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ABSTRACT

In this paper, we investigate biases in pretraining datasets for large language models (LLMs) through
dataset classification experiments. Building on prior work demonstrating the existence of biases in
popular computer vision datasets, we analyze popular open-source pretraining text datasets derived
from CommonCrawl including C4, RefinedWeb, DolmaCC, RedPajama-V2, FineWeb, DCLM-
Baseline, and others. Despite those datasets being obtained with similar filtering and deduplication
steps, neural networks can classify surprisingly well which dataset a single text sequence belongs to,
significantly better than a human can. This indicates that popular pretraining datasets have their own
unique biases or fingerprints. Those biases remain even when the text is rewritten with LLMs. We
demonstrate that these biases propagate through training: Random sequences generated by models
trained on those datasets can be classified well by a classifier trained on the original datasets.

1 INTRODUCTION

In 2011, Torralba & Efros (2011) proposed the dataset classification experiment to examine biases present in common
computer vision dataset. The paper demonstrated that computer vision reserachers can relatively easily classify to
which dataset an image from a computer vision dataset popular at the time (e.g., PASCAL, Caltech101, ImageNet,...)
belongs to. Moreover, classifiers can be trained to relatively reliably classify which dataset an image belongs to.
Torralba & Efros (2011) concluded that “despite the best efforts of their creators, the datasets appear to have a strong
built-in bias”. While some of the bias can be accounted for by isolating specific objects the different datasets focus on,
Torralba & Efros (2011) found that the biases are still present in some form, even if those effects are isolated.

Recently, Liu & He (2024) revisited the dataset classification experiment in the current era of large-scale and diverse
vision datasets like YFCC Thomee et al. (2016), DataComp Gadre et al. (2023), and LAION Schuhmann et al. (2022).
Those datasets are large in scale and are collected to train generalizable representations, as opposed to datasets col-
lected for a specific purpose (for example for urban scene understanding Cordts et al. (2016)). Liu & He (2024) found,
perhaps surprisingly, that even for those large and diverse datasets, classifiers can relatively accurately assign a single
image to belong to one of those datasets.

In this paper we study the bias of pretraining datasets for large language models (LLMs), as well as the propagation
of this bias through training with dataset classification experiments.

We consider the most popular open web-based datasets for general purpose LLMs, specifically C4 Raffel et al. (2020),
RefinedWeb Penedo et al. (2023), DolmaCC Soldaini et al. (2024), RedPajama-V2 Together Computer (2023a),
FineWeb and FineWeb-edu Penedo et al. (2024), and DCLM-BASELINE Li et al. (2024). These datasets consist
of sequences of text of average length ranging from 477 to 1235 tokens (see Appendix E), and are obtained by pre-
processing and filtering CommonCrawl. These datasets are considered to be diverse and cover the large variety of text
that is available in the internet, and are commonly used for pretraining and pretraining research of LLMs.

Our main findings are:

• We demonstrate that sequences from open pretraining datasets can be well classified to belong to a cer-
tain dataset, highlighting unique biases or fingerprints inherent in datasets. For example, the datasets C4,
RefinedWeb, DolmaCC, RedPajama-V2, and FineWeb are all obtained from CommonCrawl using a very
similar pipeline consisting of deduplication and heuristic quality filtering with similar rules. Yet an LLM
trained to classify whether a single sequence is part of C4, RefinedWeb, and RedPajama-V2 achieves 80%
accuracy, well above chance (33.3% accuracy), and significantly above the human accuracy.

• Even when rewriting sequences with LLMs to remove some of the formatting, sequences can be well distin-
guished by a classifier.
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• The biases inherent in the pretrained data propagate through training: Sequences generated at random from
LLMs pretrained on DCLM-Baseline, RefinedWeb, and FineWeb-Edu can be well distinguished (89.15%
accuracy) with a classifier trained on the original training data.

• LLMs pretrained on several domains can generate random sequences that reflect the proportion of the domains
in the pretraining mixture. By classifying the output sequences with a classifier trained to distinguish between
the original domains, we can estimate the mixture proportions.

2 RELATED WORK

This work is inspired by Torralba & Efros (2011)’s dataset classification experiment for vision datasets and Liu & He
(2024)’s recent work that revisited the dataset classification experiment in the context of modern large scale dataset.
Liu & He (2024) found, similar as we find for language datasets, that images from the large scale and diverse computer
vision datasets YFCC Thomee et al. (2016), CC Changpinyo et al. (2021), and DataComp Gadre et al. (2023) can be
accurately classified as belonging to one of those datasets.

A variety of works study the problem of classifying LLM generated text. Hans et al. (2024) and many phrase this as a
classification problem Solaiman et al. (2019); Tian et al. (2024); Hu et al. (2023). Guo et al. (2023) demonstrate that
ChatGPT generated answers can be well distinguished from human answers by a classifier, if the text is sufficiently
long . In this work we focus on distinguishing popular pretraining text datasets with a classifier, not AI vs human
generated text.

Shi et al. (2023) and Maini et al. (2024) consider the problem of detecting pretraining data based on blackbox access
of LLMs; specifically given a text and blackbox acccess to an LLM, was the LLM trained on that text? In Section 5 we
study the loosely related problem whether a classifier trained to distinguish training data can distinguish data generated
by the LLMs trained with it.

Carlini et al. (2021) and Nasr et al. (2023) attempt to extract training data from LLMs. They show that an adversary
can extract verbatim text sequences from the model’s training data by querying the LLM with no previous information
of the training set. In section 6 we assume the training domains are known, and estimate the proportion of each domain
in the training mixture.

3 SETUP AND DATASETS CONSIDERED

Throughout this paper, we perform dataset classification for language datasets as follows. Each dataset consists of a set
of sequences, and a classifier is trained to distinguish the sequences from N such datasets. We measure performance
on a test set consisting of an equal amount of sequences from each of the N datasets.

As classifier, we use a standard transformer model for next-word prediction that is fine-tuned on a training set of
sequences to perform N -way classification. See Section 4 and Appendix A for the details of the model used, training
details, and ablation studies with parameters of the classifier and other classifiers.

3.1 DISTINGUISHING DATA FROM DIFFERENT SOURCES

Language models are often pretrained on data from different sources, for example LLama 1’s Hugo Touvron et al.
(2023)’s pretraining data, and reproduction of the data, RedPajama-1T Together Computer (2023b), consists of the
sources C4, CommonCrawl (CC), Arxiv, Github, Wikipedia, and Stack Exchange. Some of those sources are very
easy for humans to distinguish, for example Github (containing code) and C4/CC (containing little code). Thus, it
is perhaps not surprising that we find that 6 way classification of the Redpajama-1T sources (C4, CC, Arxiv, Github,
Wikipedia, Stack Exchange) yields an accuracy of 98.25%.

