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Figure 1: Examples from OverLayBench with difficulty increasing from left to right.

Abstract

Despite steady progress in layout-to-image generation, current methods still strug-
gle with layouts containing significant overlap between bounding boxes. We
identify two primary challenges: (1) large overlapping regions and (2) overlapping
instances with minimal semantic distinction. Through both qualitative examples
and quantitative analysis, we demonstrate how these factors degrade generation
quality. To systematically assess this issue, we introduce OverLayScore, a novel
metric that quantifies the complexity of overlapping bounding boxes. Our anal-
ysis reveals that existing benchmarks are biased toward simpler cases with low
OverLayScore values, limiting their effectiveness in evaluating model performance
under more challenging conditions. To bridge this gap, we present OverLayBench,
a new benchmark featuring high-quality annotations and a balanced distribution
across different levels of OverLayScore. As an initial step toward improving
performance on complex overlaps, we also propose CreatiLayout-AM, a model
fine-tuned on a curated amodal mask dataset. Together, our contributions lay
the groundwork for more robust layout-to-image generation under realistic and
challenging scenarios. Project link: https://mlpc-ucsd.github.io/OverLayBench.

1 Introduction

With the advancement of text-to-image generative models [Ramesh et al., 2021, Nichol et al.,
2021, Rombach et al., 2022, Chen et al., 2023, Xue et al., 2024], there has been growing interest
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Image Caption: A playful scene where a dog and a cat engage in a friendly tussle on a sunny lawn. 
Instance Captions: (1) A playful dog with a joyful expression and wagging tail. (2) A nimble cat with alert eyes and a poised stance.

Image Caption: A heartwarming scene of a father holding his baby in a cozy room, with a gentle overlap where the father’s arm supports the baby. 
Instance Captions: (1) A caring father with a gentle smile, holding his baby tenderly. (2) A precious baby with joyful eyes and a warn expression.

Object Fusion BBox Misalignment Object Distortion Incorrect Object Number Incorrect Category

Figure 2: Failure cases from state-of-the-art layout-to-image models. Each row presents an example
with overlapping instances, and image captions are shown below. More examples and more detailed
failure descriptions can be found in Appendix C.

in controllable image generation [Li et al., 2023b, Zhang et al., 2023]. A recent line of work
proposes generating images conditioned on layouts, commonly referred to as Layout-to-Image
(L2I) generation, which allows users to directly specify spatial locations [Xie et al., 2023b, Wang
et al., 2024b, Li et al., 2023b] and object counts [Binyamin et al., 2024, Yang et al., 2023] in the
generated outputs. While existing frameworks [Xie et al., 2023b, Wang et al., 2024b, Li et al., 2023b]
can achieve satisfactory spatial and numerical control over image generation, these approaches fail
to generate distinct, coherent objects when multiple bounding boxes overlap in layout and their
associated categories are semantically similar. As illustrated in Figure 2, such scenarios lead to
artifacts including object blending, spatial ambiguity, and visual distortion.

To quantify the effect of bounding box overlap on generation, we introduce OverLayScore (Equa-
tion (1)), a simple metric that captures the difficulty of generation based on spatial and semantic
overlap between bounding boxes. OverLayScore is computed as the sum of IoUs for all instance pairs,
weighted by their semantic similarity, measured via the dot product of CLIP embeddings of instance
annotations. We empirically demonstrate that generation quality degrades with higher OverLayScore,
i.e., large overlap between bounding boxes and high category-level semantic similarity. Henceforth,
we will interchangeably refer to layouts with high OverLayScore score as complex layouts and low
OverLayScore score as simple layouts.

Existing benchmarks for Layout-to-Image (L2I) generation [Cheng et al., 2024, Zhang et al., 2024]
primarily focus on image quality, offering limited evaluation of complex layouts or the accuracy of
generated instance relationships. Our analysis reveals a strong bias towards simple layouts in these
benchmarks, which restricts their utility in assessing model performance under more challenging,
realistic scenarios. To address this gap, we introduce OverLayBench, a new benchmark specifically
designed to evaluate L2I models on their ability to reconstruct complex layouts and instance-level
relationships. OverLayBench features rich annotations such as detailed image and dense instance
captions, enrichment of complex images with higher OverLayScore, improved semantic grounding
of bounding boxes using Qwen [Bai et al., 2023], and quality instance relationships for evaluation.
We conduct extensive evaluations of state-of-the-art L2I models [Li et al., 2023a, Wang et al., 2024a,
Zhou et al., 2024a, Cheng et al., 2024, Zhou et al., 2024b, Zhang et al., 2025, 2024] on OverLayBench
and verify their effectiveness in addressing layout-level challenges. These results provide strong
baselines and highlight areas for improvement.

Finally, we demonstrate that fine-tuning CreatiLayout [Zhang et al., 2024] with amodal mask supervi-
sion on complex layouts helps mitigate generation artifacts caused by instance occlusion. This new
baseline, CreatiLayout-AM, provides initial evidence that explicit mask-level guidance improves
generation quality under high-overlap conditions, offering a promising direction for future research.

Our contributions are summarized as follows: (1) We propose OverLayScore, a novel metric that
empirically quantifies the difficulty of L2I generation by measuring the IoU and semantic similarity
between bounding boxes in layouts; (2) We introduce OverLayBench, a challenging benchmark
with high-quality annotations and balanced difficulty distribution, designed to evaluate complex
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relationships between instances in layouts; (3) We demonstrate that training with amodal masks helps
alleviate generation artifacts in overlapping regions. Specifically, we present a simple yet effective
baseline that aligns attention maps in diffusion models with amodal mask supervision.

2 Related Work

2.1 Layout-to-Image Generation

Generative models have recently become highly popular [Wang et al., 2024d, Zhao et al., 2025, Zeng
et al., 2025, Srivastava et al., 2025, Xu et al., 2024, Wang et al., 2024c, Chen et al., 2025], and
controllable generation is attracting growing interest. In particular, Layout-to-Image (L2I) generation
has gained attention as it enables structured and spatially grounded image synthesis.

Prior work on L2I generation has primarily focused on fine-tuning foundational text-to-image (T2I)
generative models [Labs, 2024, Esser et al., 2024, Podell et al., 2023], introducing various techniques
to inject layout conditioning into pre-trained architectures. U-Net-based approaches [Li et al., 2023a,
Zhou et al., 2024a, Wang et al., 2024a, Wu et al., 2024, Cheng et al., 2024, Zheng et al., 2023]
typically incorporate layout information through layer insertions (either in series or parallel) or
by manipulating attention maps and masks. While these methods have shown promising results,
their generation quality is often constrained by the representational capacity of U-Net backbones.
More recent methods [Zhang et al., 2025, 2024] leverage powerful diffusion Transformer (DiT)
architectures [Peebles and Xie, 2023], fine-tuning models such as Flux [Labs, 2024] or SD3 [Esser
et al., 2024], and achieve improved image fidelity. These layouts can be provided by the user or
generated automatically from text using text-to-layout models [Feng et al., 2023a, Gani et al., 2023,
Lian et al., 2023, Srivastava et al., 2025], forming a two-stage pipeline for controllable image synthesis.
In parallel, a growing line of training-free approaches [Xie et al., 2023a, Gani et al., 2023, Yang
et al., 2024b, Lee et al., 2024, Chen et al., 2024a,c] has emerged, which utilize guidance mechanisms
within diffusion models to enforce spatial constraints without additional training. However, these
models often treat layout information as a soft constraint, which limits their ability to strictly adhere
to spatial specifications.

Despite these advancements, existing methods struggle to generate coherent and distinguishable
objects when multiple bounding boxes overlap, particularly when the associated categories are
semantically similar. Such scenarios frequently lead to confusion, ambiguity, visual distortion, or
artifacts in the generated images. To address the gap, we study Layout-to-Image (L2I) generation
under bounding box overlap in layouts and highlight it as a novel and underexplored challenge that
demands dedicated investigation.

2.2 Layout-to-Image Benchmarks

The most widely used benchmark for L2I generation is COCO [Lin et al., 2014], which provides
image-text pairs annotated with entity bounding boxes (bboxes) and simple category labels. Although
COCO and its variants are commonly used for evaluating L2I models, they lack detailed image and
instance-level captions, which limits their utility for training and evaluating in more semantically rich
generation tasks [Feng et al., 2023b]. To address this shortcoming, many works manually augment
COCO with additional instance-level captions to support more comprehensive evaluation.

