Published as a conference paper at ICLR 2025

AGENTREFINE: ENHANCING AGENT GENERALIZA-
TION THROUGH REFINEMENT TUNING

Dayuan Fu'; Keqing He?; Yejie Wang' Wentao Hong', Zhuoma Gongque', Weihao Zeng!,
Wei Wang?, Jingang Wang?, Xunliang Cai?, Weiran Xu' f

1Beijing University of Posts and Telecommunications, Beijing, China

2Meituan, Beijing, China

ABSTRACT

Large Language Model (LLM) based agents have proved their ability to perform
complex tasks like humans. However, there is still a large gap between open-
sourced LLMs and commercial models like the GPT series. In this paper, we focus
on improving the agent generalization capabilities of LLMs via instruction tuning.
We first observe that the existing agent training corpus exhibits satisfactory results
on held-in evaluation sets but fails to generalize to held-out sets. These agent-
tuning works face severe formatting errors and are frequently stuck in the same
mistake for a long while. We analyze that the poor generalization ability comes
from overfitting to several manual agent environments and a lack of adaptation to
new situations. They struggle with the wrong action steps and can not learn from
the experience but just memorize existing observation-action relations. Inspired
by the insight, we propose a novel AgentRefine framework for agent-tuning. The
core idea is to enable the model to learn to correct its mistakes via observation in
the trajectory. Specifically, we propose an agent synthesis framework to encom-
pass a diverse array of environments and tasks and prompt a strong LLM to refine
its error action according to the environment feedback. AgentRefine significantly
outperforms state-of-the-art agent-tuning work in terms of generalization ability
on diverse agent tasks. It also has better robustness facing perturbation and can
generate diversified thought in inference. Our findings establish the correlation
between agent generalization and self-refinement and provide a new paradigm for
future research.

1 INTRODUCTION

Language agents (Mialon et al., 2023} |Sumers et al. [2023)), Held-in Held-out
which harness the powerful capabilities of large language
models (LLMs) to perceive environments, make decisions, and
take actions, have emerged as an effective solution to com-
plex real-world problems. Plenty of agent projects such as Au-
toGPT (Sig), GPT-Engineer (gpt), and BabyAGI (yoh) have
employed LLMs as the core controllers, showing potential for
practical applications. Both prompt engineering (Yao et al.,
2022; |[Fu et al.} 2024; |[Zhao et al., |2024) and framework prac-
tice (Yao et al., 2024; [Shinn et al., [2024) have been proposed Figure 1: Overall progress score
to enhance the agent capability of top-tier commercial LLMs among 5 tasks. Agent-FLAN has
like GPT-4. Recently, open-sourced LLMs (Dubey et al.,[2024;
Jiang et al.,|2023)) are emerging as effective alternatives to GPT
models and show promising results.

N Agent-FLAN
I AgentRefine

Progress Rate(%)

Alfworld BabyAl SciWorld PDDL Jericho

been trained on Held-in task.

Many efforts have been made to enhance the agent capability of open-sourced LL.Ms via finetuning.
Deng et al.|(2024); |Qin et al.| (2023) carefully define single task schema and collect agent data for

*Equal contribution. Emails: £dy@bupt .edu.cn, Code: https://github.com/Fu-Dayuan/AgentRefine
"Corresponding authors.

Published as a conference paper at ICLR 2025

specific vertical fields. Further, Zeng et al|(2023); |Chen et al|(2024); [Hu et al.| (2024) extend to
diverse agent tasks and cover high-quality Chain-of-Thought (CoT) rationale (Yao et al.| [2022) to
enhance the agent performance on unseen tasks. Although these works achieve admirable perfor-
mance on held-in agent tasks where the collected training data share the same environment, their
generalizability to more held-out sets is poor (shown in Figure[I). To solve the generalization is-
sue of agent-tuning, (Zeng et al., 2023} |Chen et al.| 2024) mix general alignment data, ShareGPT
(Chiang et al., |2023)) with their agent data. They conclude that the general capabilities of LLMs are
necessary for the generalization of agent tasks and training solely on agent data always leads to a
decline in held-out agent performance.

