tensor product. With TPR, this repre-
sentational separation enhances the ability of neural networks to process the symbolic structure of
data (Schlag & Schmidhuber, 2018; Schlag et al., 2019; 2020; Jiang et al., 2021; Shi et al., 2022).
However, despite the binding capability of TPR, such TPR-based neuro-symbolic models do not ex-
plicitly learn the decomposition operations of TPR. Therefore, if they fail to decompose appropriate
structural representations from unseen input data, it is likely to degrade all of the TPR functions
of the network. To the best of our knowledge, our work represents the first attempt to address the
decomposition problem in TPR-based neural networks.

Compositional Generalization The compositional generalization, also known as systematic gen-
eralization, has been explored in neural networks to enable them to generalize beyond what they
learned (Fodor & Pylyshyn, 1988; Lake et al., 2017; Lake & Baroni, 2018; Liška et al., 2018; Hupkes
et al., 2020; Webb et al., 2020). Recent research on compositional generalization has incorporated
inductive biases, including attention mechanisms, into neural networks to capture self-contained,
reusable, and disentangled representations (Goyal et al., 2019; Locatello et al., 2020; Mittal et al.,
2021; Csordás et al., 2021; Madan et al., 2021; Singh et al., 2022). Among these approaches, Lo-
catello et al. (2020) introduces an iterative attention-based mechanism called Slot Attention, de-
signed to discover object representations within visual scenes. In contrast to Slot Attention, which
assumes the permutation-invariant slots, our AID systematically routes each component to a specific
structural component of TPR, such as role and filler. This routing strategy enables the generated rep-
resentations to be utilized in TPR functions. In another line of research, Schlag et al. (2019); Jiang
et al. (2021) explore the integration between attention and TPR, akin to our approach. However,
they are designed for specific tasks such as math problems or abstractive summarization. In addi-
tion, Jiang et al. (2021) relies on a pre-defined role embedding dictionary. In contrast, the AID is a
task-independent drop-in module that can be adapted to any TPR-based model. Also, it is designed
to address a more fundamental problem, the decomposition of data into the appropriate role and
filler simultaneously.

Fast Weight Programmer Our work is closely related to the field of Fast Weight Programmers
(FWPs) (Schmidhuber, 1992; 1993). The concept of FWPs involves the construction of context-
independent slow weights, which control context-dependent fast weights (Von Der Malsburg, 1994).
During the training process, the slow weights are trained to program the context of input data ef-
fectively into the fast weights through back-propagation. This foundational concept has been exten-
sively researched in prior work (Ba et al., 2016a; Schlag & Schmidhuber, 2017; 2018; Munkhdalai
et al., 2019; Schlag et al., 2020; 2021; Irie et al., 2021). In FWPs, TPR is considered a high-order
form of fast weight. In this context, our work is an extension of FWPs. In contrast to prior work,
we focus on extracting fast weight representations from unseen data rather than designing updating
rules for fast weight.

3 METHOD

In this section, we illustrate how the AID module decomposes input data into TPR components with
iterative attention. Also, we detail the overall integration of the AID with pre-existing TPR-based
models and show how it assists them.

3.1 TENSOR PRODUCT REPRESENTATION

We first briefly review TPR (Smolensky, 1990), which is a baseline method for our approach. TPR
is a general method that explicitly encodes the symbolic structure of the objects in vector spaces.
It is formed by an outer product between role and filler representations derived from the object.

3

Published as a conference paper at ICLR 2024

Then, the connectionist representations for each object are combined via summation to represent
multiple objects. During the decoding process, the filler is unbound from TPR by matrix multipli-
cation with the unbinding operator. For the accurate encoding and decoding of symbolic structures
in data, TPR requires three key conditions: (1) roles must be linearly independent of each other
to prevent the overlap between fillers, (2) unbinding operators must exhibit a high correlation with
the corresponding roles to access associated fillers, and (3) fillers encompass object information
utilized for downstream tasks. These requirements inherently highlight the significance of decom-
posing role/filler representations from the input data to perform TPR functions (the conventional
TPR relies on prior knowledge for role/filler decomposition). The outer product form of roles and
fillers provides representational separation, which is necessary for addressing the binding problem
(Greff et al., 2020). Based on this property, recent TPR-based models can enhance the generaliza-
tion and interpretation of neural networks (Schlag & Schmidhuber, 2018; Schlag et al., 2019; 2020;
Jiang et al., 2021; Shi et al., 2022). However, even in the framework of TPR, the representational
separation is built upon the sufficiently learned role/filler decomposition in the neural network. Fur-
thermore, our study finds that most TPR-based network models have difficulty when decomposing
role/filler representations from unseen data. To address this problem, we introduce a slot attention-
based iterative process (Locatello et al., 2020) for decomposition, which allows better generalization
when dealing with unseen compositions of objects.

3.2 ATTENTION-BASED ITERATIVE DECOMPOSITION MODULE

AID is an iterative attention-based decomposition mechanism designed for TPR enhancement. At
every time step, it takes input features and generates structured representations for TPR with com-
petitive attention among intermediate TPR components, as illustrated in Algorithm 1. During the
decomposition process, the AID can refine the structured representations with attention as often as
Niter iterations. This attention-based competition mechanism enables AID to capture the composi-
tional structure inherent in the data (Goyal et al., 2019; Locatello et al., 2020) and provides better
generalization for unseen data.

For details, let us consider the AID module with a single iteration at time step t. At each time step, the
AID takes Ninputs input features and Ncom TPR components, denoted as inputs ∈ RNinputs×Dinputs

and initial components ∈ RNcom×Dcom , and maps them to a common dimension of Dcom
using learnable parameters k, q, and v for competitive attention. Subsequently, the AID computes
an attention score denoted as attn ∈ RNinputs×Ncom through dot-product attention (Luong et al.,
2015) between key and query. Based on attn, the AID applies a weighted mean to value to
aggregate input information into components selectively, as follows.

attni,j :=
eAi,j

ΣleAi,l
where A := key · query⊤ ∈ RNinputs×Ncom (1)

updates := W⊤ · value ∈ RNcom×Dcom where Wi,j :=
attni,j

Σlattnl,j
(2)

During the attention process, each component competes with others to discover input features
that better explain the symbolic structure for TPR. The AID adds the aggregated features to
components for the update. According to Locatello et al. (2020), we apply layer normalization
(LayerNorm) (Ba et al., 2016b) and multi-layer perception (MLPupdate) of two layers with ReLU
activation for the aggregated features. In the iterative process, the AID repeatedly refines those up-
dated components using one layer MLPfinal and the final components are used to perform TPR
functions for downstream tasks.

Notably, in its pure form, the iterative attention mechanism produces permutation-invariant
components, posing a challenge in directly linking components to elements in TPR func-
tions (e.g., identifying the appropriate component for filler). We introduce a trainable routing
mechanism to our iterative attention method to integrate slot-based attention correctly with the TPR
framework. In this method, each initial component is systematically linked to specific sym-
bols. As illustrated in Fig. 1, for instance, the first component is mapped to role1 and the third
to filler. Specifically, these initial components are obtained by applying a feed-forward net-
work to the concatenated input features and are optimized to facilitate a systematic decomposition
during training. Also, these context-dependent initial components significantly enhance the

4

Published as a conference paper at ICLR 2024

training stability of the AID module. Furthermore, we apply additional training techniques to im-
prove performance, including incorporating a residual connection (He et al., 2016), concatenation
with DropOut (Srivastava et al., 2014), and non-linear activations for dot-product attention. The
details of ablation studies for these techniques and a comprehensive evaluation of their impact on
the overall model’s performance are illustrated in Appendix D.

3.3 TPR NETWORKS WITH AID

In this section, we describe how the AID module is adapted to other TPR-based network models: (a)
TPR-RNN (Schlag & Schmidhuber, 2018), (b) Fast Weight Memory (FWM) (Schlag et al., 2020),
and (c) Linear Transformer (Katharopoulos et al., 2020). In the integration process, we apply the
AID for both the encoding and decoding component generations with parameter sharing. Further-
more, we maintain the original TPR functions of the baseline models; instead, we replace their
decomposition mechanisms with our AID module to improve the effectiveness of the decomposi-
tion.

