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Abstract

Federated Instruction Tuning (FIT) advances collaborative training on decentral-
ized data, crucially enhancing model’s capability and safeguarding data privacy.
However, existing FIT methods are dedicated to handling data heterogeneity across
different clients (i.e., client-aware data heterogeneity), while ignoring the variation
between data from different domains (i.e., domain-aware data heterogeneity). When
scarce data needs supplementation from related fields, these methods lack the ability
to handle domain heterogeneity in cross-domain training. This leads to domain-
information catastrophic forgetting in collaborative training and therefore makes
model perform sub-optimally on the individual domain. To address this issue, we
introduce DoFIT, a new Domain-aware FIT framework that alleviates catastrophic
forgetting through two new designs. First, to reduce interference information from
the other domain, DoFIT finely aggregates overlapping weights across domains on
the inter-domain server side. Second, to retain more domain information, DoFIT
initializes intra-domain weights by incorporating inter-domain information into a
less-conflicted parameter space. Experimental results on diverse datasets consis-
tently demonstrate that DoFIT excels in cross-domain collaborative training and
exhibits significant advantages over conventional FIT methods in alleviating catas-
trophic forgetting. Code is available at https://github.com/1xbq1/DoFIT.

1 Introduction

Large Language Models (LLMs) have attracted significant attention due to their remarkable com-
prehension and reasoning capabilities, coupled with their vast potential for a wide array of applica-
tions [27]. This attention has spurred the development of various Parameter Efficient Fine-Tuning
(PEFT) methods [13, 15, 14, 6], aimed at efficiently adapting these powerful models to specific tasks
under constrained computational resources [21]. Among them, LoRA [6] stands out as one of the
most popular, due to its lower number of trainable parameters and the absence of additional inference
computations. While LoRA significantly alleviates the computational burden associated with tuning
LLMs, substantial challenges persist at the data level [28, 31], particularly in domains involving
privacy concerns, where there is a lack of high-quality for cultivating a strong model [26, 29].

Towards this issue, some Federated Instruction-Tuning (FIT) methods have been explored by com-
bining LLM instruction-tuning using LoRA with Federated Learning (FL) in recent years [37, 35,
38, 11, 34, 4, 9, 24]. In such FIT methods, the server side coordinates multi-round training among
clients without sharing data for boosting model capability and protecting data privacy. Specifically,
each round consists of four steps: global LoRA downloads from the server back to the clients, local
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Figure 1: (a) Conventional FIT (with LoRA): directly expands from intra-domain to inter-domain
settings. (b) DoFIT-base (with catastrophic forgetting): aggregates overlapping modules among the
top-k important modules from different domains on the inter-domain server side and completes the
personalized initialization of the updating weight matrix on the intra-domain server side by assigning
values to corresponding modules while keeping the rest unchanged. (c) DoFIT (with alleviated
catastrophic forgetting): further integrates a proximal perturbation initialization strategy into the
DoFIT-base for alleviating catastrophic forgetting in terms of domain information.
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Figure 2: Performance effect of conventional FIT trained on Specific domain (i.e., Finance) and
Finance&General domain. FinGPT [36] and Alpaca-GPT4 [23] are the training datasets on Finance
domain and General domain, respectively. FPB [19], FiQA-SA [18], TFNS [17], and NWGI [33]
are all the evaluation datasets on Finance domain. Avg:3 and Avg:4 denote the average result on
the first three evaluation datasets (i.e., FPB, FiQA-SA, and TFNS) and all the evaluation datasets,
respectively.

LoRA updates on the client side, local LoRA uploads from clients to the server, and global LoRA
aggregates on the server side.

Currently, most FIT methods are dedicated to handling data heterogeneity between clients, i.e., client-
aware data heterogeneity. When data within a specific domain is scarce and needs to be supplemented
with data from other related domains to develop a powerful model, existing FIT methods treat intra-
and inter-domain data heterogeneity (i.e., domain-aware data heterogeneity) equally and cannot adapt
to the variation in cross-domain training, as shown in Figure 1 (a). This variation comes from more
common information in the same domain and more interference information from different domains.
Furthermore, as shown in Figure 2, conventional FIT with LoRA often suffers from catastrophic
forgetting of domain information, and performs suboptimally on each individual domain, due to its
inability to handle the domain-aware data heterogeneity. To tackle domain-aware data heterogeneity
well, two main parts in conventional FIT, i.e., aggregation and initialization, are evolved in this work.

Revisiting Aggregation in FIT. Considering the variation in intra-domain and inter-domain data, we
design a domain-aware FIT baseline (DoFIT-base) for separately aggregating intra- and inter-domain
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information, as shown in Figure 1 (b). In DoFIT-base, it first normally aggregates domain-specific
information on the intra-domain server side, and then aggregates overlapping domain-agnostic
information at a fine granularity in the inter-domain server side. In the inter-domain server side,
this fine-grained aggregation strategy aims to reduce interference from irrelevant information. This
strategy mainly includes two steps. The first step is to upload only the top-k important modules from
each intra-domain server side. It is noticeable that that DoFIT-base still uses LoRA (A or B as one
module), with each layer of LoRA focusing on different aspects [30]. The larger the LoRA weight is,
the greater its impact on the frozen LLM becomes, and thus, it becomes more important [40]. The
second step is to averagely aggregate the overlapping modules uploaded from different intra-domain
server sides. This step is necessary because the top-k modules uploaded by different intra-domain
server sides are different. After aggregation on the inter-domain server side, each intra-domain server
side obtains important and necessary module information for itself.

Revisiting Initialization in FIT. To retain more domain information, inspired by the orthogonal
learning approach in [12], we introduce a new initialization strategy based on the proximal perturba-
tion by projecting the modules with inter-domain information onto parameter regions least affected
by intra-domain update. Specifically, as shown in Figure 1 (c), after completing the aggregation on
the inter-domain server side, the newly generated modules are transmitted to the intra-domain server
side. On the intra-domain server side, proximal perturbations are calculated between the new and
the original modules, and then added to the original modules rather than being directly overwritten.
The proximal perturbation term contains inter-domain information, while the original modules retain
global intra-domain information. This less-conflicted initialization strategy can more effectively
preserve domain information, ultimately mitigating catastrophic forgetting.

