

000 BEYOND UNIFORMITY: SAMPLE AND FREQUENCY 001 META WEIGHTING FOR POST-TRAINING QUANTIZA- 002 TION OF DIFFUSION MODELS 003

004 **Anonymous authors**
 005

006 Paper under double-blind review
 007

008 ABSTRACT 009

010 Post-training quantization (PTQ) is an attractive approach for compressing diffu-
 011 sion models to speed up the sampling process and reduce the memory footprint.
 012 Most existing PTQ methods uniformly sample data from various time steps in the
 013 denoising process to construct a calibration set for quantization and consider cali-
 014 bration samples equally important during quantization process. However, treating
 015 all calibration samples equally may not be optimal. One notable property in the
 016 denoising process of diffusion models is low-frequency features are primarily re-
 017 covered in early stages, while high-frequency features are recovered in later stages
 018 of the denoising process. However, none of previous works on quantization for
 019 diffusion models consider this property to enhance the effectiveness of quantized
 020 models. In this paper, we propose a novel meta-learning approach for PTQ of
 021 diffusion models that jointly optimizes the contributions of calibration samples
 022 and the weighting of frequency components at each time step for quantizing noise
 023 estimation networks. Specifically, our approach automatically learns to assign
 024 optimal weights to calibration samples while selectively focusing on mimicking
 025 specific frequency components of data generated by the full-precision noise esti-
 026 mation network at each denoising time step. Extensive experiments on CIFAR-10,
 027 LSUN-Bedrooms, FFHQ, and ImageNet datasets demonstrate that our approach
 028 consistently outperforms state-of-the-art PTQ methods for diffusion models.
 029

030 1 INTRODUCTION 031

032 Recently, diffusion models (Ho et al., 2020; Dhariwal & Nichol, 2021; Rombach et al., 2022) have
 033 attracted significant attention due to their ability to generate high-quality images. However, the
 034 sampling process in diffusion models is computationally expensive, requiring hundreds of denoising
 035 steps to generate a high-quality image. Additionally, the noise estimation networks in diffusion
 036 models are often complex and have a large number of parameters, which limits diffusion models’
 037 practical applications on resource-constrained devices. To address those challenges, an attractive
 038 approach is to quantize diffusion models. Neural network quantization (Han et al., 2016; Courbariaux
 039 et al., 2015; Nagel et al., 2019; 2020; Cai et al., 2020) is a popular approach for model compression
 040 that can significantly reduce computational cost and memory usage. Post-training quantization (PTQ)
 041 is particularly an effective quantization approach due to its ability to quantize deep neural networks
 042 without relying on a large amount of training data or necessitating model retraining.
 043

044 Calibration data plays a crucial role in PTQ for diffusion models and is typically generated from
 045 various time steps of the denoising process. There are several works that use heuristics to select
 046 calibration data for PTQ on diffusion models. For example, in PTQ4DM (Shang et al., 2023), the
 047 authors sample denoising time steps from a distribution $\mathcal{N}(\mu, 0.5T)$ where $\mu \leq 0.5T$, and use
 048 images generated at these sampled time steps as calibration data. In Q-Diffusion (Li et al., 2023), the
 049 authors select generated images at fixed step intervals across all denoising time steps as calibration
 050 data. In TFMQ-DM (Huang et al., 2024), the authors adopt the Q-Diffusion method to construct
 051 the calibration data and propose a temporal feature maintenance quantization framework to improve
 052 the performance of the PTQ for diffusion models. It is worth noting that in previous works (Shang
 053 et al., 2023; Li et al., 2023; Huang et al., 2024), calibration samples are treated equally during the
 quantization process. Different from previous works (Shang et al., 2023; Li et al., 2023; Huang

054 et al., 2024), we hypothesize that each calibration sample could have different contributions to the
 055 performance of the quantized model. To validate this, we conduct an empirical study by comparing
 056 uniform sample weighting against multiple random weighting schemes on the CIFAR-10 dataset.
 057 As shown in Figure 1, among 50 different weighting schemes, 18 outperform uniform weighting in
 058 terms of FID score, demonstrating that uniform weighting is suboptimal and that better weighting
 059 solutions exist. Therefore, unlike previous methods that treat calibration samples equally, we propose
 060 a principled approach inspired from (Ren et al., 2018) to automatically weight the contribution of
 061 each calibration sample for quantizing the noise estimation network. Specifically, we propose a
 062 sample-weighting mechanism that leverages meta-learning to automatically learn a weight for each
 063 calibration sample, with the objective that the quantized model trained with the calibration samples
 064 and their corresponding weights can achieve good performance on the validation set.

065 Furthermore, previous works (Yang et al., 2023; Qian et al., 2024) show that each time step in the
 066 diffusion process learns distinct features and serves a unique role in the diffusion model. From a
 067 frequency perspective, diffusion models recover low-frequency features at early denoising stages and
 068 gradually add high-frequency features at the later denoising stages (Qian et al., 2024). Therefore,
 069 the quantization of the noise estimation network should focus on different frequency components at
 070 different time steps during the quantization process. To this end, we propose a novel approach for PTQ
 071 for diffusion models by utilizing these frequency characteristics. Specifically, we propose a frequency
 072 weighting method that leverages meta-learning to automatically assign weights to the frequency loss
 073 components, derived from the frequencies of features extracted by the full-precision and quantized
 074 noise estimation networks at each time step, such that the learned frequency weights lead to the
 075 minimization of the quantized model’s validation loss. Additionally, we propose a regularization
 076 term on frequency weights to encourage the quantized model to focus more on mimicking high-
 077 frequency components and pay less attention to low-frequency components of samples generated by
 the full-precision model as the time step decreases during the denoising process.

078 We form the optimization of the sample weights and frequency weights as a bi-level optimization
 079 problem. The aim of the optimization is to learn sample weights and frequency weights such that the
 080 quantized model obtained from the training using calibration samples with those weights achieve a
 081 good performance on the validation set, i.e., minimizing the validation loss. We validate our proposed
 082 approach on the widely used CIFAR-10 (Krizhevsky & Hinton, 2009), LSUN-Bedrooms (Yu et al.,
 083 2015), FFHQ (Karras et al., 2019), and ImageNet (Deng et al., 2009) datasets with various noise
 084 estimation network architectures under different bit-width settings. The extensive experiments
 085 demonstrate that our method outperforms the state-of-the-art PTQ methods for diffusion models. To
 086 summarize, the contributions of this paper are outlined as follows:

- 087 • We propose a novel PTQ method that leverages meta-learning to automatically learn to
 088 weight the contribution of each calibration sample in PTQ training for diffusion models.
 089 Such a weighting mechanism prioritizes important samples, improving the performance of
 090 the quantized model.
- 091 • We propose a meta-learning based method to automatically learn to weight components
 092 of the frequency loss. We also propose a regularization term to encourage the quantized
 093 model to focus more on mimicking high-frequency components and pay less attention to
 094 low-frequency components of the data generated from the full-precision counterpart as the
 095 time step decreases during the denoising process.
- 096 • We extensively validate our proposed approach on the CIFAR-10, LSUN-Bedrooms, FFHQ,
 097 and ImageNet datasets. The experimental results show that our method consistently outper-
 098 forms the state-of-the-art PTQ methods for diffusion models in terms of the FID score.

100 2 RELATED WORKS

101 **Post-training quantization of diffusion models.** Diffusion models (Ho et al., 2020; Song et al.,
 102 2021b) can generate high-quality images through an iterative denoising process. However, the
 103 excessive cost of a large number of time steps in the denoising process could limit the practical
 104 applications of diffusion models. Although several works significantly reduce sampling time (Lu
 105 et al., 2022; Song et al., 2021a; Zhao et al., 2023), they still face challenges in computational cost
 106 and memory usage due to complex noise estimation networks. Model compression, especially model
 107 quantization (Han et al., 2016; Courbariaux et al., 2015; Nagel et al., 2019; 2020; Cai et al., 2020;

108 Xu et al., 2020), is an effective approach to reduce the computational cost and memory usage of
 109 these networks. Post-training quantization (Nagel et al., 2020; Li et al., 2021; Liu et al., 2023; Wei
 110 et al., 2022; Jeon et al., 2023) is an effective approach to quantize diffusion models. This family of
 111 techniques requires constructing appropriate calibration data and a quantization scheme for the model
 112 quantization. Existing PTQ methods for diffusion models mainly focus on obtaining calibration
 113 samples. To construct the calibration data, PTQ4DM (Shang et al., 2023) shows that generated
 114 samples in the denoising process are better than those from the forward process for PTQ for diffusion
 115 models. Q-Diffusion (Li et al., 2023) improves upon this by selecting generated images at fixed step
 116 intervals across all denoising time steps and introducing shortcut-splitting quantization, achieving
 117 enhanced performance across a broader dataset range. In APQ-DM (Wang et al., 2024), the authors
 118 propose using the structural risk minimization principle to find optimal time steps for generating
 119 calibration data. However, these works (Shang et al., 2023; Li et al., 2023; Wang et al., 2024) treat
 120 all calibration samples with equal importance during the quantization process, ignoring the fact that
 121 certain samples may contribute more critically to model performance than others.
 122