3.3.1 TPR-RNN

TPR-RNN is a TPR-based memory network designed for sentence-level processing. This model
aims to solve basic question-answering tasks (Weston et al., 2015). TPR-RNN takes a set of word
vectors xt = {x1

t , ..., x
Ninputs
t } at each time step and generates a sentence vector st = Σ

Ninputs
i=1 xi

t ⊙
pi, where p = {p1, ..., pNinputs} denotes learnable position vectors and ⊙ denotes an element-wise
product. Subsequently, TPR-RNN generates components based on the sentence vector st. In
alignment with prior work, we derive the initial components based on the sentence vector st.
The AID performs decomposition for xt and initial components to generate components.

3.3.2 FWM

Fast Weight Memory (FWM) is a TPR-based memory network for word-level processing. This
algorithm is specifically designed to enhance the capacity for long sequential data. FWM takes an
input vector xt and generates a hidden state ht using internal LSTM (Hochreiter & Schmidhuber,
1997) at each time step. Subsequently, FWM generates components based on the hidden state ht.
To incorporate the AID, we form multiple input features using modular approaches akin to Henaff
et al. (2016); Li et al. (2018). We transform xt into x̂t using a feed-forward network and partition it
into Ninputs sub-vectors, {x̂1

t , ..., x̂
Ninputs
t }. Follwing this transformation, the LSTM processes each x̂i

t

independently with shared parameters and generates multiple hidden states ĥt = {ĥ1
t , ..., ĥ

Ninputs
t }.

In alignment with prior work, we derive the initial components based on the concatenated
hidden state. The AID performs decomposition for ĥt and initial components to generate
components.

3.3.3 LINEAR TRANSFORMER

Recent research by Schlag et al. (2021) has demonstrated the equivalence between TPR and linear
attention mechanisms. Building upon this crucial insight, we integrate the AID into the Linear
Transformer architecture to enhance the linear attention mechanism from a TPR perspective. Our
work uses the AID to extract key and value vectors for multi-head attention, which can be considered
TPR encoding components. The Linear Transformer takes an input vector xt at each position and
subsequently generates components based on xt. In alignment with prior work, we also derive the
initial components based on the xt while simultaneously constructing multiple input features
for competitive attention. To elaborate further, We transform xt into x̂t using a feed-forward network
and partition it into Ninputs sub-vectors, {x̂1

t , ..., x̂
Ninputs
t }. The AID performs decomposition for ĥt

and initial components to generate components.

4 EXPERIMENT

In this section, we evaluate the effectiveness and flexibility of our proposed AID module for both
systematic generalization tasks and a large-vocabulary language modeling task. These experiments

5

Published as a conference paper at ICLR 2024

Figure 2: Test accuracy curve [%] on the SAR task for 10 seeds with varying values of p. As p
increases, the models can learn more combinatorial information of data during training.

show that the AID enhances the decomposition performance of TPR-based models and consequently
provides overall systematic generalization performance improvement. For evaluation, we integrated
the AID into established TPR-based approaches, as stated in Section 3.3. Also, we adopt the ex-
perimental configurations used in prior works for fair comparison. All experimental details and
parameter settings are illustrated in Appendix B. We first perform a synthetically designed system-
atic generalization task (systematic associative recall) to show and verify the effectiveness of AID
operations. Then, we perform the experiments on more real-world tasks such as systematic bAbI
task, Sort-of-CLEVR task, and WikiText-103 task.

4.1 SYSTEMATIC ASSOCIATIVE RECALL TASK

To show the effectiveness of the AID module, we designed a new simplified Systematic Associative
Recall (SAR) task that can measure the systematic generalization performance for unseen combi-
natorial sequence data. Because the conventional associative recall tasks do not adequately capture
the systematic generalization of memory networks (Graves et al., 2014; Le et al., 2020; Park et al.,
2021) or are complex to analyze (Bae et al., 2022), our SAR task mainly focused on assessing the
model performance change according to varying compositional complexity of combinatorial input
data during training. In this experiment, we adopted the FWM, a word-level TPR-based memory
network, as our baseline model and compared it to other representative memory networks, including
Differentiable Neural Computer (DNC) (Graves et al., 2016) and FWM.

Task Description The SAR task consists of two phases: a discovery phase involving memorizing
input items and an inference phase recalling the memorized items. To introduce systematicity to the
items, we design each item as a combination of x ∈ X and y ∈ Y , where X = X1 ∪X2 ∪X3 and
Y = Y1 ∪ Y2 represent independent word sets. The task provides combinatorial sequence data to
a model during the discovery phase, and when the model is presented with an x, which is sampled
from the sequence, it is required to recall the associated y during the inference phase (we illustrate an
example of the SAR task in Appendix B.1). We set different combination settings for each subset Xi

to evaluate the systematic generalization. During training, three types of combinations are provided
to the models: (1) X1 and Y 1, (2) X2 and Y 2, and (3) X3 and Y . In contrast, during evaluation,
the models are supposed to memorize and recall unseen combinatorial data, specifically X1 and Y2.
We also introduce a hyper-parameter p, which adjusts the proportion of types (2) and (3). Here, p is
defined as |X3|

|X2|+|X3| , where |Xi| denotes the cardinality of set Xi. A larger value of p indicates that
the models can learn more combinatorial information during training. By varying p, we can evaluate
how the models’ performance changes according to the diversity of the combinatorial items given
during training time.

Results AID shows better generalization performance for all values of p, as shown in Fig. 2. As
expected, the performance of the baseline models is degraded as the value of p decreases, whereas
the AID consistently shows high accuracy by successfully improving the baseline FWM.

4.1.1 ANALYSIS

We performed compositional analysis over the generated TPR component representations. For the
quantitative aspect, disentanglement analysis is performed, and for the qualitative aspect, the orthog-
onality of representation is analyzed.

6

Published as a conference paper at ICLR 2024

Figure 3: The heatmap for the cosine similarity
between roles on the SAR task.

Figure 4: The heatmap for the cosine similarity
between roles (x-axis) and unbinding operators
(y-axis) on the SAR task.

Figure 5: Test accuracy over different settings on the SAR task for 10 seeds. (a) Varying Ninputs with
Niters = 2. (b) Varying training iterations with Ninputs = 3. (c) Varying test iterations for the models
trained with Ninputs = 3 and Niters = 5.

Disentanglement Analysis We quantitatively evaluate the quality of disentanglement in the gen-
erated representations using the DCI framework (Eastwood & Williams, 2018). The DCI assesses
the disentanglement (D), completeness (C), and informativeness (I) of the generated representations
through the mapping from representations to generative factors (e.g., x and y). Specifically, to evalu-
ate multiple role and filler representations for each item, we employ a block-level DCI metric (Singh
et al., 2022) by concatenating the TPR encoding components. Each metric indicates the degree to
which the block representation disentangles the factors (D), how specialized each factor is to a spe-
cific block representation (C), and the accuracy of predicting ground-truth factor values based on
the representations (I).

Table 1: DCI results on the SAR task.

Model p = 0.0 p = 0.5 p = 1.0

D C I D C I D C I
FWM 0.91 0.63 0.99 0.92 0.64 0.99 0.92 0.63 0.99

+ AID 0.96 0.66 0.99 0.97 0.67 0.99 0.97 0.67 0.99

Table 1 shows the block-level DCI results
for the baseline model and the AID across
different p values. Notably, the AID module
enhances the quality of representational dis-
entanglement and completeness compared
to the baseline model across all p values.
These results demonstrate the AID mod-
ule’s efficacy in capturing underlying factors during TPR component generation, which may explain
why the AID improves task performance.

Orthogonality Analysis Our qualitative analysis focuses on the generated representations in terms
of orthogonality. As posited by Smolensky (1990), to ensure undistorted encoding and decoding pro-
cesses, the roles should exhibit lower correlations among themselves, and the unbinding operators
should exhibit high correlations with roles for the same x. To ascertain this, we evaluate the cosine
similarity between TPR components for combinatorial data, with varying x and fixed y, in the case
of p = 0.5.

