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Accelerated Primal-Dual Projection Neurodynamic
Approach With Time Scaling for Linear and Set
Constrained Convex Optimization Problems

You Zhao ¥, Xing He

Abstract—The Nesterov accelerated dynamical approach serves
as an essential tool for addressing convex optimization problems
with accelerated convergence rates. Most previous studies in this
field have primarily concentrated on unconstrained smooth con-
vex optimization problems. In this paper, on the basis of primal-
dual dynamical approach, Nesterov accelerated dynamical
approach, projection operator and directional gradient, we
present two accelerated primal-dual projection neurodynamic
approaches with time scaling to address convex optimization
problems with smooth and nonsmooth objective functions subject
to linear and set constraints, which consist of a second-order ODE
(ordinary differential equation) or differential conclusion system
for the primal variables and a first-order ODE for the dual vari-
ables. By satisfying specific conditions for time scaling, we
demonstrate that the proposed approaches have a faster conver-
gence rate. This only requires assuming convexity of the objective
function. We validate the effectiveness of our proposed two accel-
erated primal-dual projection neurodynamic approaches through
numerical experiments.

Index Terms—Accelerated projection neurodynamic approach, lin-
ear and set constraints, projection operators, smooth and nonsmooth
convex optimization, time scaling.

I. INTRODUCTION

UE to its low complexity and high efficiency, the Nes-

terov accelerated gradient algorithm [1] has become a
popular methodology for tackling large-scale convex opti-
mization problems. However, the acceleration phenomenon of
the Nesterov accelerated algorithm still maintains somewhat
mysterious. Su et al. [2] firstly reveal that a second-order ordi-
nary differential equation (ODE) with vanishing damping,
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known as the Nesterov accelerated dynamical approach, repre-
sents the continuous limit of the Nesterov accelerated gradi-
ent algorithm. Building on the work in [2], numerous acceler-
ated dynamical approaches have been presented to address
unconstrained convex optimization problems with an acceler-
ated convergence rate of O(1/f%). Attouch and Chbani [3]
extended the results in [2] by combining Hessian driven
damping, small perturbation [4], Tikhonov regularization [5]
and maximally monotone operators [6], and they achieved an
accelerated convergence rate O(1/t?). Drawing inspiration
from the Bregman-Lagrangian function, Wibisono et al. [7]
and Wilson et al. [8] devised second-order ordinary differen-
tial equations (ODEs) that give rise to the Nesterov acceler-
ated dynamical approach described in [2]. Alimisis et al. [9]
introduced an accelerated gradient-based dynamical approach
on a Riemannian manifold, drawing inspiration from the work
of Wibisono et al. [7]. Vassilis et al. [10] investigated the
accelerated convergence properties of Nesterov accelerated
dynamical approach [2] by using the differential inclusion sys-
tem for solving nonsmooth and convex optimization prob-
lems. In addition, in order to improve accelerated conver-
gence rate of O(1/¢%), Attouch et al. [11] proposed a Nes-
terov accelerated dynamical approach with time scaling term
B (1), resulting in a faster convergence rate of O(1/ (tz,B(t))).

It was previously mentioned that the Nesterov accelerated
dynamical approaches and their variants are only suitable for
unconstrained convex optimization problems. Neurodynamic
approaches provide a methodology for tackling constrained
convex optimization problems from a continuous-time
(dynamical system) perspective. It can be mathematically for-
mulated as an ordinary differential equation or differential
inclusion system, and can be implemented with specialized
hardware, providing further insights into classical numerical
algorithms.

Since the 1980s, when Hopfield first proposed the Hopfield
neural network [12] as a method of solving the traveling sales-
man problem, a variety of neurodynamic approaches have
been evolved to tackle a wide range of optimization problems.
Kennedy and Chua [13] utilized a penalty method to design a
nonlinear programming circuit for dealing with convex con-
straint optimization problems. Xia and Feng [14] proposed an
array of projection neurodynamic approaches intended to
solve monotone variational inequalities and constrained non-
linear convex programming problems [15], etc. Hu and Wang
[16] generalized the PNN to address the quasi-convex opti-
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mization problems with nonlinear constraints. He et al. [17]
proposed an inertial projection neural network for handling
constrained nonconvex optimization problems and demon-
strated its ability to capture different Karush-Kuhn-Tucker
(KKT) points by adjusting the inertial parameters. Addition-
ally, the primal-dual dynamical approach, also known as the
Lagrange neural network, provides a general framework for
solving various convex optimization problems with linear
constraints. Zhang and Constantinides [18] were the first to
investigate the use of a Lagrange programming neural net-
work (LPNN) for addressing constrained convex optimization
problems. Since then, numerous neurodynamic approaches
based on LPNN have been studied not only for dealing with
constrained convex optimization problems [19], [20] but also
for exploring new applications [21]-[27].

However, the majority of existing research on projection
neurodynamic or primal-dual neurodynamic approaches only
provides asymptotic convergence properties or a slow conver-
gence rate of O(1/f) for constrained convex optimization
problems without strongly convex assumption. In [28], Krich-
ene et al. extended the work in [2] with non-Euclidean geome-
tries by introducing mirror operators, proposed an accelerated
mirror dynamical approach O(1/¢?) convergence rate for con-
vex optimization problems that contains set constraints. Zhao
et al. [29] were influenced by the Nesterov accelerated
dynamical approach and projection operators. They intro-
duced an accelerated projection neurodynamic approach
specifically designed for smooth convex optimization prob-
lems with set constraints. Remarkably, this approach demon-
strates a convergence rate of O(1 /t%). For smooth convex
optimization problems with linear constraints, Zeng et al. [30]
proposed a dynamical primal-dual approach based on Nes-
terov accelerated dynamical approach, and proved the primal-
dual gap of objective functions has a convergence rate
0(1/7%). He et al. [31] further considered an accelerated pri-
mal-dual dynamical approach with added perturbation for sep-
arable convex optimization problems and obtained some con-
vergence properties similar to work in [30]. Bot and Nguyen
[32] made significant advancements in improving the conver-
gence rate discussed in the work of Zeng et al. [30]. Addition-
ally, they presented a weak convergence result for the solu-
tions of the primal-dual problem. Attouch et al. [33] studied a
second-order primal-dual dynamical approach involving
damped inertial and time scaling for solving separable convex
optimization problems that have affine constraint, and
obtained some of the same results as [11]. He ef al. [34]
designed a “second-order primal”+“first-order dual” dynami-
cal approach with time scaling to address convex optimiza-
tion problems only with linear constraints, and obtained some
results identical to those in [11]. Moreover, Zhao et al. [35]
recently proposed a second-order primal-dual mirror dynami-
cal approach for solving smooth and nonsmooth convex opti-
mization problems that have affine and set constraints, with a
convergence rate of O(1 /12).