123 **Frequency in diffusion models.** Frequency information has been widely adopted in conventional
 124 generative models, such as GANs (Fu et al., 2021; Yang et al., 2022; Zhang et al., 2022). Recently,
 125 several works have leveraged the frequency domain information to improve the performance of
 126 diffusion models (Yang et al., 2023; Phung et al., 2023; Qian et al., 2024). In (Phung et al., 2023),
 127 the authors propose frequency-aware architectures for diffusion models to reduce the inference time
 128 while maintaining high quality of generated samples. From a temporal perspective, different time
 129 steps in the diffusion process exhibit distinct frequency characteristics (Yang et al., 2023). The
 130 denoising process typically recovers low-frequency features in early time steps before gradually
 131 incorporating high-frequency details in later stages (Yang et al., 2023). Spectral Diffusion (Yang
 132 et al., 2023) exploits this frequency evolution through wavelet gating for spectrum-aware distillation.
 133 In (Qian et al., 2024), the authors propose a training-free approach that leverages frequency domain
 134 information to enhance the stability of the denoising process and improve the performance of diffusion
 135 models. While there are previous works exploiting the frequency domain information to improve the
 136 performance of full-precision diffusion models, research on leveraging frequency domain information
 137 for the quantization of diffusion model to improve quantized diffusion model performance remains
 138 limited.
 139

140 **Meta-learning for post-training quantization.** Meta-learning has been explored for convolutional
 141 neural network quantization (Chen et al., 2019; Wang et al., 2020; Youn et al., 2022; Kim et al.,
 142 2024). For instance, MEBQAT (Youn et al., 2022) leverages meta-learning to optimize a mixed-
 143 precision quantization strategy that swiftly adapts to diverse bit-width configurations while preserving
 144 model accuracy. In another approach, MetaMix (Kim et al., 2024) addresses the prevalent issue of
 145 activation instability in mixed-precision quantization models and utilizes meta-learning to mitigate
 146 this instability and improve robustness. On the other hand, MetaQuantNet (Wang et al., 2020)
 147 presents a meta-learning framework that autonomously identifies optimal quantization policies before
 148 employing these policies to enhance network quantization. However, the use of meta-learning in
 149 diffusion quantization settings remains largely unexplored. To the best of our knowledge, our work is
 150 the first one to leverage meta-learning techniques specifically to post-training quantization within the
 151 context of diffusion models.
 152

3 PROPOSED METHOD

3.1 PRELIMINARY DEFINITIONS

154 Our goal is to optimize a set of sample weights and frequency weights that guide the quantization
 155 process to better preserve the full-precision model’s behavior. The details of the algorithm are
 156 illustrated in Figure 2. We first obtain the calibration set following the approach outlined in the
 157 Q-Diffusion method (Li et al., 2023), by selecting generated samples at fixed step intervals across all
 158 denoising time steps. Each calibration sample is denoted as (x_i, t_i) , where x_i is the generated sample
 159 with the corresponding time step t_i .
 160

161 In our method, each calibration sample (x_i, t_i) is assigned a learnable weight ω_i , representing its
 162 impact on the quantized model’s performance. The set of N weights corresponding to N training
 163 samples is denoted as $\omega = \{\omega_i\}_{i=1}^N$.
 164

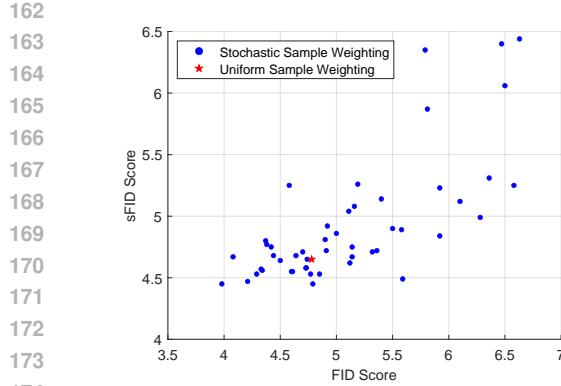


Figure 1: Comparison of FID and sFID scores of 50 sample weighting sets including the uniform weighting in the quantized noise estimation network DDPM (Ho et al., 2020) with the W4A32 setting on the CIFAR-10 dataset. All experiments use the same calibration dataset generated from the full-precision model and the same approach with TFMQ (Huang et al., 2024).

Beside the sample weighting, we propose to weight individual frequency components for each time step to better align with the evolution dynamics of different frequency components. Specifically, the Discrete Wavelet Transform (DWT) (Graps, 1995) is a well-known frequency analysis method. In this paper, we utilize DWT and leverage the frequency properties of diffusion models for quantization, thereby enhancing the effectiveness of quantized models. In practice, any tensor input \mathbf{a} is decomposed into four wavelet subbands by applying DWT (Graps, 1995) as follows:

$$\text{DWT}(\mathbf{a}) = (\mathbf{a}_{ll}, \mathbf{a}_{lh}, \mathbf{a}_{hl}, \mathbf{a}_{hh}). \quad (1)$$

Note that here we implement DWT as the classical Haar wavelet (Stankovic & Falkowski, 2003) for simplicity. Among the four wavelet subbands, \mathbf{a}_{ll} refers to the low-frequency component that reflects the basic object structure, while $\mathbf{a}_{\{lh, hl, hh\}}$ represent high-frequency components that capture texture details. When quantizing the l^{th} layer of the network, we assign all training samples x_i of time step t_i with a set of learnable weights $\{\lambda_{t_i,0}, \lambda_{t_i,1}, \lambda_{t_i,2}, \lambda_{t_i,3}\}$, denoting the weights corresponding to $\mathbf{a}_{ll}, \mathbf{a}_{lh}, \mathbf{a}_{hl}, \mathbf{a}_{hh}$ at time step t_i . Let us denote λ as a learnable frequency weight matrix of size $T \times 4$, where the t_i^{th} row $\lambda_{t_i} = \{\lambda_{t_i,0}, \lambda_{t_i,1}, \lambda_{t_i,2}, \lambda_{t_i,3}\}$ is a vector of length 4. We normalize the total weight of all frequency components at each time step t_i equal to 1 (i.e. $\sum_{i=0}^3 \lambda_{t_i,i} = 1$).

3.2 THE JOINT OPTIMIZATION OF SAMPLE AND FREQUENCY WEIGHTS

Both the sample weight ω and the frequency weight λ are optimized to maximize the model’s performance on the validation set. Given a full-precision model θ_{FP} and a quantized model θ_Q , the joint optimization objective of λ and ω is formed as a bi-level optimization problem as follows:

$$\omega^*, \lambda^* = \operatorname{argmin}_{\omega, \lambda} \frac{1}{|S^v|} \sum_{x_j \in S^v} \mathcal{L}_{\text{val}}(\hat{\theta}_Q, x_j, \lambda), \quad (2)$$

$$\text{s.t. } \hat{\theta}_Q = \operatorname{argmin}_{\theta_Q} \sum_{x_i \in S^c} \omega_i [\mathcal{L}_Q(\theta_Q, x_i, l) + \gamma \mathcal{L}_F(\theta_Q, x_i, \lambda, l)], \quad (3)$$

where S^c and S^v are the calibration dataset and validation dataset, respectively; $|S|$ denotes the cardinality of the set S ; l is the index of the layer/block that we want to calibrate, and γ is a hyperparameter.

Regarding the loss \mathcal{L}_Q in Eq. (3). The loss \mathcal{L}_Q is used to update the l^{th} block of the model θ_Q to obtain the model $\hat{\theta}_Q$, which is defined as follows:

$$\mathcal{L}_Q(\theta_Q, x_i, l) = \left\| \epsilon_{FP}^{(l)}(x_i, t_i) - \epsilon_Q^{(l)}(x_i, t_i) \right\|^2, \quad (4)$$

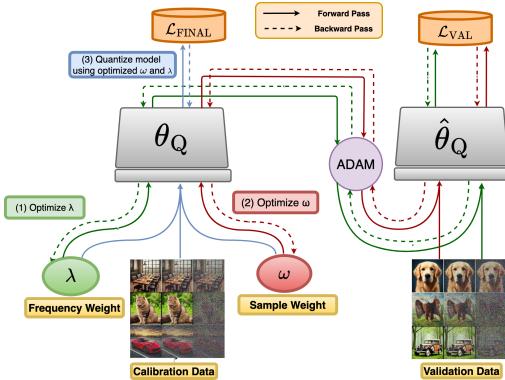


Figure 2: In general, the proposed method consists of three main optimization steps: (1) updating frequency weight λ , (2) updating sample weight ω using the validation loss \mathcal{L}_{val} in Eq. (7), and (3) leveraging both sample and frequency weights to quantize the model by minimizing the final loss $\mathcal{L}_{\text{FINAL}}$ in Eq. (12).