Fig. 3 shows the similarity between roles from the discovery phase, reflecting the quality of the en-
coding process. While the FWM yields disentangled representations, as indicated in Table 1, its role
representations lack orthogonality for distinct x. In contrast, the AID generates highly orthogonal
role representations. Fig. 4 shows the similarity between roles from the discovery phase and unbind-
ing operators from the inference phase, reflecting the decoding process’s quality. While the FWM
generates less correlated roles and unbinding operators, even for the same x, and fails to solve the
SAR problem, the AID generates highly correlated representations for the same x and less correlated
ones for distinct x. Furthermore, Figs. 3(b) and 4(b) show consistent patterns for roles and unbind-

7

Published as a conference paper at ICLR 2024

Table 2: The mean word error rate [%] on the sys-bAbI task for 10 seeds.

Model w/o sys diff w/ sys diff Gap
TXL 3.71 ± 0.47 8.72 ± 3.27 5.01
DAM 0.48 ± 0.20 5.25 ± 1.64 4.77
STM 0.49 ± 0.16 4.19 ± 1.53 3.7
TPR-RNN 0.79 ± 0.16 8.74 ± 3.74 7.95

+ AID 0.69 ± 0.08 (0.10 ↓) 5.61 ± 1.78 (3.13 ↓) 4.92 (3.03 ↓)
FWM 0.79 ± 0.14 2.85 ± 1.61 2.06

+ AID 0.45 ± 0.16 (0.34 ↓) 1.21 ± 0.66 (1.64 ↓) 0.76 (1.3 ↓)

ing operators, indicating that the AID module correctly decodes the filler information from the
TPR-based memory. From all these results, it is clear that the AID module learns to decompose data
into meaningful component representations that better conform to TPR conditions than the baseline
model.

The effect of Ninputs and Niter We analyze the effect of hyper-parameters, Ninputs and Niters, in the
case of p = 0.0. In Fig. 5(a), we observe that the AID achieves its best performance when Ninputs is
set to 3. However, it shows slightly decreased performance at the other values of Ninputs. These re-
sults show an optimal number of input features for adequate competitive attention to decomposition.
Fig. 5(b) shows that more iterations of decomposition enhance accuracy until a certain threshold,
which aligns with the result from slot-attention(Locatello et al., 2020). When we increase Niters at
test time, accuracy is increased until it reaches the training time iteration, as shown in Fig. 5(c).

4.2 SYSTEMATIC BABI TASK

Next, we evaluate the effect of the AID module on basic question-answering task, the bAbI task
(Weston et al., 2015), which tests text understanding and reasoning abilities. To evaluate systematic
generalization, we slightly modify the contents of the test data. This modified task, named sys-bAbI,
evaluates the model’s performance under two aspects: (i) in-distribution (w/o sys diff) and (ii) with
the systematic difference (w/ sys diff). In this experiment, we use TPR-RNN and FWM as baseline
models and compare our method to state-of-the-art memory networks, including Transformer-XL
(TXL) (Dai et al., 2019), Distributed Associative Memory (DAM) (Park et al., 2021), Self-Attentive
Associative Memory (STM) (Le et al., 2020), TPR-RNN, and FWM.

Task Description The bAbI task consists of 20 distinct question-answering tasks, such as time
reasoning and yes/no questions. Each task comprises stories, relevant questions, and corresponding
answers. The bAbI task requires the models to remember the stories and recall information related
to the questions to predict the correct answers. To evaluate systematic generalization, we modify
the test data of the bAbI task by replacing words across sub-tasks. Specifically, we replace human
names, such as Mary, John, and Fred, which appear in various tasks (alternative word types, such
as location names, can also be replaced). Through this replacement, the test data of each task will
contain words that are not visible during training. The models are expected to learn task-independent
text understanding to solve the sys-bAbI task. We train the models on all tasks and evaluate them on
subsets of the bAbI tasks that are reasonable for implementing the replacement.

Results Table 2 shows the text understanding performance in w/o sys diff and w/ sys diff settings
on the sys-bAbI task. Existing memory networks record a high-performance gap between both
settings despite their solid achievement on the original test data, w/o sys diff. The AID improves
the baseline models’ systematic generalization and performs better than other memory networks in
both settings. This result indicates that TPR-based approaches benefit systematic generalization but
require a more elaborate design for decomposing structured representations.

4.3 SORT-OF-CLEVR TASK

We evaluate the competence of the AID module in visual relational reasoning tasks. We use the
Sort-of-CLEVR task (Santoro et al., 2017), which evaluates compositional generalization for visual
scenes. For our experiments, we use Linear Transformer as the baseline model for comparison.

8

Published as a conference paper at ICLR 2024

Table 3: Test accuracy [%] on the Sort-of-CLEVR task for 10 seeds.

Model Unary Accuracy Binary Accuracy Ternary Accuracy
Linear Transformer 69.3 ± 14.8 75.5 ± 1.3 56.4 ± 4.3

+ AID 98.9 ± 0.2 (29.6 ↑) 78.6 ± 0.3 (3.1 ↑) 63.7 ± 1.2 (7.3 ↑)

Table 4: Perplexity on the WikiText-103 task. †The experimental results are obtained through open
sources provided by (Schlag et al., 2021).

Model Valid Test
Linear Transformer† 36.473 37.533

+ AID 36.159 (0.314 ↓) 37.151 (0.382 ↓)
Delta Network† 35.640 36.659

+ AID 35.361 (0.279 ↓) 36.253 (0.406 ↓)

Task Description The sort-of-CLEVR task is a visual question-answering task that evaluates the
visual understanding of objects. It includes scene images, relevant questions, and corresponding an-
swers. Introduced by Mittal et al. (2021), this task consists of three question types: (i) the properties
of single objects (Unary), such as color and shape, (ii) the relationship between two objects (Binary),
and (iii) the relationship among three objects (Ternary). To successfully solve this problem, models
must capture the properties of the objects or their relationships to predict the correct answers.

Results Table 3 shows the generalization performance on the sort-of-CLEVR task for different
question types. Remarkably, the Linear Transformer struggles to solve these fundamental visual
question-answering tasks. However, with the integration of the AID module, the baseline model’s
generalization performance improves significantly, demonstrating the effectiveness of the AID in
enhancing the generation of the Linear Transformer’s key and value vectors.

4.4 WIKITEXT-103 TASK

In addition to systematic generalization tasks, we extend our evaluation to assess the effectiveness
of the AID on a more practical large-scale task that may not explicitly demand systematic general-
ization capability but is an important problem. WikiText-103 task (Merity et al., 2016) comprises
lengthy corpora from Wikipedia articles and evaluates the model’s understanding of the probability
distribution over a sequence of words through perplexity. We use Linear Transformer and Delta
Network (Schlag et al., 2021) as our baseline models for this experiment and compare our method
against them.

Results In the experiment, we use a 16-layered Linear Transformer and a 16-layered Delta Net-
work as our baseline models, in accordance with Schlag et al. (2021). To mitigate the additional
computational overhead by the AID, we strategically integrate our AID module into the baseline
models at intervals of 4 out of the 16 layers. Table 4 shows the perplexity results of the WikiText-
103 task. Notably, our AID improves the perplexity of baseline models in both baseline models,
demonstrating its potential for enhancing performance even on large-scale tasks.

5 CONCLUSION

In this work, we propose a novel AID module that effectively decomposes sequential data into
structured representations of TPR. AID iteratively applies slot-based competitive attention to bind
sequential features to abstract structured representations of TPR and also learns to route specific
symbolic meanings to each slot for the context-dependent initialization of roles and fillers. In ex-
periments, we demonstrate the effectiveness of the AID module on synthetic systematic general-
ization tasks, text/visual question-answering tasks, and even large-scale language modeling tasks.
Our analysis shows that the AID provides well-bound representations for TPR-based networks and
successfully enhances overall systematic generalization performance.

9

Published as a conference paper at ICLR 2024

ACKNOWLEDGEMENTS

This work was supported by the National Research Foundation of Korea(NRF) grant funded by the
Korea government(MSIT)(No. 2022R1A5A7026673).