3.2 DATASETS CONSIDERED

We consider seven of the largest and most popular open datasets for pretraining general-purpose LLMs based on
web-filtered data. The datasets are based on web crawls from CommonCrawl, a nonprofit foundation that provides
a publicly available web archive. Much of the text extracted by CommonCrawl consists of text that is not useful for
training, like incomplete sentences, HTML artifacts, and duplicate texts. Thus all of the datasets we consider for
LLM training are obtained by the dataset creators by extracting text from CommonCrawl data, filtering, cleaning, and
deduplicating the text data.
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All datasets are obtained by i) extracting text using parsers like resiliparse or using CommonCrawl’s pre-
extracted text and language filtering, ii) applying heuristic filtering (examples are removing very short texts, and
removing texts with curly brackets { since those indicate code), iii) deduplication (for example, identical or nearly
identical webpages are filtered out), and iv) machine learning based filtering (for example filtering based on a clas-
sifier trained to distinguish high-quality data from average data). The exact choices of those steps have a significant
effect on the composition of the datasets are how good the models are that are trained on them.

We consider the following seven datasets:

C4: The Colossal Clean Crawled Corpus Raffel et al. (2020) is a popular dataset consisting of 360B Tokens obtained
from CommonCrawl text extracted in April 2019, followed by i) language filtering, ii) heurisitc filtering, and iii)
deduplication.

FineWeb: FineWeb Penedo et al. (2024) is a 15T token dataset extracted from CommonCrawl through i) language and
ii) heuristic quality filtering and iii) deduplication. The heuristic filters and deduplication steps are carefully chosen
based on ablation studies.

RefinedWeb: RefinedWeb Penedo et al. (2023) is a large scale (5T tokens, 600B publicly available) obtained from
CommonCrawl by i) language and ii) heuristic filtering and iii) deduplication.

Dolma CC: Dolma Soldaini et al. (2024) is an open corpus of 3T tokens from different sources. The biggest pro-
portion, about 2.4T tokens, is obtained from CommonCrawl. We consider the CommonCrawl part, which was ob-
tained by first downloading about a quarter of the most recent CommonCrawl data in 2023 (i.e., data from 2020-05
to 2023-06), and was processed with i) language and ii) heuristic quality filtering and iii) deduplication. As a ma-
chine learning based quality filtering step, for each sequence the perplexity was computed with an LLM to measure
Wikipedia-likeness (following the CCNet pipeline Wenzek et al. (2019)) and partitioned into into head, middle, and
tail by perplexity; we consider the head and middle parts.

RedPajama-V2: RedPajama-V2 Together Computer (2023a) is a corpus of 30T filtered and deduplicated tokens also
processed with i) language and ii) heuristic quality filtering, and iii) deduplication. We consider the 20.5T token part of
the corpus consisting of English speaking documents, as for all other datasets we also consider the English part only.
The data contains a broad coverage of CommonCrawl, and comes with quality annotations that enables slicing and
filtering the data. As a machine learning based quality filtering step, for each sequence the perplexity was computed
with an LLM trained to identify Wikipedia-like documents and partitioned into head, middle, and tail, and head and
middle was retained. We consider head and middle as for Dolma.

DCLM-BASELINE: DCLM-BASELINE Li et al. (2024) was obtained from CommonCrawl through i) text extraction
with resiliparse and language and ii) heuristic quality filtering, deduplication, and iv) machine learning based quality
filtering. All steps where chosen by ablation studies to obtain a dataset so that models trained on it perform well.
The final, machine learning based filtering step is important and is trained to classify instruction-formatted data from
OpenHermes 2.5 and high-scoring posts from the r/ExplainLikeImFive subreditt from RefinedWeb. Models trained on
this dataset perform very well on common benchmarks.

FineWeb-Edu: FineWeb-Edu Penedo et al. (2024) is obtained from FineWeb through machine learning based quality
filtering to obtain data with educational text, and consists of 1.3T tokens. Models trained on FineWeb-Edu perform
very well on knowledge and reasoning benchmarks such as MMLU Hendrycks et al. (2021).

All datasets are based on web crawls, are large in scale, and are broad, i.e., not focused on a specific topic or area
(such as Arxiv, Github, etc). Therefore it is perhaps surprising that sequences of these datasets can be relatively
reliably distinguished, as we find in the next section.

4 DATASET CLASSIFICATION EXPERIMENTS

We perform dataset classification experiments by default with a 160M standard autoregressive transformer model that
we pretrain compute optimally Hoffmann et al. (2022) on 3.2B tokens. After pretraining, we remove the last layer in
the transformer network and replace it by a classification head, similar to the reward model in RLHF Ouyang et al.
(2022). Our head has N outputs, where N is the number of classes.

We group the seven datasets into three distinct categories based on their preprocessing techniques. Category 1 incor-
porates standard language processing, heuristic filtering, and deduplication, and consists of the C4, FineWeb, and Re-
finedWeb datasets. Category 2 performs the steps in Category 1 as well as additional light filtering based on Wikipedia
perplexity scores, and includes the Dolma and RedPajama-V2 datasets. Category 3 also performs the Category 2 steps
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# Classes Category 1 Category 2 Category 3 AccuracyC4 FineWeb RefinedWeb DolmaCC RedPajama-V2 DCLM FineWeb-Edu
✗ ✗ ✗ 80.50%
✗ ✗ ✗ 79.27%

✗ ✗ ✗ 77.99%
✗ ✗ ✗ 75.74%

✗ ✗ ✗ 74.76%
✗ ✗ ✗ 74.09%

✗ ✗ ✗ 73.04%
3 ✗ ✗ ✗ 72.90%

✗ ✗ ✗ 68.84%
✗ ✗ ✗ 67.55%

✗ ✗ ✗ 94.12%
✗ ✗ ✗ 92.94%

✗ ✗ ✗ 89.76%
✗ ✗ ✗ 85.16 %

✗ ✗ ✗ 84.55%
✗ ✗ ✗ ✗ 70.31%
✗ ✗ ✗ ✗ 68.98%

4 ✗ ✗ ✗ ✗ 67.88%
✗ ✗ ✗ ✗ 67.45%
✗ ✗ ✗ ✗ 64.44%

5 ✗ ✗ ✗ ✗ ✗ 60.70%

Table 1: Classification accuracy across different combinations from the three dataset categories. Despite the similarity
in the filtering techniques, high classification accuracies are observed, specially for category 3.

and in addition carefully selected machine learning-based text filtering techniques and consists of DCLM-BASELINE
and FineWeb-Edu.

We conduct a comprehensive set of classification experiments, testing all possible combinations of 3-way, 4-way, and
5-way classification using the five datasets from categories 1 and 2. Additionally, we perform five 3-way classification
experiments that pair the two datasets from category 3 with each of the five datasets from the other categories. We
also report the results for all possible 2-way combinations in Table 5 in Appendix B. We use 160M training tokens
per dataset, i.e., 480M for 3-way, 640M for 4-way, and 800M for 5-way classification. As a test set we take 8192
randomly sampled unseen sequences from every dataset.

As seen in Table 1, across all dataset combinations, the classifiers consistently achieve high accuracy. Particularly high
accuracy is obtained when classifying sequences from the datasets DCLM-BASELINE and FineWeb-Edu vs the other
datasets, which is perhaps not surprising since those sequences are relatively distinct, see Appendix D for examples.

However, it is perhaps surprising that sequences from the datasets processed with similar language and heurisitc
filtering and deduplication steps are so easily distinguishable. Humans perform significantly worse in assigning text
sequences to datasets than the neural networks as our study in Section 4.2 demonstrates.