Recent efforts [Cheng et al., 2024, Zhang et al., 2024] have introduced new layout benchmarks
to offer more robust and holistic assessments. HiCo [Cheng et al., 2024] proposes HiCo-7k, a
benchmark containing 7,000 carefully curated samples from GriT-20M [Peng et al., 2023], while
CreatiLayout [Zhang et al., 2024] introduces LayoutSAM, comprising 5,000 samples selected
from the SAM-1B [Kirillov et al., 2023] dataset. Both benchmarks employ image/entity filtering
and generate detailed annotations. However, they rely on GroundingDINO [Liu et al., 2023] for
bounding box extraction, which, according to its authors, exhibits limited recognition performance
and frequently produces false positives in detection outputs (as discussed in Section 4.1). HiCo-7k
partially addresses these issues through manual human curation, whereas LayoutSAM is generated
without human intervention.

In contrast, OverLayBench leverages Qwen2.5-VL-32B [Bai et al., 2025], which surpasses Ground-
ingDINO in benchmark performance and our own qualitative evaluation. Additionally, we incorporate
human curation to further ensure data quality. Most importantly, unlike previous benchmarks that
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Figure 3: (a) Image quality of CreatiLayout across varying levels of bounding box IoU and semantic
similarity, from poorer to better; (b) Performance comparison of three L2I models on toy COCO
samples, grouped by layout difficulty using OverLayScore—higher difficulty consistently leads to
lower mIoU; (c) Distribution of layout difficulty across COCO, LayoutSAM, HiCo-7k, and our
proposed benchmark, OverLayBench (introduced in detail in Section 4.1).

primarily feature simple or regular layouts, our benchmark includes significantly more complex and
challenging layouts, providing a more balanced distribution of layout difficulty and enabling more
rigorous evaluation of L2I models.

3 OverLayScore

We evaluate the impact of overlap on L2I generation performance from two perspectives: spatial and
semantic. Figure 3 (a) presents the L2I generation results in a simplified two object setting, from
which we derive two key observations: (1) as the Intersection-over-Union (IoU) between bounding
boxes increases, the output quality of state-of-the-art L2I models deteriorates; and (2) given the same
IoU, a higher semantic similarity between the instance captions of overlapping boxes further degrades
the generation quality. These findings indicate that both spatial and semantic overlaps introduce
complexities that negatively affect L2I generation.

Building on our observations, we propose OverLayScore, a metric designed to quantify the difficulty
of L2I generation arising from overlapping elements within a layout. Formally, given a layout with K
objects, let pk and Bk denote the instance caption and normalized bounding box for the k-th object,
respectively. We define the metric as:

OverLayScore =
∑

(i,j): IoU(Bi,Bj)>0

IoU(Bi, Bj) · cos
(
⟨pi, pj⟩

)
, (1)

where cos
(
⟨pi, pj⟩

)
is the CLIP-based cosine similarity between instance caption pi and pj . The

summation captures the spatial-semantic entanglement of all overlapping object pairs in the layout. A
higher OverLayScore indicates greater expected difficulty for an L2I model to faithfully generate an
image that conforms to both the layout and the associated instance-level semantics.
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Figure 4: An overview of the data curation pipeline for OverLayBench.

To validate the effectiveness of OverLayScore, we evaluate common L2I models on a subset of the
COCO dataset [Lin et al., 2014]. Layouts are extracted using the dataset’s bounding box and category
annotations, and filtered to include scenes with 2 to 10 objects. Based on their OverLayScore,
these layouts are categorized into three difficulty levels – simple, regular, and complex. From
each category, we randomly sample 100 layouts for evaluation. We then assess the performance of
three representative L2I models, i.e., GLIGEN [Li et al., 2023a], InstanceDiffusion [Wang et al.,
2024a], and CreatiLayout [Zhang et al., 2024]. As illustrated in Figure 3 (b), the performance
of all models consistently declines as OverLayScore increases, demonstrating that OverLayScore
effectively reflects the difficulty of generating images from overlapping layouts.

We further apply OverLayScore to several widely used L2I benchmarks–COCO [Lin et al., 2014],
HiCo [Cheng et al., 2024], and LayoutSAM [Zhang et al., 2024], and visualize the score distribution
in Figure 3 (c). We observe that the majority of samples fall within the low-difficulty regime,
indicating a strong imbalance in existing benchmarks. This skew limits their ability to evaluate model
performance in more complex overlapping scenarios.

4 OverLayBench

The analysis in the previous section highlights a key limitation of existing L2I benchmarks–they are
heavily skewed toward low-OverLayScore samples, which restricts their ability to evaluate model
performance under challenging layout conditions. To overcome this limitation, we introduce Over-
LayBench—a new benchmark specifically curated to assess L2I models on complex and overlapping
layouts. By carefully selecting images across a broad range of OverLayScore values, OverLayBench
provides a more balanced and comprehensive evaluation set, enabling rigorous evaluation of model
robustness in spatially and semantically complex layouts.

4.1 Dataset Curation

An overview of our data curation pipeline is presented in Figure 4, comprising three key stages.
In Stage I, we use Flux to generate reference images based on captions extracted from real-world
images. Stage II leverages a vision-language model (VLM) to extract both image and instance-level
descriptions, along with inter-instance relationships. Finally, Stage III involves a human curation
process to filter out unrealistic generation and balance the distribution across difficulty levels.

4.1.1 Reference Image Generation

We begin by extracting image captions from the COCO [Lin et al., 2014] training set using Qwen2.5-
VL-7B [Bai et al., 2025]. These captions are then used to generate a diverse set of image candidates
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with Flux.1-dev [Labs, 2024]. By leveraging captions derived from real-world images, we ensure that
the generated content and corresponding layouts are both natural and realistic. In total, we collect
approximately 86,000 generated images paired with their corresponding captions.

4.1.2 Image Grounding and Captioning

Step 1: Image Caption Refinement Although Flux demonstrates strong image generation ca-
pabilities, the generated images do not always perfectly align with the input captions. To improve
semantic consistency, we perform an additional captioning pass on all generated images using
Qwen-2.5-VL-7B to produce refined global image captions.

Step 2: Instance Grounding Qwen [Bai et al., 2023] has demonstrated superior grounding perfor-
mance compared to models commonly used in existing L2I benchmarks, such as GroundingDINO [Liu
et al., 2023]. We leverage Qwen to detect and describe all foreground objects in each image. Based
on the grounding results, we retain only images that contain one to ten valid overlapping bounding
box pairs. A bounding box pair is considered valid if it satisfies both: (1) an IoU greater than 5%, and
(2) an intersection area exceeding 1% of the total image area. After this step, each image contains a
global description and local descriptions for all detected instances.

Step 3: Relationship Extraction In addition to image-level and instance-level captions and bound-
ing boxes, we further prompt Qwen to generate pairwise relationship phrases between overlapping
instances. These phrases capture both spatial and semantic relationships, providing a richer annotation
signal crucial for evaluating model performance on inter-instance relationship in complex layouts.

4.1.3 Scoring and Curation

To ensure high-quality and reliable annotations while minimizing hallucinations from VLMs, we
perform thorough manual verification and discard all invalid cases. Specifically, we assess the
accuracy of each bounding box, the alignment between image content and both global and instance-
level captions, and the validity of relationship descriptions based on available textual inputs. This
rigorous process ensures that OverLayBench remains free from hallucinations. After validation, we
compute the OverLayScore score for each example and retain a curated dataset of 2,052 simple, 1,000
regular, and 1,000 complex layouts.

4.2 Benchmark Metrics

We introduce two novel metrics tailored to overlapping scenarios: O-mIoU (Overlap-mIoU), which
computes the mIoU within the ground-truth overlap regions and the corresponding predicted regions.
By isolating shared areas between instances, O-mIoU provides a more sensitive and discriminative
measure of fidelity in occluded or entangled regions than standard global mIoU; SRR (Success Rate
of Relationship), which reports the percentage of object pairs whose predicted spatial relationships
match the ground truth. It offers an interpretable, relationship-level measure of success.

In addition to these two metrics, we adopt commonly used evaluation measures from prior
work [Zhang et al., 2025, 2024], including mIoU, CLIP [Radford et al., 2021], SRE (Success
Rate of Entity), and FID [Heusel et al., 2017].

5 CreatiLayout-AM: Amodal Masks Improve Generation of Occluded
Objects

To address the challenges posed by complex overlaps in state-of-the-art L2I models, we incorporate
amodal mask supervision during training, which provide complete object shape information even
under occlusion. We construct a custom L2I training set annotated with amodal masks and train a
new model to validate the effectiveness of this approach.