In summary, our contributions are: 1) the first solution to concern domain-aware data heterogeneity in
collaborative training on decentralized data for the FIT paradigm; 2) a new domain-aware FIT frame-
work that involves fine-grained inter-domain aggregation to handle domain-aware data heterogeneity;
3) a novel initialization strategy in intra-domain global LoRA to alleviate catastrophic forgetting in
terms of domain information; and 4) the significant performance gain over conventional FIT and
comprehensive analysis to pave the way for future explorations into more advanced FIT.

2 Related Works

2.1 Federated Instruction Tuning.

Under the condition of protecting client data privacy, Federated Instruction Tuning (FIT) enables
collaboration on high-quality instruction data, facilitating the instruction-tuning of pre-trained LLMs
for downstream tasks aimed at understanding diverse human intentions [37, 35, 32]. As the pioneer
work, Zhang et al. [37] introduced a basic framework, which adopts LoRA for conducting client-side
updating and server-side aggregation. Compared to the basic initial framework, Kuang et al. [11]
provided a comprehensive framework that covers data processing, federated training, and multiple
benchmarks, while also implementing various Parameter-Efficient Fine-Tuning (PEFT) methods,
memory-saving operations, as well as acceleration techniques.

Since the above FIT methods neglect alignment with human values, Ye et al. [35] presented federated
value alignment alongside federated instruction-tuning, ensuring both harmless and helpful outputs.
To tackle data extraction attacks and limited instruction data, Zhang et al. [39] proposed to employ
LLM to synthesize data, and then train local models on both synthesized and original data, as well as
global models solely on synthesized data. In heterogeneous scenarios with test-time distribution shift,
Yang et al. [34] proposed a personalized FIT achieved by incorporating local LoRA and shared global
LoRA. To confront the challenges arising from resource and data heterogeneity, Zhang et al [38]
explored pruning personalized sparse structures for clients with resource imbalances using neural
architecture search.

However, the above FIT methods only consider client-aware data heterogeneity, overlooking both
the intra- and inter-domain data heterogeneity when different relevant domains co-exist, namely
domain-aware data heterogeneity. To this end, we introduce intra- and inter-domain server sides to
deal with two types of heterogeneity differently.
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2.2 Parameter-Efficient Fine-Tuning.

The increasing parameter size of LLMs results in expensive computational costs. However, for
adapting to downstream tasks, full-parameter fine-tuning of LLMs poses challenges on hardware
platforms with limited computational resources [3]. To this end, various Parameter-Efficient Fine-
Tuning (PEFT) methods have been proposed by freezing the pre-trained LLMs while only fine-tuning
a small number of parameters [3]. Here, we mainly introduce several representative PEFT methods,
i.e., Serial Adapter [5], Prefix-tuning [13], P-Tuning [15], IA3 [14], and Low-Rank Adaptation
(LoRA) [6]. For more details about PEFT methods, please refer to reference [3].

Serial Adapter [5] built two adapter modules following the self-attention and FFN layers. Each
adapter module comprises a down-projection matrix, a non-linear activation function, and an up-
projection matrix. Prefix-tuning [13], as soft prompt method, added trainable vectors as prefixes to
both the key and value of all layers, while P-Tuning [15] integrated trainable vectors as prefixes into
the initial word embedding layer. Similarly, IA3 [14] added scaling trainable vectors to key, value,
and FFN activations. As one of the re-parameterization methods, LoRA [6] decomposed frozen
parameters into two low-rank trainable matrices during fine-turning, and merged them with LLMs
during inference without extra computational overhead. Similarly, considering the efficiency of LoRA
in inference, our DoFIT adopts the PEFT method with LoRA.

3 Methodology

3.1 Preliminaries

Low Rank Adaptation (LoRA). Considering the limited computational resources available on the
client side, it is challenging to perform full-parameter instruction tuning for LLM. Fortunately, Low
Rank Adaptation (LoRA) [6], the most popular Parameter-Efficient Fine-Tuning (PEFT) method in
federated setting [11], has been successfully applied in Federated Instruction Tuning (FIT) [37, 35].
During adaptation for specific tasks, given the low intrinsic dimension of pre-trained language models,
LoRA assumes that the update to the pre-training weight matrices similarly exhibit a low intrinsic
rank [6]. Consequently, for a frozen pre-trained weight matrix W0 ∈ Rd×k, its updating weight
matrix△W ∈ Rd×k is decomposed into low-rank trainable parameters BA, as follows,

W0 +△W = W0 +BA (1)

where B ∈ Rd×r, A ∈ Rr×k, and the rank r ≪ min(d, k). A uses random Gaussian initialization
and B is initialized with zero.

Conventional FIT with LoRA. Federated Instruction Tuning (FIT) is intended to resolve the issue
of inadequate high-quality instructional data for individual clients and the inability to share such
data due to privacy concerns. In FIT, it usually involves a server and multiple clients, where the
server achieves collaborative training of non-shared instructional data among different clients by
aggregating and initializing clients’ updating weight matrices. To provide a detailed description of
this process, we first define the updating weight matrix△W t

i in the client side, as follows,

△W t
i = {△W t

i,l}Ll=1 = {Bt
i,lA

t
i,l}Ll=1 (2)

where r, i, l, and L denote the t-th round, the i-th client, the l-th layer, and total L layers, respectively.
During the training process, the updating weight matrix△W̄ t−1

l from the server is first downloaded
for initializing the updating weight matrix△W t

i,l on the client, as follows,

{△W t
i }init = △W̄ t−1

{{Bt
i,lA

t
i,l}Ll=1}init = {B̄t−1

l Āt−1
l }Ll=1

(3)