216 where $\epsilon_{\text{FP}}^{(l)}(x_i, t_i)$ and $\epsilon_Q^{(l)}(x_i, t_i)$ are the outputs of the l^{th} block of the full-precision model θ_{FP} and
 217 the quantized model θ_Q for sample (x_i, t_i) , respectively.
 218

219 **Regarding the loss \mathcal{L}_F in Eq. (3).** During the quantization process, we encourage the frequency
 220 components of images generated by the quantized model to match their counterparts from the
 221 full-precision model. Specifically, for any two tensors \mathbf{a}, \mathbf{b} of the same size, we employ DWT
 222 to decompose two tensors \mathbf{a}, \mathbf{b} into four wavelet subbands as $\text{DWT}(\mathbf{a}) = (\mathbf{a}_{ll}, \mathbf{a}_{lh}, \mathbf{a}_{hl}, \mathbf{a}_{hh})$ and
 223 $\text{DWT}(\mathbf{b}) = (\mathbf{b}_{ll}, \mathbf{b}_{lh}, \mathbf{b}_{hl}, \mathbf{b}_{hh})$. Given a frequency weight vector $\hat{\lambda} = (\hat{\lambda}_0, \hat{\lambda}_1, \hat{\lambda}_2, \hat{\lambda}_3)$, their weighted
 224 frequency difference will be defined as:
 225

$$\mathcal{L}_f(\mathbf{a}, \mathbf{b}, \hat{\lambda}) = \hat{\lambda}_0 \|\mathbf{a}_{ll} - \mathbf{b}_{ll}\|^2 + \hat{\lambda}_1 \|\mathbf{a}_{lh} - \mathbf{b}_{lh}\|^2 + \hat{\lambda}_2 \|\mathbf{a}_{hl} - \mathbf{b}_{hl}\|^2 + \hat{\lambda}_3 \|\mathbf{a}_{hh} - \mathbf{b}_{hh}\|^2. \quad (5)$$

226 Then the frequency loss \mathcal{L}_F can be defined as follow:
 227

$$\mathcal{L}_F(\theta_Q, x_i, \lambda, l) = \mathcal{L}_f\left(\epsilon_Q^{(l)}(x_i, t_i), \epsilon_{\text{FP}}^{(l)}(x_i, t_i), \lambda_{t_i}\right). \quad (6)$$

230 **Regarding the loss \mathcal{L}_{val} in Eq. (2).** Our goal is to maximize the performance of model $\hat{\theta}_Q$ on
 231 the validation set S^v . Therefore, at the validation step, we validate the quantized model $\hat{\theta}_Q$ on the
 232 validation set S^v . The validation loss \mathcal{L}_{val} is presented as below:
 233

$$\mathcal{L}_{\text{val}}(\hat{\theta}_Q, x_j, \lambda) = \|\epsilon_{\text{FP}}(x_j, t_j) - \epsilon_Q(x_j, t_j)\|^2 + \beta \mathcal{L}_{\text{Reg}}(\lambda), \quad (7)$$

234 where ϵ with a subscript is the final output of the corresponding model of interest; β is a hyper-
 235 parameter. The first term in the validation loss, \mathcal{L}_{val} , is the reconstruction loss between the outputs of
 236 the full-precision model and the quantized model for each sample x_j in the validation dataset S^v ,
 237 while the second term represents the regularization loss on frequency weights.
 238

239 **Regarding the regularization \mathcal{L}_{Reg} in Eq. (7).** As the full-precision model gradually recovers
 240 the low-frequency components at the early stages of the denoising process and gradually recovers
 241 the high-frequency components at the later stages, the quantized model is encouraged to follow
 242 this pattern. Specifically, the weight of the low-frequency components ($\lambda_{t,0}$) is regularized to be
 243 decreased and the weights of the high-frequency components ($\lambda_{t,1} + \lambda_{t,2} + \lambda_{t,3}$) in frequency loss
 244 \mathcal{L}_F is regularized to be increased as the time step decreases. To this end, we define the regularization
 245 loss \mathcal{L}_{Reg} as:
 246

$$\mathcal{L}_{\text{Reg}}(\lambda) = \sum_{t=0}^{T-2} \max(0, \mathbf{r}_t - \mathbf{r}_{t+1}), \quad (8)$$

247 where $\mathbf{r} = \lambda_{:,0} \oslash (\lambda_{:,1} + \lambda_{:,2} + \lambda_{:,3})$, and \oslash denotes element-wise division. As the time step t
 248 decreases, the regularization loss $\mathcal{L}_{\text{Reg}}(\lambda)$ will encourage $\lambda_{t,0}$ to decrease while $\lambda_{t,1} + \lambda_{t,2} + \lambda_{t,3}$ to
 249 increase.
 250

251 When optimizing the sample weights $\{\omega_i\}_{i=1}^N$, we keep the frequency weight λ fixed throughout this
 252 step, and conversely. The model $\hat{\theta}_Q(\omega)$, when optimizing sample weights ω , is approximated by
 253 solving 3 using a single step of gradient-based methods (e.g., SGD or Adam) as follows:
 254

$$\hat{\theta}_Q = \theta_Q - \eta_Q \sum_{x_i \in S^c} \nabla_{\theta_Q} \omega_i [\mathcal{L}_Q(\theta_Q, x_i, l) + \gamma \mathcal{L}_F(\theta_Q, x_i, \lambda, l)], \quad (9)$$

255 where η_Q denotes the learning rate of the quantized model.
 256

257 In the second stage, we optimize the sample weights $\{\omega_i\}_{i=1}^N$ and the frequency weight matrix λ with
 258 respect to the quantized model $\hat{\theta}_Q$. We employ an alternating optimization scheme in which one set
 259 of parameters is held fixed while the other is updated. Concretely, the sample weights are updated as:
 260

$$\omega_i = \omega_i - \eta_\alpha \frac{1}{|S^v|} \sum_{x_j \in S^v} \frac{\partial \mathcal{L}_{\text{val}}(\hat{\theta}_Q(\omega), x_j, \lambda)}{\partial \omega_i}, \forall i = 1, 2, \dots, N, \quad (10)$$

261 followed by an update of the frequency weights:
 262

$$\lambda_{t,j} = \lambda_{t,j} - \eta_\lambda \frac{1}{|S^v|} \sum_{x_j \in S^v} \frac{\partial \mathcal{L}_{\text{val}}(\hat{\theta}_Q(\lambda), x_j, \lambda)}{\partial \lambda_{t,k}}, \forall t \in \{1, \dots, T\}, k \in \{0, 1, 2, 3\}, \quad (11)$$

270 **Algorithm 1** Sample and frequency meta weighting for post-training quantization of diffusion models

271

```

272 1: procedure TRAIN( $\theta_{\text{FP}}$ ,  $S^c$ ,  $S^v$ )
273 2:    $\triangleright \theta_{\text{FP}}$ : full-precision model
274 3:    $\triangleright \theta_Q$ : quantized model
275 4:    $\triangleright L$ : number of blocks in the full-precision model
276 5:    $\triangleright S^c$ : calibration dataset
277 6:    $\triangleright S^v$ : validation dataset
278 7:    $\triangleright N_f$ : number of iterations for updating frequency weight  $\lambda$ 
279 8:    $\triangleright N_s$ : number of iterations for updating sample weights  $\{\omega_i\}_{i=1}^N$ 
280 9:    $\triangleright N_Q$ : number of iterations for model weight quantization
281 10:  Uniformly initialize sample weights  $\omega = \{\omega_i\}_{i=1}^N$  and frequency weight  $\lambda$ 
282 11:  Initialize the quantized model  $\theta_Q$ 
283 12:  for  $l = 1$  to  $L$  do
284 13:    while not converged do
285 14:       $\triangleright$  Fix  $\{\omega_i\}_{i=1}^N$  and update frequency weight  $\lambda$ 
286 15:      for  $n_f = 1$  to  $N_f$  do
287 16:        Compute  $\hat{\theta}_Q(\lambda)$  using 11
288 17:        Compute  $\mathcal{L}_{\text{val}}(\hat{\theta}_Q(\lambda), S^v, \lambda)$  using 7
289 18:        Update  $\lambda$ :  $\lambda \leftarrow \text{ADAM}(\mathcal{L}_{\text{val}}(\hat{\theta}_Q(\lambda), S^v, \lambda))$ 
290 19:       $\triangleright$  Fix  $\lambda$  and update sample weights  $\{\omega_i\}_{i=1}^N$ 
291 20:      for  $n_s = 1$  to  $N_s$  do
292 21:        Compute  $\hat{\theta}_Q(\omega)$  using Eq. (10)
293 22:        Compute  $\mathcal{L}_{\text{val}}(\hat{\theta}_Q(\omega), S^v, \lambda)$  using Eq. (7)
294 23:        Update  $\{\omega_i\}_{i=1}^N$ :  $\{\omega_i\}_{i=1}^N \leftarrow \text{ADAM}(\mathcal{L}_{\text{val}}(\hat{\theta}_Q(\omega), S^v, \lambda))$ 
295 24:       $\triangleright$  Optimize parameters of the quantized model
296 25:      for  $n_q = 1$  to  $N_Q$  do
297 26:        Optimize the quantizer parameters of the  $l^{\text{th}}$  block in model  $\theta_Q$  by minimizing
298 27:         $\mathcal{L}_{\text{FINAL}}$  from Eq. (12) over  $S^c$  using weights  $\{\omega_i\}_{i=1}^N$  and  $\lambda$ .
299 28:  return quantized model  $\theta_Q$ 
300
301

```

302 where η_λ denotes the learning rate of the frequency weight matrix λ , η_α denotes the learning rate of
303 the sample weights. In the sample weight optimization step, since the frequency weight matrix λ is
304 fixed, $\mathcal{L}_{\text{Reg}}(\lambda)$ in 7 is ignored.