4.1 DETAILS OF THE EXPERIMENTS AND ABLATION STUDIES

In this section we perform ablation studies justifying the choice of our classifier. The ablation studies are performed
on the 3-way classification of C4, FineWeb, and RefinedWeb. Unless stated otherwise, we use the default 160M model
with 480M training tokens (160M per dataset) for every ablation study. Further ablation studies are in Appendix C.

We start by scaling the model size, pretraining data, and training data. We find that high accuracy is obtained with
different model sizes and dataset set sizes.

Scaling model and pretraining data: The default model has 160M parameters and is pretrained on 3.2B tokens. We
study the impact of the model size by considering the model sizes 25M, 87M, 160M, and 410M pretrained compute
optimally on 0.5B, 1.7B, 3.2B, and 8.2B tokens, respectively. The finetuning set size is kept constant at 480M tokens.
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Figure 1: Left: Scaling model size and pretraining data with constant training data. Right: Scaling training data with
constant model size and pretraining data. Scaling model size and pretraining data has a minimal effect on the accuracy,
but the effect of the training data is more prominent.

The results are in Figure 1, left panel. For the model sizes considered, the model size and pretraining data amount play
a relatively insignificant role; the difference in classification accuracy between the smallest and largest model is only
0.56%.

Scaling classification training data: The default training set size used to finetune the pretrained model is 480M
tokens. In this study we consider the 160M model pretrained with 3.2B tokens, and finetune it for classification with
training sets of different sizes. We start with a training set size of 60M tokens, and then double it up to 1.92B tokens,
i.e., we consider the following sizes: 60M, 120M, 240M, 480M, 960M, and 1.92B.

The results are in Figure 1, right panel. The accuracy initially significantly increases with the training data, but
saturates close to 480M, which is our default training set size. Quadrupling the training data from 480M to 1.92B
tokens only gives a gain of 0.82% in accuracy.

Training without pretraining: All classification experiments are carried out by finetuning a model pretrained to
predict the next token. To study the impact of pretraining for classification accuracy, we train a randomly initialized
model (without any pretraining) directly for classification. This gives an accuracy of 71.59%, which is 3.17% less than
the pretrained model (74.76%). Since pretraining improves performance by 3.17%, which is significantly more than
increasing the model size, we choose to work with the pretrained model throughout all our experiments.

4.2 CLASSIFICATION ACCURACY ACHIEVED BY HUMANS

Our experiments show that classifiers can accurately differentiate between datasets, even when the differences are
subtle to human perception. This is particularly striking with datasets like C4 and FineWeb, which are obtained with
similar filtering steps and appear nearly identical to humans. Two example sequences from each dataset are in Figure
2, more examples are in Appendix D.

We conducted a dataset classification experiment to measure human performance. The task is binary classification
between C4 and FineWeb. We gave two machine learning researchers several sequences from each dataset for inspec-
tion. For testing, the researchers were given 50 unlabeled sequences from each set and had unlimited time to classify
them. On average, it took them 1.5 hours to label the 100 sequences.

The researchers achieve an average accuracy of 63%, only 13% above random guessing. In contrast, the 160M sized
classifier trained on 320M tokens performs significantly better attaining 88%, which highlights the model’s ability to
identify subtle patterns that are not easily distinguishable by humans.

4.3 REWRITE EXPERIMENTS

The datasets are difficult to distinguish for humans. To gain more insights into what makes the sequences distinguish-
able, we rewrite original data with an LLM and classify the rewritten texts. We rephrase the original datasets with
OpenAI’s GPT-4o-mini model prompted with the following three prompts:
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C4

•Made it back, can I come inside for a change?
Made of glass and falling fast all the way!
Thanks for correcting Tokyo Police Club - Mis-
erable lyrics!
•Jamie Oliver is a famous CHEF from the UK.
Here you can learn how to make scramble eggs in
three different ways: English, French and Amer-
ican way! ENJOY IT!

FineWeb

•Short-term and long-term changes in the
strength of synapses in neural networks underlie
working memory and long-term memory storage
in the brain.
•Yesterday, we indulged in all the goodness of
sweets, so I thought it only appropriate that we
feature the other side of the coin: Salty. Now,
I’m a girl who loves her potato chips.

Figure 2: Sample text sequences from C4 and FineWeb. From human perspective, it is hard to identify patterns to
distinguish between the datasets.

Prompt Original Prompt 1 Prompt 2 Prompt 3
Accuracy 87.37% 83.19% 79.50% 66.02%

C4 av. length 425 436 408 371
FineWeb av. length 621 627 580 489

Table 2: Classification accuracy between C4 and FineWeb when rephrased with 3 different prompts. The accuracy
drops as the prompts allow for more deviation from the original text. Average length is measured as the average
number of tokens per sequence in the test set.

Prompt 1: “Rewrite the following text sentence by sentence while preserving its length and the accuracy of its content.
Maintain the overall format, structure, and flow of the text:”

Prompt 2: “Rewrite the following text while preserving its length and the accuracy of its content:”

Prompt 3: “Rewrite the following text while preserving its length and the accuracy of its content. Do not use newlines,
new paragraphs, itemization, enumeration, and other formatting, unless it is important or appropriate for better
readability:”

The prompts encourage increasing degrees of deviation of the rephrased texts from the originals. This can be seen
in Figure 7 in Appendix D, which shows an original text sequence from C4 rephrased with the three prompts. The
rephrased text from Prompt 1 is the closest to the original, followed by Prompt 2, and then Prompt 3. Prompt 1
preserves the formatting and rephrases primarily through replacing a few words. Prompt 2 alters the format slightly,
introducing changes such as line breaks. It also changes the text structure by making it more compact, for example,
the final sentence in Prompt 2 (Figure 7) conveys the same meaning as the original text and Prompt 1 but in a more
concise form, see table 2 for the average sequence lengths. Prompt 3 significantly alters both the structure and format
of the original text.

We consider the binary classification task between C4 and FineWeb, i.e., we train a classifier to distinguish rephrased
C4 from rephrased FineWeb. Using each of the prompts, we rephrase 160M training tokens and 8192 test sequences
from every dataset. We use the default 160M transformer as the classifier, and report the results in Table 2.

Interestingly, while the rephrased text are more difficult to distinguish, when rewirtten with Prompt 1 and Prompt 2,
the sequences are still easy to distinguish for a classifier. This suggests that the distiguishability of the texts does not
overly rely on wording and formatting of the text.

4.4 REMOVING FORMATTING AND CLASSIFYING BASED ON WORD FREQUENCIES ONLY

We have so far seen that biases exist within popular text datasets, and persist even when the text is rephrased. We next
attempt to isolate which features are responsible for this bias.

Removing formatting. We remove structural formatting of C4 and FineWeb. Specifically, we remove all newlines,
itemization and enumeration patterns, including numbers, bullet points and similar markers that commonly denote list
elements, excessive spaces, and other special characters such as tabs and carriage returns with regular expressions
(regex). The resulting text is a single continuous block of text. Essential punctuation markers, such as periods and
commas, are not modified as they contribute to the text’s meaning rather than just its formatting or display.
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We train the 160M model to classify between regex preprocessed C4 and FineWeb. We use 320M training tokens
(160M tokens per dataset), and 8192 test sequences. The accuracy is 72.42%, about 15% less than the accuracy on the
original datasets (87.37%). This drop in accuracy suggests that models detect patterns in formatting that are important
for classification. However, the fact that classification remains relatively accurate even after unifying the formatting,
suggests that there are biases beyond format and structure present within the datasets.