In this work, we revisit the hypothesis that training solely on agent data can’t generalize to new
environments and delve into the reasons behind agent capability generalization. We first investigate
the errors of the existing agent-tuning work in the new agent environments and most of them are
formatting errors, illogical reasoning, and duplicated generation. While the integration of general
data ratios can partially mitigate these errors, we find current agent models struggle with the same
mistake and repeat erroneous actions, even when the environment provides explicit negative feed-
back. Inspired by (Shinn et al.| 2024; Madaan et al.,|2024), we connect the generalization of agent
capability with self-refinement (Madaan et al., |2024)) according to the feedback signals from the
agent environment. We argue a good agent should recognize its mistakes and refine the previous
actions by interacting with the environment. The self-refinement ability enables the agent to learn
from its mistakes, avoiding getting trapped in a specific predicament, and allows it to discover the
correct sequence of actions through reasonable exploration.

Expanding on the aforementioned insight, our objective is to develop generalized agent-tuning data
and establish the correlation between agent generalization and self-refinement. To this end, we
first propose an agent synthesis framework to encompass a diverse array of environments and tasks
drawing upon extensive human persona data (Chan et al., |2024) that reflects various professional
roles and personal interests. The diversity of agent environments prevents the model from overfitting
to a single scenario. Then for each generated agent environment and corresponding task, we ask a
strong LLM to simulate a multi-turn interaction. After generating each turn, we use a verifier to
detect whether it contains format or logical errors. We keep the error turn and prompt LLM to refine
its action according to the observation. The final agent data will undergo self-refinement processes
and ultimately lead to a correct result. We find that agent-tuning on the self-refinement data, which
we call Refinement Tuning, enhances the agent to explore more viable actions while meeting
bad situations, thereby resulting in better generalization to new agent environments.

In this paper, we present AgentRefine, which investigates the self-refinement in agent-tuning to
enhance agent generalization. We perform refinement tuning using our synthesis data on the
LLaMA3 (Dubey et al.l [2024) and Mistral-v0.3 (Jiang et al., 2023). Our experiments in terms of
five agent evaluation tasks demonstrate that AgentRefine significantly outperforms state-of-the-art
agent-tuning work. The key findings are summarized as follows:

* While existing agent-tuning work improve held-in agent performance, they hardly general-
ize the ability to new agent tasks. In contrast, our AgentRefine does not depend on mem-
orizing training trajectories but learns to self-refine its mistakes and explore more actions
and reasonable paths.

* Our experiments demonstrate that agent-tuning on normal trajectories performs poorly to
the small perturbation of agent environments, like the action description. Refinement tun-
ing exhibits greater robustness to environmental changes.

* Further analysis indicates the diversity of agent environments and thoughts contributes to
refinement tuning.

2 RETHINK THE GENERALIZATION OF AGENT-TUNING

Current agent-tuning works lack generalization to new agent tasks. Figure |l|compares the perfor-
mance between held-in and held-out agent tasks, where Agent-FLAN utilizes the Alfworld environ-
ment to gather training data and subsequently makes direct predictions for the held-out tasks. We
observe a clear performance drop between the two settings.

Published as a conference paper at ICLR 2025

a) Alfworld b) Alfworld (action changed) ¢) SciWorld
Goal: : put a cool tomato in microwave... Goal: : put a cool tomato in microwave... Goal: ... metal fork, which is located around the bedroom..
Available actions: ... take {obj} from {recep} ... Available actions: ... from {recep} take {obj} ... Available actions: ... go {obj} ...,
;";‘".“” 3:[§8H6|countertop 1. etion 2:/take tomato 1 from countertop 1 Tlm(uyht 6: the fork .. might be in the|drawer ...
Observation 2: Nothing happens Action 6:[E00 JraWer
Action 4: fake tomato 1 from countertop 1 Thought 3: . Action 12:[{asKrestart
Observation 4: You pick up the tomato 1 from the Action 3: fake tomato 1 from countertop 1 e
countertop 1. :If‘rmu 13: task restart
ﬂg Acrion 4: take tomato 1 from countertop 1 I‘g Action 14 [ERRESET Ig

Figure 2: Example of parameter memorization in Agent-FLAN.

Memorizing true trajectories leads to overfitting. To further figure out the reason behind the poor
generalization, we employ a study on the robustness of Agent-FLAN. Figure2]displays the different
output results in three evaluation settings where (a) denotes the original output in the held-in Alf-
world task, (b) represents the modified Alfworld task with only reordering the action description,
and (c) means the held-out SciWorld task. Agent-FLAN fits well into the held-in agent environment
but fails to recognize subtle perturbations or handle new tasks (§4.3). Moreover, we analyze the bad
cases of existing agent-tuning work in the held-out tasks and observe that once the model outputs an

error action, the entire process will be stuck in the same error
mode for a while, regardless of the observation (§|Z]). These ex-

perimental results indicate that traditional approaches merely = e
memorize the correct trajectory information, fundamentally
leading to a lack of generalization capability.