It is worth noting that the aforementioned accelerated pro-
jection or primal-dual neurodynamic approaches do not have
the capability to handle smooth convex optimization prob-
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lems with both linear and set constraints while maintaining
accelerated convergence properties. However, it is inevitable
for real-world engineering problems to have simultaneous set
and affine constraints. For example, in resource allocation
problems, resource constraints, physical constraints, or other
business rules lead to both set and linear constraints when
modeling the problem, and linear and set constraints as well as
multi-agents consensus constraints exist in distributed sparse
signal reconstruction. Moreover, in image classification, each
image may belong to multiple categories, which requires rep-
resenting categories as a set. At the same time, the boundaries
of the classifier can be defined by affine constraints to ensure
correct classification of data points. In logistics planning, con-
siderations include the cargo loading capacity, warehouse
storage capacity, as well as the capacity and route constraints
of transportation vehicles. These constraints can be described
using set constraints and affine constraints to ensure the feasi-
bility and efficiency of logistics planning. In wireless commu-
nication networks, factors such as bandwidth limitations of
wireless channels, power constraints, and the capacity of user
devices need to be considered. These constraints can be mod-
eled using set constraints and affine constraints to optimize
the allocation of network resources and communication qual-
ity, and so on. In addition, the accelerated neurodynamic
approaches mentioned above are concerned with solving
smooth convex constrained optimization problems, and do not
involve nonsmooth convex constrained optimization prob-
lems, which limits the applicability of them to a certain extent,
because the sparse signal reconstruction problem, the L;-regu-
larization problems, etc., are all nonsmooth constrained opti-
mization problems in practice. With the above considerations
in mind, we are motivated by studying fast primal-dual neuro-
dynamic approaches based on Nesterov accelerated dynami-
cal approach, primal-dual dynamical approach and time scal-
ing item to tackle convex optimization problems with smooth
and nonsmooth objective functions, subject to linear and set
constraints, without strongly convex assumption, to obtain
some results that are similar with [34]. In our opinion, there
are mainly three difficulties for designing accelerated primal-
dual projection neurodynamic approaches. The first challenge
lies in designing a projection scheme that is compatible with
the accelerated primal-dual neurodynamic approaches. The
existing projection scheme based on the classical Brouwer’s
fixed point theorem fails to achieve effective acceleration. The
second obstacle involves developing new Lyapunov functions
to analyze the accelerated convergence properties of the pro-
posed fast primal-dual neurodynamic approaches. The Lya-
punov functions used in previous works [30]-[34] are no
longer applicable as they do not incorporate projection opera-
tors. Lastly, extending the fast primal-dual neurodynamic
approach from the smooth case to the nonsmooth case while
maintaining the same accelerated convergence rate poses a
significant difficulty and challenge.

The major contributions of this paper are highlighted below:

1) For convex optimization problems with smooth objec-
tive function, subject to linear and set constraints, we first pro-
pose an accelerated primal-dual projection neurodynamic
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approach (APDPNA-S) by using Nesterov accelerated dynam-
ical approach with time scaling term, projection operators and
primal-dual dynamical approach. By using the Cauchy-Lips-
chitz-Picard theorem, proof by contradiction and properties of
projection operators, we show the existence, uniqueness and
viability of the strong global solution of APDPNA-S. More-
over, by designing a new Lyapunov function, we prove that
APDPNA-S has a fast convergence rate O(1/ (t2,8 (1)).

2) Compared to existing results in [31] and [33], APDPNA-
S has a simpler structure since the updating of the dual vari-
ables in APDPNA-S is a first-order ODE, and faster conver-
gence rate than O(1/ ) in [31]. Moreover, compared with the
existing inertial primal-dual dynamical approaches [30]-[34],
our proposed APDPNA-S can address convex optimization
problems that contain both linear and set constraints, which
means our proposed APDPNA-S has a wider applicability.

3) We extend APDPNA-S into a differential inclusion
dynamical approach (named as APDPNA-NS) by employing
directional derivative in place of exact gradients in APDPNA-
S. By computing difference quotient of Lyapunov functions,
we prove that the APDPNA-NS have same results as
APDPNA-S.

The organization of this paper is summarized as follows. In
Section II, several necessary preliminaries are introduced
briefly. In Section III, two accelerated primal-dual projection
neurodynamic approaches, i.c., APDPNA-S and APDPNA-
NS are proposed to deal with smooth and nonsmooth convex
optimization problems with linear and set constraints, and the
fast convergence properties of them are also discussed. In Sec-
tion IV, we validate the effectiveness of our proposed two
neurodynamic approaches through numerical simulations. We
conclude this paper in Section V.

II. PRELIMINARIES

A. Subdifferential
Definition 1 [36]: If g : R" — RU {400} satisfies

glow+(l-m@v)2ogWw)+(1-o)glv), O<m<1 (1)
then, we called g is convex.
When the convex function g is differentiable (i.e., smooth),

then, it enjoys

g =g +Vgw) (v—w), Yw, veR" Q)

where the Vg(w) is the gradient of g with respect of w. In

addition, if g is convex and nondifferentiable (i.e.,
nonsmooth), then, it fulfills
g =gw)+hf (v—w), ¥Yw, veR" 3)

where the % is a subgradient of g at the point w. Thus, the set
of

dg(w) = {heR"g(m) —g(w) 2 h" (v=w), Yw, veR"} (4)
is called the subdifferential of g at w.

B. Projection Operators
Definition 2 [37]: The projection operator Pq (w) of Q with
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respect to the variable w for a nonempty, closed and convex
set Q is given by

Po(w) =arg min|lw—ull = I+ No)'w
ueQ)

)

where Nq (W) ={u e R"{u,v—w) <0,¥Yv e Q} is the normal
cone to £ at point w.

