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ABSTRACT

In this work we present affinity-VAE: a framework for automatic clustering and
classification of objects in multidimensional image data based on their similarity.
The method expands on the concept of β-VAEs with an informed similarity-based
loss component driven by an affinity matrix. The affinity-VAE is able to create
rotationally-invariant, morphologically homogeneous clusters in the latent repre-
sentation, with improved cluster separation compared with a standard β-VAE. We
explore the extent of latent disentanglement and continuity of the latent spaces
on both 2D and 3D image data, including simulated biological electron cryo-
tomography (cryo-ET) volumes as an example of a scientific application.

1 INTRODUCTION

Lying at the core of machine learning research, representation learning is one of the most impor-
tant problems in our data-driven world. In recent decades, the performance of visual tasks has
been coupled with appropriately chosen representation of an input, whether handcrafted or learned
(Kingma & Welling, 2014). However, the interpretability of such factorised representations plays
an important role, especially with scientific data. Furthermore, unlike the standard benchmark data
in machine learning, real-life or scientific scenarios are often open problems with no existing anno-
tations or ground truth. The development of methods for interpretable, factorised representations of
data without supervision is therefore crucial to future scientific discoveries.

In the recent years, the β-VAE has become a prominent method for factorised representations in
visual tasks (Higgins et al., 2017). However, despite significant developments (Bepler et al., 2019;
Ziatdinov et al., 2021), learning continuous latent representations that capture and disentangle trans-
lation and rotation along with object semantics remains an open problem to this date, especially in
3D. Moreover, as such representations were designed to be completely data-agnostic, the approach
makes no assumptions about the data resulting in little control over the learned semantics. In certain
domains, however, such as visual tasks, common visual affinities (e.g. shape) could aid the process
of representation learning (Huth et al., 2012; Op de Beeck et al., 2008).

We illustrate the problem on an open scientific challenge: the identification of molecules in volumet-
ric cryogenic Electron Tomography (cryo-ET) image data. Cryo-ET is an emerging high resolution
imaging technique that has the potential to revolutionize our understanding of molecular and cellular
biology. Although powerful in their own right, structures of isolated and purified proteins convey
little to no information on spatial distribution and interactions between the cellular systems in their
native environments. Cryo-ET is uniquely capable of 3D in situ imaging, spanning molecular to cel-
lular scales. The main promise of cryo-ET is to deliver such spatial mapping of a cellular landscape
(Oikonomou et al., 2016), otherwise known as visual proteomics (Bäuerlein & Baumeister, 2021;
Sali et al., 2003).

Cryo-ET tomograms are generated by collecting a tilt series of a frozen specimen in a transmission
electron microscope (TEM). The individual 2D projection images are aligned and back-projected to
generate the 3D tomogram (Turk & Baumeister, 2020). It enables resolution of the entire proteome
of molecules inside whole cells in 3D (Murata et al., 2010; Jin et al., 2008), with further promise of
increasing the precision of this method to 20 Å (Kühlbrandt, 2014; Wan & Briggs, 2016b). However,
recent advances in instrumentation have not been matched by equivalent methodological develop-
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ments for extraction of contextual information from reconstructed volumes (Bäuerlein & Baumeis-
ter, 2021). Such analysis routinely includes recognition and classification of particles of the same
class, followed by subtomogram averaging within a class to obtain structures with higher local res-
olution and signal-to-noise ratios (Wan & Briggs, 2016b; Castaño-Dı́ez & Zanetti, 2019; Wan &
Briggs, 2016a). However, particle localisation, recognition and classification are inherently chal-
lenging for several reasons including low signal-to-noise ratios (SNR), molecular crowding, compo-
sitional and conformational heterogeneity, the random orientation of molecules and the abundance
of different protein types