Although only the weight initialization for the i-th client is indicated here, all selected clients undergo
the same initialization process. After initializing, the updating weight matrices are optimized (i.e.,
{Bt

i,lA
t
i,l} ← {Bt

i,lA
t
i,l}init) based on their individual data, with loss function corresponding to each

client’s task. Subsequently, the updating weight matrices {△W t
i,l}i∈ΩN

from selected client sets ΩN

are uploaded to the server side for aggregation, generating a new updating weight matrix△W̄ t
l on
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the server side. The aggregation process is shown as below,

△W̄ t
l = Aggi∈ΩN

(△W t
i,l)

= (
1

N

∑
i∈ΩN

Bt
i,l)(

1

N

∑
i∈ΩN

At
i,l)

= B̄t
l Ā

t
l

(4)

where ΩN represents a set of randomly sampled client indices, with a total of N clients. The function
Agg(·) averages Bt

i,l and At
i,l within the selected clients’ corresponding layer. B̄t

l Ā
t
l constitutes the

new aggregated updating weight matrix△W̄ t
l .

3.2 Domain-aware FIT Baseline (DoFIT-base)

The intra-domain and inter-domain data heterogeneities are unequal in domain-aware data hetero-
geneity. Conventional FIT fails to distinguish between intra- and inter-domain data heterogeneities,
as it employs the same federated architecture to handle them equally, only altering the client data
to be within the same domain or across different domains, as shown in Figure 1 (a). Hence, when
various clients possess datasets from other relevant domains, the results of conventional FIT may be
inferior to those of the original specific domain, as shown in Figure 2.

In comparison to the intra-domain scenario, data from different domains demonstrate greater het-
erogeneity. To benefit from information in other relevant domains, we need to carefully design the
aggregation strategy to more finely extract and aggregate the shared information between the current
domain and other relevant domains. Therefore, we introduce a domain-aware FIT baseline (called
DoFIT-base) that completes different aggregation strategies from coarse-grained level to fine-grained
level. As shown in Figure 1 (b), DoFIT-base takes into account both the intra-domain variance and
inter-domain variance, where the latter is more challenging.

Specifically, DoFIT-base contains the intra-domain server side, inter-domain server side, and several
client sides. First of all, in the inter-domain server side, the updating weight matrix△W̃ t−1 is defined
as follows,

△W̃ t−1 = {B̃t−1
l Ãt−1

l }∈Ψt−1 (5)
where Ψt−1 denotes the overlapping modules (B or A as one module) from different domains
in round t − 1. Noted, "overlapping" refers to both the same layer and the same decomposition
components. At the beginning of the first round, Ãt−1

l and B̃t−1
l are initialized with random Gaussian

initialization and zero, respectively.

Download Step. In the updating weight matrix△W̄ t−1
m of intra-domain server side, the overlapping

{B̄t−1
m,l Ā

t−1
m,l }∈Ψt−1 are initialized by △W̃ t−1, while the personalized {B̄t−1

m,l Ā
t−1
m,l }∈Ψ∁

t−1
remain

unchanged, as follows,
{{B̄t−1

m,l Ā
t−1
m,l }∈Ψt−1

}init = △W̃ t−1

△W̄ t−1
m = {B̄t−1

m,l Ā
t−1
m,l }

L
l=1

(6)

where m denotes the m-th domain. Ψt−1∩Ψ∁
t−1 = ∅, Ψt−1∪Ψ∁

t−1 = U, and U = {B̄t−1
m,l Ā

t−1
m,l }Ll=1.

Next, △W̄ t−1
m initializes the updating weight matrix △W t

m,i on the i-th client side with the same
domain, as follows,

{△W t
m,i}init = △W̄ t−1

m

△W t
m,i = {△W t

m,i,l}Ll=1 = {Bt
m,i,lA

t
m,i,l}Ll=1

(7)

Upload Step. On the client side,△W t
m,i is updated based on local data and specific task loss. Then,

similar to conventional FIT, the updated △W t
m,i is uploaded to the intra-domain server side for

aggregation, as follows,

△W̄ t
m,l = Aggi∈ΩN

(△W t
m,i,l)

= (
1

N

∑
i∈ΩN

Bt
m,i,l)(

1

N

∑
i∈ΩN

At
m,i,l)

= B̄t
m,lĀ

t
m,l

(8)
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Similar to [40], the squared norm of the module serves as the important score for itself, determining
its impact on the frozen LLM. Obviously, not all modules have the same importance score. In fact,
the more important a module is, the greater its influence on the instruction tuning process. To mitigate
the impact of irrelevant information from other domains, only common and important information
should be captured. In the intra-domain server side, all modules in△W̄ t

m are sorted based on their
important scores, where only the top-k modules are selected and uploaded to the inter-domain server
side. Subsequently, on the inter-domain server side, the overlapping modules across all domains are
aggregated accordingly, while the modules that do not overlap across all domains remain unchanged,
as follows,

△W̃ t
l = Aggm∈M (△W̄ t

m,l)

= (
1

M

∑
m∈M

B̄t
m,l)(

1

M

∑
m∈M

Āt
m,l)

= B̃t
l Ã

t
l

(9)

where {B̄t
m,lĀ

t
m,l}∈Ψt and {B̃t

l Ã
t
l}∈Ψt . Ψt indicates the set of overlapping modules in the t-th

round, and M denotes the number of domains.

3.3 Domain-aware FIT (DoFIT)

In traditional FL, the iterative training across multiple rounds often results in global information
forgetting from previous rounds due to the heterogeneity nature of data on client sides. This issue
persists in our DoFIT-base, which is concretely manifested as the problem of domain information
forgetting.