REFERENCES

Jimmy Ba, Geoffrey E Hinton, Volodymyr Mnih, Joel Z Leibo, and Catalin Ionescu. Using fast
weights to attend to the recent past. Advances in neural information processing systems, 29,
2016a.

Jimmy Lei Ba, Jamie Ryan Kiros, and Geoffrey E Hinton. Layer normalization. arXiv preprint
arXiv:1607.06450, 2016b.

Jun-Hyun Bae, Taewon Park, and Minho Lee. Learning associative reasoning towards systematicity
using modular networks. In International Conference on Neural Information Processing, pp.
113–122. Springer, 2022.

Yoshua Bengio, Aaron Courville, and Pascal Vincent. Representation learning: A review and new
perspectives. IEEE transactions on pattern analysis and machine intelligence, 35(8):1798–1828,
2013.

Djork-Arné Clevert, Thomas Unterthiner, and Sepp Hochreiter. Fast and accurate deep network
learning by exponential linear units (elus). arXiv preprint arXiv:1511.07289, 2015.

Róbert Csordás, Kazuki Irie, and Jürgen Schmidhuber. The neural data router: Adaptive control
flow in transformers improves systematic generalization. arXiv preprint arXiv:2110.07732, 2021.

Zihang Dai, Zhilin Yang, Yiming Yang, Jaime Carbonell, Quoc V Le, and Ruslan Salakhutdi-
nov. Transformer-xl: Attentive language models beyond a fixed-length context. arXiv preprint
arXiv:1901.02860, 2019.

Cian Eastwood and Christopher KI Williams. A framework for the quantitative evaluation of disen-
tangled representations. In International conference on learning representations, 2018.

Jerry A Fodor and Zenon W Pylyshyn. Connectionism and cognitive architecture: A critical analy-
sis. Cognition, 28(1-2):3–71, 1988.

Anirudh Goyal and Yoshua Bengio. Inductive biases for deep learning of higher-level cognition.
Proceedings of the Royal Society A, 478(2266):20210068, 2022.

Anirudh Goyal, Alex Lamb, Jordan Hoffmann, Shagun Sodhani, Sergey Levine, Yoshua Bengio,
and Bernhard Schölkopf. Recurrent independent mechanisms. arXiv preprint arXiv:1909.10893,
2019.

Alex Graves, Greg Wayne, and Ivo Danihelka. Neural turing machines. arXiv preprint
arXiv:1410.5401, 2014.

Alex Graves, Greg Wayne, Malcolm Reynolds, Tim Harley, Ivo Danihelka, Agnieszka Grabska-
Barwińska, Sergio Gómez Colmenarejo, Edward Grefenstette, Tiago Ramalho, John Agapiou,
et al. Hybrid computing using a neural network with dynamic external memory. Nature, 538
(7626):471–476, 2016.

Klaus Greff, Sjoerd Van Steenkiste, and Jürgen Schmidhuber. On the binding problem in artificial
neural networks. arXiv preprint arXiv:2012.05208, 2020.

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image recog-
nition. In Proceedings of the IEEE conference on computer vision and pattern recognition, pp.
770–778, 2016.

Mikael Henaff, Jason Weston, Arthur Szlam, Antoine Bordes, and Yann LeCun. Tracking the world
state with recurrent entity networks. arXiv preprint arXiv:1612.03969, 2016.

10

Published as a conference paper at ICLR 2024

Sepp Hochreiter and Jürgen Schmidhuber. Long short-term memory. Neural computation, 9(8):
1735–1780, 1997.

Dieuwke Hupkes, Verna Dankers, Mathijs Mul, and Elia Bruni. Compositionality decomposed:
How do neural networks generalise? Journal of Artificial Intelligence Research, 67:757–795,
2020.

Kazuki Irie, Imanol Schlag, Róbert Csordás, and Jürgen Schmidhuber. Going beyond linear trans-
formers with recurrent fast weight programmers. Advances in Neural Information Processing
Systems, 34:7703–7717, 2021.

Yichen Jiang, Asli Celikyilmaz, Paul Smolensky, Paul Soulos, Sudha Rao, Hamid Palangi,
Roland Fernandez, Caitlin Smith, Mohit Bansal, and Jianfeng Gao. Enriching transformers
with structured tensor-product representations for abstractive summarization. arXiv preprint
arXiv:2106.01317, 2021.

Angelos Katharopoulos, Apoorv Vyas, Nikolaos Pappas, and François Fleuret. Transformers are
rnns: Fast autoregressive transformers with linear attention. In International conference on ma-
chine learning, pp. 5156–5165. PMLR, 2020.

Brenden Lake and Marco Baroni. Generalization without systematicity: On the compositional skills
of sequence-to-sequence recurrent networks. In International conference on machine learning,
pp. 2873–2882. PMLR, 2018.

Brenden M Lake, Tomer D Ullman, Joshua B Tenenbaum, and Samuel J Gershman. Building
machines that learn and think like people. Behavioral and brain sciences, 40:e253, 2017.

Hung Le, Truyen Tran, and Svetha Venkatesh. Self-attentive associative memory. In International
Conference on Machine Learning, pp. 5682–5691. PMLR, 2020.

Shuai Li, Wanqing Li, Chris Cook, Ce Zhu, and Yanbo Gao. Independently recurrent neural network
(indrnn): Building a longer and deeper rnn. In Proceedings of the IEEE conference on computer
vision and pattern recognition, pp. 5457–5466, 2018.

Adam Liška, Germán Kruszewski, and Marco Baroni. Memorize or generalize? searching for a
compositional rnn in a haystack. arXiv preprint arXiv:1802.06467, 2018.

Francesco Locatello, Dirk Weissenborn, Thomas Unterthiner, Aravindh Mahendran, Georg Heigold,
Jakob Uszkoreit, Alexey Dosovitskiy, and Thomas Kipf. Object-centric learning with slot atten-
tion. Advances in Neural Information Processing Systems, 33:11525–11538, 2020.

Minh-Thang Luong, Hieu Pham, and Christopher D Manning. Effective approaches to attention-
based neural machine translation. arXiv preprint arXiv:1508.04025, 2015.

Kanika Madan, Nan Rosemary Ke, Anirudh Goyal, Bernhard Schölkopf, and Yoshua Bengio. Fast
and slow learning of recurrent independent mechanisms. arXiv preprint arXiv:2105.08710, 2021.

Stephen Merity, Caiming Xiong, James Bradbury, and Richard Socher. Pointer sentinel mixture
models. arXiv preprint arXiv:1609.07843, 2016.

Sarthak Mittal, Sharath Chandra Raparthy, Irina Rish, Yoshua Bengio, and Guillaume Lajoie. Com-
positional attention: Disentangling search and retrieval. arXiv preprint arXiv:2110.09419, 2021.

Tsendsuren Munkhdalai, Alessandro Sordoni, Tong Wang, and Adam Trischler. Metalearned neural
memory. Advances in Neural Information Processing Systems, 32, 2019.

Randall C O’Reilly, Charan Ranganath, and Jacob L Russin. The structure of systematicity in the
brain. Current directions in psychological science, 31(2):124–130, 2022.

Taewon Park, Inchul Choi, and Minho Lee. Distributed associative memory network with memory
refreshing loss. Neural Networks, 144:33–48, 2021.

Adam Santoro, David Raposo, David G Barrett, Mateusz Malinowski, Razvan Pascanu, Peter
Battaglia, and Timothy Lillicrap. A simple neural network module for relational reasoning. Ad-
vances in neural information processing systems, 30, 2017.

11

Published as a conference paper at ICLR 2024

Imanol Schlag and Jürgen Schmidhuber. Gated fast weights for on-the-fly neural program genera-
tion. In NIPS Metalearning Workshop, 2017.

Imanol Schlag and Jürgen Schmidhuber. Learning to reason with third order tensor products. Ad-
vances in neural information processing systems, 31, 2018.

Imanol Schlag, Paul Smolensky, Roland Fernandez, Nebojsa Jojic, Jürgen Schmidhuber, and Jian-
feng Gao. Enhancing the transformer with explicit relational encoding for math problem solving.
arXiv preprint arXiv:1910.06611, 2019.