Many existing computational strategies have been developed to enable subtomogram target identifi-
cation, most notably template matching which is a computationally expensive algorithm relying on
the availability of high-resolution template libraries. CNNs have also been used in this context for
multi-class classification, including work in domain adaptation and semi-supervised learning, how-
ever their reliance on manually-labelled data urges further development (Moebel et al., 2021; Che
et al., 2018). Min et al. (2015) explored template- and label-free methods using pattern recognition,
however they rely on high abundances of proteins for successful classification. More recently, some
representation learning frameworks emerged providing coarse characterisation of cellular features
(Zeng et al., 2018b). Related are also works of Rice et al. (2022); Zeng et al. (2018a) which focus
on organising feature embeddings from CNNs and classical autoencoders. Recently, there has also
been an increased interest in rotationally equivariant VAEs, which we are also exploring in this work
(Bepler et al., 2019; Ziatdinov et al., 2021; Ziatdinov & Kalinin, 2021). Finally, our work also relates
to contrastive learning frameworks (Chen et al., 2020) and deep subspace clustering Ji et al. (2017),
though in contrast to our work, those methods include pairwise affinities as learnable parameters in
a non-variational framework.

In this work, we introduce Affinity Variational Autoencoder (affinity-VAE), a deep neural network
for automatic clustering and classification of multidimensional objects based on their similarity –
in our case, their morphological similarity. We focus on affinity-based latent space regularisation
in addition to a standard β-VAE loss function. We introduce an affinity-based γ-parameterised loss
component along with the addition of a pose layer and an automatically generated affinity matrix to
learn the pose of the sample in an unsupervised manner during training. The performance of this
method is first investigated on a 2D alphanumeric dataset and then the application of the method is
demonstrated on a simulated 3D cryo-ET example. The preliminary success of this novel approach
in comparison with the existing β-VAE framework demonstrates its potential for application with
experimental cryo-ET data.

2 METHODS

β-VAE is an iteration of the VAE framework introducing a hyperparameter β which modulates
the learning constraints applied to the model (Higgins et al., 2017). Values of β > 1 put effective
constraints on the capacity of the latent z bottleneck encouraging factorised representations (Burgess
et al., 2018). The β-VAE approach is therefore most commonly used for unsupervised factorised
representation learning.

The goal of the training is to minimise the objective function L,

argmin
x

L = ||x− y||2 + β ×DKL [N (µz, σz),N (0, 1)] (1)

Where x and y = d(e(x)) denote the input data and the output reconstruction, z = e(x) is the
encoded latent representation and e and d are the encoder and decoder parts of the neural network,
respectively. DKL refers to the Kullback-Leibler divergence between the prior N (0, 1) and poste-
rior N (µ, σ) distributions. The first term of the equation is the reconstruction loss minimising the
difference between the inputs and the decoded outputs. The second term, parameterised by β, is the
variational term that regularises the latent space.

Affinity-based loss component: In addition to the reconstruction and KL divergence terms of the
standard VAE loss function, we introduced a new shape regularisation term S(z). The hyperpa-
rameter γ provides fine control of the influence of this regularisation term (in a similar manner to
β):
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L = ||x− y||2 + β ×DKL [N(µz, σz), N(0, 1)] + γ × S(z) (2)

where S(z) is the L1 norm of the difference between a pre-calculated affinity matrix A and the
cosine similarity of the latent representations:

S(z) =

∑N
i,j

∣∣∣∣∣∣Aij − zi·zj
||zi||·||zj ||

∣∣∣∣∣∣
N

(3)

with z denoting the latent variables, (i, j) the indices corresponding to the pairwise combinations of
the n input classes (in the batch) and N the batch size.

Figure 1: Architecture of the affinity-VAE.

The cosine similarity measures a
distance between two latent points,
whereas the pre-computed affinity
matrix (A) provides feedback on
their actual pairwise similarity. This
effectively organises the latent space
so that similar objects (regardless of
their pose), as described by the simi-
larity descriptor in the affinity matrix,
are placed close together in the latent
space. The pre-calculated affinity
matrix is generated automatically by
computing pairwise similarity scores
for all classes in the training set with a target function. In our case this is SOAP for the 2D alphanu-
meric data and FSC for 3D protein data (more on data generation in section 2, data simulation), but
different metrics could be chosen to organise the latent space by different factors or to facilitate other
types of data (see section 2, affinity metrics). Furthermore, the affinity matrix is only used in the
training stage, therefore a pre-trained network can easily be applied to the discovery of new classes
or species.