To retain more domain information and alleviate such problem, inspired by the orthogonal learning
in [12], we translate inter-domain information to the parameter space least conflicted by the updating
on the intra-domain server side, thereby reducing conflicts between intra- and inter-domain infor-
mation. Thus, the initialization process in Eq. 6 can be modified from directly covering△W̄ t−1

m by
△W̃ t−1, for adding a proximal perturbation computed from the module-wise difference between
△W̃ t−1 and△W̄ t−1

m , as follows,

{B̄t−1
m,l Ā

t−1
m,l }init =

(B̄t−1
m,l + α

∣∣∣B̃t−1
l − B̄t−1

m,l

∣∣∣
||B̃t−1

l − B̄t−1
m,l ||2

)(Āt−1
m,l + α

∣∣∣Ãt−1
l − Āt−1

m,l

∣∣∣
||Ãt−1

l − Āt−1
m,l ||2

)


∈Ψt−1

(10)

where α is the scaling factor. |B̃
t−1
l −B̄t−1

m,l |
||B̃t−1

l −B̄t−1
m,l ||2

and |Ã
t−1
l −Āt−1

m,l |
||Ãt−1

l −Āt−1
m,l ||2

denote proximal perturbation terms,

mapping B̃t−1
l and Ãt−1

l to the parameter region least affected by B̄t−1
m,l and Āt−1

m,l . The overall
algorithm process of DoFIT is described in the supplemental material due to space limitations.

4 Experiments

4.1 Experimental Settings

Datasets. We train our DoFIT on three datasets, i.e., FinGPT [36], Alpaca-GPT4 [23], and MedAl-
paca [2] from the Finance (F), General (G), and Medical (M) domains, respectively. In the F domain,
FinGPT is an open-source dataset for financial sentiment analysis, consisting of 77k samples. In G
domain, Alpaca-GPT4 comprises 52k instances of English instruction-following data, generated by
GPT-4 [1] using identical prompts as Alpaca. In M domain, MedAlpaca includes 34k question-answer
pairs sourced from the Anki medical curriculum flashcards.

Configurations. In all experiments conducted on one NVIDIA A40, the frozen LLM used is Llama2-
7B with 32 layers [27] quantized to int8. The LoRA rank and alpha are set to 32 and 64, respectively.
The maximum sequence length is 512. Following the formatting instructions of Alpaca template [25],
the training runs for 200 rounds, with a cosine learning rate scheduler adjusting the learning rate from
5e− 5 to 1e− 6. In each round, the selected clients are trained 10 steps by AdamW [16] optimizer.
The batch size is set to 16. In FinGPT/Alpaca-GPT4/MedAlpaca training, total 10k/20k/20k samples
for 50/20/20 clients, selecting 5/2/2 clients randomly per round. Similar to [35], each training dataset
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Table 1: Comparing "Local", Conventional FIT ("FIT"), DoFIT-base ("Base"), and "DoFIT" on
Finance (F) domain and Finance&General (F&G) domain datasets. FinGPT [36] and Alpaca-
GPT4 [23] are the training datasets on F domain and G domain, respectively. FPB [19], FiQA-
SA [18], TFNS [17], and NWGI [33] are the evaluation datasets on F domain. Avg:3 and Avg:4
denote the average result on the first three evaluation datasets (i.e., FPB, FiQA-SA, and TFNS)
and all evaluation datasets, respectively. ↑ refers to the performance improvement compared to the
alternative marked with the same color (i.e., using the same LoRA configuration) on F domain. ↓
denotes performance degradation, oppositely.

Domain Medthod FPB FiQA-SA TFNS NWGI Avg:3 Avg:4
Acc F1 Acc F1 Acc F1 Acc F1 Acc F1 Acc F1

F

GPT-3.5 0.781 0.781 0.662 0.730 0.731 0.736 - - 0.725 0.749 - -
GPT-4 0.834 0.833 0.545 0.630 0.813 0.808 - - 0.731 0.757 - -
Local 0.770 0.760 0.655 0.719 0.742 0.747 0.629 0.624 0.722 0.742 0.699 0.713
FIT32qv 0.859 0.857 0.815 0.841 0.787 0.792 0.652 0.647 0.820 0.830 0.778 0.784
FIT16qvd 0.850 0.846 0.818 0.842 0.823 0.823 0.646 0.643 0.830 0.837 0.784 0.789
FIT32d 0.860 0.857 0.807 0.836 0.824 0.825 0.635 0.635 0.830 0.839 0.782 0.788

F&G

FIT32qv 0.822 0.813 0.760 0.801 0.822 0.826 0.639 0.641 0.801↓ 0.813↓ 0.761↓ 0.770↓
Basetop10 0.859 0.855 0.778 0.815 0.810 0.811 0.637 0.638 0.816 0.827 0.771 0.780
Basetop15 0.862 0.860 0.804 0.834 0.857 0.858 0.639 0.639 0.841↑ 0.851↑ 0.791↑ 0.798↑
Basetop20 0.859 0.855 0.775 0.815 0.866 0.864 0.632 0.634 0.833 0.845 0.783 0.792
DoFITα=0.5 0.865 0.861 0.815 0.842 0.864 0.864 0.645 0.644 0.848 0.856 0.797 0.803
DoFITα=1.0 0.861 0.858 0.818 0.847 0.869 0.869 0.641 0.640 0.849↑ 0.858↑ 0.797↑ 0.804↑
DoFITα=1.5 0.859 0.855 0.815 0.845 0.822 0.825 0.642 0.641 0.832 0.842 0.785 0.792

Figure 3: Loss curves for different methods, i.e., FIT, DoFIT-base, and DoFIT, in F&G (left) and
M&G (right) domains, respectively.

is randomly shuffled and then evenly divided among the clients. The training datasets consist of either
single-domain datasets or dual-domain datasets. The testing process is carried out on the evaluation
datasets of a single domain, after merging the updating weight matrix on the intra-domain server side
with the frozen LLM.