Training Dataset We begin by synthesizing occlusions on top of FLUX-generated images. For
each image, we employ Segment Anything Model v2 [Ravi et al., 2024] to extract amodal object
masks. These masks are then used to crop individual objects, forming a pool of object-mask pairs
denoted as O. To simulate occlusions, we randomly select an object from O and paste it onto a
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CreatiLayout OursReference CreatiLayout OursReference

Hot Dog: A hot dog served in a bun with ketchup, mustard, and 
chopped herbs on top. French Fries: A serving of golden french 
fries in a small metal container. Beer: A glass of amber-colored 
beer with a frothy head.

Zebra: An adult zebra with black and white stripes standing in a
grassy field. Zebra: A young zebra with brown and white stripes
standing close to an adult zebra.

Person: A smiling woman wearing a denim jacket standing next to a
motorcycle. Person: A smiling man with a beard wearing a brown
vest over a checkered shirt, standing next to a motorcycle.
Motorcycle: The front part of a motorcycle with handlebars and
mirrors.

Man: A man sitting at a table with food, giving a thumbs-up
gesture. Woman: A woman sitting at a table with food, smiling.
Food: Plates of food including pastries, bread, and a decorated
cake on a wooden table. Christmas Tree: A Christmas tree
decorated with lights and ornaments in the background.

Object Fusion BBox Misalignment Incorrect Object Number

Figure 5: Comparison of generated images from CreatiLayout and CreatiLayout-AM. The
CreatiLayout-AM handles overlapping instances more effectively, producing more coherent and
realistic images.

target image at a location that creates overlap with an existing object. This method enables controlled
occlusion synthesis while preserving the original scene context.

For each synthesized image, we use Qwen-2.5-VL-32B to generate both a global image caption and
local instance descriptions, covering both original and newly pasted overlapping objects. The final
training set contains approximately 67.8k images.

CreatiLayout-AM Building on our curated training dataset, we introduce CreatiLayout-AM, a
modified version of CreatiLayout-SD3 [Zhang et al., 2024] designed to enhance generation quality in
the presence of occluded bounding boxes by incorporating amodal masks during training. Inspired
by TokenCompose [Wang et al., 2024e], we fine-tune CreatiLayout by introducing two additional
loss terms that explicitly encourage alignment between the model’s attention maps and ground truth
amodal masks.

Specifically, we compute two auxiliary losses, Ltoken and Lpixel, in addition to the original training
objective. Let Ai denote the attention map between image tokens and the layout token corresponding
to the ith instance, and let mi be the ground-truth amodal mask for that instance. The token-level
alignment loss is defined as:

Ltoken =
1

n

n∑
i=1

(
1−

∑
u Ai

u ·mi
u∑

u Ai
u

)
(2)

where n is the total number of instances and u indexes each pixel coordinate. The pixel-level
alignment loss is defined using a cross-entropy function:

Lpixel =
∑
u

CE(Ai
u,m

i
u) (3)

where CE is the cross entropy loss. The final training objective is given by:

L = LLDM + λLtoken + βLpixel (4)
where LLDM is the original denoising loss used in the Latent Diffusion Models (LDM).

Beyond CreatiLayout [Zhang et al., 2024], we also implemented an EliGen [Zhang et al., 2025] based
AM method, please find the detail in Appendix A.2.1.
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Table 1: Comprehensive comparisons between training-based methods on OverLayBench, including
the newly-released model. Bold and underline denote the best and the second best methods. Methods
above the dashed line are U-Net–based, while those below are DiT–based. † means the model takes
additional depth map as input.

Method mIoU(%) ↑ O-mIoU(%) ↑ SRE(%) ↑ SRR(%) ↑ CLIPGlobal ↑ CLIPLocal ↑ FID ↓

OverLayBench-Simple
GLIGEN 60.54±1.82 36.22±0.13 49.99±0.43 78.72±0.50 34.17±0.02 24.75±0.02 31.27±0.38
InstanceDiff 71.21±0.11 49.99±0.06 77.71±0.18 87.49±0.23 34.25±0.05 27.69±0.02 36.17±0.23
MIGC 58.64±0.18 32.15±0.31 63.41±0.53 81.60±0.19 33.07±0.05 26.49±0.10 31.64±0.11
HiCo 69.47±0.26 47.23±0.44 67.75±0.18 86.08±0.76 35.25±0.10 27.04±0.09 29.21±0.16
3DIS 65.75±0.07 38.38±0.23 86.24±0.17 86.98±0.24 35.85±0.05 29.67±0.03 29.18±0.29
CreatiLayout-SD3 58.78±0.44 32.52±0.61 72.34±0.61 84.45±0.04 37.29±0.04 27.49±0.03 27.51±0.15
CreatiLayout-FLUX 71.17±0.23 49.80±0.52 84.35±0.49 90.87±0.27 37.40±0.15 20.18±0.11 23.79±0.17
EliGen 68.17±0.41 43.72±0.76 86.50±0.59 89.67±0.26 36.65±0.06 28.29±0.13 28.87±0.88
DreamRender† 67.60±0.36 43.45±0.78 88.80±0.44 90.07±0.12 37.29±0.03 30.11±0.18 24.91±0.65

OverLayBench-Regular
GLIGEN 52.46±0.29 26.53±0.06 44.88±0.31 77.46±0.49 33.93±0.07 23.42±0.02 52.22±0.43
InstanceDiff 60.08±0.24 34.15±0.16 72.51±0.29 83.36±0.30 33.09±0.10 26.19±0.03 59.73±0.95
MIGC 47.42±0.08 20.06±0.18 56.67±0.75 77.85±0.59 32.72±0.11 24.99±0.02 54.24±0.52
HiCo 55.02±0.33 29.60±0.53 58.24±1.01 79.89±0.66 33.91±0.14 25.34±0.04 49.07±0.45
3DIS 55.66±0.22 27.29±0.18 80.80±0.47 83.69±0.09 35.42±0.05 28.12±0.01 48.56±0.48
CreatiLayout-SD3 47.04±0.13 20.67±0.28 62.60±0.77 78.31±0.38 36.67±0.05 25.55±0.08 45.57±0.20
CreatiLayout-FLUX 59.72±0.29 35.51±0.44 77.20±0.57 86.39±0.31 36.73±0.08 26.21±0.07 41.51±0.39
EliGen 58.56±0.38 32.62±0.52 80.85±0.20 84.42±0.36 36.27±0.09 27.05±0.12 45.65±1.09
DreamRender† 58.08±0.36 33.00±0.50 83.52±0.18 84.95±0.41 36.85±0.11 28.74±0.12 42.66±0.56

OverLayBench-Complex
GLIGEN 50.79±0.75 23.85±0.52 41.70±0.91 79.93±0.58 33.92±0.06 22.75±0.06 57.32±0.11
InstanceDiff 53.68±0.56 25.63±0.34 66.02±0.47 80.34±0.25 32.33±0.05 25.53±0.01 66.32±0.29
MIGC 40.04±0.31 13.26±0.05 47.80±0.67 74.48±0.99 31.93±0.05 24.20±0.04 66.52±0.33
HiCo 46.56±0.31 20.35±0.38 48.88±0.32 75.19±0.48 33.15±0.18 24.41±0.05 55.78±0.35
3DIS 50.65±0.61 21.75±0.31 74.31±1.24 81.57±0.89 35.11±0.09 27.35±0.07 54.90±0.29
CreatiLayout-SD3 44.24±0.55 18.05±0.39 52.10±0.53 79.98±0.30 36.55±0.08 24.76±0.03 53.29±0.80
CreatiLayout-FLUX 54.50±0.50 28.97±0.54 69.72±0.39 86.45±0.45 36.72±0.07 24.85±0.09 45.66±0.75
EliGen 52.53±0.17 26.19±0.27 74.03±0.66 84.09±0.58 36.18±0.11 25.92±0.13 50.41±0.74
DreamRender† 52.47±0.14 26.13±0.36 77.87±0.45 84.93±0.55 36.75±0.10 27.54±0.11 48.11±0.89

Table 2: BaseModel v.s. Ours AM method on OverLayBench.
Method Split mIoU(%) ↑ O-mIoU(%) ↑ SRE(%) ↑ SRR(%) ↑ CLIPGlobal ↑ CLIPLocal ↑ FID ↓

CreatiLayout 58.78 32.52 72.34 84.45 37.29 27.49 27.51
CreatiLayout-AM 61.16 37.69 73.33 84.84 37.17 27.44 27.76
vs. BaseModel