Imanol Schlag, Tsendsuren Munkhdalai, and Jürgen Schmidhuber. Learning associative inference
using fast weight memory. arXiv preprint arXiv:2011.07831, 2020.

Imanol Schlag, Kazuki Irie, and Jürgen Schmidhuber. Linear transformers are secretly fast weight
programmers. In International Conference on Machine Learning, pp. 9355–9366. PMLR, 2021.

Jürgen Schmidhuber. Learning to control fast-weight memories: An alternative to dynamic recurrent
networks. Neural Computation, 4(1):131–139, 1992.

Jürgen Schmidhuber. Reducing the ratio between learning complexity and number of time varying
variables in fully recurrent nets. In ICANN’93: Proceedings of the International Conference on
Artificial Neural Networks Amsterdam, The Netherlands 13–16 September 1993 3, pp. 460–463.
Springer, 1993.

Zhengxiang Shi, Qiang Zhang, and Aldo Lipani. Stepgame: A new benchmark for robust multi-
hop spatial reasoning in texts. In Proceedings of the AAAI conference on artificial intelligence,
volume 36, pp. 11321–11329, 2022.

Gautam Singh, Yeongbin Kim, and Sungjin Ahn. Neural systematic binder. In The Eleventh Inter-
national Conference on Learning Representations, 2022.

Paul Smolensky. Tensor product variable binding and the representation of symbolic structures in
connectionist systems. Artificial intelligence, 46(1-2):159–216, 1990.

Paul Smolensky, R Thomas McCoy, Roland Fernandez, Matthew Goldrick, and Jianfeng Gao. Neu-
rocompositional computing in human and machine intelligence: A tutorial. 2022.

Nitish Srivastava, Geoffrey Hinton, Alex Krizhevsky, Ilya Sutskever, and Ruslan Salakhutdinov.
Dropout: a simple way to prevent neural networks from overfitting. The journal of machine
learning research, 15(1):1929–1958, 2014.

Christoph Von Der Malsburg. The correlation theory of brain function. In Models of neural net-
works: Temporal aspects of coding and information processing in biological systems, pp. 95–119.
Springer, 1994.

Taylor W Webb, Ishan Sinha, and Jonathan D Cohen. Emergent symbols through binding in external
memory. arXiv preprint arXiv:2012.14601, 2020.

Jason Weston, Antoine Bordes, Sumit Chopra, Alexander M Rush, Bart Van Merriënboer, Armand
Joulin, and Tomas Mikolov. Towards ai-complete question answering: A set of prerequisite toy
tasks. arXiv preprint arXiv:1502.05698, 2015.

Jaesik Yoon, Yi-Fu Wu, Heechul Bae, and Sungjin Ahn. An investigation into pre-training object-
centric representations for reinforcement learning. arXiv preprint arXiv:2302.04419, 2023.

12

Published as a conference paper at ICLR 2024

A PSEUDO-CODE

Algorithm 1 Attention-based Iterative Decomposition module.

1: Input: inputs ∈ RNinputs×Dinputs , initial components ∈ RNcom×Dcom

2: Layer params: k, q, v: linear projections for attention; MLPupdate; LayerNorm ; MLPfinal

3: components = initial components
4: key, value = k(inputs), v(inputs)
5: key = ELU(key) + 1
6: for n = 0...Niter do
7: query = q(components) + initial components
8: query = 1√

Dcom
query

9: query = ELU(query) + 1
10: attn = Softmax(key · query⊤, axis=‘components’)
11: updates = WeightedMean(weight=attn+ϵ, values=value)
12: components += 1

Dcom
MLPupdate(LayerNorm(updates))

13: end for
components = MLPfinal(components, DropOut(initial components))

14: return components

B EXPERIMENTAL SETTINGS

B.1 SYSTEMATIC ASSOCIATIVE RECALL TASK

Task Description The SAR task consists of two phases: a discovery phase involving memorizing
input items and an inference phase recalling the memorized items. To introduce systematicity to the
items, we design each item as a combination of x ∈ X and y ∈ Y , where X = X1 ∪ X2 ∪ X3

and Y = Y1 ∪ Y2 represent independent word sets. The task provides combinatorial sequence
data to a model during the discovery phase, and when the model is presented with an x, which
is sampled from the sequence, it is required to recall the associated y during the inference phase.
We set different combination settings for each subset Xi to evaluate the systematic generalization.
During training, three types of combinations are provided to the models: (1) X1 and Y 1, (2) X2 and
Y 2, and (3) X3 and Y . In contrast, during evaluation, the models are supposed to memorize and
recall unseen combinatorial data, specifically X1 and Y2.

Figure 6: Example of the SAR task
for sampled pairs {{x1, y1}, {x2, y4},
{x3, y2}, {x4, y3}} from word sets X
and Y .

Fig. 6 illustrates an example of the SAR task. At each
training iteration, generative factors (x and y) are sam-
pled from word sets X and Y to construct the input se-
quence. The sampled x and y values are randomly paired,
creating combinations of one x and one y each. These
pairs are then embedded into a vector space and concate-
nated with flags, which are scalar values signaling the
start of the discovery and inference phases. In the discov-
ery phase, models sequentially receive these concatenated
representations. During the inference phase, the model is
presented only with x values (considered as role) and is
tasked with predicting the corresponding y values (con-
sidered as fillers).

Experiment Details We use a set of arbitrary 1,000
words to construct each word set, as outlined in Table 15.
We map each word in a 50-dimensional space using the word embedding method. Therefore, each
item is formed by concatenating the embedding vectors for x and y. The experiments on the SAR
task are repeated 10 times with distinct seeds. During training, we utilize the Adam optimizer with a
batch size of 64 and a learning rate of 1e−3, β1 of 0.9, and β2 of 0.98 for training iterations of 30K
(for training DNC, we use the RMSprop optimizer with a learning rate of 1e−4 and α of 0.99).

13

Published as a conference paper at ICLR 2024

B.2 SYSTEMATIC BABI TASK

Task Description The bAbI task (Weston et al., 2015) consists of 20 distinct question-answering
tasks, such as time reasoning and yes/no questions. Each task comprises stories, relevant questions,
and corresponding answers. The bAbI task requires the models to remember the stories and recall
information related to the questions to predict the correct answers. To evaluate systematic general-
ization, we modify the test data of the bAbI task by replacing words across sub-tasks. As shown
in Table 5, we replace {Daniel, John, Sandra} to {Bill, Fred, Julie}, and vice versa, during the
replacement process. Since this modification is applied to the subset of the bAbI tasks, we evaluate
the models on the modified tasks while training them on all tasks.

Experiment Details We use the experiment settings used in TPR-RNN (Schlag & Schmidhuber,
2018) and FWM (Schlag et al., 2020). The experiments on the sys-bAbI task are repeated 10 times
with distinct seeds. We also use the word embedding method to embed words in vector spaces.

For TPR-RNN, we set the embedding size to 179. For training, we utilize the Adam optimizer with
a batch size of 64 and a learning rate of 1e−3, β1 of 0.9, and β2 of 0.99 for 100 training epochs.

For FWM, we set the embedding size to 256. For training, we utilize the Adam optimizer with a
batch size of 64 and a learning rate of 1e−3, β1 of 0.9, and β2 of 0.98 for training iterations of 60K.

Additionally, we incorporate a reconstruction loss, following the approach employed in Park et al.
(2021), to enhance representation learning on the sys-bAbI task. In our reconstruction loss, the
models are required to predict words based on their word embedding vectors. This loss is scaled to
1/100th and added to the main task loss.

Table 5: Word replacement across sub-tasks on sys-bAbI task.

Sub-task number 1, 2, 3, 6, 7, 8, 9, 11, 12, 13 10, 14

Word {Daniel, John, Sandra, Mary} ↔ {Bill, Fred, Julie, Mary}

B.3 SORT-OF-CLEVR TASK

Task Description The sort-of-CLEVR task is a visual question-answering task that evaluates the
visual understanding of objects. It includes scene images, relevant questions, and corresponding
answers. Each scene image contains 6 objects, each characterized by a distinct shape and color
selected from 2 possible shapes (square or circular) and 6 possible colors (red, blue, green, orange,
yellow, or gray). Introduced by Mittal et al. (2021), this task consists of three question types: (i)
the properties of single objects (Unary), such as color and shape, (ii) the relationship between two
objects (Binary), and (iii) the relationship among three objects (Ternary). An example of question
type (i) is: “What is the shape of the red object?”. An example of question type (ii) or (iii) is: “What
is the shape of the object that is farthest from the blue object?”.