306 3.3 FINAL OPTIMIZATION OBJECTIVE

308 For the l^{th} layer/block, once we have obtained the sample weights $\{\omega_i\}_{i=1}^N$ and the frequency weight
309 matrix λ corresponding to that layer/block, the model will be quantized over the training set with a
310 combined loss, defined as:

$$311 \mathcal{L}_{\text{FINAL}} = \sum_{i=1}^N \omega_i [\mathcal{L}_Q(\theta_Q, x_i, l) + \gamma \mathcal{L}_F(\theta_Q, x_i, \lambda, l)]. \quad (12)$$

313 The overall algorithm of our proposed method is presented in 1.

315 4 EXPERIMENTS

317 4.1 EXPERIMENTAL SETUP

319 **Models and datasets.** We evaluate the performance of our proposed method on common diffusion
320 models including the pixel-space diffusion model DDPM (Ho et al., 2020) for unconditional image
321 generation, and the latent-space diffusion model LDM (Rombach et al., 2022) for both unconditional
322 and class-conditional image generation. We extensively evaluate the proposed method on various
323 datasets, including CIFAR-10 32×32 (Krizhevsky et al., 2010), LSUN-Bedrooms 256×256 (Yu
et al., 2015), FFHQ 256×256 (Karras et al., 2019), and ImageNet 256×256 (Deng et al., 2009).

324 Table 1: Quantization results for unconditional image generation with DDIM on CIFAR-10 32×32 .
325

326 327 Methods	328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 CIFAR-10 32×32								
	328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 W/A	FID \downarrow	sFID \downarrow	328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 W/A	FID \downarrow	sFID \downarrow	328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 W/A	FID \downarrow	sFID \downarrow
PTQ4DM (Shang et al., 2023)	5.65	-	5.14	-	5.69	-			
Q-Diffusion (Li et al., 2023)	5.08	4.98	4.98	5.68	4.78	4.75			
APQ-DM (Wang et al., 2024)	9.96	7.63	4/8	12.2	7.66	8/8	6.34	4.44	
TFMQ-DM (Huang et al., 2024)	4/32	4.73	-	4.78	-		4.24	-	
TCAQ-DM (Huang et al., 2025)	4.28	-	4.59	-	4.09	-			
Ours	4.21	4.47	4.25	4.46			4.15	4.36	

334 **Implementation details.** We follow state-of-the-art post-training quantization (PTQ) methods
335 for both weights and activations in diffusion models (Shang et al., 2023; Huang et al., 2024).
336 Specifically, weights and activations in PTQ for DM are typically quantized separately. We first keep
337 the activations in full precision while quantizing the weights. For weight quantization, we learn the
338 rounding function using AdaRound (Nagel et al., 2020) and use block-wise reconstruction (Li et al.,
339 2021) to quantize the noise estimation networks. On the other hand, applying a similar approach
340 to optimize activation quantizers may introduce additional training overhead while only yielding
341 minimal performance gains, as outlined in TFMQ-DM (Huang et al., 2024). Therefore, we adopt
342 the simpler activation quantization approach used in TFMQ-DM. This approach estimates activation
343 ranges using EMA (Jacob et al., 2018) with a mini-batch size of 16. The quantized model θ_Q is
344 initialized from the full-precision model using LAPQ (Nahshan et al., 2021), following previous
345 works (Shang et al., 2023; Li et al., 2023; Huang et al., 2024). The calibration data is generated
346 through the full-precision diffusion models as described in Q-Diffusion (Li et al., 2023) and is
347 identical to calibration set used in TFMQ-DM (Huang et al., 2024). We also adopt the temporal
348 feature maintenance quantization technique in the TFMQ-DM (Huang et al., 2024) method. The
349 number of iterations N_Q for optimizing each block of the quantized model is 2×10^4 iterations
350 following previous works (Shang et al., 2023; Li et al., 2023; Huang et al., 2024). Meanwhile, we
351 set the $N_f = 100$ and $N_s = 200$ for updating frequency weight and sample weight, respectively.
352 We employ the Adam optimizer (Kingma & Ba, 2015) with a learning rate of 4×10^{-5} to update
353 the sample weight ω and frequency weight λ . Gradients in Eq. 10 and Eq. 11 are calculated using
354 the *higher* library¹. The hyper-parameter γ is set to 0.1 in Eq. 9 and Eq. 12. When optimizing the
355 frequency weight λ , we set the $\beta = 0.05$ for the \mathcal{L}_{val} in 7. Regarding the validation set S^v , we use a
356 subset of the generated data as the validation set. More details on implementation are provided in
357 supplementary materials.

358 **Evaluation metrics.** We evaluate the performance of diffusion models using Fréchet Inception
359 Distance (FID) (Heusel et al., 2017) and sFID (Salimans et al., 2016) across all experiments for a
360 fair comparison with previous works (Shang et al., 2023; Li et al., 2023; Huang et al., 2024). FID
361 quantifies the difference between the Inception image features of synthetic and real images. On the
362 other hand, sFID uses mid-level Inception features to better capture the spatial distribution similarity.
363 For consistency, we compute the metrics using 50,000 generated samples, in line with the settings in
364 previous works (Shang et al., 2023; Li et al., 2023; Huang et al., 2024).

365 4.2 COMPARISON WITH THE STATE-OF-THE-ART METHODS

366 We compare our proposed method with the state-of-the-art approaches for PTQ on diffusion models,
367 including PTQ4DM (Shang et al., 2023), Q-Diffusion (Li et al., 2023), PTQD (He et al., 2023),
368 TFMQ-DM (Huang et al., 2024), and APQ-DM (Wang et al., 2024), TCAQ-DM (Huang et al., 2025).
369 The results of competitors are taken from the TFMQ-DM (Huang et al., 2024) , TCAQ-DM (Huang
370 et al., 2025), and the results of APQ-DM (Wang et al., 2024) are reproduced from their official
371 implementations. We conduct experiments on the CIFAR-10 32×32 , LSUN-Bedrooms 256×256 ,
372 and FFHQ 256×256 datasets for unconditional image generation, and on ImageNet 256×256
373 dataset for class-conditional image generation, following the same experimental settings as (Huang
374 et al., 2024).

375 **Unconditional image generation.** We conduct experiments including DDPM on the CIFAR-10
376 32×32 dataset and LDM-4 on LSUN-Bedrooms 256×256 and FFHQ 256×256 datasets, using

377 ¹<https://github.com/facebookresearch/higher>

378 Table 2: Quantization results for unconditional and class-conditional image generation with LDM-4
 379 on LSUN-Bedrooms 256×256 , FFHQ 256×256 , and ImageNet 256×256 .

Methods	Bits (W/A)	LSUN-Bedrooms		FFHQ		ImageNet	
		FID \downarrow	sFID \downarrow	FID \downarrow	sFID \downarrow	FID \downarrow	sFID \downarrow
Full Prec.	32/32	2.98	7.09	9.36	8.67	10.91	7.67
PTQ4DM (Shang et al., 2023)		4.83	7.94	11.74	12.18	-	-
Q-Diffusion (Li et al., 2023)		4.20	7.66	11.60	10.30	11.87	8.76
PTQD (He et al., 2023)	4/32	4.42	7.88	12.01	11.12	11.65	9.06
TFMQ-DM (Huang et al., 2024)		3.60	7.61	9.89	9.06	10.50	7.98
TCAQ-DM (Huang et al., 2025)		3.55	7.54	-	-	10.5	6.66
Ours		3.16	6.92	9.20	9.69	10.10	7.32
PTQ4DM (Shang et al., 2023)		4.75	9.59	10.73	11.65	-	-
Q-Diffusion (Li et al., 2023)		4.51	8.17	10.87	10.01	12.80	9.87
PTQD (He et al., 2023)	8/8	3.75	9.89	10.69	10.97	11.94	8.03
TFMQ-DM (Huang et al., 2024)		3.14	7.26	9.46	8.73	10.79	7.65
TCAQ-DM (Huang et al., 2025)		3.11	7.34	-	-	10.58	7.54
Ours		3.08	7.18	9.16	9.59	10.75	7.63
PTQ4DM (Shang et al., 2023)		20.72	54.30	11.83	12.91	-	-
Q-Diffusion (Li et al., 2023)		6.40	17.93	11.45	11.15	10.68	14.85
PTQD (He et al., 2023)	4/8	5.94	15.16	11.42	11.43	10.40	12.63
TFMQ-DM (Huang et al., 2024)		3.68	7.65	9.97	9.14	10.29	7.35
TCAQ-DM (Huang et al., 2025)		3.65	7.64	-	-	9.97	7.67
Ours		3.28	7.05	9.34	9.74	10.01	7.21

397
 398
 399 the DDIM sampler (Song et al., 2021a) with 100, 200 and 200 time steps, respectively. As shown in
 400 Table 1 and Table 2, our proposed method achieves the state-of-the-art performance on CIFAR-10
 401 32×32 and dataset and LSUN-Bedrooms 256×256 datasets across most bit-width settings. The
 402 improvement is most evident in low bit-width settings. Specifically, on the CIFAR-10 32×32 dataset,
 403 our method achieves an FID score improvement of 0.52 and 0.53 over the TFMQ-DM in the W4A32
 404 and W4A8 settings, respectively. On the LSUN-Bedrooms 256×256 dataset, our proposed method
 405 achieves FID improvements over TFMQ-DM by 0.44 and 0.40 in the W4A32 and W4A8 settings,
 406 respectively. Meanwhile, on the FFHQ² 256×256 dataset, our proposed method significantly reduces
 407 the FID score over TFMQ-DM by 0.69 and 0.63 in the W4A32 and W4A8 settings, respectively.