Lemma 1: In general, a closed-form solution for the projec-
tion operator is not always available. However, there are cases
where the projection operator Pqo can be expressed in a
closed-form when Q satisfies specific structures. For example:

i) When Q is a box set, i.e., Q={weR"| w?’in <w; S wi,

i=1,...,n}, its projection operator is

P (w;) = min {max {w,-,w}m“} ,w}nax}.

ii) When Q is a Euclidean ball set, i.e., Q ={weR"||w—
v||<r, veR", r>0}, then

w, [lw=v||<r

Po(w) = r(w—v)

, |w=v||>r
[lw—vl|
iii) When Q is an affine set, i.e., Q={weR"|Bw=c,
B € R"™" rank (B) = m,m < n}, then

(6)
More information on projection operators that have closed
form solutions can be found in [37].
Lemma 2 [14]: The projection operator satisfies the follow-

ing inequalities when Q is a nonempty, closed and convex set
(see Fig. 1):

Pa(w)=w+B" (BBT) " (c—Bw).

(Ww=Po(Ww),v=Po W) <0,¥YweR",veQ

IPo (W) = P )l < llw—ull,Yw,u € R". (7

Fig. 1.

Lemma 2.

The presentation diagram of the projection operators inequalities in

Lemma 3 [29]: Let o(w,v) : R"XR" — R be

1
p(w,v) = 5(”W_PQ(V)HZ_||W_PQ(W)||2) @®)

then, one has

i) o (w,v) 2 5 IPa (W) = Pa I

i) ¢(w,v) is continuously differentiable with respect of the
variable w, and its gradient is V,,¢o(w,v) = P (W) — Pqo (v).
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III. ACCELERATED PRIMAL-DUAL PROJECTION NEURODY-
NAMIC APPROACHES WITH TIME SCALING

Consider a convex optimization problem with linear and set
constraints as

Eﬂﬂi@ 8(©&)

st.BéE=c,£€Q ©)

where Be R™" ceR™ QCR" is a nonempty, closed and
convex set, g : R" = RU{+oo} is closed, proper lower semi-
continuous convex function (not necessarily differentiable).
The problem (9) serves as a fundamental model in various
significant applications, including signal and image process-
ing problems [38], [39], resource allocation problems [40]—
[42], machine learning problems [43], and distributed con-
strained convex optimization problems [44], etc.
Define the augmented Lagrangian function Ly (£,{) associ-
ated with (9) is
Ly( _ T pe_ H 2
u(&.0) =8+ (B§—o)+ > IBE —cl| (10)
where { € R is the Lagrange multiplier, u > 0 and ||B¢ — c||2
is the augmented item. According to convex optimization the-
ory, & is the optimal solution of problem (9) if and only if
there exists {* € R™ such that (£*,{*) € QxXR™ forms a sad-
dle point, satisfying the following inequality:

Ly(§.0) s Lu(§.0) < Lu(6.07)

V(&) € QxR (11)

A. The Problem (9) With Smooth Convex Objective Function g

In order to address problem (9) with a smooth convex
objective function g and achieve a rapid convergence rate, we
introduce an accelerated primal-dual projection neurody-
namic approach, denoted as APDPNA-S. This approach inte-
grates the Nesterov accelerated dynamical approach, time
scaling element, primal-dual dynamical approach, and projec-
tion operator.

(== (Pa(()-£)

§(0)= =B (Vg € () + uBT (BE(D - )
+BT (1) +y(1)= Pa (y()) - (1)

£(t) = B (BPa (1) )

e t>t>0

(12)

where a >2, B() : [fy, +o0) — (0,+00) and it satisfies B(1) <
(@=2)
B @).

Theorem 1: For any initial value (£o,y0,{0) € QXR"XR™,
(€,%,0) is an equilibrium point to APDPNA-S (12) if and only
if (£,9,0) = (&*,y*,¢") satisfies KKT condition, i.e., & =& is
the optimal solution of the problem (9) with smooth convex
objective function g.

Proof: 1) Sufficiency: In accordance with KKT conditions,
if £ is the optimal solution of the problem (9) with smooth
convex objective function g, then there exists {* and &' =
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Pq (y") satisfying

Ve()+B ' +Na(6)20 (13a)
BE —c=0. (13b)
By combining u >0 with (13b), (13a) can be rewritten as
Vg (&) +uBT (BE* —c)+ BT " + No(£%) 0. With the help of
Definition 2 and projection inequalities in Lemma 2, we can
obtain that if & =Pq(y*), one has (y"—Po(y*),v—
Po(y"))=0,¥YveQ, which means y*—Pq(*)e Na(&).
Thus, (13a) can be rewritten as

0=Vg(&)+uB" (BE —c)+B * +y" - Po(y")

& =Pa(y"). (14)
By combining (13b) and (14), we can obtain that

& =Pq(y")

0=Vg(&)+uB" (B& —c)+ B +y" - Pa(y") (15)

B —c=0.

Therefore, (£*,*) € QXR™ is an equilibrium point of
APDPNA-S (12).

2) Necessity: When (E 3. ) € QXR"XR" g an equilibrium
point of APDPNA-S (12), then it satisfies

E=Pa(y)
0=Vg(&)+uB" (BE-c)+B'Z+5-Pa(5) (16)
BE-c=0.

From ¢ = pq(3), one can obtain y € E+ Nq(&), and further
get 7—Pq(¥) € No(&). Therefore, 0= Vg(€)+uB’ (BE—-c)+
BT +y—Pqo(7) can be equivalently written as 0 € Vg(é)+
uBT (BE—c)+ BTZ + Ng(€). Tt combines BE—c =0 to obtain
that (£,{) satisfies KKT condition to the problem (9) with
smooth convex objective function g. ]

Definition 3 [45]: The Z = (£,y,0) : [ty, +o0) = QX R X R™
is called a strong global solution of APDPNA-S (12) if the
following conditions hold:

1) Z(¢) is locally absolutely continuous;

i) Z (1) = (€ (10), ¥ (10) £ (1)) € QX R X R

iiil) The APDPNA-S (12) holds with Z(#) and for t€
[tg, +00).