Simple
+4.05% +15.90% +1.37% +0.46% −0.32% −0.18% +0.91%

EliGen 68.17 43.72 86.50 89.67 36.65 28.29 28.87
EliGen-AM 69.70 46.43 86.83 90.07 36.84 28.58 26.43
vs. BaseModel

Simple
+2.24% +6.20% +0.38% +0.45% +0.52% +1.03% -8.45%

CreatiLayout 47.04 20.67 62.60 78.31 36.67 25.55 45.57
CreatiLayout-AM 47.38 21.79 63.13 78.71 36.49 25.46 46.34
vs. BaseModel

Regular
+0.72% +5.42% +0.85% +0.51% −0.49% −0.35% +1.68%

EliGen 58.56 32.62 80.85 84.42 36.27 27.05 45.65
EliGen-AM 59.44 33.85 81.18 85.47 36.46 27.37 43.52
vs. BaseModel

Regular
+1.50% +3.74% +0.41% +2.43% +0.52% +1.18% -4.67%

CreatiLayout 44.24 18.05 52.10 79.98 36.55 24.76 53.29
Ours 43.97 18.07 52.49 79.77 36.32 24.72 53.48
vs. BaseModel

Complex
−0.61% +0.11% +0.75% −0.26% −0.63% −0.16% +0.36%

EliGen 52.53 26.19 74.03 84.09 36.18 25.92 50.41
EliGen-AM 53.28 26.69 76.32 84.31 36.39 26.15 49.42
vs. BaseModel

Complex
+1.43% +1.91% +3.09% +0.27% +0.58% +0.89% -2.00%
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6 Evaluation

6.1 Implementation Details

For data curation, we use Flux-1-dev for image generation with 28 sampling steps. Qwen2.5-VL-7B is
employed for image captioning, while Qwen2.5-VL-32B is used to extract bounding bboxes, instance-
level captions, and relationship captions. Additionally, we apply RealVisXL_V5.0_Lightning1 for
object removal during training data construction.

For CreatiLayout-AM training, we fine-tune the model for 3,500 steps on 8 NVIDIA RTX A6000
(48GB) GPUs with a batch size of 16, and a learning rate of 10−5. We use the AdamW [Loshchilov
and Hutter, 2017] optimizer with bf16 precision. Please refer to the Appendix A for more details.

6.2 Quantitative Results

Table 1 presents the quantitative evaluation of multiple layout-to-image (L2I) generation methods [Li
et al., 2023a, Wang et al., 2024a, Zhou et al., 2024a, Cheng et al., 2024, Zhang et al., 2024, Zhou et al.,
2024b, Zhang et al., 2025, Zhou et al., 2025] across varying difficulty levels in the OverLayBench
benchmark: Simple, Regular, and Complex.

As task difficulty increases, all models show a noticeable decline in spatial metrics (particularly
O-mIoU), highlighting the inherent challenges posed by highly overlap and semantically similar
layouts. Despite this, DiT-based models demonstrate more stable visual quality and stronger semantic
alignment, underscoring their robustness and scalability in handling complex generation scenarios.

6.3 CreatiLayout-AM Comparison

Table 2 demonstrates that CreatiLayout-AM outperforms the original CreatiLayout on the Simple
and Regular splits, with particularly notable gains in O-mIoU (+15.90% and +5.42%, respectively).
These improvements are consistent across other spatial and relational metrics, including mIoU,
SRE, and SRR, indicating enhanced spatial and relational alignment despite minor drops in CLIP
scores. On the Complex split, where a distribution shift from the training set is more pronounced,
performance remains competitive, exhibiting only slight declines in mIoU and CLIP. Overall, these
results validate the effectiveness of amodal mask supervision in improving L2I generation under bbox
overlap, presenting a promising direction for future explorations.

6.4 Qualitative Analysis

For qualitative analysis, we provide a comprehensive visualization of state-of-the-art L2I models
on OverLayBench, showcasing a diverse set of examples with varying levels of layout overlap
complexity in Figure 6. We annotate each row with gold, silver, and bronze icons representing the
top-3 performing models.

7 Conclusion and Future Works

In this work, we present a comprehensive study on the often-overlooked challenge of object oc-
clusion in Layout-to-Image (L2I) generation. We introduce OverLayScore, a principal difficulty
metric that captures both spatial overlap and semantic similarity, and show that higher OverLayScore
values strongly correlate with degraded generation quality. To support rigorous evaluation, we
propose OverLayBench, a balanced benchmark spanning the full spectrum of layout difficulty. It
features high-fidelity images and dense captions, enabling in-depth assessment of instance interac-
tions in densely overlapping scenes. Additionally, we demonstrate that amodal mask supervision
mitigates collusion artifacts, enhancing generation quality in complex layouts. Our baseline model,
CreatiLayout-AM, outperforms existing methods under OverLayScore.

Together, our metric, benchmark, and baseline establish a unified testbed for advancing occlusion-
aware, controllable image generation, and aim to inspire future methods with stronger spatial
reasoning and compositional understanding.

1https://huggingface.co/SG161222/RealVisXL_V5.0_Lightning
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CreatiLayout-FluxGLIGEN InstDiff MIGC HiCo CreatiLayoutReference

Woman: A woman wearing a Minnie Mouse costume with polka dot dress and bow. Man: A man dressed as a chef with a white uniform and hat.
Person: A person in an Elmo costume with large eyes and orange nose. Woman: A woman wearing a denim jacket over a brown top.

Zebra: An adult zebra with black and white stripes standing on grass. Zebra: A zebra with black and white stripes standing close to a zebra.

Puppy: A black fluffy puppy sitting in a wicker basket with an orange ball in its mouth. Basket: A woven wicker basket containing a black fluffy puppy. Bicycle: A 
bicycle with a blue frame and a brown seat, partially visible behind the basket. 

Rugby Player: Man wearing blue rugby uniform. Rugby Player: Man wearing blue rugby uniform with yellow accents. Rugby Player: Man wearing blue rugby uniform 
holding a ball. Rugby Player: Man wearing yellow rugby uniform. Rugby Player: Man wearing blue rugby uniform with yellow socks. Rugby Player: Man wearing yellow 
rugby uniform with blue shorts. Rugby Player: Man wearing blue rugby uniform standing behind.

Man: A man holding a yellow teddy bear. Teddy Bear: A yellow teddy bear being held by a man. Dog: A light-colored dog sitting on the floor. 

3DIS ELIGEN

Figure 6: Comparison of generated images from different models on our OverLayBench.

Acknowledgment. This work is supported by NSF award IIS-2127544 and NSF award IIS-2433768.
We thank Lambda, Inc. for their compute resource help on this project.

10



References
Jinze Bai, Shuai Bai, Shusheng Yang, Shijie Wang, Sinan Tan, Peng Wang, Junyang Lin, Chang Zhou,

and Jingren Zhou. Qwen-vl: A versatile vision-language model for understanding, localization,
text reading, and beyond, 2023. URL https://arxiv.org/abs/2308.12966.

Shuai Bai, Keqin Chen, Xuejing Liu, Jialin Wang, Wenbin Ge, Sibo Song, Kai Dang, Peng Wang,
Shijie Wang, Jun Tang, et al. Qwen2. 5-vl technical report. arXiv preprint arXiv:2502.13923,
2025.

Lital Binyamin, Yoad Tewel, Hilit Segev, Eran Hirsch, Royi Rassin, and Gal Chechik. Make it count:
Text-to-image generation with an accurate number of objects. arXiv preprint arXiv:2406.10210,
2024.

Anthony Chen, Jianjin Xu, Wenzhao Zheng, Gaole Dai, Yida Wang, Renrui Zhang, Haofan Wang,
and Shanghang Zhang. Training-free regional prompting for diffusion transformers. arXiv preprint
arXiv:2411.02395, 2024a.

Junsong Chen, Jincheng Yu, Chongjian Ge, Lewei Yao, Enze Xie, Yue Wu, Zhongdao Wang,
James Kwok, Ping Luo, Huchuan Lu, et al. Pixart-α: Fast training of diffusion transformer for
photorealistic text-to-image synthesis. arXiv preprint arXiv:2310.00426, 2023.

Minghao Chen, Iro Laina, and Andrea Vedaldi. Training-free layout control with cross-attention
guidance. In Proceedings of the IEEE/CVF winter conference on applications of computer vision,
pages 5343–5353, 2024b.

Zeyuan Chen, Hongyi Xu, Guoxian Song, You Xie, Chenxu Zhang, Xin Chen, Chao Wang, Di Chang,
and Linjie Luo. X-dancer: Expressive music to human dance video generation. In Proceedings of
the IEEE/CVF International Conference on Computer Vision, 2025.