408 **Class-conditional image generation.** For the ImageNet 256×256 experiments, we use LDM-4
 409 with the DDIM sampler (Song et al., 2021a) (20 steps) to assess the performance of the quantized
 410 model. The results of the competitors are taken from TFMQ-DM (Huang et al., 2024). As shown
 411 in Table 2, our method outperforms the compared methods across most settings. Specifically, the
 412 proposed method achieves significant improvements over TFMQ-DM (Huang et al., 2024) in the
 413 W4A32 setting, with gains of 0.4 and 0.66 in FID and sFID, respectively.

414 **Visualization of the learned λ and ω .** Figure 3a and Figure 3b show the visualization of the learned
 415 frequency weight λ and sample weight ω , respectively. As shown, the weight of low-frequency
 416 component (λ_0) decreases, while the weights of high-frequency components ($\lambda_1, \lambda_2, \lambda_3$) increase
 417 as the timestep decreases. For the learned sample weight ω , as time steps decrease, the normalized
 418 weights of samples become more variable and tend to increase, which indicates that the images
 419 generated at later time steps are often more important than those generated at earlier time steps for
 420 quantized diffusion models.

421 4.3 ABLATION STUDIES

422 In this section, we conduct ablation studies to analyze the impact of each proposed component in our
 423 framework and the effects of the regularization terms. The ablation studies for the hyper-parameters
 424 β in Eq. 7 and γ in Eq. 12 are provided in the supplementary materials due to space constraints.

425
 426
 427
 428 ²The reported results for the compared methods are cited from the TFMQ-DM paper (Huang et al., 2024).
 429 We have run the official TFMQ-DM code from this link. Using the official TFMQ-DM code, we are able to
 430 reproduce FID scores comparable to those reported in TFMQ-DM, e.g., in the W4A8 setting, we obtain a
 431 FID of 9.75. However, we are unable to reproduce the sFID scores, e.g., for the W4A8 setting, we obtain a sFID
 432 of 9.94, while the value reported in TFMQ-DM is 9.14.

432 Table 3: The effects of sample and frequency weighting, and the regularization term \mathcal{L}_{Reg} on LSUN-
 433 Bedrooms 256 × 256.

434

435

436

437

438

439

440

441

442

443

444

445

446

447

448

449

450

451

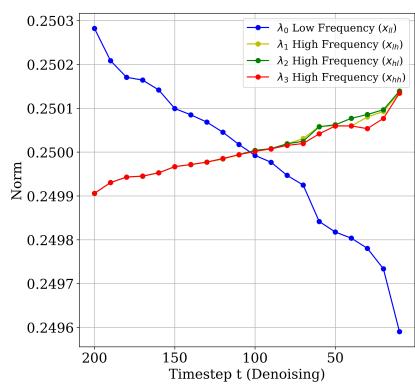
452

453

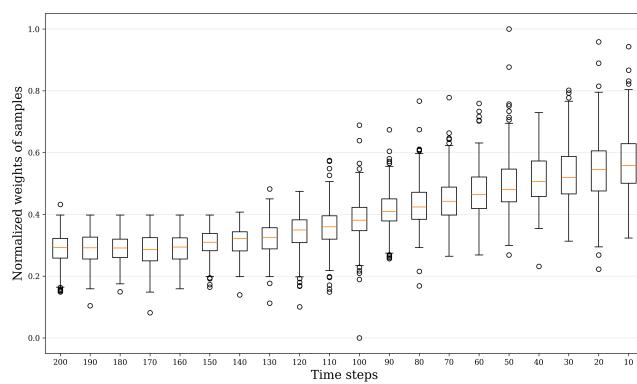
454

455

Methods	Bits (W/A)	LSUN-Bedrooms 256×256	
		FID↓	sFID↓
Full Prec.	32/32	2.98	7.09
TFMQ-DM (Huang et al., 2024) (Baseline)		3.68	7.65
TFMQ-DM + Sample weighting	4/8	3.47	7.20
TFMQ-DM + Frequency weighting		3.38	7.39
Ours (without \mathcal{L}_{Reg})		3.41	7.18
Ours (sample and frequency weighting)	3.28	7.05	



456 (a) Visualization of the learned frequency
 457 weight vector λ for different frequency com-
 458 ponents over denoising timesteps.



456 (b) Box plot of the learned sample weights ω across time steps.
 457 The orange line indicates the median weights of the samples at
 458 each time step, while the circles represent outlier values outside
 459 the typical value range.

460 Figure 3: Visualization of learned weights.
 461
 462

463 **The effects of the proposed sample and frequency meta weighting.** To evaluate the effectiveness
 464 of each component, we conduct an ablation study on the LSUN-Bedrooms 256 × 256 dataset with
 465 the W4A8 setting, using the LDM-4 model and a DDIM sampler. Table 3 shows that using either
 466 the sample weighting or frequency weighting component alone improves the performance of the
 467 quantized model. Additionally, combining these two strategies results in additional performance
 468 improvements. These results indicate the effectiveness of our proposed approach.

469 **The effects of the regularization term \mathcal{L}_{Reg} in 7.** To validate the impact of the regularization term
 470 \mathcal{L}_{Reg} on the quantized model performance, we conduct ablation studies on the LSUN-Bedrooms
 471 256 × 256 dataset using the W4A8 quantization setting. The experiments are performed on the
 472 LDM-4 model with a DDIM sampler, with and without \mathcal{L}_{Reg} . As shown in Table 3, incorporating the
 473 regularization term \mathcal{L}_{Reg} in Eq. 7 improves both the FID and sFID scores, showing the effectiveness
 474 of the proposed regularization loss function.

475 5 CONCLUSION

477 In this work, we present a novel approach for post-training quantization of diffusion models that
 478 incorporates sample and frequency weighting. Our method simultaneously optimizes the contributions
 479 of calibration samples and the weighting of frequency components at each time step to effectively
 480 quantize the noise estimation networks. By automatically learning optimal weights for calibration
 481 samples, our approach prioritizes important samples and enhances the performance of the quantized
 482 model. Additionally, by learning to weight frequency components in the frequency loss for each time
 483 step, we encourage the quantized models to better mimic the frequency components of data generated
 484 from their full-precision counterparts. Extensive experimental results show that our proposed method
 485 consistently outperforms the state-of-the-art PTQ approaches for diffusion models, demonstrating its
 486 effectiveness across different datasets.

486 REFERENCES
487

488 Yaohui Cai, Zhewei Yao, Zhen Dong, Amir Gholami, Michael W Mahoney, and Kurt Keutzer. ZeroQ:
489 A novel zero shot quantization framework. In *CVPR*, 2020.

490 Shangyu Chen, Wenya Wang, and Sinno Jialin Pan. MetaQuant: Learning to quantize by learning to
491 penetrate non-differentiable quantization. In *NeurIPS*, 2019.

492

493 Matthieu Courbariaux, Yoshua Bengio, and Jean-Pierre David. BinaryConnect: Training deep neural
494 networks with binary weights during propagations. In *NeurIPS*, 2015.

495

496 Jia Deng, Wei Dong, Richard Socher, Li-Jia Li, Kai Li, and Li Fei-Fei. ImageNet: A large-scale
497 hierarchical image database. In *CVPR*, 2009.

498

499 Prafulla Dhariwal and Alexander Nichol. Diffusion models beat gans on image synthesis. In *NeurIPS*,
500 2021.

501

502 Minghan Fu, Huan Liu, Yankun Yu, Jun Chen, and Keyan Wang. DW-GAN: A discrete wavelet
503 transform gan for nonhomogeneous dehazing. In *CVPR*, 2021.

504

505 Amara Graps. An introduction to wavelets. *IEEE computational science and engineering*, 2(2):
506 50–61, 1995.

507

508 Song Han, Huizi Mao, and William J. Dally. Deep compression: Compressing deep neural network
509 with pruning, trained quantization and huffman coding. In *ICLR*, 2016.

510

511 Yefei He, Luping Liu, Jing Liu, Weijia Wu, Hong Zhou, and Bohan Zhuang. PTQD: Accurate
512 post-training quantization for diffusion models. In *NeurIPS*, 2023.

513

514 Martin Heusel, Hubert Ramsauer, Thomas Unterthiner, Bernhard Nessler, and Sepp Hochreiter. Gans
515 trained by a two time-scale update rule converge to a local nash equilibrium. In *NeurIPS*, 2017.

516

517 Jonathan Ho, Ajay Jain, and Pieter Abbeel. Denoising diffusion probabilistic models. In *NeurIPS*,
518 2020.

519

520 Haocheng Huang, Jiaxin Chen, Jinyang Guo, Ruiyi Zhan, and Yunhong Wang. TCAQ-DM: timestep-
521 channel adaptive quantization for diffusion models. In *AAAI*, 2025.