Remark 1: A function x : [tp,+00) — R”" is said to be locally
absolutely continuous, if it is absolutely continuous on every
interval [#,T], T >0, i.e., the following equivalent proper-
ties hold [46]:

a) There exists an integrable function N : [f),7] — R”" such
that

!
x() = x(t0) + LU N(s)ds, Vte[to,T). (17)

b) x is continuous and its distributional derivative is Lebes-
gue integrable on [#p, T].

c) For every £ > 0, there exists y > 0 such that for any finite
family of intervals I = (ax,br) € [t9,T], one has
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Iknlj=0 and Z|bk—ak| <y|l= Z“X(bk)_x(ak)” <e.
% %
(18)

i) From (17), we can obtain that an absolutely continuous
function is differentiable almost everywhere, its derivative
coincides with its distributional derivative almost everywhere
and one can recover the function from its derivative x = . In
addition, an absolutely continuous function with non-positive
derivative, i.e., (ax, bx) is nonincreasing.

i) If x:[t,T] > R" with T >0 is absolutely continuous
and B : R" - R" is y-Lipschitz continuous for 1 > 0, then the
function z = Box is absolutely continuous, too. This is easily
evident by using the characterization of absolute continuity in
third equivalent definition mentioned above. Moreover, z is
differentiable almost everywhere on [#p, 7] and the inequality
[IZ(®)] < v|lx(?)|| holds for any ¢ € [y, T].

Theorem 2: For any initial value (£p,y0,{0) € QXR" XR™,
APDPNA-S (12) has a unique strong global solution. In addi-
tion, the solution of APDPNA-S (12) is viable, i.e., £(f) € Q,
YVt >19>0.

Proof: Existence and uniqueness: Let Z(#) = (£(2),y (1),
£(1) € QxR"xR™, then the APDPNA-S (12) can be rep-
hrased as follows:

{Z (t)=F(t,Z()
Z(tg) = (£(t0),y(t0),{ (t0))

where F : [ty, +00) X QX R" xR™ and

(19)

F(t,Z() = (% (P (y (1) = £(1),

- C—tyﬁ(t) (V@) +uB" (BE(H-0)
+BTL(0)+y() - Pa(y(0)) - £(0),

1B(1) (BPg, (y(r))—c>).

The APDPNA-S (12) possesses a unique strong global solu-
tion, as guaranteed by the Cauchy-Lipschitz-Picard theorem,
under the following two conditions:

i) F(t,) is I(r)-Lipschitz continuous and [(-) € Llloc([to,
+00), QX R"xR™) for any 7 € [fg, +00).

i) For any Z € QX R"XR"™, we have F(-,Z) € ]Llloc([to,+oo),
QxR"xR™) for any 7 € [fg,+00).

For i), let ¢ € [tg, +o0) be fixed and use the Lipschitz proper-
ties of Vg and Pq (i.e., they have I, and 1 Lipschitz con-
stants, respectively) and inequality [[X;+ X2||2 <2|1X4 ||2 +
2|IX2l1%, ¥ X1, X5 € R then, for Z,Z € QxR" xR™, one has

“F(t,Z(t))—F(t,Z(t))“

202 (2+21BIP) 2B (1)
<5+
Fe———)

x||Pa (v (1) — Po (1))

22 PR W(1+1 +a|IBIP)
+ (— +
2 a?

1489

202 2
L 8 - ol
0%

222
+(tﬂ (0

a2

2 PN t
|IB] )H{(t)—{(t)H )

((3 + (202 + ) IBP + 1 +42 ||BTB||2)t2ﬁ2 o
<

a?

402\ N
+ti2) 1Z@)-2).

1
(3+(20>+1)iBP+1, 2|7 B 2620 )

2 .
Letl(¥) = 4;—; + . It is wor-

(12
th noting that /(¢) is continuous on [fg,+0), then, one has ()
is integrable on [#,7] where 0 <y < T < 400,

For ii), given any Z € QX R" xR™, we have

T 2 2
LO IF (t,Z(@)lldr < (”PQ @I +VgE @I

1
+ IO+ DI +ly DIF)?

5 LT (t2ﬂ2 (t)(2+242||BT B|I*)

0 a?

2

1
22 2 2 2\7
N B°(0)2a” + DBl +4C¥) di
a 2

and conclusion ii) is true according to the following condition:

s B O2+22 |5 B)
+

r— —
12 a?

2B (1)(207 + 1) 11BIP

+ 2

@

Conditions 1) and ii) imply the existence and uniqueness of
the strong global solution (12) of APDPNA-S.

Viability: Intuitively, since €)= § (Pa(y()—=£(1), the
derivative £(¢) will point towards €, i.e., making variable & (¢)
always in the feasible set €.

We rigorously prove variable &£(f) remains in feasible set Q
for all r>1# >0. Suppose there exists #; >0, such that
&' =&(t) ¢ Q. A hyperplane exists that strictly separates the
variables §1 and Q since Q is a closed convex set, i.e., there
exist w, ve€R", such that (v,§1 -—w)>0 and (v,é-w) <0,
V& € Q. Denote d(€) = (v, —w). Since the solution trajectory
&(2) is continuously differentiable, t — d(& (7)) is also continu-
ously differentiable, and b (&£ (7)) = (v,&(¢)).

Since initial value &) €Q, we can obtain d(&) <0 and
d(&') > 0. Thus there is 7+ so that d(&") = 0 and d(¢') > 0,Yr €
(t;,11], that is, t; is the last time &(f) crosses the separating
hyperplane (#; is simply sup{s: d(()) < 0}). d(E!) —d(&™) >
0, from Taylor’s theorem, there exists f; € [#+,#1], such that
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o(¢') (") = 0(£ (1)) = (1))
= S0 Pa (1) - £(1))
= S0(Pa() = (1) <0

since Pq(7;) € Q. This is a contradiction, from which the
proof is derived, and is shown in Fig. 2. [ ]

(20)

Fig. 2.  The illustration of the viability of APDPNA-S (12).