Comparison Methods. To validate the effectiveness of the proposed DoFIT-base (called "Base" for
conciseness) and "DoFIT" in addressing intra- and inter-domain data heterogeneity, it is essential to
compare them with "Local" and "FIT". Here, "Local" refers to training independently based solely
on data from a single client. "FIT" [35] refers to the collaborative training of different client data
based on FedAvg [20], treating client data from different domains equally. FIT32qv uses all layers’
LoRA[Q,V] (decomposed from Q and V components of self-attention). FIT16qvd uses half of all
layers’ LoRA[Q,V,D] (decomposed from the Q, V components of self-attention and Down linear
layer of MLP). FIT32d uses all layers’ LoRA[D] (decomposed from the Down linear layer in MLP).
Noted, the aforementioned Conventional FIT is FIT32qv [35]. For fairness, we also use FedAvg in the
collaboration training from intra-domain data. In Specific and General domains, "Basetop10" refers to
uploading the top-10 important modules from the intra-domain server side to the inter-domain one,
based on the best baseline in the Specific domain. The rest of "Basetop∗" has a similar definition.
"DoFIT" modifies the initialization of the best "Base" by incorporating the proximal perturbation
initialization. "DoFITα=1.0" means that the scaling factor in DoFIT is set to 1.0.
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Table 2: Comparing "Local", Conventional FIT ("FIT"), DoFIT-base ("Base"), and "DoFIT" on
Medical domain (M), and combined Medical&General domain (M&G). MedAlpaca [2], and Alpaca-
GPT4 [23] are the training datasets on M domain, and G domain, respectively. MedQA [10], and
MedMCQA [22] are the evaluation datasets on M domain. ↑ refers to the performance improvement
compared to the alternative marked with the same color (i.e., using the same LoRA configuration) on
M domain.

Domain Method MedQA MedMCQA Avg

M

Local 0.141 0.204 0.173
FIT32qv 0.167 0.216 0.192
FIT16qvd 0.179 0.200 0.190
FIT32d 0.158 0.199 0.179

M&G

FIT32qv 0.174↑0.007 0.217↑0.001 0.196↑0.004

Basetop25 0.182 0.207 0.195
Basetop30 0.192↑0.025 0.218↑0.002 0.205↑0.013

DoFITα=1.1 0.253 0.252 0.252
DoFITα=1.2 0.261↑0.094 0.255↑0.039 0.258↑0.066

DoFITα=1.3 0.256 0.247 0.251

4.2 Performance Evaluation

Comparison on F Domain and F&G Domain. After training on FinGPT for Finance (F) domain
or FinGPT/Alpaca-GPT4 for Finance&General (F&G) domain, we test the models at round 50 on
the evaluation datasets for F domain, i.e., FPB [19], FiQA-SA [18], TFNS [17], and NWGI [33],
as shown in Table 1. Compared to the independently trained "Local", the collaboratively trained
"FIT", "Base16qvd" and "Base32d" via FL perform better. This indicates that training can benefit
from other clients’ data. Expanding from F to F&G domain, the performance of "FIT" even declines,
while our "Basetop15" improves and surpasses that of FIT. This validates the effectiveness of our
DoFIT-base for addressing domain-aware data heterogeneity. In F&G domain, "DoFIT" further
improves performance compared to "Basetop15". This indirectly validates that the proposed DoFIT
retains more inter-domain information, enhancing overall performance.

Comparison on M Domain and M&G Domain. After training on MedAlpaca for Medical (M)
domain or MedAlpaca/Alpaca-GPT4 for Medical&General (M&G) domain, we test the models at
round 60 on the evaluation datasets for Medical (M) domain, i.e., MedQA [10], and MedMCQA [22].
As shown in Table 2, we can see that: 1) "FIT", "Base16qvd", and "Base32d" consistently outperform
"Local", indicating that collaborative training can enhance model’s capability; and 2) on M&G
domains, "Basetop30" and "DoFIT" exceed the performance of FIT, especially "DoFIT" with the
proximal perturbation initialization strategy, proving the effectiveness of this strategy.

Loss Curves of Different Methods and Hyper-parameters. As shown in the loss curves of Figure 3,
compared to "DoFIT-base", "DoFIT" consistently shows faster convergence and lower losses, as
does "DoFIT-base" compared to "FIT". Noted, the losses of different methods are similar in the first
rounds, while a gap emerges as the number of rounds increases. Figure 4 and Figure 5 also show the
loss curves with different values of Top-k and α. we can find that the losses are insensitive to the
values of these parameters to some extent.

Comparison of Parameter Size. Table 3 further shows the number of parameters per round on FIT,
the best-performing "Basetop15"/"Basetop30", and "DoFIT" in F&G and M&G domains. Compared
to FIT, DoFIT adds slight communication parameters between intra- and inter-domain server sides
(indicated by S-Comm.), with little impact on well-resourced server sides (indicated by S-Comm.).
Compared with "FIT32qv", either Basetop15 or DoFIT requires fewer trainable parameters in the client
side, as well as fewer communication parameters between the client side and the intra-domain server
side.

5 Conclusion and Future Work

In this work, we introduced a novel Domain-aware Federated Instruction Tuning (DoFIT) framework
towards collaborative training on more datasets in relevant domains for boosting the performance of

8



Figure 4: Loss curves for values of Top-k on F&G (left) and M&G (right) domains, respectively.

Figure 5: Loss curves for values of α on F&G (left) and M&G (right) domains.

Table 3: The number of parameters per round in training. "Frozen" denotes the parameter size of
LLM. "Trainable" denotes the parameter size of the updating weight matrix in client side. "Comm."
denotes the communication parameters between client side and (intra-domain) server side. "S-
Comm." denotes the communication parameters between intra-domain server side and inter-domain
server side. 32qv and 32d denote LoRA[Q,V] and LoRA[D], respectively. F&G and M&G denote
Finance&General domain, and Medical&General domain, respectively.

Domain Method Frozen Trainable Comm. S-Comm.