Bag of Words (BoW) is a simple text classification method that represents text as a collection of unique words,
disregarding format, grammar, word order, or context. Each text sequence is transformed into a vector with the
frequency of each unique word within the text. For instance, BoW transforms the following two texts: “I like apples
but not bananas” and “I like bananas but not apples” to the same exact vector representation.

We use BoW to distinguish between C4 and FineWeb, and achieve a classification accuracy of 63.45%. Classification
with BoW is higher than a random guess despite reducing each text sequence to a vector with the frequency of words
within it. BoW disregards any semantic relationship between the words, it is based solely on the vocabulary used,
which suggests that the vocabulary distributions of C4 and FineWeb are different.

4.5 DATASET CATEGORIZATION

To get a deeper understanding of the characteristics that differentiate the datasets, we obtain a random sample from
each of the seven datasets, and categorize its text sequences into the 13 thematic categories shown in Figure 3. We use
Chat-GPT-4o-mini’s API by prompting it to classify the text to the most appropriate category. If none of the categories
are appropriate, it chooses “Other”.

C4 FineWeb Refined
Web

Advertisement
Health, Wellness & Fitness
Food & Nutrition
Lifestyle & Recreation
News & Media
Science
Technology
Education
Business & Finance
Politics & Policy
Arts & Entertainment
Society & Culture
Community
Other

Dolma
CC

RedPajama
V2 DCLM

FineWeb
Edu

Figure 3: Categorization of datasets into 13 thematic categories. Similarly filtered datasets have comparable categori-
cal distributions.

The visualizations in Figure 3 reveal that the content distribution is close for similarly filtered datasets. For instance
C4, FineWeb, and RefinedWeb are filtered with standard heuristics and deduplication, and therefore have a comparable
distribution. DolmaCC and RedPajama-V2 are additionally filtered with respect to Wikipedia perplexity and thus also
exhibit similar distributions.

The machine learning filtered datasets (Dolma, RedPajama, DCLM, and FineWeb-Edu) have significantly less ad-
vertisement content than C4, FineWeb, and RefinedWeb. Also, FineWeb-Edu is filtered for educational content, and
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therefore has the majority of its sequences categorized as “Science” followed by “Education”. Such content differences
across datasets provide a basis for their distinguishability.

4.6 DISCUSSION

Our experiments suggest that format, vocabulary, and content are all characteristics that enable differentiating between
the datasets. While some of these features are obvious, others are subtle and are only detected by neural networks.

The best example for features that are easily identifiable, is the formatting in DCLM. The DCLM team used resiliparse
to extract text, which very frequently inserts new lines between the sentences (i.e., ends sentences with \n\n). This
makes DCLM sequences particularly distinct, see Appendix D. This is also reflected in the high accuracy a model
attains when classifying DCLM sequences as seen in Tables 1 and 5.

Another example is FineWeb-Edu. Most of the sequences are educational and scientific, and thus classifying educa-
tional and scientific sequences as FineWeb-Edu sequences can work relatively well, see Appendix D for examples.

For other datasets, it is harder to point to specific individual patterns that make them distinguishable, for example we
found C4 and FineWeb sequences very hard to distinguish for a human, but easy for the model (see Section 4.2). This
might be because the model sees millions of examples from which several subtle features can be picked up.

5 BIAS PROPAGATION

From our dataset classification experiments, we observe that each dataset exhibits inherent biases not apparent to
humans but detectable by classifiers. We now explore how these biases propagate to text generated by LLMs trained
on those datasets.

We consider the following three publicly available LLMs pre-trained on individual datasets from the seven datasets
considered in this study:

• Falcon-7B: A 7B parameter model pretrained on 1.5 trillion tokens from the RefinedWeb dataset by TII
(Technology Innovation Institute) Almazrouei et al. (2023).

• DCLM-7B: A 7B model pretrained on 2.5 trillion tokens from the DCLM-Baseline dataset by the DCLM
team Li et al. (2024).

• FineWeb-Edu-1.8B: A 1.8B parameter model trained by Huggingface on 350 billion tokens from the
FineWeb-Edu dataset. The smaller model size and fewer pretraining tokens for FineWeb-Edu are consis-
tent with its focus on educational texts.

All LLMs are only pretrained on the respective datasets, and not finetuned in any way. We generate data with each of
the LLMs by prompting the LLM with a single token, sampled from the distribution of tokens that appear as the first
token in the sequences derived from original training data of the LLM. We generate 160M training tokens and 8192
test sequences from each LLM.

Original vs generated: By inspecting the generated data, we observe that the outputs of the LLMs resemble the
data on which they are trained (see Appendix D for examples). We next measure a classifier’s ability to differentiate
between the original and generated data.

We train a 160M model on 320M tokens (160M original, 160M generated) for every dataset to distinguish the original
from the generated data. The accuracies are as follows: RefinedWeb 89.64%, DCLM-Baseline 89.61%, and FineWeb-
Edu 89.84%. This is not surprising, as it is well established that text generated with current LLM can be relatively
well distinguished from human-written text if the text is sufficiently long Hans et al. (2024); Tian et al. (2024).

Generated vs generated: We next study how well we can distinguish between the generated data. We train a 160M
model on 480M training tokens (160M per generated dataset) for the 3-way classification task of generated Refined-
Web, generated DCLM-Baseline, and generated FineWeb-Edu data.

The classifier achieves an accuracy of 95.59%, indicating that these generated datasets are easily distinguishable, even
easier than the original datasets (89.76% as in Table 1). This is likely because the generated data comes from different
LLMs, and each LLM introduces its biases in the data it generates.

Classifying generated data with a model trained to distinguish the original data: We next measure to what extent
the bias in a dataset can be measured from sequences generated by a language model trained on this dataset. To this
end, we measure whether a classifier trained on original data can effectively classify generated data.
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Using the 3-way classifier trained on the original RefinedWeb, DCLM-Baseline, and FineWeb-Edu data (as described
in Section 4), we classify the generated data. The classifier achieves 89.15% accuracy on the generated data, only
0.61% less than the accuracy on the original data (89.76% as in Table 1).

This indicates that the unique biases and fingerprints inherent in pretraining datasets propagate through training, and
can be measured surprisingly well from the outputs of models trained on those datasets.

5.1 INSTRUCTION FINETUNING

So far our analysis has focused on pretrained LLMs without additional finetuning. We next consider instruction
finetuned models, and investigate to what extent finetuning influences the biases present in the models’ outputs.

To this end, we utilize Falcon-7B-Instruct, provided by TII, and DCLM-7B-IT, by the DCLM team. Both are
instruction-finetuned variants of Falcon-7B and DCLM-7B, respectively. We generate 8192 test sequences from each
model.

We proceed with a binary classification task that distinguishes between RefinedWeb and DCLM datasets. We train a
160M model on 320M tokens from the original datasets of RefinedWeb and DCLM (160M tokens from each dataset).

We then evaluate the classifier’s performance on three data types: the original datasets, generated data from the
pretrained models (without finetuning), and generated data from the instruction-finetuned models. The results are
summarized in Table 3.