Theorem 3: Assume that 3 : [fy, +00) — (0,+00) is a continu-
ous differentiable function and it satisfies B(¢) < (@ —2)B(1))/t
and let (£%,y*,{*) and (£(7),y(7),{(1)) € QXR"xXR™ be opti-
mal solution and a strong global solution of APDPNA-S (12)
respectively. Then for any (&(70),y(t),{(t)) € QXR" X R™,
the following conditions hold:

i) £(1), Pa(y(1) = L&) +£(1), £ (1) are bounded.

ii) For any £(#) € Q,1 € [fg,+00), we have

\%
Li0,0) - Ly {0) < & (t)(t’;”
2V(to)
u

1B (0 —cll < .
=B

fm ( a*B(H)-2B(t) ﬁ(t)t)
) a'2

iii)

X(L (E(D.¢) =L (€L 1)) dr < +oo

”ﬂ (t) IBE (1) — cldt < +oo

| | |
LO Slé@ffar < oo e = 0(;).

Proof: Construct a Lyapunov function V : [fy,+00) - R as
follows:

,3() (

2
2ar
1

V()= Ly(E0),0) - Lu(€".0))

2
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where (£%,y%,{") is the equilibrium point (i.e., & is the opti-
mal solution of problem (9)) to APDPNA-S (12) with
Po(y)=¢".

The Lyapunov function V (¢) is continuously differentiable
and positive definite (i.e., V(¥) =0, if (£(),y(),L () = (&7,
V5.4, V) >0, if (£@0),y(0).4®) #(£7,y",{") and radially
unbounded of £(r), ¢(t) due to [|£()—C*? >0, [1€@0)—

X2 0, Iy =PaOM)IF=ly® - Poy @) 20 (see Lem-
ma 3) and

g€+ B -+ 5 1BE®) —d?-g(&)

=g +(B'0) €w-&)
+§|IB§(t)—c||2—f(§*)
€gEM-g(E)-Ve(€) €W-¢)
- Na (&) (€0-¢)+ 5 1B -l

>Io () - Ia €M)+ g 1B (1) - cIf”

= 1B () -l > 0 (22)
where the first equation holds due to B¢ =c, the inclusion
equation holds according to (13a), i.e., B "€ -Vg(&)—
Na (&%), the first inequality is satisfied by using the convexity
of g and Iq, and the second equality holds due to the Viability
of £(¢) in Theorem 1.
According to the chain rule of derivation, we get
(Zﬂ(t)t+ﬁ(t)t)
a?

Vi(n= (8¢ -5

+BEW-o ¢+ B1Be @) - o)+ B
a

x (Vg @)+ B¢ +uB"BED~&"))
x( Pa0®-£0 )+ 2D ¢y

&(PQ G0 -Pa (")

X B(Po (y(1) —£") -

x (Ve (&) +uB" B0 -£)+B (1)
1 .

YO =PaO)+~ (D —&)E@

- l(Pg(yo))—PQ CH)H0)
(2,B(t)t+ﬁ(z)t)
(I

<

(&M -5

+ B -7 ¢+ B 1Be ) - o)+ 2

x (Vg @)+ B¢ +uB"BED~&))

X (Pa ") -£(0) - = 0]
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< (ZOEO ey - et

+(BEW -0 ¢+ L 1BE (D) - c||2)

PO g e an-g@) + B el

+ (BN -0 ) - 2||§(r>||

W t+OE BBt .
=( a? o )‘p“f(f)ﬂz
x (3 @) +BED - " g (&)
+ B e -of) - L ypey - <0 @23)

where the first inequality can be obtained by —(Pq(y(?))—
PoON (y()-Pqo(y(1))) <0 in Lemma 2, the second
inequality holds thanks to the convexity of g, and the third
inequality is satisfied since 8(f) < (@ —2)B8(1))/t.

From (23), i.e., V() <0, we get

V()< V(ty),YE@) e, tety,+0). (24)

Based on the above inequality, the definition of V() and
Lemma 3, it can be concluded that for any &(r) € Q and
t € [ty, +0), the following holds:

which means that £(7),
bounded, i.e.,

Po(y@®) = éf(l)-%f(t), () are

sup t||$(t)|| < 400 (25)

te(tg,+00)
which implies ||£(1) || = O(1/1).
Furthermore, from (21) and (24), one has
a*V (1)
B

Ly (£®).0)—Lu(€7.{(0) <

2V(tp)
I

1B

Integrating (23) from 0 to +co yields
[ t(a%(r) ~28(0) —B(r)r)
1o @

2

1BE (1) —cll < (26)

><(L (€(1).0") ~ Ly (€.£(1))dt < +o0

“ﬁ (t) LIBE (@) - cliPdr < +o00

fm ”f(t)” dt < +oo. 27)

|
Remark 2: In Theorem 3, the assumption 8(1) < (@ =2)B(1))/
t holds if choosing SB(f) = 6¢7 with 6 >0 and 0 <7y < (a—-2),
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thus the conclusions in Theorem 3 are true. In this case
B(1)/B(t) = n/t. Integrating the above equation from [19,], we
have

Ing(#) —InB(¢9) = n(Int—Inty)

s =PDn
([0)77 Blt) =6>0
(t0)"

Next, we will discuss the optimal convergence of APD-
PNA-S (12) when 6>0,0<n<(a-2), B(t) =61". Before
presenting the following theorem we need to provide a neces-
sary lemma as follows:

Lemma 4 [34]: Let ¢: [tp,+o0) = R" be a continuous dif-
ferentiable function and to >0, a >0, b >0, and if

llap (£) +t@ (1) < BVt > 19

holds, then, one has sup,, [l1¢(1)]| < +oco.