Pose feature space: The affinity-VAE architecture is shown in Figure 1. In addition to a standard
β-VAE, we introduce a third fully connected layer (parallel to µ and σ) to represent the pose of
the object. By providing the same affinity values for all instances of the same class regardless of
their orientation (or other class-specific variation), we discourage any pose-related variance from the
latent representation z. However, in order to maximise the reconstruction certainty, such variation
must be represented elsewhere in the model, in this case through the non-affinity-regularised pose
feature space.

Latent map: To ensure that our method is generalising to new data, so that the network does not
need retraining every time it analyses a new data set, we introduce the “latent map” approach. The
latent space is pre-seeded with a non-redundant but exhaustive set of existing objects during training
to create a “latent map”, which serves as a reference space during inference. The “latent map” offers
the promise of applying affinity-VAE as an unsupervised template-and-label-free approach to the
classification and detection of novel structures in cryo-ET tomograms.

Latent embeddings In this work we use t-SNE (Van der Maaten & Hinton, 2008) to visualise the
multi-dimensional latent spaces in 3D data and UMAP (McInnes et al., 2018) in 2D data.

Clustering evaluation: The accuracy of the method was evaluated by computing cluster centres in
the latent space and assigning the class of the closest cluster for each unseen data point.

Data simulation: Three datasets were used in the evaluation of the methods: 1) 2D alphanumeric
data, 2) 3D tetramino data, and 3) simulated 3D protein data.

Images in the alphanumeric dataset are constructed from a selection of letters and digits (x ∈
{a, e, b, d, p, i, j, z, 2, k, x, u}), rotated at various angles (Figure 2 left). Im-
ages are rotated to a defined angle θ (where {θ ∈ Z| − 45 < θ < 45}), and converted to a binary
two-dimensional array. We use an 80/20 split for training and testing. The tetramino data (Fig-
ure 2 middle) was designed to emulate an easier, but similar, 3D scenario to real cryo-ET data.
Tetraminos were made of combinations of four identical cubes connected wall-to-wall. They were
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Figure 2: Sample data, left: alphanumeric, middle: tetramino blocks and right: protein volumes
from the list in McGuffee & Elcock (2010).

generated on-the-fly with controllable parameters such as rotation and other morphological adjust-
ments (e.g. elongation), allowing us to generate any desired shape combinations to test the semantic
disentangling power of the method. The training data was constructed from 6 morphologically dif-
ferent tetraminos which were used to pre-seed the latent map, while for evaluation we constructed
a new, previously unseen class that was morphologically similar to two other classes from the train-
ing set. The protein data (Figure 2 right) was generated from the list of 50 most abundant E. coli
proteins (McGuffee & Elcock, 2010). UCSF Chimera (Pettersen et al., 2004) was used to generate a
synthetic 3D density map from each protein on the list. The maps were generated at 10 Å resolution
without taking atomic B-factors into account. The training data was constructed from n randomly
selected classes (protein types), which were used to pre-seed the latent map, and a different, previ-
ously unseen class was selected for evaluation. All 3D data was augmented with rotations randomly
sampled at θ = {10, 20, ..., 360} in 3 different planes. All images were resized prior to training to
323 and 643 voxels in tetramino and protein data respectively. Test and validation data constituted
10% and 20% of the whole dataset respectively.

Affinity metrics: Affine regularisation of the latent space ensures that semantically similar objects
are encoded in proximity in the latent space. However, the choice of affinity descriptor should be
made with respect to the property of the data intended to achieve the desired data separation. In our
case we aim to organise the latent space by structural similarity, therefore we use Smooth Overlap
of Atomic Positions (SOAP) descriptor (Bartók et al., 2013) in 2D data and average Fourier Shell
Correlation (FSC) in 3D data (Harauz & van Heel, 1986).