Original data Generated data w/o finetuning Generated data with finetuning
Accuracy 99.03% 97.39% 89.09%

Table 3: Accuracy of a binary classifier trained on original data, and tested on original data, generated data from a
pretrained model, and generated data from an instruction finetuned model.

The results suggest that finetuning a model causes its outputs to diverge from the original data it was pretrained on.
However, the inherent biases still persist, enabling the classifier to differentiate between the outputs.

6 ESTIMATE MIXTURE PROPORTIONS

We have so far demonstrated that widely-used LLM pretraining datasets contain biases that make them distinguishable,
and that these biases propagate through training. As a result, a classifier trained on the original data can accurately
classify data generated by an LLM. Building on these findings, we can to some extent estimate the mixture proportions
of pretraining datasets of an LLM, as we discuss next.

LLMs are typically pretrained on a mixture of datasets with certain mixture proportions. These proportions signif-
icantly impact model performance and are non-trivial to optimize Xie et al. (2023); Albalak et al. (2023); Ge et al.
(2024). Several LLM developers disclose only the datasets used in training, but not the precise mixture proportions,
such as GPT-NeoX Black et al. (2022), OPT Zhang et al. (2022), and Galactica Taylor et al. (2022).

We hypothesize that an LLM pretrained on multiple datasets, when prompted with a random token, will generate
sequences that closely follow the proportions of its training mixture, since LLMs learn the underlying data distribution
during training Deletang et al. (2024), and generate tokens by sampling from the probability distribution of the learned
patterns. We therefore expect the model’s outputs to statistically follow the original dataset proportions, producing
sequences that reflect the frequency of each dataset in the mixture.

To verify this hypothesis, we utilize SlimPajama Shen et al. (2024), which is a further refined and deduplicated version
of RedPajama-1T Together Computer (2023b). SlimPajama consists of 7 domains: Arxiv, Books, Github, C4, CC
(Common Crawl), SE (Stack Exchange), and Wikipedia. The SlimPajama team provides two 1.3B LLMs trained on
330B tokens from the SlimPajama dataset. The first LLM is trained on only 4 domains: Books, Github, CC, and
Wikipedia, and the second one is trained on all 7 domains. The mixture proportion of each domain is known.

We train a 4-way classifier on the original data from the 4 domains: Books, Github, CC, and Wikipedia, and another
7-way classifier on the original data from all 7 domains. We use the 160M model as a classifier, and 160M training
tokens from each domain. We generate 2048 random sequences from each LLM by prompting the LLM with one
random token, then classify the generated sequences using the the classifiers trained on the original data.
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Figure 4: Percentage of generated sequences assigned to different domains by a classifier trained on original data. [a]
Sequences generated by an LLM trained on 4 domains and classified by a classifier trained on the same 4 domains.
[b] Same as [a] but 7 domains. [c] Sequences generated by an LLM trained on 4 domains and classified by a classifier
trained on 7 domains.

We classify the sequences generated by the LLM trained on 4 and 7 domains using the 4-way and 7-way classifiers
respectively, and report the percentage of sequences classified as belonging to one of the domains in Figure 4 [a,b].
The estimated proportions closely approximate the true proportions across most domains. However, the estimates of
C4 and CC deviate from the true ones as seen in [b], as some CC sequences are classified as C4. This is somewhat
expected as C4 is a subset of CC.

In Figure 4 [c], we use the 7-way classifier to classify the sequences generated by the LLM trained on the 4 domains,
to verify if the classifier correctly refrains from assigning sequences to the 3 excluded domains: Arxiv, C4, and SE.
Almost no sequences were classified as Arxiv or SE, confirming that the LLM has not been trained on any of them.
As observed previously, a discrepancy appears with some CC sequences misclassified as C4.

7 CONCLUSION AND LIMITATIONS

In this paper we demonstrated that popular pretraining text datasets contain inherent biases that propagate through
training, enabling a classifier trained on original data to effectively classify generated data and, consequently esti-
mate the pretraining mixture proportions. We showed that classification is possible under various conditions such as
rephrasing and finetuning.

However, one case where classification accuracy is degraded is when datasets consist of the same domains but differ
solely in their mixture proportions. Consider two perfectly distinguishable dataset domains, A and B. Two datasets
X and Y are constructed with different mixtures of A and B, where X has a higher proportion of A than Y, and
Y has a higher proportion of B than X. Sequences from A in Y may be misclassified as belonging to X, since X
has seen more sequences from A. Similarly, sequences from B in X are likely to be misclassified as originating from
Y. This setup highlights how classification becomes unreliable when datasets differ only in domain proportions rather
than content or filtering techniques.

REPRODUCIBILITY STATEMENT

This work is fully reproducible, as all resources and tools used are publicly available. We conduct the classification
experiments using the OpenLM repository, which is a public repository designed for research on medium-sized lan-
guage models (up to 7B parameters). All datasets considered in this study are publicly available on Huggingface. The
rewriting experiments are performed with ChatGPT, and require an API key from OpenAI. For bias propagation, we
employ pretrained LLMs publicly available on Huggingface. We will release all code, dataset and LLM download
links, and reproduction instructions on our GitHub page.
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A MODEL, TRAINING DETAILS, AND HYPERPARAMETERS

In this section, we outline the architectures of the models employed in our experiments, as well as the training proce-
dures and hyperparameters. For all experiments, we utilize the GPT-NeoX tokenizer Black et al. (2022), which has a
vocabulary size of 50,432 tokens.

A.1 MODEL

Our primary model is a transformer with 160 million parameters (160M). Additionally, we conduct ablation studies
using models of varying sizes, including 25M, 87M, and 410M parameters. All models are standard autoregressive
transformers, with detailed specifications provided in Table 4.

To adapt the standard transformer architecture for classification tasks, we replace the final layer with a classification
head. Specifically, the original last layer, a linear transformation that maps from the context length to the vocabulary
size, is substituted with a classification head. This classification head is also a linear layer that maps from the context
length to N , where N represents the number of classification classes.

A.2 TRAINING DETAILS

To prepare the training data, we follow the standard procedures for LLM pretraining. We first tokenize the text
sequences using the GPT-NeoX tokenizer. We then construct input sequences of length 2048 tokens, corresponding to
the model’s context length, by appending sequences of the same dataset together.

An < |endoftext| > token is added at the end of every sequence before concatenating it with the subsequent sequence.
The resulting training sequences, each of length 2048, are partitioned into shards. Each shard contains 8192 sequences,
resulting in a total of 8192× 2049 = 16.78M tokens per shard.

We train the transformer with a classification head to classify which dataset a text sequence is coming from using the
cross-entropy loss. The loss is computed at the token level, where the model classifies every sub-sequence within a
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Model 25M 87M 160M 410M
Hidden dimension 192 488 768 1024

Num. heads 12 12 12 16
Num. layers 12 12 12 24

Context length 2048 2048 2048 2048
Vocab. size 50432 50432 50432 50432
MLP ratio 8/3 8/3 8/3 8/3
Activation SwiGLU SwiGLU SwiGLU SwiGLU

Weight tying no no no no

Table 4: Model specifications. All models have a similar architecture, and differ only in the hidden dimension, number
of heads, and number of layers.

given sequence. For instance, a sequence of length 2048 tokens is seen by the model as a series of sub-sequences of
lengths 1, 2, 3, ..., 2047, and 2048. Each sub-sequence is classified individually under the same class as the original
sequence, ensuring that the model learns to predict the class consistently across all sub-sequence lengths.