Zhennan Chen, Yajie Li, Haofan Wang, Zhibo Chen, Zhengkai Jiang, Jun Li, Qian Wang, Jian Yang,
and Ying Tai. Region-aware text-to-image generation via hard binding and soft refinement. arXiv
preprint arXiv:2411.06558, 2024c.

Bo Cheng, Yuhang Ma, Liebucha Wu, Shanyuan Liu, Ao Ma, Xiaoyu Wu, Dawei Leng, and Yuhui
Yin. Hico: Hierarchical controllable diffusion model for layout-to-image generation. arXiv preprint
arXiv:2410.14324, 2024.

Patrick Esser, Sumith Kulal, Andreas Blattmann, Rahim Entezari, Jonas Müller, Harry Saini, Yam
Levi, Dominik Lorenz, Axel Sauer, Frederic Boesel, et al. Scaling rectified flow transformers for
high-resolution image synthesis. In Forty-first international conference on machine learning, 2024.

Weixi Feng, Wanrong Zhu, Tsu-jui Fu, Varun Jampani, Arjun Akula, Xuehai He, Sugato Basu,
Xin Eric Wang, and William Yang Wang. Layoutgpt: Compositional visual planning and generation
with large language models. arXiv preprint arXiv:2305.15393, 2023a.

Yutong Feng, Biao Gong, Di Chen, Yujun Shen, Yu Liu, and Jingren Zhou. Ranni: Taming text-to-
image diffusion for accurate instruction following. arXiv preprint arXiv:2311.17002, 2023b.

Hanan Gani, Shariq Farooq Bhat, Muzammal Naseer, Salman Khan, and Peter Wonka. Llm
blueprint: Enabling text-to-image generation with complex and detailed prompts. arXiv preprint
arXiv:2310.10640, 2023.

Martin Heusel, Hubert Ramsauer, Thomas Unterthiner, Bernhard Nessler, and Sepp Hochreiter. Gans
trained by a two time-scale update rule converge to a local nash equilibrium. Advances in neural
information processing systems, 30, 2017.

Alexander Kirillov, Eric Mintun, Nikhila Ravi, Hanzi Mao, Chloe Rolland, Laura Gustafson, Tete
Xiao, Spencer Whitehead, Alexander C Berg, Wan-Yen Lo, et al. Segment anything. In Proceedings
of the IEEE/CVF international conference on computer vision, pages 4015–4026, 2023.

Black Forest Labs. Flux. https://github.com/black-forest-labs/flux, 2024.

11

https://arxiv.org/abs/2308.12966
https://github.com/black-forest-labs/flux


Yuseung Lee, Taehoon Yoon, and Minhyuk Sung. Groundit: Grounding diffusion transformers via
noisy patch transplantation. Advances in Neural Information Processing Systems, 37:58610–58636,
2024.

Yuheng Li, Haotian Liu, Qingyang Wu, Fangzhou Mu, Jianwei Yang, Jianfeng Gao, Chunyuan Li,
and Yong Jae Lee. Gligen: Open-set grounded text-to-image generation. In Proceedings of the
IEEE/CVF conference on computer vision and pattern recognition, pages 22511–22521, 2023a.

Yuheng Li, Haotian Liu, Qingyang Wu, Fangzhou Mu, Jianwei Yang, Jianfeng Gao, Chunyuan
Li, and Yong Jae Lee. Gligen: Open-set grounded text-to-image generation, 2023b. URL
https://arxiv.org/abs/2301.07093.

Long Lian, Boyi Li, Adam Yala, and Trevor Darrell. Llm-grounded diffusion: Enhancing prompt
understanding of text-to-image diffusion models with large language models. arXiv preprint
arXiv:2305.13655, 2023.

Tsung-Yi Lin, Michael Maire, Serge Belongie, James Hays, Pietro Perona, Deva Ramanan, Piotr
Dollár, and C Lawrence Zitnick. Microsoft coco: Common objects in context. In Computer vision–
ECCV 2014: 13th European conference, zurich, Switzerland, September 6-12, 2014, proceedings,
part v 13, pages 740–755. Springer, 2014.

Shilong Liu, Zhaoyang Zeng, Tianhe Ren, Feng Li, Hao Zhang, Jie Yang, Chunyuan Li, Jianwei
Yang, Hang Su, Jun Zhu, et al. Grounding dino: Marrying dino with grounded pre-training for
open-set object detection. arXiv preprint arXiv:2303.05499, 2023.

Ilya Loshchilov and Frank Hutter. Decoupled weight decay regularization. arXiv preprint
arXiv:1711.05101, 2017.

Alex Nichol, Prafulla Dhariwal, Aditya Ramesh, Pranav Shyam, Pamela Mishkin, Bob McGrew,
Ilya Sutskever, and Mark Chen. Glide: Towards photorealistic image generation and editing with
text-guided diffusion models. arXiv preprint arXiv:2112.10741, 2021.

William Peebles and Saining Xie. Scalable diffusion models with transformers. In Proceedings of
the IEEE/CVF international conference on computer vision, pages 4195–4205, 2023.

Zhiliang Peng, Wenhui Wang, Li Dong, Yaru Hao, Shaohan Huang, Shuming Ma, and Furu
Wei. Kosmos-2: Grounding multimodal large language models to the world. arXiv preprint
arXiv:2306.14824, 2023.

Quynh Phung, Songwei Ge, and Jia-Bin Huang. Grounded text-to-image synthesis with attention refo-
cusing. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition,
pages 7932–7942, 2024.

Dustin Podell, Zion English, Kyle Lacey, Andreas Blattmann, Tim Dockhorn, Jonas Müller, Joe
Penna, and Robin Rombach. Sdxl: Improving latent diffusion models for high-resolution image
synthesis. arXiv preprint arXiv:2307.01952, 2023.

Alec Radford, Jong Wook Kim, Chris Hallacy, Aditya Ramesh, Gabriel Goh, Sandhini Agarwal,
Girish Sastry, Amanda Askell, Pamela Mishkin, Jack Clark, et al. Learning transferable visual
models from natural language supervision. In International conference on machine learning, pages
8748–8763. PmLR, 2021.

Aditya Ramesh, Mikhail Pavlov, Gabriel Goh, Scott Gray, Chelsea Voss, Alec Radford, Mark Chen,
and Ilya Sutskever. Zero-shot text-to-image generation. In International conference on machine
learning, pages 8821–8831. Pmlr, 2021.

Nikhila Ravi, Valentin Gabeur, Yuan-Ting Hu, Ronghang Hu, Chaitanya Ryali, Tengyu Ma, Haitham
Khedr, Roman Rädle, Chloe Rolland, Laura Gustafson, Eric Mintun, Junting Pan, Kalyan Vasudev
Alwala, Nicolas Carion, Chao-Yuan Wu, Ross Girshick, Piotr Dollár, and Christoph Feichtenhofer.
Sam 2: Segment anything in images and videos, 2024. URL https://arxiv.org/abs/2408.
00714.

12

https://arxiv.org/abs/2301.07093
https://arxiv.org/abs/2408.00714
https://arxiv.org/abs/2408.00714


Robin Rombach, Andreas Blattmann, Dominik Lorenz, Patrick Esser, and Björn Ommer. High-
resolution image synthesis with latent diffusion models. In Proceedings of the IEEE/CVF confer-
ence on computer vision and pattern recognition, pages 10684–10695, 2022.

Divyansh Srivastava, Xiang Zhang, He Wen, Chenru Wen, and Zhuowen Tu. Lay-your-scene: Natural
scene layout generation with diffusion transformers. arXiv preprint arXiv:2505.04718, 2025.

Xudong Wang, Trevor Darrell, Sai Saketh Rambhatla, Rohit Girdhar, and Ishan Misra. Instancediffu-
sion: Instance-level control for image generation. In Proceedings of the IEEE/CVF Conference on
Computer Vision and Pattern Recognition, pages 6232–6242, 2024a.

Xudong Wang, Trevor Darrell, Sai Saketh Rambhatla, Rohit Girdhar, and Ishan Misra. Instancediffu-
sion: Instance-level control for image generation. In Proceedings of the IEEE/CVF Conference on
Computer Vision and Pattern Recognition, pages 6232–6242, 2024b.

Yilin Wang, Zeyuan Chen, Liangjun Zhong, Zheng Ding, and Zhuowen Tu. Dolfin: Diffusion layout
transformers without autoencoder. In European Conference on Computer Vision, pages 326–343.
Springer, 2024c.