SOAP (Bartók et al., 2010; 2013) is a shape descriptor that uses a combination of radial and spherical
harmonics. In our model, we are treating every pixel that is not background as an “atom”. The SOAP
descriptor places a (three-dimensional) Gaussian density distribution at the location of each selected
pixel. The SOAP kernel is then defined as the overlap of the two local nearest neighbouring densities
integrated over all three-dimensional rotations.

FSC (Harauz & van Heel, 1986) curves are the standard metric for resolution estimation of cryo-EM
maps. The method calculates the similarity of two images as a function of spatial frequency, by
calculating the correlation between the Fourier coefficients of each image in thin spherical shells:

FSC(k) =

∑
F1(k)F2(k)

∗√∑
|F1(k)|2

∑
|F2(k)|2

(4)

where F1(k) and F2(k) are the (complex) coefficients of the Fourier transforms of the two structures
within a spherical shell at radius k. In this work, to obtain a single value for use as an affinity metric,
we take an average of the FSC across all spatial frequency shells, weighted by the number of Fourier
coefficients in each shell according to the method described by Brown et al. (2015). This gives a
measure of similarity between the two 3D objects with a value between +1 and −1, with the former
indicating a strong agreement.
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Figure 3: Left: UMAP embedding of latent space trained with 10,000 randomly rotated samples
of alphanumeric data. Right: The confusion matrix built from the predictions for 200 samples of
seen (a, b, d, e, i, j, z and k) and unseen data (2, x and p). For this calculation the choice of
hyperparameters include γ = 8 and β = 5.

Figure 4: Left: t-SNE embedding of 1,000 (rotationally augmented) tetraminos from a set
of morphologies. Different colours correspond to different morphologies and opacity indicates
train/validation/test set. Right: Morphology of different tetramino types, placed in positions cor-
responding to their location in the latent space embedding, and with corresponding colors. One
tetramino unseen during training and validation indicated with red arrow.

3 RESULTS

3.1 LATENT CLUSTERING FOR 2D ALPHA-NUMERIC DATA

The left panel of Figure 3 illustrates the UMAP embedding of 10,000 rotations from a set of samples
from the alphanumeric data with γ = 8 and β = 5. The right panel shows the confusion matrix
constructed from the prediction for 200 samples of the seen data (a, b, d, e, i, j, z and k) and unseen
data (2, x and p). The confusion matrix shows that the model predicts a strong affinity between
letters with higher shape similarity for the seen and unseen data (for example, the unseen numeral 2
shows the closest match to the letter z from the training set).
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Figure 5: Left: t-SNE embedding of 1,000 (rotationally augmented) proteins from a set of 8 ran-
domly chosen morphologies. Different colours correspond to different morphologies and opacity
indicates train/validation/test set. Right: Morphology of different protein types, placed in positions
corresponding to their location in the latent space embedding, and with corresponding colors. Pro-
teins unseen during training and validation indicated with red arrows.

3.2 LATENT CLUSTERING FOR 3D TETRAMINO AND PROTEIN DATA

The results on the tetramino data are illustrated in the latent embedding in Figure 4 and on the
protein data in the latent embedding in Figure 5. In both datasets, the cluster separation be-
tween different morphologies was very good. Rotated objects of the same morphology were
placed in homogeneous clusters regardless of their orientation. Additionally, in the tetramino
data the clusters were arranged so that morphologically similar objects (e.g. E and T, L and
I) were closer together in the latent space than dissimilar objects (e.g. I and E). A similar
trend was observed in the protein data, where dimeric (two subunit) proteins were all arranged
close together and ordered by the size of the protein, whereas elongated monomeric (single-
subunit) proteins were placed separately forming a more homogeneous area in the latent space.

Figure 6: Linear relationship between encoded
pose and the associated angle of rotation of the
input. The nested panel shows the reconstruction
using a given latent encoding (z) and varying the
value of the pose corresponding to 5 degree inter-
vals.