At test time, the text sequences are tokenized and fed into the model in their original form, without concatenation.
Consequently, the test sequences vary in length. If a sequence originally exceeds 2048 tokens, the model processes
only the first 2048 tokens, as this is its maximum context length. Unlike the training phase, where sub-sequences are
classified, the model classifies the entire sequence as a whole during testing.

A.3 HYPERPARAMETERS

In all experiments, we train each model for a single epoch, which means that each training token is seen by the model
only once. We use a batch size of 16 and apply gradient clipping with a norm of 1 to stabilize training. The initial
learning rate is set to 0.0003 and is decayed to zero using a cosine annealing scheduler, with a warm-up phase of 2000
steps.

The optimizer used is AdamW Kingma & Ba (2015) with hyperpameters: β1 = 0.9, β2 = 0.95, ϵ = 1 × 10−8, and
weight decay 0.2. We also use automatic mixed precision training with brain floating point 16 (bfloat16) to enhance
computational efficiency throughout the training process.

B 2-WAY CLASSIFICATION

Our main results displayed in table 1 were for 3-, 4-, and 5-way classification between the main datasets considered
in this study. In this section, we report the classification accuracies for all possible binary combinations between the
seven datasets, i.e.,

(
7
2

)
= 21 possible combinations.

As before, we use the 160M model with 160M training tokens and 8192 test sequences per dataset. Results are reported
in Table 5.

C4 FineWeb RefinedWeb DolmaCC RedPajama-V2 DCLM FineWeb-Edu
C4 87.37% 90.72% 69.42% 95.64% 98.85% 92.88%

FineWeb 87.37% 75.49% 82.70% 80.54% 99.15% 78.05%
RefinedWeb 90.72% 75.49% 88.32% 80.68% 99.03% 84.74%
DolmaCC 69.42% 82.70% 88.32% 90.91% 97.03% 91.08%

RedPajama-V2 95.64% 80.54% 80.68% 90.91% 99.05% 77.69%
DCLM 98.85% 99.15% 99.03% 97.03% 99.05% 98.54%

FineWeb-Edu 92.88% 78.05% 84.74% 91.08% 77.69% 98.54%

Table 5: Classification accuracy for all possible 2-way combinations of the seven main datasets in this study.

C FURTHER ABLATION STUDIES

Accuracy vs Sequence Length: As seen in Appendix E, the sequence length varies a lot between the datasets,
and even within the same dataset. To evaluate the impact of sequence length on classification accuracy, we analyze
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sequences of lengths ranging from 0 to 2000 tokens, and divide them into intervals of 200 tokens (i.e., 0-200, 200-400,
..., 1800-2000). For each interval, we sample 1024 test sequences from each dataset.

The results, illustrated in Figure 5, show a steady improvement in classification accuracy as sequence length increases.
This trend aligns with the expectation that longer sequences contain more information (2000 tokens is around 1500
words), which allows the classifier to identify more distinguishable patterns and improve classification performance.
However, even short sequences can perhaps surprisingly be well classified.
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Figure 5: Accuracy vs sequence length. Longer se-
quences attain higher accuracies than shorter ones.
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Figure 6: Classification accuracy of BERT and FastText
classifier compared to an autoregressive transformer.

BERT: Unlike autoregressive transformers, BERT Devlin et al. (2019) is a bidirectional transformer model that cap-
tures contextual information from both preceding and succeeding tokens within a sequence, without the use of causal
masks that limit attention to preceding tokens. As a result, BERT processes the entire sequence at once during training,
rather than treating it as a series of subsequences. We therefore plot its performance as a function of the number of
training sequences in Figure 6.

For reference, we also plot the performance of the autoregressive transformer relative to the training sequences instead
of the training tokens (as in Figure 1 right panel). To obtain the number of sequences, we divide the number of tokens
by the average sequence length of C4, FineWeb, and RefinedWeb (see Table 6).

The performance of BERT and the autoregressive transformer are closely comparable. BERT initially achieves slightly
lower accuracy but eventually reaches a marginally higher accuracy. The behavior that BERT requires more training
sequences is expected, as the autoregressive transformer processes each sequence as a series of subsequences, while
BERT processes each sequence only once.

FastText Classifier: FastText Joulin et al. (2016) is an efficient text classification library designed to provide fast
and scalable text classification tasks, particularly suitable for classification of large-scale datasets. FastText relies on
a simple shallow neural network architecture that enables rapid training and inference. Similar to BERT, FastText
processes each sequence as a whole.

We display FastText’s performance with respect to the number of training sequences in Figure 6. The transformer-
based classifier and BERT significantly outperform FastText, but are significantly slower, and require significantly
more compute.

Majority Vote at Test Time: Unlike the training phase, where sub-sequences are classified, we classify the entire
sequence as a whole during testing throughout the paper. In this ablation study, we classify all subsequences within
one test sequence, and then determine the final prediction as the majority vote. For instance, a sequence of length
x tokens will yield x predictions. The final predicted class is the most frequent among these individual predictions.
Using majority voting reduces accuracy to 67.37%, which is a 7.39% decrease compared to the default whole sequence
classification.

Aggregating sequences: Throughout the paper, we classify individual sequences. In this ablation study we combine
the sequences of the same dataset together to form sequences of length 2048 tokens, aligning with the context length
of our transformer model. This creates a uniform test set with sequences of equal length, were each sequence utilizes
the entire attention span of the transformer.

The aggregation of sequences yields an impressive 95.18% classification accuracy, approximately 10% higher than
the default sequence based testing with sequences of length 1800-2000 tokens as seen in Figure 5. This suggests that
providing the classifier with multiple concatenated sequences simplifies the classification task, making it easier than
classifying a single sequence of similar combined length.
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Linear probing: Linear probing refers to training a linear classifier on fixed pretrained representations. It is often
used as a simple evaluation metric as it offers a quick assessment of how well a pretrained model can classify data
using only a linear classifier. We freeze the weights of the pretrained model, and train only the last linear layer, i.e.,
the classification head, which results in 33.18 %, equivalent to a random guess.

D SAMPLE TEXTS

In this section we show an original sequence paraphrased with the 3 prompts mentioned in section 4.3. We also provide
example sequences from the datasets considered in this study. We display original sequences from C4, FineWeb,
RefinedWeb, DolmaCC, RedPajama-V2, DCLM-Baseline, and FineWeb-Edu, and the generated sequences from the
three pretrained LLMs: Falcon-7B, DCLM-7B, and FineWeb-Edu ablation model.

For clarity and ease of visualization, only short sequences are displayed here. Some sequences are considerably longer
and span multiple pages. Therefore, the sequences shown here do not reflect the actual sequence length.

D.1 REPHRASED SEQUENCES

Original Text

What is the length of the coordinates in the two inertial systems S and S’ at the velocity v, according to
relativity - if the length of the coordinates are identical at v = zero?
1) Is the physical length of the coordinates greatest in S?
2) Is the physical length of the coordinates in S equal to the physical length of the coordinates in S’?
If the physical lengths are identical, will it then be possible to have any physical length contractions according
to relativity?