Yilin Wang, Haiyang Xu, Xiang Zhang, Zeyuan Chen, Zhizhou Sha, Zirui Wang, and Zhuowen Tu.
Omnicontrolnet: Dual-stage integration for conditional image generation. In Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern Recognition, pages 7436–7448, 2024d.

Zirui Wang, Zhizhou Sha, Zheng Ding, Yilin Wang, and Zhuowen Tu. Tokencompose: Text-to-image
diffusion with token-level supervision. In Proceedings of the IEEE/CVF Conference on Computer
Vision and Pattern Recognition, pages 8553–8564, 2024e.

Yinwei Wu, Xianpan Zhou, Bing Ma, Xuefeng Su, Kai Ma, and Xinchao Wang. Ifadapter: Instance
feature control for grounded text-to-image generation. arXiv preprint arXiv:2409.08240, 2024.

Jinheng Xie, Yuexiang Li, Yawen Huang, Haozhe Liu, Wentian Zhang, Yefeng Zheng, and
Mike Zheng Shou. Boxdiff: Text-to-image synthesis with training-free box-constrained dif-
fusion. In Proceedings of the IEEE/CVF International Conference on Computer Vision, pages
7452–7461, 2023a.

Jinheng Xie, Yuexiang Li, Yawen Huang, Haozhe Liu, Wentian Zhang, Yefeng Zheng, and
Mike Zheng Shou. Boxdiff: Text-to-image synthesis with training-free box-constrained dif-
fusion. In Proceedings of the IEEE/CVF International Conference on Computer Vision, pages
7452–7461, 2023b.

Haiyang Xu, Yu Lei, Zeyuan Chen, Xiang Zhang, Yue Zhao, Yilin Wang, and Zhuowen Tu. Bayesian
diffusion models for 3d shape reconstruction. In Proceedings of the IEEE/CVF Conference on
Computer Vision and Pattern Recognition, pages 10628–10638, 2024.

Zeyue Xue, Guanglu Song, Qiushan Guo, Boxiao Liu, Zhuofan Zong, Yu Liu, and Ping Luo. Raphael:
Text-to-image generation via large mixture of diffusion paths. Advances in Neural Information
Processing Systems, 36, 2024.

Lihe Yang, Bingyi Kang, Zilong Huang, Zhen Zhao, Xiaogang Xu, Jiashi Feng, and Hengshuang
Zhao. Depth anything v2. Advances in Neural Information Processing Systems, 37:21875–21911,
2024a.

Ling Yang, Zhaochen Yu, Chenlin Meng, Minkai Xu, Stefano Ermon, and Bin Cui. Mastering text-
to-image diffusion: Recaptioning, planning, and generating with multimodal llms. In Forty-first
International Conference on Machine Learning, 2024b.

Zhengyuan Yang, Jianfeng Wang, Zhe Gan, Linjie Li, Kevin Lin, Chenfei Wu, Nan Duan, Zicheng
Liu, Ce Liu, Michael Zeng, et al. Reco: Region-controlled text-to-image generation. In Proceedings
of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pages 14246–14255,
2023.

Guanning Zeng, Xiang Zhang, Zirui Wang, Haiyang Xu, Zeyuan Chen, Bingnan Li, and Zhuowen
Tu. Yolo-count: Differentiable object counting for text-to-image generation. arXiv preprint
arXiv:2508.00728, 2025.

13



Hong Zhang, Zhongjie Duan, Xingjun Wang, Yingda Chen, and Yu Zhang. Eligen: Entity-level
controlled image generation with regional attention. arXiv preprint arXiv:2501.01097, 2025.

Hui Zhang, Dexiang Hong, Yitong Wang, Jie Shao, Xinglong Wu, Zuxuan Wu, and Yu-Gang Jiang.
Creatilayout: Siamese multimodal diffusion transformer for creative layout-to-image generation.
arXiv preprint arXiv:2412.03859, 2024.

Lvmin Zhang, Anyi Rao, and Maneesh Agrawala. Adding conditional control to text-to-image
diffusion models. In Proceedings of the IEEE/CVF International Conference on Computer Vision,
pages 3836–3847, 2023.

Qingcheng Zhao, Xiang Zhang, Haiyang Xu, Zeyuan Chen, Jianwen Xie, Yuan Gao, and Zhuowen
Tu. Depr: Depth guided single-view scene reconstruction with instance-level diffusion. arXiv
preprint arXiv:2507.22825, 2025.

Guangcong Zheng, Xianpan Zhou, Xuewei Li, Zhongang Qi, Ying Shan, and Xi Li. Layoutdiffusion:
Controllable diffusion model for layout-to-image generation. In Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition, pages 22490–22499, 2023.

Dewei Zhou, You Li, Fan Ma, Xiaoting Zhang, and Yi Yang. Migc: Multi-instance generation
controller for text-to-image synthesis. In Proceedings of the IEEE/CVF Conference on Computer
Vision and Pattern Recognition, pages 6818–6828, 2024a.

Dewei Zhou, Ji Xie, Zongxin Yang, and Yi Yang. 3dis: Depth-driven decoupled instance synthesis
for text-to-image generation. arXiv preprint arXiv:2410.12669, 2024b.

Dewei Zhou, Mingwei Li, Zongxin Yang, and Yi Yang. Dreamrenderer: Taming multi-instance
attribute control in large-scale text-to-image models. arXiv preprint arXiv:2503.12885, 2025.

14



NeurIPS Paper Checklist

The checklist is designed to encourage best practices for responsible machine learning research,
addressing issues of reproducibility, transparency, research ethics, and societal impact. Do not remove
the checklist: The papers not including the checklist will be desk rejected. The checklist should
follow the references and follow the (optional) supplemental material. The checklist does NOT count
towards the page limit.

Please read the checklist guidelines carefully for information on how to answer these questions. For
each question in the checklist:

• You should answer [Yes] , [No] , or [NA] .
• [NA] means either that the question is Not Applicable for that particular paper or the

relevant information is Not Available.
• Please provide a short (1–2 sentence) justification right after your answer (even for NA).

The checklist answers are an integral part of your paper submission. They are visible to the
reviewers, area chairs, senior area chairs, and ethics reviewers. You will be asked to also include it
(after eventual revisions) with the final version of your paper, and its final version will be published
with the paper.

The reviewers of your paper will be asked to use the checklist as one of the factors in their evaluation.
While "[Yes] " is generally preferable to "[No] ", it is perfectly acceptable to answer "[No] " provided a
proper justification is given (e.g., "error bars are not reported because it would be too computationally
expensive" or "we were unable to find the license for the dataset we used"). In general, answering
"[No] " or "[NA] " is not grounds for rejection. While the questions are phrased in a binary way, we
acknowledge that the true answer is often more nuanced, so please just use your best judgment and
write a justification to elaborate. All supporting evidence can appear either in the main paper or the
supplemental material, provided in appendix. If you answer [Yes] to a question, in the justification
please point to the section(s) where related material for the question can be found.

IMPORTANT, please:

• Delete this instruction block, but keep the section heading “NeurIPS Paper Checklist",
• Keep the checklist subsection headings, questions/answers and guidelines below.
• Do not modify the questions and only use the provided macros for your answers.

1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?
Answer: [Yes]
Justification:
Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification:
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Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?

Answer: [NA]

Justification:

Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.

4. Experimental result reproducibility
Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification:

Guidelines:

• The answer NA means that the paper does not include experiments.
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• If the paper includes experiments, a No answer to this question will not be perceived
well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset encourage the release of code and data,
we understand that this might not be475 possible, so “No” is an acceptable answer.
Papers cannot be rejected simply for not476 including code, unless this is central to
the contribution (e.g., for a new open-source477 benchmark)or instructions for how
to construct the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer: [Yes]

Justification:

Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.
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• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental setting/details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]

Justification:

Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.

7. Experiment statistical significance
Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [No]

Justification: Experiments are not evaluated for statistical significance.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments compute resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]

Justification:

Guidelines:

• The answer NA means that the paper does not include experiments.
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• The paper should indicate the type of compute workers CPU or GPU, internal cluster,
or cloud provider, including relevant memory and storage.

• The paper should provide the amount of compute required for each of the individual
experimental runs as well as estimate the total compute.