When the network was presented with samples
previously unseen during training, they formed
separate clusters in the embedding positioned
close to similar morphologies, which suggests
that the learned latent spaces are continuous
(see more in subsection 3.3) and offers poten-
tial use of the method for discovery of new mor-
phologies. At the same time, cluster homogene-
ity was preserved within the unseen clusters, re-
gardless of the object orientation. In the case of
the tetramino data, we introduced a new mor-
phology during evaluation that was a fusion of
two similar morphologies existing in training
(EL), which, as expected, clustered between the
two similar classes (E and L). In the case of the
protein data, the two introduced morphologies
were selected randomly from a list containing
an exhaustive set of proteins from the E. coli cy-
toplasm. The dimeric protein (blue) was placed
near other dimers and positioned on a line be-
tween other smaller and larger dimers, as ex-
pected if the network is encoding the size along
a continuous axis. The monomeric protein with an elongated domain was placed overlapping with
another cluster of proteins with elongated domains.
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Figure 7: Left: Latent interpolations on protein data in a 6-dimensional latent space. Rows cor-
respond to dimensions and columns correspond to interpolated values, where the central column
is the encoded input. Right: Latent interpolations between 4 existing encoded proteins (corners).
Decoded reconstructions in between the 4 corners are taken from the latent space at evenly sampled
multi-dimensional strides between the encodings of existing proteins.

3.3 LATENT AND POSE INTERPOLATIONS

 

           
 
 
 

𝛽-VAE Affinity -VAE 

Figure 8: Latent space representation for the al-
phanumeric dataset using VAE where γ = 0 and
pose component is off (left column) and affinity-
VAE where γ = 10 (right column). Bottom row:
latent space proximity matrix displaying the dis-
tance between cluster centres. The values for the
distances are normalised to be between 0 and 100
in both matrices. The colour map is used as a
guide for the eye to emphasise the largest and
smallest numbers displayed on the matrix.

We performed interpolations across the outputs
of the pose component on alphanumeric data.
The results of the interpolations are illustrated
in Figure 6. We observed a linear correlation
between the pose value and the angle of the
rotation, which demonstrates that pose compo-
nent does indeed capture information about the
pose of the object.

We also explored the extent of disentanglement
present in the generated latent spaces. Upon vi-
sual inspection we were able to identify mor-
phological semantics across different dimen-
sions (Figure 7 left). In this example using
the protein data, dimension 2 appeared to cap-
ture the size, whereas dimension 6 described
whether the protein was a dimer (two subunits)
or a monomer (single unit). Other dimensions
supported other morphological features, includ-
ing elongation (dim 1), smoothness (dim 3 and
4), and toroidal geometry (dim 5).

Additionally, we performed latent interpola-
tions across all dimensions between four exist-
ing (encoded) data points in the latent space
(Figure 7 right). Non-existing (not encoded)
points from the latent space generated realistic
reconstructions and there was a smooth transi-
tion between different morphologies, including
when transitioning between the number of pro-
tein subunits. This shows that the generated la-
tent spaces are continuous and suitable to dis-
covery of new morphologies unseen during training.
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Figure 9: The latent space is presented for β = 1, 2, 3, 4 and 5 using original VAE framework
(γ = 0). A more effective categorisation of classes is observed for values β > 1.
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Figure 10: For β = 5 we have explored the effect of shape-affinity regularisation of latent space for
γ = 0, 1, 3, 4, 6, 10 and 20. The colour code is the same as Figure 9.

3.4 AFFINITY-BASED LOSS COMPONENT AND THE INFLUENCE OF γ
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Figure 11: The left and right panel show a com-
parison of the latent space representation and the
reconstruction of the alphanumeric data for the
SOAP and FSC shape descriptors respectively.