F&G FIT32qv 6738M 4.194M 4.194M 0M
(Basetop15 / DoFIT)32d 6738M 4.021M 4.021M 0.942M

M&G FIT32qv 6738M 4.194M 4.194M 0M
(Basetop30 / DoFIT)32qv 6738M 4.194M 4.194M 0.983M

individual domains. To alleviate the catastrophic forgetting problem caused by domain-aware data
heterogeneity, our DoFIT offers two main insights in terms of aggregation and initialization. For
aggregation, we first normally aggregate domain-specific information on the intra-domain server
side, and then aggregate overlapping domain-agnostic information on the inter-domain server side,
excluding the interference information. For initialization, we add a proximal perturbation from inter-
domain information to the original modules, rather than directly overwritten them. Comprehensive
experimental results on Finance, Medical, and General domains demonstrate the effectiveness of the
proposed DoFIT method, compared to conventional FIT.

Limitations. In our experiments, we have well demonstrated that the proposed DoFIT can facilitate
collaborative training on decentralized data across one specific (i.e., Finance domain, or Medical
domain) domain and the General domain, significantly enhancing performance within each individual
domain. DoFIT is the first attempt to concern domain-aware data heterogeneity, and keeps the FIT-like
optimization strategy since it only requires the least modification to the original FIT architecture. Such
succinct modification seamlessly incorporates DoFIT into the FIT family for convenient reproduction
and implementation. Exploring more related domains instead of limiting to the General domain

9



for enhancing a specific field, and verifying DoFIT’s capability to handle multiple (more than two)
domains, especially when substantial domain-aware data heterogeneity exists, along with the new
optimizations, will be the focus of future research.
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A Appendix / supplemental material

A.1 Algorithm

Algorithm 1 The training process of DoFIT for two domains

Input: △W̃ 0/{△W̄ 0
m}Mm=1: Initial updating weight matrix in the inter-domain

server side / intra-domain server sides, T rounds, N : Random sample number
of clients, M : Total number of domains, e: The number of epochs in the
client side, top-k important modules.

Output: {△W̄T
m}Mm=1

1: for t = 1,· · · ,T do
2: ΩN ← A set of randomly sampled client indices.
3: for m = 1,· · · ,M do
4: if t > 1 then
5: Intra-domain initialization
6: Add a proximal perturbation on Eq. 10
7: end if
8: for each i in ΩN do
9: {△W t

m,i}init =△W̄ 0
m

10: Conduct e epochs of local instruction-tuning for△W t
m,i.

11: end for
12: Intra-domain Aggregation
13: △W̄ t

m = Aggi∈ΩN
(△W t

m,i) on Eq. 8
14: Compute the important score of each module for△W̄ t

m.
15: Upload top-k modules for△W̄ t

m to the inter-domain server side.
16: end for
17: Inter-domain Aggregation
18: Compute the set of overlapping modules from different domains: Ψt

19: △W̃ t
l = Aggm∈M (△W̄ t

m,l) {B̄t
m,lĀ

t
m,l}∈Ψt

on Eq. 9
20: end for

A.2 Comparison with Existing Federated Domain Adaptation Works

Federated domain adaptation for LLMs is crucial, but no related methods currently exist. Applying
existing federated domain adaptation methods like FedGP [8] directly to LLMs yields subopti-
mal results, as shown in Table 4. Where FedGP/FedGP-g refer to the projection of each client’s
LoRA/global LoRA weights in the source domain onto the global LoRA weights in the target domain.
FPL [7] clusters prototypes from different domains into unbiased prototypes for general domain
shift. However, existing federated domain adaptation methods [7, 8] for this task still merge more
redundant and noisy parameters to LLMs, affecting domain fine-tuning performance. Overall, as
shown in Table 1 and Table 4, our method outperforms traditional FIT and general federated domain
adaptation methods.

Table 4: Comparison with existing federated domain adaptation works.

Method FPB FiQA-SA TFNS NWGI Avg:3 Avg:4
Acc F1 Acc F1 Acc F1 Acc F1 Acc F1 Acc F1

FedGP 0.837 0.829 0.760 0.806 0.789 0.786 0.625 0.626 0.795 0.807 0.753 0.762
FedGP-g 0.836 0.830 0.680 0.744 0.700 0.710 0.627 0.629 0.739 0.761 0.711 0.728
DoFITα=1.0 0.861 0.858 0.818 0.847 0.869 0.869 0.641 0.640 0.849 0.858 0.797 0.804

A.3 Performance on the Gradient and Singular Value Spectrum

We add two new criteria—gradient and singular value—to assess module importance in LoRA, as
follows,
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Table 5: Performance on the gradient and singular value spectrum.

Criteria FPB FiQA-SA TFNS NWGI Avg:3 Avg:4
Acc F1 Acc F1 Acc F1 Acc F1 Acc F1 Acc F1

DoFITα=1.0 0.861 0.858 0.818 0.847 0.869 0.869 0.641 0.640 0.849 0.858 0.797 0.804
A-grad-top15 0.866 0.864 0.833 0.852 0.867 0.867 0.640 0.639 0.855 0.861 0.802 0.806
A-svd-top15 0.858 0.855 0.829 0.856 0.828 0.829 0.642 0.641 0.838 0.847 0.789 0.795
B-grad-top10 0.823 0.813 0.789 0.827 0.802 0.806 0.633 0.633 0.805 0.815 0.762 0.770
B-grad-top15 0.833 0.829 0.840 0.855 0.681 0.693 0.630 0.627 0.785 0.792 0.746 0.751
B-grad-top20 0.516 0.480 0.185 0.197 0.501 0.500 0.404 0.369 0.401 0.392 0.402 0.387
B-svd-top10 0.856 0.854 0.844 0.854 0.732 0.740 0.638 0.627 0.811 0.816 0.768 0.769
B-svd-top15 0.821 0.819 0.793 0.824 0.621 0.626 0.644 0.640 0.745 0.756 0.720 0.727
B-svd-top20 0.417 0.306 0.811 0.794 0.371 0.302 0.552 0.457 0.533 0.467 0.538 0.540