We follow the experiment settings used in Mittal et al. (2021). To extract image features, we use a
single CNN layer with a kernel size of 15 and a stride size of 15. As our baseline model, we use a
4-layered Linear Transformer with shared parameters. The experiments on the sort-of-CLEVR task
are repeated 10 times with distinct seeds. For training, we utilize the Adam optimizer with a batch
size of 64 and a learning rate of 1e−4 for 100 training epochs.

B.4 WIKITEXT-103 TASK

WikiText-103 task (Merity et al., 2016) comprises lengthy corpora from Wikipedia articles and
evaluates the model’s understanding of the probability distribution over a sequence of words through
perplexity. The training set consists of 28,475 articles, while the validation and test sets contain 60
articles each.

We follow the experimental settings described in Schlag et al. (2021) for the WikiText-103 task.
The training data are partitioned into segments of L words (back-propagation span). During the

14

Published as a conference paper at ICLR 2024

evaluation, with a batch size of one, we compute perplexity using a sliding window with a length
of L. The perplexity computation considers only the last position of segments, except for the first
segment, where all positions are evaluated. For training, we use Adam optimizer with a batch size
of 96, an initial learning rate of 2.5e−4, and a learning rate warmup step of 2,000 for 120 epochs.

In the experiment, we use a 16-layered Linear Transformer and a 16-layered Delta Network as our
baseline models, following Schlag et al. (2021). To mitigate the additional computational overhead
by the AID, we strategically integrate our AID module into the baseline models at intervals of 4 out
of the 16 layers. Fig. 10 shows the experimental results for two cases: (1) where AID is applied to
the first layer and (2) where AID is applied to the fourth layer.

C HYPER-PARAMETER SETTINGS OF AID MODULE

Tables 6, 7, and 8 show our module’s hyper-parameter settings for each task. Each parameter is
denoted as follows: Ncom as the number of components, Niters as the number of iterations, Ninputs
as the number of input features, Dinputs as the dimension of input features, Dcom as the dimension
of components, DMLPupdate as the dimension of MLPupdate’s two layers, DMLPfinal as the dimension of
MLPfinal, pdropout as the probability of Dropout. In particular, we set different values as Ncom in en-
coding and decoding, in line with the TPR functions of the baseline model (Schlag & Schmidhuber,
2018; Schlag et al., 2020).

Also, the gray background represents the baseline models’ hyper-parameters. Each parameter is
denoted as follows: Dentity as the dimension of the entity vector, Drelation as the dimension of the
relation vector, Nread as the number of read heads, DLSTM as the dimension of LSTM’s hidden state,
Dmemory as the dimension of FWM’s memory, Nheads as the number of attention heads, Dheads as the
dimension of attention heads.

Table 6: Hyper-parameter settings of the AID on TPR-RNN.

Systematic bAbI task

Dentity 90

Drelation 20

N enc
com 5

N dec
com 4

Niters 2

Dinputs 64

Dcom 64

DMLPupdate (128, 64)

DMLPfinal 64

pdropout 0.5

15

Published as a conference paper at ICLR 2024

Table 7: Hyper-parameter settings of the AID on FWM.

SAR task Systematic bAbI task

Nread 1 3

DLSTM 256 256

Dmemory 32 32

N enc
com 3 3

N dec
com 1 + Nread 1 + Nread

Niters 2 3

Ninputs 3 6

Dinputs 32 32

Dcom 32 32

DMLPupdate (64, 32) (64, 32)

DMLPfinal 32 32

pdropout 0.5 0.5

Table 8: Hyper-parameter settings of the AID on Linear Transformer.

Sort-of-CLEVR task WikiText-103 task
Nheads 4 8
Dheads 64 16
N enc

com 2 ∗Nheads 2 ∗Nheads

Niters 2 2
Ninputs 2 ∗Nheads 2 ∗Nheads

Dinputs Dheads Dheads

Dcom Dheads Dheads

DMLPupdate (2 ∗Dheads, Dheads) (2 ∗Dheads, Dheads)
DMLPfinal Dheads Dheads

pdropout 0.5 0.5

D ABLATION STUDY

Module In Fig. 7, we show the effect of incorporating a residual connection (He et al., 2016) to
query and a concatenation after the iterative process. Each of these techniques demonstrates the
enhancement in performance when applied to the sys-bAbI task. However, the concatenation tech-
nique exhibits unstable and lower performance on the SAR task. Remarkably, when these techniques
are jointly applied to the AID, a clear improvement is evident across both tasks.

Activation function In Fig. 8, we show the effect of activation functions at dot-product atten-
tion. ELU activation function (Clevert et al., 2015) contributes to improved stability and enhanced
performance across both tasks.

16

Published as a conference paper at ICLR 2024

(a) Systematic Associative Recall task (b) Systematic bAbI task

Figure 7: Ablation Study for module.

(a) Systematic Associative Recall task (b) Systematic bAbI task

Figure 8: Ablation Study for activation functions.

E ADDITIONAL EXPERIMENT RESULTS

E.1 SYSTEMATIC BABI TASK

Table 9: Additional experiment results on sys-bAbI task for 3 seeds.

Niters Ninputs w/o sys diff w/ sys diff Gap # params
2 5 0.69 ± 0.11 3.69 ± 3.21 3.00 1.13 M

6 0.69 ± 0.24 3.28 ± 2.27 2.59 1.26 M

3 3 0.67 ± 0.19 2.80 ± 0.88 2.13 0.87 M

4 0.67 ± 0.07 3.42 ± 0.57 2.75 1.00 M

5 0.39 ± 0.03 0.87 ± 0.34 0.48 1.13 M

6 0.43 ± 0.18 0.83 ± 0.23 0.40 1.26 M

4 5 0.55 ± 0.08 2.73 ± 1.30 2.18 1.13 M

6 0.54 ± 0.18 3.32 ± 0.80 2.78 1.26 M

17

Published as a conference paper at ICLR 2024

E.2 WIKITEXT-103 TASK

Table 10: Additional experiment results on WikiText-103 task.

Model Valid Test # params
Linear Transformer† 36.473 37.533 44.02 M

+ AID (1st layer) 36.159 (0.314 ↓) 37.151 (0.382 ↓) 44.16 M

+ AID (4th layer)) 36.301 (0.172 ↓) 37.425 (0.108 ↓) 44.16 M

Delta Network† 35.640 36.659 44.03 M

+ AID (1st layer)) 35.361 (0.279 ↓) 36.253 (0.406 ↓) 44.18 M

+ AID (4th layer)) 35.355 (0.285 ↓) 36.291 (0.368 ↓) 44.18 M

F COMPARISON TO BASELINE WITH MORE PARAMETERS

We conduct experiments with baseline models with more parameters. In the WikiText-103 task,
we increase the size of the feed-forward network in the attention part of the baseline model. The
size increase is applied to the exact same positions of the model where AID is adopted, for a fair
comparison with our AID-assisted network architecture. In other tasks, we apply a different method
to increase the model parameters, increasing either the hidden or head size of the baseline models.
Fig. 9, Tables 11, 12, and 13 show that improvements obtained with AID do not merely come from
the number of increased parameters in the models.

F.1 SYSTEMATIC ASSOCIATIVE RECALL TASK

Figure 9: Comparison to baseline with more parameters on the SAR task for 10 seeds.

F.2 SYSTEMATIC BABI TASK

Table 11: Comparison to baseline with more parameters on the sys-bAbI task on for 10 seeds.

Model DLSTM w/o sys diff w/ sys diff Gap # params
FWM 256 0.79 ± 0.14 2.85 ± 1.61 2.35 0.73 M

+ AID 256 0.45 ± 0.16 (0.34 ↓) 1.21 ± 0.66 (1.64 ↓) 0.76 (1.59 ↓) 1.23 M

512 0.75 ± 0.20 2.16 ± 1.33 1.41 1.89 M

18

Published as a conference paper at ICLR 2024

F.3 SORT-OF-CLEVR TASK

Table 12: Comparison to baseline with more parameters on the Sort-of-CLEVR task for 10 seeds.