Corollary 1: Let (£*,y",A") and (£(2),y(?),{(?)) € QxXR"x
R™ be an optimal solution and a strong global solution of
APDPNA-S (12) when S() = 6¢7 with 6 >0 and 0 <7 < (a—
2). Then for any (£(fg),y(t0),{ (f9)) € QX R" X R™, one has

_ 1
_Oﬁ

1
1BE (@) ~cll = ( M)

Proof: Integrating the both side of A(¢) = 18(1) (BPa(y (1)) —
¢) from fg to ¢, one has

(28)

A(D) = A(1o) = L’) Aty ds
= [} BOBPaGs)-crds
= [} B Be)- c)ds+j —5"B()d(BE(s) =)
= LB BE(9) - 0L,
oL j s((@=2)B(s)~ sB(5)) (BE(s) ~ ) ds
9ﬂ+2 (BE (19) - c)

1l 9:’“2 (BE(1)—¢) —

+ —ef (@=2—-n) ™" (BE(s) - ¢)ds.
[0 0]

From Theorem 3, we conclude that the dual variable A(%) is
bounded, this together (29) implies

(29)

(@-2-7) [ 7 (BE(s) - O)ds
fo

+M2(BE(M-o)||<D (30)

where

p=2 sup ||A(®) - /l(t0)||+|

te[ty,+o0)

By Lemma 4 with (p(t)zftf)t”“(B.f(s)—c)ds, a=a-

12 (B (19) - C)“<+oo 31)
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2—-nand b= D, we obtain
sup [|¢"2 (BE(1) - o)|| < +o0
o)

t€(tg,+

which implies

1
1BE (1) — cl| = 0(—)

tl]+2

This in combination with Theorem 3 implies

g€ () - g(&)| < Lu(€0),87) = L (€°,¢ ) + || || I1BE (1) = cll
1

_ o(ﬂ—z) (32)

| ]

B. The Problem (9) With Nonsmooth Convex Objective Func-
tiong

In this subsection, our objective is to address the problem
(9) which involves nonsmooth objective functions, the subdif-
ferential dg(&) of g at & is a closed and convex set since g is a
closed and proper, nonsmooth convex function. A classical
attempt to directly extend APDPNA-S (12) to be able to solve
nonsmooth convex optimization problems is to substitute
the second differential equation in APDPNA-S (12) with the
differential inclusion Y(f) € —ZB()(9g(€) + u(BE(1) —c) +
BT () - Po(y(0) +y(0)). It may not be sufficient, as we shall
see below, to ensure the decreasing of the Lyapunov function
V(#) according to a continuous trajectory of solution. As we
will observe, this approach may not be enough to guarantee
the decrease of the Lyapunov function V(¢) along continuous
solution trajectories. It follows from [36] that the directional
derivative g(&;&) = supheag@)(h,é) in the nondifferentiable
case plays a central role in the derivation of the correct
dynamics.

From the work in [28], one can associate the set of subgra-
dients that have reached their maximum value to d(¢;z) (since
0g (&) is the compact set in this case, the upper limit value is
reached). Let’s represent this set

d(&;z) = argmax{h, z).
hedg(§)

(33)

Based on the preceding discussion, we propose the follow-
ing accelerated primal-dual projection neurodynamic
approach (abbreviated as APDPNA-NS) for the solving the
problem (9) with nonsmooth objective function g as follows:

E()= = (Pa(y()-£(0)
50 € ——B0)(d(£0):E®) +uBT (BE(1) - )
a
+BT (1) +y ()= Pa(y(1)) - £(@)
L) =1B(1) (BPa(y(0) =)

where a > 2, B(t): [tg,+o0) — (0,+00) and it satisfies B@) <
2p(1),

Remark 3: Tt is notable that the same equation £(f)=
T(Pa(y(1) —&(1)) is used for the dynamic trajectory of £(7) in

(34
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APDPNA-S (12) and APDPNA-NS (34). Thus, according to
Theorem 2, the solution &(f) of APDPNA-NS (34) is also
viable, i.e., &(f) € Q,Vt>1y> 0. Nevertheless, note that in
APDPNA-NS (34), we do not investigate the existence and
uniqueness of its solution £(7). In addition, since the objective
function in problem (9) is nonsmooth, the KKT conditions of
problem (9) become

9g(E)+ BT A"+ No(£7)30
B& —c=0.
Thus the optimality of solution of APDPNA-NS (34) can be
proved employing a similar approach as in Theorem 1.
Theorem 4: Assume that 8 : [fy, +00) — (0,+00) is a continu-
ous differentiable function and it satisfies 8(r) < (@ —2)8())/t
and let (£%,y*,¢) and (£(2),y(1),L (1)) € QXR" XR™ be opti-
mal solution and a strong global solution of APDPNA-NS
(34) respectively. Then for any (£(),y(%0),{ (t9)) € QX R"x
R™, the following conditions hold:
1) €(), Po(y(?) = é‘f(t) +£&(1), {(¢) are bounded.

i) For any £(#) € Q,t € [fp,+00), we have

, . a’E ()
Ly(£0,7) - Ly (€,¢(1) < B0
2E(tg)
u

1BE@ -l < -
§0=d= 5o

iii) Let B(¢) =0¢7 with 6>0 and 0 <7 < (@—2), then one

has
1
= 0(,,7?)

IBE(D) -l = O(L).

tT]+2

s €@ -g(€")

(35)

Proof: Constructing a Lyapunov function E(f) which is
almost identical to Theorem 3, except that the objective func-
tion g is nonsmooth, and it is

p(n

a?

1
* 5o (Hy(t) ~Pa(y")

E() =

(€.~ Lu(€".6)))

*~ v - Pa G @)IP)

1 a1 .
3l + 5 e -x
2
£ (’)J (g +) BEW-0)
a

/J 2 %
+ LB - P -

(b =PaG)I - Iy - Par@)IF)

L
2a
sl o+ 2 e
2a 2 ’
For proving the differentiability of the Lyapunov function

E (1), we use the difference quotient, which is defined as
e>0.

2

(36)
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E(t+e)—-E(1)
€

Ai(e) =

2
(ﬂ(”jﬁ (@) Bea+o-0)

1
€

+ LB o - +g e+ ) -z (€))

(I e+o-Pac?

~ Iyt +e)=Pay(t+eo))

B(t) ? B

(g(§(t))+—IIB$(t) P - g (")

(@) B -0) -5

~ Iy - Pay)I?)). (37)

Based on the fact that the convex function is locally Lips-
chitz (so that g(&+o(e)) = g(¢é)+o0(e)), and that 20(”)’([)—

Po()I? = lly(®) = PayO)II?), (AT (BE(r) — c)+'§ IBE() —cll?,
lE(R) — £117 and ||£(£) = *||? are differentiable, we have

e fE0+e0)-s¢v)
a?