Table 1 Comparison with existing federated domain adaptation works

Method
FPB FiQA-SA TFNS NWGI Avg:3 Avg:4

Acc / F1 Acc / F1 Acc / F1 Acc / F1 Acc / F1 Acc / F1
FedGP 0.837/0.829 0.760/0.806 0.789/0.786 0.625/0.626 0.795/0.807 0.753/0.762
FedGP-g 0.836/0.830 0.680/0.744 0.700/0.710 0.627/0.629 0.739/0.761 0.711/0.728
Ours 0.861/0.858 0.818/0.847 0.869/0.869 0.641/0.640 0.849/0.858 0.797/0.804

Table 2 Performance on the gradient and singular value spectrum

Criteria FPB FiQA-SA TFNS NWGI Avg:3 Avg:4
Acc / F1 Acc / F1 Acc / F1 Acc / F1 Acc / F1 Acc / F1

Ours 0.861/0.858 0.818/0.847 0.869/0.869 0.641/0.640 0.849/0.858 0.797/0.804
A-grad-top15 0.866/0.864 0.833/0.852 0.867/0.867 0.640/0.639 0.855/0.861 0.802/0.806
A-svd-top15 0.858/0.855 0.829/0.856 0.828/0.829 0.642/0.641 0.838/0.847 0.789/0.795
B-grad-top10 0.823/0.813 0.789/0.827 0.802/0.806 0.633/0.633 0.805/0.815 0.762/0.770
B-grad-top15 0.833/0.829 0.840/0.855 0.681/0.693 0.630/0.627 0.785/0.792 0.746/0.751
B-grad-top20 0.516/0.480 0.185/0.197 0.501/0.500 0.404/0.369 0.401/0.392 0.402/0.387
B-svd-top10 0.856/0.854 0.844/0.854 0.732/0.740 0.638/0.627 0.811/0.816 0.768/0.769
B-svd-top15 0.821/0.819 0.793/0.824 0.621/0.626 0.644/0.640 0.745/0.756 0.720/0.727
B-svd-top20 0.417/0.306 0.811/0.794 0.371/0.302 0.552/0.457 0.533/0.467 0.538/0.540

Table 3 Average accuracy on FPB, FiQA-SA, TFNS, NWGI
Clients Acc / F1 Clients Acc / F1 Clients Acc / F1

50(5) & 20(2) 0.797/0.804 50(10) & 20(2) 0.800/0.806 50(15) & 20(2) 0.784/0.792
50(20) & 20(2) 0.783/0.792 50(5) & 20(4) 0.786/0.793 50(5) & 20(6) 0.794/0.799
50(5) & 20(8) 0.796/0.802 50(5) & 20(10) 0.791/0.797 25(5) & 20(2) 0.788/0.794
40(5) & 20(2) 0.748/0.757 60(5) & 20(2) 0.791/0.799 75(5) & 20(2) 0.791/0.798
50(5) & 10(2) 0.799/0.804 50(5) & 30(2) 0.790/0.797 50(5) & 40(2) 0.789/0.793

Figure 1 Comparison of average accuracy on different rounds

Figure 2 Modules important scores (left) and singular value spectrum (right) on F and G domains

Figure 6: Comparison of average accuracy on different rounds

Using new criteria to sort modules from largest to smallest within a single domain, and select the
top-k modules, like DoFIT, Gradient: Uses the square norm of the gradients of LoRA modules as
the importance score (A-grad-top15). Singular Value: Uses the sum of the singular values of LoRA
modules as the importance score (A-svd-top15). As shown in Table 5, the importance scores based
on the gradient square norm and the sum of singular values are comparable to the module importance
scores calculated using the square norm of LoRA weights in DoFIT.

From a domain distribution-aware perspective, aggregate the top-k modules with smaller domain
gaps, Gradient: Uses the mean absolute difference of LoRA module gradients across different
domains to reflect domain heterogeneity gaps (B-grad-top*). Singular Value: Uses the L2 norm
of the differences in the singular value spectrum of LoRA modules across different domains to
reflect domain heterogeneity gaps (B-svd-top*). As shown in Table 5, using gradient or singular
value to aggregate modules with smaller domain heterogeneity shows more sensitivity to the top-k
hyperparameter. Compared to our DoFIT, this approach performs worse. This may be because
aggregating modules with smaller domain heterogeneity can still introduce redundant and noisy
modules, which can degrade overall performance when merged into the LLMs.

Overall, focusing on domain-specific key parameters and removing redundancies improves perfor-
mance with LLMs. DoFIT’s square norm method for weights is comparable to gradient and singular
value spectrum methods but is more intuitive and reproducible.

A.4 Federated Settings Experiments

Complexity Analysis: As shown in Table 3, our DoFIT has the same space complexity as the
traditional FIT on the client side, without any additional memory cost, but introduces a slight memory
cost (S-comm.) on the inter-domain server side. In terms of time complexity, our DoFIT is identical
to the traditional FIT on the client side, with only a slight computational overhead for module
importance ranking on the intra-domain server side. Assuming the number of selected clients in the
same domain is k, and each client includes 32d LoRA (64 modules), the sorting time complexity is
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Table 6: Average accuracy on FPB, FiQA-SA, TFNS, NWGI
Clients Acc F1 Clients Acc F1 Clients Acc F1
50(5) & 20(2) 0.797 0.804 50(10) & 20(2) 0.800 0.806 50(15) & 20(2) 0.784 0.792
50(20) & 20(2) 0.783 0.792 50(5) & 20(4) 0.786 0.793 50(5) & 20(6) 0.794 0.799
50(5) & 20(8) 0.796 0.802 50(5) & 20(10) 0.791 0.797 25(5) & 20(2) 0.788 0.794
40(5) & 20(2) 0.748 0.757 60(5) & 20(2) 0.791 0.799 75(5) & 20(2) 0.791 0.798
50(5) & 10(2) 0.799 0.804 50(5) & 30(2) 0.790 0.797 50(5) & 40(2) 0.789 0.793