522

523 Yushi Huang, Ruihao Gong, Jing Liu, Tianlong Chen, and Xianglong Liu. TFMQ-DM: Temporal
524 feature maintenance quantization for diffusion models. In *CVPR*, 2024.

525

526 Benoit Jacob, Skirmantas Kligys, Bo Chen, Menglong Zhu, Matthew Tang, Andrew Howard, Hartwig
527 Adam, and Dmitry Kalenichenko. Quantization and training of neural networks for efficient
528 integer-arithmetic-only inference. In *CVPR*, 2018.

529

530 Yongkweon Jeon, Chungman Lee, and Ho-young Kim. Genie: Show me the data for quantization. In
531 *CVPR*, 2023.

532

533 Tero Karras, Samuli Laine, and Timo Aila. A style-based generator architecture for generative
534 adversarial networks. In *CVPR*, 2019.

535

536 Han-Byul Kim, Joo Hyung Lee, Sungjoo Yoo, and Hong-Seok Kim. MetaMix: Meta-state precision
537 searcher for mixed-precision activation quantization. In *AAAI*, 2024.

538

539 Diederik P. Kingma and Jimmy Ba. Adam: A method for stochastic optimization. In *ICLR*, 2015.

540

541 Alex Krizhevsky and Geoffrey Hinton. Learning multiple layers of features from tiny images.
542 Technical report, University of Toronto, 2009.

543

544 Alex Krizhevsky, Vinod Nair, and Geoffrey Hinton. Cifar-10 (canadian institute for advanced
545 research), 2010.

546

547 Xiuyu Li, Yijiang Liu, Long Lian, Huanrui Yang, Zhen Dong, Daniel Kang, Shanghang Zhang, and
548 Kurt Keutzer. Q-Diffusion: Quantizing diffusion models. In *ICCV*, 2023.

540 Yuhang Li, Ruihao Gong, Xu Tan, Yang Yang, Peng Hu, Qi Zhang, Fengwei Yu, Wei Wang, and Shi
 541 Gu. BRECQ: Pushing the limit of post-training quantization by block reconstruction. In *ICLR*,
 542 2021.

543 Jiawei Liu, Lin Niu, Zhihang Yuan, Dawei Yang, Xinggang Wang, and Wenyu Liu. PD-Quant:
 544 Post-training quantization based on prediction difference metric. In *CVPR*, 2023.

545 Cheng Lu, Yuhao Zhou, Fan Bao, Jianfei Chen, Chongxuan Li, and Jun Zhu. Dpm-solver: A fast ode
 546 solver for diffusion probabilistic model sampling in around 10 steps. In *NeurIPS*, 2022.

547 Markus Nagel, Mart van Baalen, Tijmen Blankevoort, and Max Welling. Data-free quantization
 548 through weight equalization and bias correction. In *CVPR*, 2019.

549 Markus Nagel, Rana Ali Amjad, Mart Van Baalen, Christos Louizos, and Tijmen Blankevoort. Up or
 550 down? adaptive rounding for post-training quantization. In *ICML*, 2020.

551 Yury Nahshan, Brian Chmiel, Chaim Baskin, Evgenii Zheltonozhskii, Ron Banner, Alex M Bronstein,
 552 and Avi Mendelson. Loss aware post-training quantization. *Machine Learning*, 110(11-12):
 553 3245–3262, 2021.

554 Hao Phung, Quan Dao, and Anh Tran. Wavelet diffusion models are fast and scalable image
 555 generators. In *CVPR*, 2023.

556 Yurui Qian, Qi Cai, Yingwei Pan, Yehao Li, Ting Yao, Qibin Sun, and Tao Mei. Boosting diffusion
 557 models with moving average sampling in frequency domain. In *CVPR*, 2024.

558 Mengye Ren, Wenyuan Zeng, Bin Yang, and Raquel Urtasun. Learning to reweight examples for
 559 robust deep learning. In *ICML*, 2018.

560 Robin Rombach, Andreas Blattmann, Dominik Lorenz, Patrick Esser, and Björn Ommer. High-
 561 resolution image synthesis with latent diffusion models. In *CVPR*, 2022.

562 Tim Salimans, Ian Goodfellow, Wojciech Zaremba, Vicki Cheung, Alec Radford, and Xi Chen.
 563 Improved techniques for training gans. In *NeurIPS*, 2016.

564 Yuzhang Shang, Zhihang Yuan, Bin Xie, Bingzhe Wu, and Yan Yan. Post-training quantization on
 565 diffusion models. In *CVPR*, 2023.

566 Jiaming Song, Chenlin Meng, and Stefano Ermon. Denoising diffusion implicit models. In *ICLR*,
 567 2021a.

568 Yang Song, Jascha Sohl-Dickstein, Diederik P Kingma, Abhishek Kumar, Stefano Ermon, and Ben
 569 Poole. Score-based generative modeling through stochastic differential equations. In *ICLR*, 2021b.

570 Radomir S Stankovic and Bogdan J Falkowski. The haar wavelet transform: its status and achieve-
 571 ments. *Computers & Electrical Engineering*, 29(1):25–44, 2003.

572 Changyuan Wang, Ziwei Wang, Xiuwei Xu, Yansong Tang, Jie Zhou, and Jiwen Lu. Towards accurate
 573 post-training quantization for diffusion models. In *CVPR*, 2024.

574 Tao Wang, Junsong Wang, Chang Xu, and Chao Xue. Automatic low-bit hybrid quantization of
 575 neural networks through meta learning. *CoRR*, abs/2004.11506, 2020.

576 Xiuying Wei, Ruihao Gong, Yuhang Li, Xianglong Liu, and Fengwei Yu. Qdrop: randomly dropping
 577 quantization for extremely low-bit post-training quantization. In *ICLR*, 2022.

578 Shoukai Xu, Haokun Li, Bohan Zhuang, Jing Liu, Jiezhang Cao, Chuangrun Liang, and Mingkui Tan.
 579 Generative low-bitwidth data free quantization. In *ECCV*, 2020.

580 Mengping Yang, Zhe Wang, Ziqiu Chi, and Wenyi Feng. WaveGan: Frequency-aware gan for
 581 high-fidelity few-shot image generation. In *ECCV*, 2022.

582 Xingyi Yang, Daquan Zhou, Jiashi Feng, and Xinchao Wang. Diffusion probabilistic model made
 583 slim. In *CVPR*, 2023.

594 Jiseok Youn, Jaehun Song, Hyung-Sin Kim, and Saewoong Bahk. Bitwidth-adaptive quantization-
595 aware neural network training: A meta-learning approach. In *ECCV*, 2022.
596

597 Fisher Yu, Yinda Zhang, Shuran Song, Ari Seff, and Jianxiong Xiao. LSUN: construction of a
598 large-scale image dataset using deep learning with humans in the loop. *CoRR*, abs/1506.03365,
599 2015.

600 Bowen Zhang, Shuyang Gu, Bo Zhang, Jianmin Bao, Dong Chen, Fang Wen, Yong Wang, and
601 Baining Guo. StylesWin: Transformer-based gan for high-resolution image generation. In *CVPR*,
602 2022.

603

604 Wenliang Zhao, Lujia Bai, Yongming Rao, Jie Zhou, and Jiwen Lu. UniPC: A unified predictor-
605 corrector framework for fast sampling of diffusion models. In *NeurIPS*, 2023.

606

607

608

609

610

611

612

613

614

615

616

617

618

619

620

621

622

623

624

625

626

627

628

629

630

631

632

633

634

635

636

637

638

639

640

641

642

643

644

645

646

647

648 **The statement on the use of large language models.** Large Language Models (LLMs) were
 649 used solely for grammar correction and language polishing of this manuscript. All research ideas,
 650 experimental design and data analysis were conducted entirely by the authors, and the use of LLMs
 651 does not impact the reproducibility or validity of our findings.
 652

653 A APPENDIX

654 A.1 IMPLEMENTATION DETAILS

655 The quantization settings in our proposed method are consistent with those used in Q-Diffusion Li
 656 et al. (2023), PTQD He et al. (2023), and TFMQ-DM Huang et al. (2024). In line with these works, we
 657 utilize pre-trained diffusion models from the official implementations of DDIM Song et al. (2021a)³
 658 and Latent Diffusion Rombach et al. (2022)⁴. For evaluating FID and sFID scores, we adopt the
 659 torch-fidelity library⁵. Following the setting from Li et al. (2023); Huang et al. (2024), we use 100
 660 denoising time steps for DDIM on the CIFAR-10 dataset. For LSUN-Bedrooms and FFHQ datasets,
 661 we use 200 denoising time steps. For class-conditional image generation on the ImageNet dataset,
 662 we employ the default DDIM sampler with 20 time steps and a guidance scale of 3.0. All experiments
 663 are implemented using PyTorch and conducted on a single NVIDIA A100 GPU. Code is available at
 664 https://anonymous.4open.science/r/Beyond_Uniformity_PTQ4DM-28E8.
 665