A (e) = o(1)
€
2
SO d (@) mew- c>+§||3x<r> cIF)
2 2
w(g@(m (&)
+——||§(r> EOI
2 2
B—(’)’;ﬁ(” t(B(f(t)) Vo
; 2
SROE B0 (é B¢ (- c||2)
(04
z—z( AN
By using
_ glEw+ew)-ge@y
lim =g (£1):¢0)
e—0,e>0 €

d(, T B 2
d—t((g) (BE(1) =)+ 5 IBE(@ ~cl )
= (") Bé () + (B (1) - o) BE(1)

1 d z_l _ T
Zd_t”g(t)—g(t)ll —a(f(t) &) @)

1493

2dt

—E(Hy

1
=~ (Pa(y(0)=Pa(y")" y(0)

we have

lim A, (e)

€—

_B()t( (E@:£0)+ (@) BPaG0)-£ )

+ 2 B - 0 BPa(0) -]

5 2
GROEBO )7 (Be 1))

(0%

+ (€M)= g(€)+ 5 IBE@ ~cIP)
+LBOED-2) (BPal ) -0)
~La (Pay ) - Pa ) (d(E:¢)

a
+u(BE(®) =)+ BT L () +y ()~ Pa (y(1))

1 1
—~(Pa(®) - Pa O &+ S €0 —£m)" (1)
ﬂ(t)t

<

(¢ (€@:£0)-d(emse) o)

2 ﬁ(t)t +ﬁ(t)2t

= =] + (g(€()-g(&")

+ (@) BEW -0+ E1BEw —c||)

”3 ® +(s@)-ElBe@ -l -g(x@)

-5 ||B§(t) P = ()" (B¢ @) - C))

+w(8(§(t)) g~ d(f(t) §(t)) (g*_g([)))

£ (a/)2 (¢ (x0:@)-d(e0:0) )
+(B(t)t2+ﬁ(t)2t tﬁ(t))

a?

<

(g€ -g(£)

+ (@Y (BE® -0+ 5 1B - c||2)

- BOE g -af - L el <o (39)
where the ﬁrst inequality holds due to —(Pqo(y(t)—
Po(y)! (y(t) = Pa(y(t))) <0 in Lemma 2, the second inequal-
ity is satisfied from the convexity of the function £, and the
third inequality is satisfied due to B(f) < (o —2)B8(1)) /1.

The above conclusions hold with a similar proof to Theo-
rem 3 and Corollary 1. To avoid duplicating the proof, we
omit it here. u
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Remark 4: 1t’s worth noting from (39) that if we use
(1) € — LB(0(0g(E®) + uBT (BE(r) - ¢) + BT (1) - Pa(y(D)) +
¥(#)) (in other words, dg(£(r)) is a subgradient of g’(£(¢);
(1)) —d(&(0);€@1)T €r) is non-negative by (33), and one can-
not conclude that the Lyapunov function E(¢) is diminishing.
It drives us to select the subgradient. Indeed, when Y(2) €
— LBOA(E@); (1) + uBT (BE(D) = ) + BT {(1) + y(1) = Pa(y(1))) ,
where d(£(1);&®1)) is a subgradient of g at £(f) that maximizes
the linear functional (-,&(r))), the g (£(1);é(1)—d(&(®);
E)T&(r) term in (39) is non-positive, thus lime_0.e0 A/ (€)
<0.

Remark 5: The choice of an initial point within the feasible
set is a crucial aspect addressed in this manuscript, as it can
impact the feasibility and convergence of the solutions in
APDPNA-S (12) and APDPNA-NS (34). Since the projection
operator Q has a closed-form solution (refer to Lemma 1), it is
straightforward to use &y = Pq(xp) € Q, where % €R", to
obtain the initial value &y that satisfies the feasible set Q.

IV. NUMERICAL SIMULATIONS

In this section, to demonstrate the effectiveness and superi-
ority of the proposed APDPNA-S (12) and its extended nons-
mooth version APDPNA-NS (34), we discuss the sparse sig-
nal reconstruction problem in the compressed sensing. Com-
pressed sensing, also known as compressive sampling, is a
novel sampling theory that leverages the sparsity of signals. It
achieves this by acquiring discrete samples of signals through
random sampling at a much lower rate than the Nyquist sam-
pling rate. Subsequently, it employs nonlinear reconstruction
algorithms to perfectly reconstruct the signals. This concept
has gained significant attention in various fields such as infor-
mation theory, image processing, earth science, microwave
imaging, pattern recognition, wireless communication, and
biomedical engineering. The problem of recovering sparse
signals, which is a key aspect of compressed sensing, involves
reconstructing the sparse signal z € R” from small number of
linear measurements (linear constraints) ¢=Aze€R"™ with
m < n. The dimensions of these measurements are much
smaller than the spatial dimensions of the signal. Here,
A e R"™" (with m < n) represents the measurement matrix or
dictionary. It is important to note that the sparse signal recov-
ery problem is generally ill-posed and challenging due to the
imbalance between the number of measurements and the sig-
nal dimensions (m < n). To address this challenge, [39]
demonstrates that faithful recovery of z from the compressed
measurement c is possible when measurement matrix 4 satis-
fies certain stable embedding conditions. Mathematically, the
sparse signal reconstruction problem can be formulated as a
basis pursuit (BP) problem.

A. Basis Pursuit

Basis pursuit (BP) problem as follows:

min lzll; , s.t. Az = c. (40)
ZER"

Fortunately, the BP problem (40) can be written equiva-
lently as a linear programming problem with a linear con-
straint and positive-orthant constrained sets by a splitting
method, i.e., dividing z into positive and negative parts as fol-
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lows: z=u-v,u=[z]" 20, {v=[-z]" 20}, [z]* = max{0,y},
thus, we have |zll; = 17u+17v, corresponding the BP prob-
lem (40) becomes

min g(x)=17x

xeR2n

st.Bx=c, x>0

where x = [uf V|7 e R, B=[A,-A].