Figure 8 illustrates a comparison between
affinity-VAE and a standard β-VAE (γ = 0
and no pose component) on alphanumeric data,
including the latent space representations (top
row) as well as the proximity matrix where
the distances between the centres of the clus-
ters are displayed (bottom row). Inspection of
the two latent space representations shows that
affinity-VAE (γ = 10) is more successful at re-
lating the clusters with higher affinity than the
β-VAE framework (γ = 0). This is confirmed
in the proximity matrix where the distances be-
tween different clusters (i.e. the off-diagonal
elements) are generally much higher in affinity-
VAE than in the β-VAE, which would be ex-
pected to improve classification rates due to less
cluster proximity contamination. Secondly, let-
ters with dissimilar morphology (e.g. z and
i/j pair) are pushed apart in affinity-VAE. Fur-
thermore, rotationally-equivalent classes were
in closer proximity in the latent map in affinity-
VAE compared with the β-VAE (e.g. a and e).
Interestingly, affinity-VAE also became invari-
ant to other transforms such as symmetry (e.g.
b and d).

3.5 THE INFLUENCE OF β , γ AND z

Figures 9 and 10 explore the effect of regularisation on the latent space. By switching on the shape
affinity (γ > 0) the clusters are grouped together based on their structural affinity (Figure 10) unlike
in the β-VAE framework where, while the classes do form homogeneous clusters, their proximity
is not related to morphological similarity (Figure 9). As the emphasis on the affinity increases,
the latent space becomes increasingly sparse pushing the clusters further apart. Therefore a careful
balance should be exercised while selecting the β-γ trade-off.
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3.6 SIMILARITY FUNCTION

To illustrate the influence of the choice of similarity metric used to calculate the affinity matrix on
the overall cluster separation we compared various metrics across different datasets.

While the SOAP metric was used for 2D alphanumeric data and FSC for 3D data, a comparison
between the two descriptors for the alphanumeric data is provided in Figure 11. SOAP provided
better cluster separation as well as increased certainty of reconstruction on the alphanumeric data.

We also explored the choice of similarity metric in 3D tetramino data. Figure 12 shows a comparison
between no affinity descriptor, mean difference and FSC metrics. Mean difference, unlike average
FSC, is a real space descriptor which is not frequency weighted (Equation 5).

1

N

i=N∑
i=0

xi − yi (5)

where xi and yi are voxels in comparison, and N stands for the number of voxels (image size).

While mean difference also improved the cluster separation over a standard β-VAE, some clusters
(e.g. L and I) still remained unseparated. On the other hand, after employing the FSC as a simi-
larity metric not only did the cluster separation improve, but also the organisation of clusters was
morphologically aligned (e.g. elongated shapes like L, I and T clustered near each other).

Figure 12: The left, middle and right panel show a comparison of the t-SNE latent space embeddings
for the tetramino data for no affinity descriptor, mean difference and FSC respectively.

4 DISCUSSION

In this work we have introduced affinity-VAE, a neural network capable of organising the latent rep-
resentation based on the similarity of the object. While a β-VAE is capable of cluster separation and
latent semantic disentanglement, it offers little control over the learned factorised representations
and captured semantics. We have shown that with guidance from an automatically generated affinity
matrix we can create more homogeneous, rotationally-invariant clusters that could improve the clas-
sification accuracy. Furthermore, the affinity metric can be tailored to the data or domain of interest,
improving the generality of the method. Since the affinity metric is only used during the training
phase (Equation 2) and we have demonstrated that the learned latent spaces can be continuous, a
pre-trained network can easily be applied to unseen data in order to discover new classes or species.

We have demonstrated the potential of the method in a scientific application using example of subto-
mogram target identification in volumetric cryo-ET data. While the results are promising and show
the potential of the method for discovery of new species in experimental data, more experiments are
required to test the effectiveness of the method on a full tomogram and non-simulated data.

Additionally, as we start introducing more class-specific sources of variance (e.g. structural hetero-
geneity or missing wedge artefacts in addition to rotation), the pose component could be phrased
in variational terms as an independently parameterised component of the loss function. This would
encourage disentangled pose representations that are separated from the content of the classes.
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