Table 1 Comparison with existing federated domain adaptation works

Method
FPB FiQA-SA TFNS NWGI Avg:3 Avg:4

Acc / F1 Acc / F1 Acc / F1 Acc / F1 Acc / F1 Acc / F1
FedGP 0.837/0.829 0.760/0.806 0.789/0.786 0.625/0.626 0.795/0.807 0.753/0.762
FedGP-g 0.836/0.830 0.680/0.744 0.700/0.710 0.627/0.629 0.739/0.761 0.711/0.728
Ours 0.861/0.858 0.818/0.847 0.869/0.869 0.641/0.640 0.849/0.858 0.797/0.804

Table 2 Performance on the gradient and singular value spectrum

Criteria FPB FiQA-SA TFNS NWGI Avg:3 Avg:4
Acc / F1 Acc / F1 Acc / F1 Acc / F1 Acc / F1 Acc / F1

Ours 0.861/0.858 0.818/0.847 0.869/0.869 0.641/0.640 0.849/0.858 0.797/0.804
A-grad-top15 0.866/0.864 0.833/0.852 0.867/0.867 0.640/0.639 0.855/0.861 0.802/0.806
A-svd-top15 0.858/0.855 0.829/0.856 0.828/0.829 0.642/0.641 0.838/0.847 0.789/0.795
B-grad-top10 0.823/0.813 0.789/0.827 0.802/0.806 0.633/0.633 0.805/0.815 0.762/0.770
B-grad-top15 0.833/0.829 0.840/0.855 0.681/0.693 0.630/0.627 0.785/0.792 0.746/0.751
B-grad-top20 0.516/0.480 0.185/0.197 0.501/0.500 0.404/0.369 0.401/0.392 0.402/0.387
B-svd-top10 0.856/0.854 0.844/0.854 0.732/0.740 0.638/0.627 0.811/0.816 0.768/0.769
B-svd-top15 0.821/0.819 0.793/0.824 0.621/0.626 0.644/0.640 0.745/0.756 0.720/0.727
B-svd-top20 0.417/0.306 0.811/0.794 0.371/0.302 0.552/0.457 0.533/0.467 0.538/0.540

Table 3 Average accuracy on FPB, FiQA-SA, TFNS, NWGI
Clients Acc / F1 Clients Acc / F1 Clients Acc / F1

50(5) & 20(2) 0.797/0.804 50(10) & 20(2) 0.800/0.806 50(15) & 20(2) 0.784/0.792
50(20) & 20(2) 0.783/0.792 50(5) & 20(4) 0.786/0.793 50(5) & 20(6) 0.794/0.799
50(5) & 20(8) 0.796/0.802 50(5) & 20(10) 0.791/0.797 25(5) & 20(2) 0.788/0.794
40(5) & 20(2) 0.748/0.757 60(5) & 20(2) 0.791/0.799 75(5) & 20(2) 0.791/0.798
50(5) & 10(2) 0.799/0.804 50(5) & 30(2) 0.790/0.797 50(5) & 40(2) 0.789/0.793

Figure 1 Comparison of average accuracy on different rounds

Figure 2 Modules important scores (left) and singular value spectrum (right) on F and G domainsFigure 7: Modules important scores (left) and singular value spectrum (right) on F and G domains

k × 64× log(64). In the financial domain, k = 5; in the general domain, k = 2; and in the medical
domain, k = 2. The entire experiment ran on an NVIDIA A40 GPU for five and a half hours.

Convergence Results: As shown in Figure 6, our DoFIT demonstrates faster and more stable
convergence compared to FIT using FedAvg and FedProx as the FL framework in both single-domain
and dual-domain scenarios.

Client Numbers: 50(5) & 20(2) indicate that in the financial domain, there are 50 clients in total,
with 5 clients randomly selected for training and uploading each round. In the general domain, there
are 20 clients in total, with 2 clients randomly selected for training and uploading each round. As
shown in Table 6, varying the total number of clients or the number of selected clients does not cause
significant fluctuations in the results, demonstrating that the proposed DoFIT is robust to the number
of clients.

A.5 Domain Heterogeneity

The importance of modules in LoRA varies across different domains, indirectly reflecting domain
heterogeneity. As shown in Figure 7 (left), the top-15 important modules in domains F and G are
not completely the same. As training progresses, the weights of the same modules become more
reinforced.

We also further compute the L2 norm of the difference in the singular value spectrum between each
client’s LoRA and the global LoRA for the same domain and different domains. As shown in Figure 7
(right), this visualization reflects smaller intra-domain data heterogeneity and greater inter-domain
data heterogeneity.
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NeurIPS Paper Checklist

1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes]

Justification: Please check out the abstract and introduction sections.

Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?

Answer: [Yes]

Justification: Please check out the limitations section.

Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory Assumptions and Proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?

Answer: [NA]
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Justification: The proposed method mainly comes from experimental verification.
Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental Result Reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?
Answer: [Yes]
Justification: Please check out the methodology, experimental settings, and performance
evaluation sections.
Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?
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Answer: [Yes]

Justification: Please check out the .zip file.

Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental Setting/Details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]

Justification: Please check out the experimental settings, and performance evaluation sec-
tions.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.

7. Experiment Statistical Significance
Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [Yes]

Justification: Please check out the experiments section.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
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• It should be clear whether the error bar is the standard deviation or the standard error
of the mean.

• It is OK to report 1-sigma error bars, but one should state it. The authors should
preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments Compute Resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]

Justification: Please check out the experimental settings section.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code Of Ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

Justification: The research in every respect conforms with the NeurIPS Code of Ethics.

Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).

10. Broader Impacts
Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [Yes]

Justification: Please check out the introduction. The paper has a positive societal impact.

Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.
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• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?
Answer: [Yes]
Justification: This model uses LLMs with safeguards.
Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?
Answer: [Yes]
Justification: The paper has cited the original paper that produced the code package or
dataset.
Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the

package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.
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• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New Assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?
Answer: [Yes]
Justification: Please check out the .zip file.
Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and Research with Human Subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?
Answer: [NA]
Justification: The paper does not involve crowdsourcing nor research with human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional Review Board (IRB) Approvals or Equivalent for Research with Human
Subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer: [NA]
Justification: The paper does not involve crowdsourcing nor research with human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.
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