666 A.2 MORE EXPERIMENTS

667 Table A.1: Quantization results for class-conditional image generation with DiT on ImageNet
 668 256 × 256.
 669

670 Methods	Bits (W/A)	ImageNet 256 × 256	
		FID↓	sFID↓
671 Full Prec.	32/32	6.02	21.77
672 PTQ4DiT	W4A8	9.17	24.29
673 Ours		8.67	23.88
674 PTQ4DiT	W8A8	5.45	19.5
675 Ours		5.39	19.31

676 **Experiments on post-training quantization for diffusion transformers on ImageNet.** We evaluate
 677 the proposed method on post-training quantization for diffusion transformers on the ImageNet dataset.
 678 Specifically, following the same experimental setup as in PTQ4DiT [1], we quantized the class-
 679 conditional DiT-XL/2 models [2] at image resolutions of 256 × 256. The DDPM solver with 50
 680 sampling steps was employed for the denoising process. As shown in the Table A.1, our method
 681 achieves 0.5 FID and 0.41 sFID improvements over the baseline PTQ4DiT in the W4A8 setting.
 682

683 **Experiments with small real validation set.** We conduct additional experiments with the small real
 684 validation set from the LSUN-Bedrooms dataset for computing the \mathcal{L}_{val} in the Eq. (7). Specifically,
 685 instead of using the subset of generated images from the full-precision model, we randomly sample
 686 32 images from the LSUN-Bedrooms dataset. After that, we create corresponding images at different
 687 time steps by adding Gaussian noise to the sampled images to form a validation set. Following the
 688 forward diffusion process Ho et al. (2020), the noisy image \mathbf{x}_t at time step t is defined as:
 689

$$690 \mathbf{x}_t = \sqrt{\bar{\alpha}_t} \mathbf{x}_0 + \sqrt{1 - \bar{\alpha}_t} \boldsymbol{\epsilon}, \quad (13)$$

691 where \mathbf{x}_0 is the original clean image, $\bar{\alpha}_t = \prod_{i=1}^t \alpha_i$ represents the cumulative product of noise
 692 schedule coefficients, and $\boldsymbol{\epsilon} \sim \mathcal{N}(0, \mathbf{I})$ is random Gaussian noise.
 693

694 The results are shown in Table A.2. As shown, using either the generated images or the real images,
 695 our proposed method consistently outperforms TFMQ-DM Huang et al. (2024). This may be because
 696

697 ³<https://github.com/ermongroup/ddim>

698 ⁴<https://github.com/CompVis/latent-diffusion>

699 ⁵<https://github.com/toshas/torch-fidelity>

Table A.2: Quantization results for unconditional image generation with DDIM on LSUN-Bedrooms 256×256 . The notation * indicates that we use the small real validation set.

Methods	Bits (W/A)	LSUN-Bedrooms 256 × 256	
		FID↓	sFID↓
Full Prec.	32/32	2.98	7.09
PTQ4DM Shang et al. (2023)	4/32	3.68	7.65
Q-Diffusion Li et al. (2023)		4.20	7.66
TFMQ-DM Huang et al. (2024)		3.60	7.61
Ours		3.16	6.92
Ours*		3.12	7.15
PTQ4DM Shang et al. (2023)	4/8	5.14	-
Q-Diffusion Li et al. (2023)		6.40	17.93
TFMQ-DM Huang et al. (2024)		3.68	7.65
Ours		3.28	7.05
Ours*		3.26	7.19

the full-precision model is trained on real images, so using either real images or generated images for validation yields similar performance outcomes.

Table A.3: Quantization results for unconditional image generation with DDIM on CIFAR-10 32×32 . The notation * indicates that we use the alternative frequency loss in Eq. (15).

Methods	Bits (W/A)	CIFAR-10 32 × 32	
		FID↓	sFID↓
Full Prec.	32/32	4.23	4.41
PTQ4DM Shang et al. (2023)	4/32	5.65	-
Q-Diffusion Li et al. (2023)		5.08	4.98
TFMQ-DM Huang et al. (2024)		4.73	-
Ours		4.21	4.47
Ours*		4.29	4.45
PTQ4DM Shang et al. (2023)	8/8	19.59	-
Q-Diffusion Li et al. (2023)		4.78	4.75
TFMQ-DM Huang et al. (2024)		4.24	-
Ours		4.15	4.36
Ours*		4.09	4.34
PTQ4DM Shang et al. (2023)	4/8	5.14	-
Q-Diffusion Li et al. (2023)		4.98	5.68
TFMQ-DM Huang et al. (2024)		4.78	-
Ours		4.25	4.46
Ours*		4.31	4.57

Experiments with an alternative method for frequency loss in Eq. (6). We explore an alternative approach that computes the frequency loss based on the approximated final samples ($t = 0$), which can be estimated directly from any generated sample x_i at time step t_i . Following DDPM Ho et al. (2020), given an intermediate generated sample x_i at the time step t_i , the corresponding generated sample \hat{x} at the time step $t = 0$ can be estimated as follows:

$$\hat{\mathbf{x}} = (\mathbf{x}_i - \sqrt{1 - \bar{\alpha}_{t_i}} \epsilon_\theta(\mathbf{x}_i, t_i)) / \sqrt{\bar{\alpha}_{t_i}}, \quad (14)$$

where $\bar{\alpha}_{t_i} = \prod_{i=1}^{t_i} \alpha_i$, and $\alpha_1, \dots, \alpha_T$ are predefined variance schedules. Using the above approximation, in each iteration, we acquire approximations for the final generated images of the full-precision model and the quantized model \hat{x}_Q and \hat{x}_{FP} . The frequency loss thus $\mathcal{L}_F(\cdot)$ is defined as:

$$\mathcal{L}_F(\theta_Q, x_i, \lambda) = \mathcal{L}_f(\hat{\mathbf{x}}_Q, \hat{\mathbf{x}}_{FP}, \lambda_{t_i}). \quad (15)$$

We evaluate the alternative frequency loss on the CIFAR-10 32×32 dataset. As shown in Table A.3, this alternative approach yields comparable results. However, from our experiments we observe that it requires up to three times the computational cost compared to the original frequency loss in Eq. (6). Therefore, we use the frequency loss defined in Eq. (6) for the results in the main paper and the remaining sections in the supplementary materials.

A.3 HYPER-PARAMETER SETTINGS

Regarding the hyper-parameters β in Eq. (7) and γ in Eq. (12) in the main paper, β is applied to the regularization loss \mathcal{L}_{Reg} , while γ controls the contribution of the frequency loss to the final objective for quantizing diffusion models.

Ablation studies for the hyper-parameter γ in Eq. (12). We vary the value of γ from 0.05 to 1 and fix the value of $\beta = 0.05$, and evaluate the performance of the model on the CIFAR-10 dataset with the W4A32 setting. The results are shown in Table A.4.

From the tables we can see that the performance is stable across different choices of γ . The performance is slightly better with $\gamma = 0.1$, whereas larger γ values (e.g., $\gamma = 1$) may slightly degrade performance. This indicates that the proposed method is not sensitive to the choice of γ and β .

Table A.4: Ablation studies for the hyper-parameter γ of the frequency loss in Eq. (12). The results are on the CIFAR-10 dataset with the W4A32 setting.

γ	0.05	0.1	0.2	0.3	0.5	0.8	1.0
FID \downarrow	4.41	4.21	4.29	4.35	4.58	4.76	4.71
sFID \downarrow	4.50	4.47	4.53	4.56	4.67	4.98	4.91

Ablation studies for the hyper-parameter β in Eq. (7). We vary the value of β from 0.01 to 0.1 and fix the value of $\gamma = 0.1$. The experiments are also conducted on the CIFAR-10 dataset with the W4A32 setting. The results are shown in Table A.5. From the tables we can see that the performance is stable across different choices of β . The performance is slightly better with $\beta = 0.05$. This indicates that the proposed method is not sensitive to the choice of β .

Table A.5: Ablation studies for the hyper-parameter β of the \mathcal{L}_{Reg} in Eq. (7). The results are on the CIFAR-10 dataset with W4A32 setting.

β	0.01	0.02	0.03	0.05	0.08	0.1
FID \downarrow	4.25	4.34	4.31	4.21	4.68	4.73
sFID \downarrow	4.6	4.56	4.52	4.47	4.55	4.58

A.4 THE COMPARISON OF THE COMPUTATION COST AND HARDWARE EFFICIENCY.

For training cost, the proposed method incurs additional overhead compared to other baselines (e.g., TFMQ-DM), due to the introduction of sample and frequency weighting steps. In TFMQ-DM (Huang et al., 2024), the authors report that Q-Diffusion (Li et al., 2023) requires 5.29 GPU hours, for PTQ under W4A8 quantization on LSUN-Bedrooms 256×256 , while TFMQ-DM (Huang et al., 2024) takes approximately 2.32 GPU hours. Our approach requires around 3.4 GPU hours, yet remains significantly more efficient than Q-Diffusion (Li et al., 2023). However, our method outperforms TFMQ-DM across all FID benchmarks. In terms of hardware efficiency, the proposed method is developed on top of TFMQ-DM, especially in the training phase only. In the testing phase, the inference is identical to TFMQ-DM. Hence, there is no difference in terms of hardware efficiency or latency at test time.