Let m = 100, n =256 and sparsity be 15. Apply APDPNA-
S (12) to deal with problem (41) with 8(¢) =0¢7,6 =0.1,n =1
and 1 =2 respectively. From Fig. 3 (3(a) and 3(b), 3(d) and
3(e)), we can obtain that the trajectories of APDPNA-S (12)
with =1 and =2 are globally asymptotically stable and
sparse signals can be recovered by using the stable solutions
of APDPNA-S (12). In addition, Fig. 3 (3(c) and 3(f)) shows
the convergence rates of |g(x(#))—g(x*)| and ||Bx(#)—cl|| of
APDPNA-S (12) with n=1 and n =2 with classical sparse
neurodynamic approaches: PNNSR-dynamic [21] and LPNN-
LCA [23]. As can be seen from Fig. 3 (Figs. 3(c) and 3(f)), the
APDPNA-S (12) with =2 has a faster convergence rate than
that with 7 = 1, which is consistent with the concluding results
of Theorem 3 and Corollary 1. In addition, convergence rates
of =1 and =2 are faster than PNNSR-dynamic [21] and
LPNN-LCA [23].

To better demonstrate the superiority of APDPNA-S (12),
we use the example without set constraints in [31] that g(x) =
xTMx, xeR® with M eR> being a positive semifinite
matrix that is generated by a standard Gaussian distribution
and set Be R0 and ¢ =0 e R!°. Under the same setting of
a =4 and the same initial values, we compared APDPNA-S
(12) equipped with g(r) =67, 6=0.1, n=1, n=2 to PDGD
[47], IPDDM [31], PDNAM ([30], FPDA [34]. Fig. 4 shows
the convergence results. As can be seen from Fig. 4, our pro-
posed APDPNA-S (12) outperforms PDGD [47], IPDDM
[31], PDNAM [30], FPDA [34] in both |g(x(#))—g(x*)| and
[[Bx(¢)—c||. With the same conditions, our proposed APD-
PNA-S (12) has a slight advantage over FPDA [34] especially
in the speed of convergence of the equation constraints due to
the augmented Lagrangian term of the constraints that was
introduced in APDPNA-S (12). Moreover, FPDA [34] has
performance superior than PDGD [47], IPDDM [31],
PDNAM [30] it introduces a time scaling term.

(41)

B. Distributed Basis Pursuit

The BP problem (40) can be converted to a distributed BP
problem, as discussed in [25]. This conversion is based on the
consensus theorem for multi-agents on an undirected graph G
and the row decomposition properties of the observation
matrix 4.

P
ﬁ%m=2mm
i=
st.Lx=0eR"” xeQ={xeR"|Ax=c} (42)
where A € R"™"P (see Fig. 5), L=L,®1 e R"""" with L, €
RP*P is the Laplacian matrix of undirected graph G and ® is
the Kronecker product.
By utilizing the proposed APDPNA-NS (34), we can solve
the distributed BP problem (42) with specific parameters:
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Fig. 3. Convergence properties of APDPNA-S (12) with 8(¢) = 67, 6 = 0.1 for solving BP problem (41) ((a) Transient behaviors of z(¢) with 7 = 1; (b) Tran-
sient behaviors of z(f) with  =2; (c) Convergence rate of |g (x(f)) — g (x*)| with PNNSR-dynamic [21] and LPNN-LCA [23]; (d) Recovered signal with n=1;
(e) Recovered signal with i = 2; (f) Convergence rate of ||Bx(f) — c|| with PNNSR-dynamic [21] and LPNN-LCA [23]).
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Fig. 4. Convergence properties of APDPNA-S (12) with e =4, g(1)=6¢1, 6=0.1, n=1, n=2, PDGD [47], IPDDM [31], PDNAM [30], FPDA [34]

((a) Convergence rate of |g (x(#)) — g (x*)|; (b) Convergence rate of ||Bx(7) —cl|).

n =50, m=30, sparsity s=5, and p=35. The problem is
tackled within the context of a network consisting of 5 agents
connected in an undirected ring configuration (refer to Fig. 5).
The trajectories x(f) of DPDPNA-NS (34) are illustrated in
Figs. 6(a) and 6(d). These trajectories demonstrate the global
asymptotic stability of x in two different scenarios, one with
a =3 and the other with @ =4. Furthermore, the subplots in
Figs. 6(b) and 6(¢) demonstrate that the sparse signals can be
efficiently reconstructed in a distributed manner by the stabi-

lized solutions of APDPNA-NS with @ =3 and @ =4. The
Figs. 6(c) and 6(f) show that the APDPNA-NS (34) with
a =5 has an faster convergence rate than APDPNA-NS (34)
with @ =3, which is consistent with the concluding results of
Theorem 4.

V. CONCLUSIONS

We have proposed two novel accelerated primal-dual neuro-
dynamic approaches with time scaling (APDPNA-S and
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Fig. 6. Convergence properties of APDPNA-NS (34) with 8(f) = 6¢7, 6 =1 and =1 for solving distributed BP problem (42) ((a) Transient behaviors of x()

with 77 = 1; (b) Transient behaviors of x(f) with 7 =2; (c) Convergence rate of |g(x(¢)) —g(x*)|; (d) Recovered signals with 77 =1; (e) Recovered signal with

1 = 2; (f) Convergence rate of ||Lx (#)]]).

APDPNA-NS) to deal with smooth and nonsmooth convex
optimization problem subject to linear and set constraints,
without strongly convex assumption. We have proven the
existence, uniqueness, and viability of the strong global solu-
tion for APDPNA-S. Additionally, we have demonstrated its
optimality using the variational analysis method, and estab-
lished the fast convergence properties of APDPNA-S by con-
structing a novel Lyapunov function. Furthermore, we have
extended the APDPNA-S into a differential inclusion dynami-
cal approach, i.e., APDPNA-NS by employing directional

derivative, and have shown that APDPNA-NS have the same
results as APDPNA-S by computing difference quotient of
Lyapunov functions. The effectiveness of APDPNA-S and
APDPNA-NS have been illustrated by two simulation exam-
ples on sparse signal reconstruction. In our future work, we
plan to investigate inexact accelerated primal-dual projection
neurodynamic approaches for addressing problem (9) in both
smooth and nonsmooth scenarios. This involves approximat-
ing the closed-form solution of the projection operator when it
is not readily available. Additionally, we aim to expand the
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scope of the proposed APDPNA-S (12) and APDPNA-NS
(32) methods by applying them to solve convex optimization
problems with inequality constraints and set constraints,
thereby increasing their applicability.
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