• The paper should disclose whether the full research project required more compute
than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code of ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?
Answer: [Yes]
Justification:
Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).
10. Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?
Answer: [NA]
Justification:
Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?
Answer: [NA]
Justification:
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Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]

Justification:

Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the

package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [Yes]

Justification:

Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and research with human subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?
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Answer: [Yes]
Justification:
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional review board (IRB) approvals or equivalent for research with human
subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer: [NA]
Justification:
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

16. Declaration of LLM usage
Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.
Answer: [Yes]
Justification:
Guidelines:

• The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

• Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.
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Appendix

A Implementation Details

We begin by outlining the implementation details for the following stages: (1) data curation, (2)
training, (3) inference and evaluation.

A.1 Data Curation

A.1.1 Prompts Construction

We provide the prompt templates used with Qwen-2.5-VL-7B and Qwen-2.5-VL-32B during the
dataset curation process. Qwen-2.5-VL is employed for three distinct tasks: (1) Image Captioning,
(2) Grounding, and (3) Relationship Extraction. The specific prompts for each task are shown below.

Image Captioning
Give a detailed caption of this image.

Grounding
You are required to detect the main foreground instances in the image and describe them.
Response in json format:

{
instance_category_1: {

bbox: [x1, y1 , x2 , y2],
local_prompts: description of this instance

},
instance_category_2: {

bbox: [x1, y1 , x2 , y2],
local_prompts: description of this instance

},
...

}

Each bounding box must correspond to a single , distinct individual object - never a group
or collection. Do not merge multiple instances into one. Strictly follow this instruction
without exceptions or interpretation. Strictly follow the format in English , without any
irrelevant words.

Relationship Extraction
You are required to extract the relation between two instances in a given annotation ,
based on their bounding boxes and local descriptions. Only describe the relationship for
the provided valid instance pairs.
Here is the image caption: {Caption }.
Here are the instance annotations: {Bbox and Instance -Caption }.
Here are the list of valid instance pairs to describe: {Valid Overlapping Pairs}.
Response in the following json format:

{
(Instance_1 , Instance_2): Instance_1 {relationship} Instance_2 ,
...

}

where {relationship} are words in the caption and local prompts that explicitly describe
the interaction or spatial relation. Each key must be a tuple from the list of valid
instance pairs. If the relationship is not explicitly specified , please respond with ‘
None ’. Never invent any relationship that is not specified in the annotation. Strictly
respond the relationship description in one short sentence , without any irrelevant words.

A.1.2 Web-UI Construction

As part of our data curation pipeline, we incorporate human auditing to ensure data quality. To
facilitate this process, we develop a custom Web-UI that displays key annotations, including image
captions, bounding boxes, instance captions, and relationship captions. Annotators are instructed
to verify the accuracy of each annotation to uphold high data quality standards. A screenshot of the
Web-UI is provided in Figure 7.
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Figure 7: Web-UI used for human auditing.

A.2 Training

The complete set of hyper-parameters used during training is listed in Table 3.

Table 3: Training hyperparameters of CreatiLayout-AM.
Hyperparameter CreatiLayout-AM EliGen-AM

Number of GPUs 8 Nvidia A6000 48GB 8 Nvidia H100 80GB
Batch Size (per GPU) 1 1
Gradient Accumulation Steps 2 1
Gradient Checkpointing False True
Learning Rate 1e-5 1e-4
LR Scheduler Linear Linear
Warm-up Steps 500 500
Training Steps 3500 2000
LoRA Rank 32 64
Parallel DDP FSDP
λ 0.5 1
β 1 1

A.2.1 EliGen-AM

To further validate the effectiveness of our training set and the proposed AM method, we conduct
experiments on an additional baseline, EliGen [Zhang et al., 2025]. Unlike CreatiLayout, which
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represents each entity with explicit layout tokens—thereby allowing direct extraction of entity-
specific attention maps for applying our losses in Equation (4), EliGen constrains image tokens
within a bounding box to only attend to the global description tokens and their corresponding local
description tokens. This design makes it non-trivial to define the instance-level attention map required
in Equation (4). To address this, we approximate Ai as the average attention map across all text
tokens in the ith local description.

Formally, we define the attention map of ith instance as:

Āi =
1

Li

Li∑
j=0

Aj (5)

where Li is the number of tokens in the ith local description, Aj refers to the attention map between
images tokens and the jth local description token.

We replace the Ai with Āi in Equation (2) and Equation (3) and train the model with the hyperpa-
rameters in Table 3. The quantitative results is shown in Table 2.

A.3 Inference and Evaluation

For evaluation, we generate three images per method for each layout using a fixed random seed
(20251202, 20251203 and 20251204) to ensure a fair comparison.

To compute the standard mIoU, we match each ground truth bounding box to its corresponding
predicted box using the Hungarian algorithm.

For our proposed metric, O-mIoU, we compute the mIoU over the cropped intersection region
between two instances involved in a specified relationship. We argue that this metric more effectively
captures the fidelity and realism of object rendering, particularly in densely overlapping scenarios.

The CLIP score is computed using the pretrained CLIP model "ViT-B/32" [Radford et al., 2021].

During the inference and evaluation stages, Qwen-2.5-VL-32B is employed for object detection (to
generate predicted bounding boxes for mIoU computation) and for question answering, which is
used to determine the instance-level success rate SRE and relationship-level success rate SRR. We
provide prompts for each task below.

Object Detection

You are required to detect all the instances of the following categories {Categories} in
the image.
Response in json format:

{
category_1: [[x1 , y1 , x2 , y2], [x1 , y1 , x2 , y2], ...],
category_2: [[x1 , y1 , x2 , y2], ...]
...

}

For each category , provide a list of bounding boxes of all its instances in the image.
Each bounding box must correspond to a single , distinct individual object - never a group
or collection.
Strictly follow this instruction without exceptions or interpretation.
Strictly follow the format in English , without any irrelevant words.

SRE

You are required to answer whether the instances in an image match the corresponding
descriptions , based on their bounding boxes.
Here are the instance names , the corresponding bboxes and the instance description:
{Bbox and Instance Captions}
Please follow these rules:
Check if the generated instance visually matches its local_prompt description.
If the instance is clearly generated and not corrupted , and its key attributes described
in the local_prompt are present , answer Yes.
If the instance is missing , corrupted , or the key attributes are not present , answer No.
Response in the following format:

{
Instance_name: Yes/No,
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...
}

Each key must be from the dict of the instance name , the corresponding bbox and the
instance description.
Each value must be Yes or No.
If the instance name is not in the image , the answer should be No.
Strictly follow the format in English , without any irrelevant words.

SRR

You are required to answer whether the relationship between two instances in an image
matches the description.
Here are the instance name and the bbox: {Bbox and Instance Name}.
Here are dict of the instance pair and the ground truth relationship descriptions:
{Relationships }.
Please follow these rules:
For proximity relations like near , beside , close to, next to, if the two instances are
generated well (not corrupted or fused into one) and their bounding boxes are close , you
can consider the description as matched.
For directional or positional relations like behind , in front of, you must strictly check
if the spatial arrangement in the image actually matches the description , because
bounding boxes alone are not enough.
Response in the following format:

{
(Instance_1 , Instance_2): Yes/No,
...

}

Each key must be a tuple from the dict of the instance pair and the ground truth
relationship descriptions.
Each value must be Yes or No.
Yes means the action/spatial relationship between the two instances matches the
description.
You shouldn ’t pay too much attention on how well the bounding boxes are aligned.
Strictly follow the format in English , without any irrelevant words.

A.4 Baseline Clarification

We include several recent training-based L2I methods in our benchmark evaluation, some of which
provide multiple variants depending on the underlying base model. To avoid ambiguity, we clarify our
choices here. For HiCo [Cheng et al., 2024], we use the HiCo-SD1.5 model, as the SDXL version was
not publicly available at the time of evaluation. For 3DIS [Zhou et al., 2024b] and DreamRender [Zhou
et al., 2025], we adopt the FLUX-based versions. In addition, since DreamRender requires auxiliary
modalities such as canny edge maps and depth maps, we utilize DepthAnything v2 [Yang et al.,
2024a] to extract depth maps from reference images, which are then provided together with the layout
as inputs to the model.

B Quantitative Results Analysis on Training-Free Methods

In addition to the training-based approaches, we evaluate several training-free methods on OverLay-
Bench [Xie et al., 2023a, Chen et al., 2024b, Phung et al., 2024, Lee et al., 2024, Chen et al., 2024a],
as shown in Table 4.