The overhead comes primarily from the meta-learning updates. To mitigate it, potential approaches include reducing the number of iterations for updating frequency weights and sample weights. Additionally, we can use a heuristic to approximate the frequency weights in which the frequency

810
811 Table A.6: Ablation studies for the number of iterations for updating sample and frequency weights
812 on LSUN-Bedrooms 256×256 with W4A8 setting.

N_s	N_f	Overhead	FID Score (LSUN-Bedrooms)	sFID Score (LSUN-Bedrooms)
200	100	1 hour	3.28	7.08
100	50	35 minutes	3.36	7.10

816
817 Table A.7: Comparison of FID and sFID scores for TFMQ-DM baseline, static frequency heuristic,
818 and our learned frequency weighting on LSUN-Bedrooms W4A8 using LDM-4.

Method	FID \downarrow
TFMQ-DM (baseline)	3.68
+ Static frequency heuristic	3.43
+ Learned frequency weighting (Ours)	3.28

825 weights of the high-frequency components are linearly increased as the time step decreases and
826 the low-frequency components are linearly decreased as the time step increases. However, these
827 approaches could slightly reduce the performance as shown in Table A.7. As provided in the Table A.6,
828 for LSUN-Bedrooms with W4A8 settings, reducing the number of iterations N_f and N_s by half
829 results in minimal performance impact (only 0.08 FID score drop). Thus, we can achieve a trade-off
830 between training time and performance.

832 A.5 COMPARE WITH OTHER FREQUENCY TRANSFORMATION METHODS

834 DWT transformation is a widely-used frequency analysis method. It effectively separates and analyzes
835 low and high frequencies from other frequency transforms, such as Fast Fourier Transform (FFT).
836 We conduct additional experiments using FFT and leveraging Focal Frequency Loss⁶ for \mathcal{L}_F in Eq.
837 (12). The results in Table A.8 demonstrate that leveraging the frequency domain with either DWT or
838 FFT for PTQ for DM outperforms the baseline TFMQ-DM Huang et al. (2024), with DWT showing
839 superior results.

840 Table A.8: Quantization results for unconditional image generation with LDM-4 on LSUN-Bedrooms
841 256×256 .

Methods	Bits (W/A)	LSUN-Bedrooms 256×256	
		FID \downarrow	sFID \downarrow
Full Prec.	32/32	2.98	7.09
TFMQ-DM Huang et al. (2024)		3.68	7.65
Ours (FFT)	4/8	3.45	7.20
Ours (DWT)		3.28	7.05

852 A.6 VISUALIZATION OF CALIBRATION DATASET

854 We visualize the calibration dataset sampled from the full-precision diffusion model trained on the
855 FFHQ 256×256 dataset. As shown in Figure A.1, eight different samples are displayed at three
856 representative denoising stages: early stage (high noise), middle stage (coarse structure formation),
857 and late stage (fine detail refinement).

858 These visualizations reveal important frequency characteristics across the denoising process. At early
859 timesteps, the images predominantly contain noise with minimal structural information, indicating
860 that the diffusion model primarily works with noisy, unstructured patterns. During the middle stage,
861 the model recovers coarse structures and overall composition. At late timesteps, the model refines
862 details such as textures, edges, and fine-grained features.

863⁶<https://github.com/EndlessSora/focal-frequency-loss>

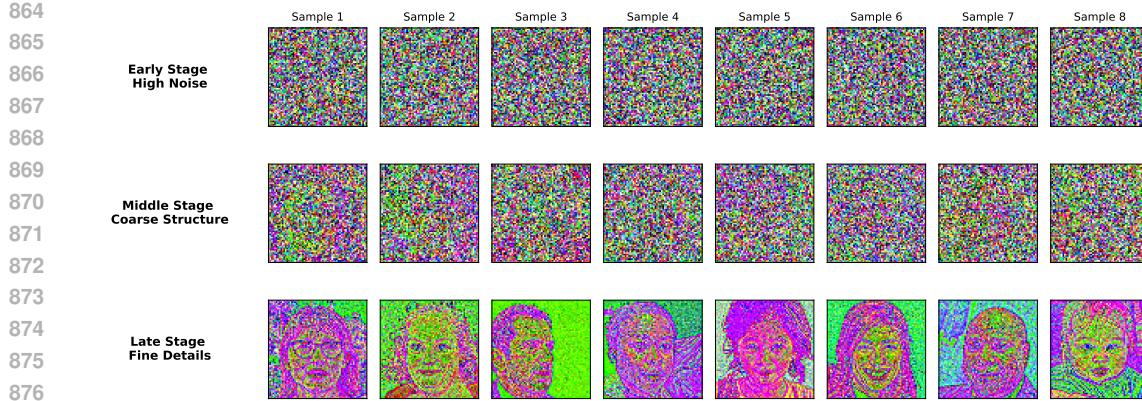


Figure A.1: Visualization of image evolution of calibration dataset sampled from the FFHQ 256×256 dataset.

A.7 VISUALIZATION OF GENERATED IMAGES

We visualize sample images generated from the full-precision model, as well as from quantized models obtained using the Q-Diffusion Li et al. (2023) method, the TFMQ Huang et al. (2024) method, and our proposed method with the W4A8 setting, all initialized with a fixed random seed. As shown in Figure A.2 and Figure A.3, our proposed method generates images that closely match those of the full-precision models, demonstrating the effectiveness of our approach.

888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

918

919

920

921

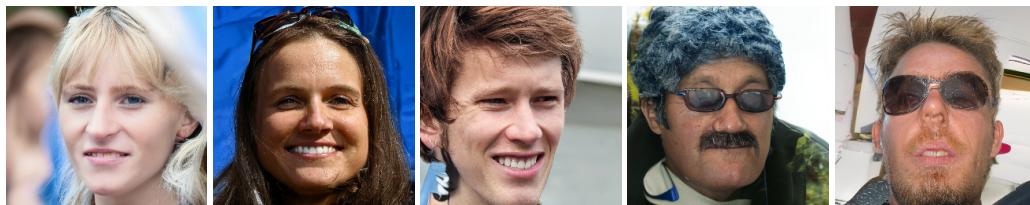
922

923

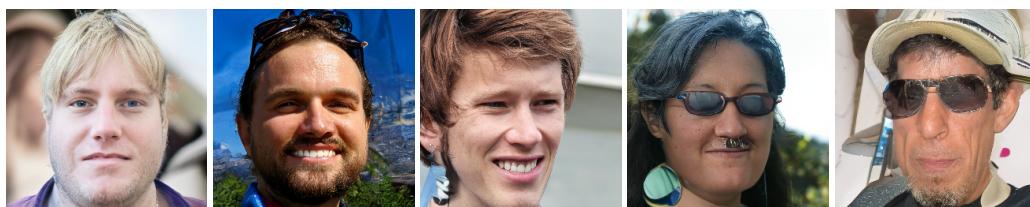
924

925

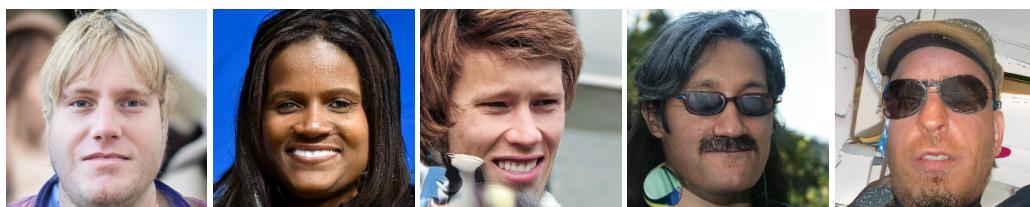
926



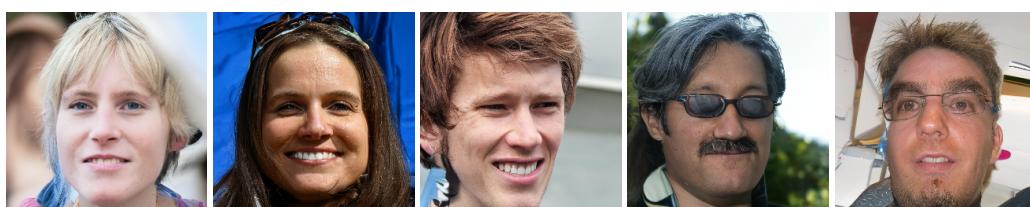
(a) Full precision.



(b) Q-Diffusion (W4A8).



(c) TFMQ-DM (W4A8).



(d) Our proposed method (W4A8).

Figure A.2: Generated samples from (a) full-precision LDM-4, (b) Q-Diffusion (W4A8), (c) TFMQ-DM (W4A8), and (d) our proposed method (W4A8) on FFHQ 256 × 256 dataset with a fixed random seed.

964

965

966

967

968

969

970

971

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987

(a) Full precision.

(b) Q-Diffusion (W4A8).

(c) TFMQ-DM (W4A8).

(d) Our proposed method (W4A8).

1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Figure A.3: Generated samples from (a) full-precision LDM-4, (b) Q-Diffusion (W4A8), (c) TFMQ-DM (W4A8), and (d) our proposed method (W4A8) on LSUN-Bedrooms 256×256 dataset with a fixed random seed.