Text rephrased with Prompt 1

What is the length of the coordinates in the two inertial systems S and S’ moving at velocity v, given that the
lengths of the coordinates are the same when v equals zero?
1) Is the physical length of the coordinates maximized in S?
2) Is the physical length of the coordinates in S the same as the physical length of the coordinates in S’?
If the physical lengths are the same, is it then feasible to have any physical length contractions as described by
relativity?

Text rephrased with Prompt 2

What is the length of the coordinates in the two inertial reference frames, S and S’, moving at velocity v, in
accordance with relativity, if the coordinate lengths remain the same when v = 0?

1) Is the physical length of the coordinates longest in S?
2) Are the physical lengths of the coordinates in S and S’ equal?

If the physical lengths are equal, can length contractions according to relativity even occur?

Text rephrased with Prompt 3

What is the coordinate length in the two inertial systems S and S’ at velocity v, given that the lengths are the
same when v equals zero? 1) Is the physical length of the coordinates larger in S? 2) Is the physical length of
the coordinates in S equivalent to that of the coordinates in S’? If the physical lengths are the same, can there
be any length contractions as described by relativity?

Figure 7: A sequence from C4 rephrased with the 3 different prompts described in section 4.3. The rephrased text
shows increasing divergence in structure and format from the original one.
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D.2 ORIGINAL SEQUENCES

C4

• Beginners BBQ Class Taking Place in Missoula!
Do you want to get better at making delicious BBQ? You will have the opportunity, put this on your calendar
now. Thursday, September 22nd join World Class BBQ Champion, Tony Balay from Lonestar Smoke Rangers.
He will be teaching a beginner level class for everyone who wants to get better with their culinary skills.
He will teach you everything you need to know to compete in a KCBS BBQ competition, including techniques,
recipes, timelines, meat selection and trimming, plus smoker and fire information.
The cost to be in the class is $35 per person, and for spectators it is free. Included in the cost will be either a
t-shirt or apron and you will be tasting samples of each meat that is prepared.

• Hurrah! A cooperative worldwide effort to rescue Thailand children trapped in a flooded cave rescued them
all in less than 3 weeks from the time they entered the cave to the time of their rescue.
It should be much easier, shouldn’t even take a heroic effort, to rescue children trapped in separation from their
families at the Mexican border. These things are possible, but this week, the administration did not even meet
the first deadline to get all the children below 5 years old reunited with their families.
It should even be logistically possible with a cooperative world wide effort to develop economic systems that
could rescue all the hungry children everywhere living in poverty.
In the U.S. alone, 1 in 5 children live in poverty, according to a recently released United Nations report.

FineWeb

• Originally Posted by bradhs
The only thing you can do is create a Search and Save it with a shortcut key. I do this when I only want to see
my corporate email.
1. Go into your Messages and select Search.
2. Set the Service option to the Enterprise Email.
3. Save the Search. Give it a name and a shortcut key.
Use the shortcut key to restrict the email list to only Enterprise email.
Hm. This isn’t working for me... When I initiate the search, it comes back with no messages, and I do have
some that it should show... The service option choices are: All Services, my pop email address, and Desktop.
I selected Desktop. That right?

• I have just updated my TV and Blu ray player but not my amp.
I didn’t want to update my Sony STR-DG820 amp because it works so well, but I did want to keep my options
open for playing 3D discs so I got the Panasonic DMP-BDT310 because it has two HDMI ports and could
route sound through the amp and picture to the TV.
I’ve gone through every setup and I’m not getting DTS-HD or TRUE-HD. The manual doesn’t help at all and
this is becoming a little silly. Could some one go through a step by step guide in the setup.

RefinedWeb

• A huge thank you goes to those who helped with the hedge cutting on the road side of the churchyard recently.
This was a very much needed task, the pathway is nice and clear now. We are also very grateful to whoever
donated the funds to provide the skip, again this was a much needed requirement.
If anyone is interested in helping to maintain the churchyard, please contact Mr Mike McCrea on 01283
214473. Any assistance will be gratefully received.

• Free US shipping on orders over $50!
Pumpkin dominates the fall fragrance scene! This best seller combines brown sugar, molasses, vanilla, and
classic holiday baking spices to make an aroma that is simply irresistible!
—–!
Amy’s review:
”I love these candles. So clever that they’re in a coconut shell! The scents fill my house and they have a long
burn time! I’ve purchased from them twice and will continue to support this business! Can’t wait to go home
and try my fall scents!”
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DolmaCC

• Wowed by the lights and prospects of city life, Loveness leaves her small mining town in search of a new
life in Harare. She imagines herself falling for a hot-shot city man becoming his wife and spending her life in
luxury while tending to her city children. The man she considers the love of her life is anything but a hot shot,
and he is abusive and uncaring. To top all this off, he his HIV positive. Loveness is at a crossroads. She must
consider her choices.
Although, Waste Not Your Tears does not shy away from misfortune, it is also a novel of forgiveness and hope.
Loveness is an unlikely heroine on a stage set during the crisis of HIV/AIDS in Zimbabwe. She lives, however,
amongst us, and reading this sensitive and thoughtful novel provides insights into the challenges of making the
wrong choices, but having the strength to move forward.

• The Avon Lake Sports Hall of Fame’s purpose is to give lasting recognition to the outstanding sports figures
and/or teams of Avon Lake who have demonstrated outstanding athletic ability at the high school, college,
amateur or professional sports levels.
We strive to recognize those individuals who have contributed greatly to the promotion of sports through
leadership, sponsoring, coaching or providing assistance to athletes of athletic programs.
It is our utmost desire to promote more interest in the athletic programs of Avon Lake.

DCLM-Baseline

• Economic Indicators for Libertarians 101

Why Ron Paul is Unique? (Galvanizers and Diplomats)

Ron Paul is a unique figure in libertarianism, able to not only be a diplomat and figure that people outside of
libertarianism can empathize with, but also a diehard who can galvanize the most radical of libertarians. It’s
very rare a figure like him can exist, and let’s be glad he does.

• Tuesday, 26 April 2011

tea parties, wonderland, high tea, garden party

I want to hold a cute girly tea party and everyone has to wear their sunday best. I just love the idea. of pretty
pastel colours, cupcakes, cooking for your girls and everyone looking pretty

1. This is a beautiful Idea, Ive always wanted to host a tea party and these photos have inspired me to actually
go through with it.

2. Beautiful! Could you tell me where you got your cart from? I’m trying to create something similar and
they’re deceivingly hard to find...

Thankyou for commenting! x
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RedPajama-V2

• Updaty posty thingy
Sooo....
Chainmaille was a disaster. I need someone to show me how to construct. It was moot anyway, as I had an
anxiety attack and barely made it in to the con. I am so embarased, but glad it wasn’t a long term thing.
I am still working on getting the chaim maille done. Maybe it will look fine. I don’t know. I also need to work
on the scale spoon maille.
Right now, though, my main focus is finding a job. I thought I had extended unemployment until I was done
wtih school. Turns out that was not entirely true, and now I am kind of up a creek. I have been saving money,
so right now I have been paying bills with my savings. However that is also about to run out. I have applied
for abawd.