Model Nheads Dheads Unary Accuracy Binary Accuracy Ternary Accuracy # params
Linear Transformer 8 32 82.5 ± 18.3 78.3 ± 2.7 60.0 ± 5.0 0.68 M

+ AID 98.9 ± 0.2 (16.4 ↑) 78.0 ± 0.6 (0.3 ↓) 61.0 ± 1.7 (1.0 ↑) 0.83 M

Linear Transformer 4 64 69.3 ± 14.8 75.5 ± 1.3 56.4 ± 4.3 0.68 M

+ AID 98.9 ± 0.2 (29.6 ↑) 78.6 ± 0.3 (3.1 ↑) 63.7 ± 1.2 (7.3 ↑) 0.83 M

Linear Transformer 8 64 57.5 ± 5.6 59.7 ± 11.1 53.2 ± 1.4 2.55 M

Linear Transformer 4 128 57.9 ± 1.3 59.9 ± 4.7 52.2 ± 0.9 2.55 M

F.4 WIKITEXT-103 TASK

Table 13: Comparison to baseline with more parameters on the WikiText-103 task. ∗ indicates an
increasing feed-forward size of the attention layer.

Model Valid Test # params
Linear Transformer 36.473 37.533 44.02 M

+ AID 36.159 (0.314 ↓) 37.151 (0.382 ↓) 44.16 M

Linear Transformer∗ 36.452 37.306 44.22 M

Delta Network 35.640 36.659 44.03 M

+ AID 35.361 (0.279 ↓) 36.253 (0.406 ↓) 44.18 M

Delta Network∗ 35.468 36.639 44.23 M

G ADDITIONAL QUALITATIVE ANALYSIS

We conduct qualitative analysis for generated representations on the bAbI task. For this analysis,
we consider the following two sentences where the desired answer is “kitchen”.

• (w/o sys-diff) sandra moved to the office. afterward she journeyed to the kitchen. daniel went to
the hallway. then he journeyed to the kitchen. where is sandra?

• (w/ sys-diff) julie moved to the office. afterward she journeyed to the kitchen. bill went to the
hallway. then he journeyed to the kitchen. where is julie?

Figs. 10 and 11 show the similarity between roles across the input sequence. FWM and AID exhibit
a high correlation when the sentence subjects are identical, suggesting that word-level TPR-based
models might learn to represent symbolic structures sentence-by-sentence. Notably, FWM shows a
high intra-sentence word correlation, while AID shows a high correlation at sentence terminations
(indicated by “.”). As highlighted in the yellow box comparison, FWM, when confronted with
unfamiliar subjects (w/ sys-diff case), shows a decreased correlation between relevant sentences
and an increased correlation among irrelevant ones. Conversely, AID maintains consistent results
irrespective of systematic differences.

Furthermore, we explore similarity patterns between roles and unbinding operators, as done in
Schlag et al. (2020). We utilize the roles generated at each time step of the input sequence and
the unbinding operators generated at “?” for each of the read heads (Nr = 3). Figs. 12 and 13
reveal that both models exhibit a high correlation at the end of each sentence (“.”). As seen from
the yellow box, the FWM struggles to link FWM struggles to link the “.” of the question-related
sentences in the sys-diff case, which may explain the prediction of an incorrect answer (“office”).
In contrast, the AID shows consistent patterns and accurately predicts the correct answer. These
findings elucidate why FWM fails and AID succeeds in tackling the sys-bAbI task.

19

Published as a conference paper at ICLR 2024

(a) w/o sys diff

(b) w/ sys diff

Figure 10: The heatmap of FWM for the cosine similarity between roles on the sys-bAbI task. We
use the roles generated at each time step of the input sequence.

20

Published as a conference paper at ICLR 2024

(a) w/o sys diff

(b) w/ sys diff

Figure 11: The heatmap of AID for the cosine similarity between roles on the sys-bAbI task. We use
the roles generated at each time step of the input sequence.

21

Published as a conference paper at ICLR 2024

(a) w/o sys diff (predicting kitchen)

(b) w/ sys diff (predicting office)

Figure 12: The heatmap of FWM for the cosine similarity between roles (x-axis) and unbinding
operators (y-axis) on the sys-bAbI task. We use the roles generated at each time step of the input
sequence and the unbinding operators generated at “?” for each of the read heads (Nr = 3).

(a) w/o sys diff (predicting kitchen)

(b) w/ sys diff (predicting kitchen)

Figure 13: The heatmap of AID for the cosine similarity between roles (x-axis) and unbinding
operators (y-axis) on the sys-bAbI task. We use the roles generated at each time step of the input
sequence and the unbinding operators generated at “?” for each of the read heads (Nr = 3).

22

Published as a conference paper at ICLR 2024

Ta
bl

e
14

:T
he

m
ea

n
w

or
d

er
ro

rr
at

e
[%

]i
n

de
ta

il
on

th
e

sy
s-

bA
bI

ta
sk

fo
r1

0
se

ed
s.

Ta
sk

T
X

L
D

A
M

ST
M

T
PR

-R
N

N
T

PR
-R

N
N

+
A

ID
FW

M
FW

M
+

A
ID

w
/o

w
/

w
/o

w
/

w
/o

w
/

w
/o

w
/

w
/o

w
/

w
/o

w
/

w
/o

w
/

1:
on

e
su

pp
or

tin
g

fa
ct

0.
00

2.
31

0.
00

0.
62

0.
00

0.
12

0.
00

2.
85

0.
00

0.
05

0.
00

2.
18

0.
00

0.
09

2:
tw

o
su

pp
or

tin
g

fa
ct

s
11

.4
4

24
.4

2
0.

82
3.

78
0.

56
1.

79
0.

36
5.

91
0.

19
2.

73
1.

08
2.

81
0.

94
1.

70

3:
th

re
e

su
pp

or
tin

g
fa

ct
s

23
.5

0
35

.6
8

2.
88

7.
27

3.
43

7.
66

2.
33

10
.0

5
1.

91
5.

85
5.

88
9.

88
2.

16
3.

34

6:
ye

s/
no

qu
es

tio
ns

0.
01

0.
03

0.
08

0.
70

0.
05

0.
15

0.
05

0.
30

0.
03

0.
09

0.
05

0.
09

0.
07

0.
06

7:
co

un
tin

g
1.

80
5.

71
1.

34
6.

09
1.

19
12

.8
5

1.
32

20
.4

6
1.

23
15

.8
2

1.
34

5.
57

1.
13

5.
33

8:
lis

ts
/s

et
s

0.
84

3.
64

0.
31

2.
31

0.
23

3.
77

0.
64

3.
90

0.
31

3.
08

0.
36

1.
74

0.
22

1.
47

9:
si

m
pl

e
ne

ga
tio

n
0.

02
0.

28
0.

04
0.

10
0.

07
0.

34
0.

15
0.

67
0.

12
0.

58
0.

08
0.

10
0.

02
0.

11

10
:i

nd
efi

ni
te

kn
ow

l.
0.

43
0.

57
0.

06
0.

27
0.

07
0.

59
0.

32
1.

19
0.

29
0.

45
0.

28
0.

44
0.

41
0.

44

11
:b

as
ic

co
re

fe
re

nc
e

0.
00

18
.1

0
0.

00
22

.4
5

0.
06

17
.9

0
0.

66
28

.6
5

0.
43

25
.0

5
0.

00
8.

13
0.

00
0.

06

12
:c

on
ju

nc
tio

n
0.

00
4.

14
0.

01
8.

76
0.

06
2.

55
1.

14
13

.2
1

1.
07

4.
45

0.
01

3.
29

0.
00

0.
67

13
:c

om
po

un
d

co
re

f.
0.

00
1.

79
0.

04
8.

83
0.

03
1.

05
1.

98
6.

51
2.

34
4.

46
0.

01
1.

42
0.

00
0.

41

14
:t

im
e

re
as

on
in

g
6.