Specifically, on the OverLayBench-Simple split, RegionalPrompting achieves the highest overall
performance, with the best mIoU (42.54%), O-mIoU (20.10%), SRE (73.49%), SRR (75.81%),
CLIPLocal (27.40), and FID (23.94). On the Regular split, it continues to lead in mIoU (32.72%),
O-mIoU (12.29%), SRE (63.74%), and CLIPLocal (25.82), again achieving the lowest FID (43.13),
despite a slight drop in SRR (67.08%). For the more challenging Complex split, RegionalPrompting
still attains the highest mIoU (28.35%), O-mIoU (9.05%), SRE (53.56%), and CLIPLocal (25.29),
alongside a competitive FID (49.41), further demonstrating its robustness in dense and overlap-heavy
scenarios.
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Table 4: Comprehensive comparison between training-free methods on OverLayBench. Bold and
underline denote the best and the second best methods. Methods above the dashed line are U-
Net–based, while those below are DiT–based.
Method mIoU(%) ↑ O-mIoU(%) ↑ SRE(%) ↑ SRR(%) ↑ CLIPGlobal ↑ CLIPLocal ↑ FID ↓

OverLayBench-Simple
BoxDiff 24.48±0.08 7.71±0.43 42.03±0.89 69.94±0.52 36.78±0.06 21.33±0.08 34.65±0.20
LayoutGuidance 23.12±0.27 7.92±0.13 45.78±0.65 70.83±0.70 33.47±0.10 21.22±0.01 74.40±1.01
R&B 27.78±1.90 9.70±1.16 36.98±0.52 64.05±0.45 34.64±0.18 21.32±0.04 36.57±2.30
GroundDiT 31.92±0.34 10.93±0.36 48.57±0.89 75.26±0.40 36.10±0.12 22.73±0.03 34.98±0.63
RegionalPrompting 42.54±0.17 20.10±0.27 73.49±0.53 75.81±0.32 35.45±0.08 27.40±0.06 23.94±0.10

OverLayBench-Regular
BoxDiff 19.40±0.30 5.33±0.24 37.58±0.36 71.81±0.44 36.50±0.05 19.97±0.03 55.41±0.28
LayoutGuidance 15.81±0.20 4.51±0.19 44.94±0.07 72.76±0.86 31.76±0.01 20.05±0.02 128.16±0.35
R&B 20.35±0.74 5.54±0.61 32.85±0.42 65.01±0.06 34.49±0.14 19.88±0.04 58.55±1.79
GroundDiT 24.03±0.20 6.70±0.31 42.24±0.66 74.02±0.46 36.00±0.12 21.10±0.05 54.94±0.49
RegionalPrompting 32.72±0.30 12.29±0.23 63.74±0.73 67.08±0.69 34.46±0.10 25.82±0.10 43.13±0.31

OverLayBench-Complex
BoxDiff 20.02±0.32 5.21±0.15 33.52±0.85 76.41±0.51 36.92±0.02 19.91±0.03 59.70±0.67
LayoutGuidance 16.34±0.33 4.01±0.14 37.76±0.91 75.53±1.41 32.75±0.04 19.72±0.05 119.32±1.19
R&B 19.80±0.67 4.85±0.36 28.38±1.05 69.97±1.31 34.57±0.19 19.47±0.06 63.71±2.82
GroundDiT 24.77±0.88 6.58±0.31 37.85±1.27 77.03±1.81 36.20±0.24 20.55±0.06 55.59±1.39
RegionalPrompting 28.35±0.94 9.05±0.59 53.56±1.58 60.37±1.56 33.34±0.13 25.29±0.05 49.41±1.25

C Error Pattern Analysis of Existing Methods

We identify and categorize the common failure patterns observed in existing methods into five
major classes: 1) Incorrect Object Number, where models either hallucinate additional undesired
objects or fail to generate required instances within the specified bounding box regions; 2) Object
Fusion, where models struggle to generate distinct instances for overlapping bounding boxes, instead
producing a single merged or entangled object; 3) Object Distortion, where the generated instance
lacks realism, often exhibiting severe deformation or artifacts that degrade perceptual quality; 4)
Incorrect Category, where the generated object does not match the intended category, undermining
semantic correctness; 5) BBox Misalignment, where the object does not properly align with its
designated bounding box, either overflowing beyond the box or failing to fully occupy the allocated
region, thus breaking spatial consistency. Please refer to Figures 8 and 9 for additional visual
examples and explanations of each error pattern.

D Comparison Between GroundingDINO and Qwen

We compare the grounding capabilities of GroundingDINO v1.0 Liu et al. [2023] and Qwen-2.5-
VL-32B Bai et al. [2023] using an example from GroundingDINO’s official demo2. As illustrated
in Figure 10, GroundingDINO produces multiple false positives, including a misclassification of a
shark as a butterfly. In contrast, Qwen demonstrates more accurate and robust detection performance.

E User Study

We conducted a user study with 15 participants over 60 image pairs (see Table 5), comparing
CreatiLayout and CreatiLayout-AM across three difficulty levels. Excluding “No Preference” cases,
our method achieved winning rates of 55.2%, 51.9%, and 46.8% on Simple, Regular, and Complex
settings, respectively, showing moderate preference in simpler scenarios.

Table 5: User study results across three difficulty levels.

Ours vs. CreatiLayout Simple Regular Complex

Winning Rate (%) 55.2 51.9 46.8

2https://cloud.deepdataspace.com/playground/grounding_dino

26

https://cloud.deepdataspace.com/playground/grounding_dino


GL
IG

EN
In

st
D

if
f

M
IG

C
H

iC
o

EL
IG

EN
3D

IS
Cr

ea
ti

La
yo

ut

Image Caption: 
A playful scene where a dog and a cat engage in a friendly tussle 
on a sunny lawn. 
Instance Captions: 
(1) A playful dog with a joyful expression and wagging tail. 
(2)  A nimble cat with alert eyes and a poised stance.

Object Fusion BBox Misalignment Object Distortion Incorrect Object Number

Image Error Type & Explanation

Object Fusion

The cat head and dog 
body are fused together

BBox Misalignment

The cat only occupies the 
right part of the BBox.

Object Fusion

The cat body and the dog 
body are fused together.

Incorrect Object Number
Missing the dog.

BBox Misalignment
Cat occupies the upper 
left part of the BBox.

BBox Misalignment

The cat only occupies the 
right part of the BBox.

Incorrect Category

Model generated a cat in 
the dog’s BBox and a dog 

in the cat’s BBox.

BBox Misalignment

The cat only occupies the 
right part of the BBox.

Image Caption: 
A heartwarming scene of a father holding his baby in a cozy room, 
with a gentle overlap where the father’s arm supports the baby. 
Instance Captions: 
(1) A caring father with a gentle smile, holding his baby tenderly. 
(2)  A precious baby with joyful eyes and a warn expression.

Incorrect Category

Image Error Type & Explanation

Object Distortion

The father’s hand is 
distorted

Incorrect Object Number
Two fathers

BBox Misalignment
Baby and father exceed 

the BBox.

Object Distortion
Baby’s Body is distorted

BBox Misalignment
Baby’s legs exceed the 

BBox.

Incorrect Object Number

Additional Person

BBox Misalignment

The baby occurs in the 
father’s BBox and the 
father is generated in 

the wrong place.

Object Distortion
The hand is distorted.

BBox Misalignment
Father’s legs exceed the 

BBox.

Object Distortion

The baby’s body is 
distorted.

Figure 8: Error pattern analysis and explanation for existing models.
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Object Fusion BBox Misalignment Object Distortion Incorrect Object Number

Image Error Type & Explanation

Incorrect Category

Incorrect Category

Image Error Type & Explanation

Incorrect Object Number
Missing Child and Child.

BBox Misalignment
Child and Child do not 

align with their BBoxes.

Object Distortion

Skateboard is distorted.

Object Distortion
The hand is distorted.

Object Fusion
Woman and Woman are 

fused together.

Person Donut

Incorrect Category

Person Elephant
Person Elephant

Incorrect Category

Giraffe Tree

Object Fusion

Child and Dog are fused 
together.

Object Fusion

Sheep and Sheep are 
fused together.

Incorrect Object Number

Object Fusion
Man and Sofa are fused 

together.

One Girl Two Girls

Incorrect Object Number

One 
Woman

Two 
Women

Incorrect Object Number

One 
Woman

Two 
Women

Object Distortion
The Zebra is distorted.

Incorrect Object Number
One 

Zebra
Four 

Zebra
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Figure 9: More examples of error patterns for existing methods.

butterfly

shark

Grounding DINO v1.0 Qwen2.5-VL-32B

Figure 10: Comparison of grounding performance between GroundingDINO v1.0 and Qwen-2.5-VL-
32B.
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