• Brooklyn Man Who Stabbed 75-Year-Old Woman and Left Her for Dead Sentenced to 75 Years in Prison
Brooklyn Man Who Stabbed 75-Year-Old Woman and
Left Her for Dead Sentenced to 75 Years in Prison
Defendant, a Friend of the Victim’s Grandson, Forced His Way into Apartment
Brooklyn District Attorney Ken Thompson today announced that a Brownsville man has been sentenced to 75
years in prison following his conviction on second-degree attempted murder and other charges for stabbing an
elderly woman repeatedly and leaving her seriously injured on her apartment floor.
District Attorney Thompson said, “This defendant savagely stabbed a defenseless 75-year-old woman all over
her body, robbed her of what little money she had and then left her to die. He deserves every day of his 75-year
prison sentence.”

FineWeb-Edu

• A “magic” herb, Carissa Edulis, that drew thousands of people to a remote Loliondo village in Tanzania was
identified by Kenyan scientists a few years ago as a cure for a drug-resistant strain of a sexually transmitted
disease, gonorrhoea. This herb also is believed to cure many other diseases besides gonorrhoea. The Kamba
refer to as mukawa or mutote and use it for chest pains, while the Nandi boil the leaves and bark to treat breast
cancer, headache and chest pains.
Researchers discovered the plant could be used for the treatment of the herpes virus. Led by Dr Festus M Tolo
of the Kenya Medical Research Institute (Kemri), the team from the University of Nairobi and the National
Museums of Kenya found the herb could provide an alternative remedy for herpes infections.
“An extract preparation from the roots of Carissa edulis, a medicinal plant locally growing in Kenya, has
exhibited remarkable anti-herpes virus activity for both wild type and drug resistant strains,” they reported in
the Journal of Ethnopharmacology.

• Dinosaurs’ active lifestyles suggest they were warm-blooded
H. Pontzer, V. Allen, J.R. Hutchinson/PLoS ONE
Whether dinosaurs were warm-blooded or cold-blooded has been a long-standing question in paleobiology.
Now, new research on how two-legged dinosaurs walked and ran adds new evidence to the argument for
warm-bloodedness, and suggests that even the earliest dinosaurs may have been warm-blooded.
Warm-blooded (or endothermic) dinosaurs — able to regulate their own body temperatures — would have
been more active and could have inhabited colder climates than cold-blooded (or ectothermic) dinos, which
would have functioned more like modern reptiles — animals that become animated only as temperatures warm.
Endothermic dinosaurs would have also required more energy to maintain their higher metabolic rates.
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D.3 GENERATED SEQUENCES

DCLM-7B

• Exercise 1: I’ve been trying to do this exercise for a couple of weeks, and have failed each time. I was able
to get the hang of it on this week’s attempt, but still couldn’t finish before the timer ran out.

Here is what I did: 1) Find the equation for the line that goes through (1,0) and (2,4). This turned out to be
y=2x-1.

2) Set up a table for my function g(x) = 2x-1

3) Plot g(x)

4) Put both g(x) and f(x) in a scatter plot

5) Solve for x so that y=0. That means there will be no intersection when the function is less than 0. For my
function, x=-1/2, which was easy enough. For my line, since y=2x-1, x=y+1/2

The result looks something like this (if it displays correctly):

•Aluminium chloride is not a compound that you would normally make in the lab, but it can be made by
reacting aluminium with chlorine or hydrochloric acid. It reacts violently with water and so if you do get any
on your hands, wash them thoroughly under a tap. The reaction of these two elements produces hydrogen gas
and sodium chloride as products. Aluminum Chloride Formula - AlCl 3; Molecular Weight: 133.34 g/mol;
Structural Formula Drawing (BF4)3-Lewis Dot Structure for BF4- Boron trifluoride has three pairs of non-
bonding electrons around it.

The other product is hydrogen chloride, HCl(g). When aluminum metal is exposed to air, it forms a thin
protective layer of alumina, which protects the metal from further corrosion. In this experiment, an aqueous
solution of aluminum chloride will react with potassium carbonate to produce solid aluminum hydroxide and
aqueous potassium chloride.

FineWeb-Edu ablation model

• The number of individuals with this condition increased in the United States between the years 2000 and
2010, according to the National Institute of Neurological Disorders and Stroke.
The most common causes of acquired cerebral arteriovenous malformations include:
- Injury to blood vessels or arteries
- High blood pressure
- Brain tumors
Acquired cerebral arteriovenous malformations are usually congenital, meaning that they were present at birth.
The exact cause of these malformations is unknown.
In some cases, the cause of an acquired cerebral arteriovenous malformation is known. This can occur when a
specific event (such as bleeding) occurred near the malformation.

• A series of experiments was conducted at the University of Texas, Austin to determine the effects of an
electromagnetic field on the rate and amount of protein binding between DNA and a transcription factor.
The study found that when DNA was placed in an external magnetic field, the rate of DNA binding by the
transcription factor increased threefold. When DNA and a transcription factor are bound together, it is often
referred to as a complex.
In this study, the researchers found that the rate of protein binding could be enhanced up to five times in some
instances by exposing the DNA to a magnetic field. This finding has been linked to the possibility that the
magnetic field could act as a trigger for the transcription factors to bind together more easily.
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Falcon-7B

• I have sold a property at 2001 208A ST in Langley.
Welcome to this well maintained rancher located in one of Langley’s most desirable areas. This home has a
large open concept kitchen with a breakfast nook, a formal dining room, a gas fireplace in the living room and
a large master bedroom with a 4 piece ensuite. The home has had numerous upgrades over the years including
the roof, windows, furnace, hot water tank and newer appliances. Enjoy the spacious covered patio, fully
fenced back yard and a single garage with additional parking in the driveway. Close to schools, shopping,
restaurants and all other amenities. This is a great home in a great neighbourhood! Call today for a viewing!

• Deploying 3D Models in the Web
The Web has long been a source for sharing 2D content, from photos and text to music and video. But sharing
3D content on the Web is not so common, due to bandwidth limitations, browser support and more.
However, 3D models can be used in the Web in various ways: as 3D printing instructions, as part of Augmented
Reality or Virtual Reality applications, as part of an interactive online exhibit, as part of a video game, and
more.
We present the most common ways to share 3D models on the Web and describe how to deploy models using
Web technologies, such as WebGL and 3D CSS.

E DATASET STATISTICS

The datasets we consider in this paper are comprised of millions to billions of sequences with varying lengths. In
this section, we present a statistical analysis on the sequence lengths of the seven datasets. To obtain representative
statistics, we randomly sample 100,000 sequences from each dataset and tokenize them with the GPT-NeoX tokenizer.
The statistics of the lengths of the tokenized sequences are summarized in Table 6 and histograms are displayed in
Figure 8.

Dataset Mean St. Deviation Mode Median Range
C4 477 823 58 253 31188

FineWeb 700 1540 129 410 118422
RefinedWeb 624 1549 82 314 137104
DolmaCC 825 1647 96 451 132310

RedPajama-V2 1137 3191 12 603 274814
DCLM-Baseline 1235 2600 101 665 153768

FineWeb-Edu 1059 1993 261 597 120240

Table 6: Statistics of the sequence lengths (in number of tokens) of the seven main datasets considered in this paper.
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Figure 8: Histograms of the sequence lengths of the main datasets considered. Lengths exceeding 3000 and 5000
tokens are omitted for ease of visualization.
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