46
7.

95
0.

13
1.

76
0.

20
1.

48
0.

52
11

.1
9

0.
36

4.
66

0.
86

2.
47

0.
43

0.
79

23

Published as a conference paper at ICLR 2024

Table 15: Word sets in the SAR task. We refer to the words in link

Set Word
X1 a, ability, able, about, above, accept, according, account, across, act, action, activity, actually, add, address, ad-

ministration, admit, adult, affect, after, again, against, age, agency, agent, ago, agree, agreement, ahead, air, all,
allow, almost, alone, along, already, also, although, always, american, among, amount, analysis, and, animal,
another, answer, any, anyone, anything, appear, apply, approach, area, argue, arm, around, arrive, art, article,
artist, as, ask, assume, at, attack, attention, attorney, audience, author, authority, available, avoid, away, baby,
back, bad, bag, ball, bank, bar, base, be, beat, beautiful, because, become, bed, before, begin, behavior, behind,
believe, benefit, best, better, between, beyond, big, bill, billion, bit, black, blood, blue, board, body, book, born,
both, box, boy, break, bring, brother, budget, build, building, business, but, buy, by, call, camera, campaign, can,
cancer, candidate, capital, car, card, care, career, carry, case, catch, cause, cell, center, central, century, certain,
certainly, chair, challenge, chance, change, character, charge, check, child, choice, choose, church, citizen, city,
civil, claim, class, clear, clearly, close, coach, cold, collection, college, color, come, commercial, common, com-
munity, company, compare, computer, concern, condition, conference, congress, consider, consumer, contain,
continue, control, cost, could, country, couple, course, court, cover, create, crime, cultural, culture, cup, current,
customer, cut, dark, data, daughter, day, dead, deal, death, debate, decade, decide, decision, deep, defense, de-
gree, democrat, democratic, describe, design, despite, detail, determine, develop, development, die, difference,
different, difficult, dinner, direction, director, discover, discuss, discussion, disease, do, doctor, dog, door, down,
draw, dream, drive, drop, drug, during, each, early, east, easy, eat, economic, economy

X2 ∪X3 edge, education, effect, effort, eight, either, election, else, employee, end, energy, enjoy, enough, enter, entire,
environment, environmental, especially, establish, even, evening, event, ever, every, everybody, everyone, every-
thing, evidence, exactly, example, executive, exist, expect, experience, expert, explain, eye, face, fact, factor, fail,
fall, family, far, fast, father, fear, federal, feel, feeling, few, field, fight, figure, fill, film, final, finally, financial,
find, fine, finger, finish, fire, firm, first, fish, five, floor, fly, focus, follow, food, foot, for, force, foreign, forget,
form, former, forward, four, free, friend, from, front, full, fund, future, game, garden, gas, general, generation,
get, girl, give, glass, go, goal, good, government, great, green, ground, group, grow, growth, guess, gun, guy,
hair, half, hand, hang, happen, happy, hard, have, he, head, health, hear, heart, heat, heavy, help, her, here,
herself, high, him, himself, his, history, hit, hold, home, hope, hospital, hot, hotel, hour, house, how, however,
huge, human, hundred, husband, i, idea, identify, if, image, imagine, impact, important, improve, in, include,
including, increase, indeed, indicate, individual, industry, information, inside, instead, institution, interest, inter-
esting, international, interview, into, investment, involve, issue, it, item, its, itself, job, join, just, keep, key, kid,
kill, kind, kitchen, know, knowledge, land, language, large, last, late, later, laugh, law, lawyer, lay, lead, leader,
learn, least, leave, left, leg, legal, less, let, letter, level, lie, life, light, like, likely, line, list, listen, little, live, local,
long, look, lose, loss, lot, love, low, machine, magazine, main, maintain, major, majority, make, man, manage,
management, manager, many, market, marriage, material, matter

Y1 may, maybe, me, mean, measure, media, medical, meet, meeting, member, memory, mention, message, method,
middle, might, military, million, mind, minute, miss, mission, model, modern, moment, money, month, more,
morning, most, mother, mouth, move, movement, movie, mr, mrs, much, music, must, my, myself, name, nation,
national, natural, nature, near, nearly, necessary, need, network, never, new, news, newspaper, next, nice, night,
no, none, nor, north, not, note, nothing, notice, now, nt, number, occur, of, off, offer, office, officer, official,
often, oh, oil, ok, old, on, once, one, only, onto, open, operation, opportunity, option, or, order, organization,
other, others, our, out, outside, over, own, owner, page, pain, painting, paper, parent, part, participant, particular,
particularly, partner, party, pass, past, patient, pattern, pay, peace, people, per, perform, performance, perhaps,
period, person, personal, phone, physical, pick, picture, piece, place, plan, plant, play, player, pm, point, po-
lice, policy, political, politics, poor, popular, population, position, positive, possible, power, practice, prepare,
present, president, pressure, pretty, prevent, price, private, probably, problem, process, produce, product, pro-
duction, professional, professor, program, project, property, protect, prove, provide, public, pull, purpose, push,
put, quality, question, quickly, quite, race, radio, raise, range, rate, rather, reach, read, ready, real, reality, realize,
really, reason, receive, recent, recently, recognize, record, red, reduce, reflect, region, relate, relationship, reli-
gious, remain, remember, remove, report, represent, republican, require, research, resource, respond, response,
responsibility, rest, result, return, reveal, rich, right, rise, risk, road, rock, role, room, rule, run, safe, same, save,
say, scene, school, science, scientist, score, sea, season, seat, second, section, security, see

Y2 seek, seem, sell, send, senior, sense, series, serious, serve, service, set, seven, several, sex, sexual, shake, share,
she, shoot, short, shot, should, shoulder, show, side, sign, significant, similar, simple, simply, since, sing, single,
sister, sit, site, situation, six, size, skill, skin, small, smile, so, social, society, soldier, some, somebody, someone,
something, sometimes, son, song, soon, sort, sound, source, south, southern, space, speak, special, specific,
speech, spend, sport, spring, staff, stage, stand, standard, star, start, state, statement, station, stay, step, still,
stock, stop, store, story, strategy, street, strong, structure, student, study, stuff, style, subject, success, successful,
such, suddenly, suffer, suggest, summer, support, sure, surface, system, table, take, talk, task, tax, teach, teacher,
team, technology, television, tell, ten, tend, term, test, than, thank, that, the, their, them, themselves, then, theory,
there, these, they, thing, think, third, this, those, though, thought, thousand, threat, three, through, throughout,
throw, thus, time, to, today, together, tonight, too, top, total, tough, toward, town, trade, traditional, training,
travel, treat, treatment, tree, trial, trip, trouble, true, truth, try, turn, tv, two, type, under, understand, unit, until,
up, upon, us, use, usually, value, various, very, victim, view, violence, visit, voice, vote, wait, walk, wall, want,
war, watch, water, way, we, weapon, wear, week, weight, well, west, western, what, whatever, when, where,
whether, which, while, white, who, whole, whom, whose, why, wide, wife, will, win, wind, window, wish, with,
within, without, woman, wonder, word, work, worker, world, worry, would, write, writer, wrong, yard, yeah,
year, yes, yet, you, young, your, yourself

24

https://www.ef.com/wwen/english-resources/english-vocabulary/top-1000-words/

	Introduction
	Related Work
	Method
	Tensor Product Representation
	Attention-based Iterative Decomposition module
	TPR networks with AID
	TPR-RNN
	FWM
	Linear Transformer

	Experiment
	Systematic Associative Recall task
	Analysis

	Systematic bAbI task
	Sort-of-CLEVR task
	WikiText-103 task

	Conclusion
	Pseudo-Code
	Experimental Settings
	Systematic Associative Recall task
	Systematic bAbI task
	Sort-of-CLEVR task
	WikiText-103 task

	Hyper-parameter Settings of AID module
	Ablation Study
	Additional Experiment Results
	Systematic bAbI task
	WikiText-103 task

	Comparison to Baseline with More Parameters
	Systematic Associative Recall task
	Systematic bAbI task
	Sort-of-CLEVR task
	WikiText-103 task

	Additional Qualitative Analysis