Success Rate

Not memorize but self-refine. Inspired by recent work (Shinn
et al., 2024; Madaan et al.} |2024), we connect the generaliza-
tion of agent capability with self-refinement based on envi- Agent-Gym Agent-FLAN —AgentRefine
ronment feedback. We hypothesize that self-refinement abil-

ity enables the agent to learn from its mistakes and discover Figure 3: The success rate varia-
the correct sequence of actions through reasonable exploration tion via perturbation

(§4.2).

3 METHODOLOGY

3.1 DATA CONSTRUCTION

Inspired by the Tabletop Role-playing game (TRPG), AgentRefine data’s construction process can
be divided into three parts: script generation, trajectory generation, and verification, as shown in
Figure [d The script generation requires the LLM to generate a script with the environment, tasks,
and available actions based on the persona. In the trajectory generation phase, the LLM is required
to simultaneously play the roles of both Dungeon Master (DM) and player to generate multi-turn
agent data containing errors and refine steps based on the script. The verification will verify the
script and trajectory, giving LLM the mistake it has made within a given persona and the LLM will
regenerate the script/trajectory based on the verifier’s response.

Script Generation We first sample a persona p; from diverse personas (Chan et al., 2024)), and
prompt the LLM to generate a script with the environment, tasks, and available actions based on
pi. The environment will include locations, items, and player information that may appear in the
interaction. To assist the LLM in understanding the environment, we prompt the LLM to display
the hierarchical relationships between locations/items in JSON format. We also require the LLM
to generate some interfering locations/items, to ensure that some erroneous steps are likely to occur
during trajectory generation. After generating the environment, the LLM will generate a clear and
specific task. Finally, the LLM will generate a series of available actions. For each action, we require
the LLM to generate an action name, validation code (a regular expression), and valid parameters.
The structure of the script can be seen in Appendix [[]

Trajectory Generation Given a script, the LLM can simulate multi-turn interactions between the
DM and the player within one call. Specifically, the DM’s turn is divided into three stages: thinking,

Published as a conference paper at ICLR 2025

e N A
Data Construction Refinement Tuning

Script Generation Trajectory Generation (Z Trajectory N Data Conversion
=T P o .) . Y sson
=1 . \ ag] DM observation -> User,
: s Players Thought and
' AgentRefine action > Assistant Refinement Tuning

dataset

Erroneous loss Masking

persona Hub [eorect e J=—>
iy : v
1 1y H f
Regenerate SINEISSE S ___ .
Script | i N\ommmmmmmmmemmn)/ 1
[: o
Lk 11 Available Regenerate
Verification I 1 actions : Trajectory |:'> J(e)
0 y 0 Compute
"""""""""""""""" T loss
y '
— ® E The number of error-refine furns | _ _|
U N R in the trajectory is less than two.
Trajectory Rule-based —_ R —>
Action Check aia The number of error-refine turns | _ |8 v
Quantity check in the trajectory is at least two el { ms:”
ine corre -/
N - J J

Figure 4: The pipeline of AgentRefine data generation and refinement tuning.

observing, and evaluating. In the thinking stage, we require the LLM to evaluate the player’s state
and known information so far and analyze the observations the player can obtain based on the last
action. The observing stage will provide the observations the player can obtain, while in the eval-
uating stage, the DM will assess whether the player’s last action contains parameter errors, logical
errors, and location errors (act in the wrong place). The player’s turn is similar to ReAct, requiring
the LLM to analyze the current state through thought and then propose an action. The structure of
the trajectory can be found in Appendix

Verification The verifier will check both the script and the trajectory. In script part, to ensure the
validity of the action names, we apply the validation code on the action names and only save the
script if all actions pass the validation E In the trajectory part, if the generated trajectory has: (1)
JSON format error at a certain turn ¢, (2) The task is not completed in the final turn ¢ — 1 (3) In the
player’s ¢ turn its action can not match any validation code with corresponding parameters and the
DM does not provide a parameters error in turn ¢t + 1, we will save all previous turns up to ¢ — 1
and prompt the LLM to continue generating. If the DM evaluates that the task is completed but the
number of error-refine turns in the trajectory is less than two, we will provide all turns to the LLM
and require it to regenerate the trajectory from the beginning. Detailed verification steps can be seen

in Appendix

3.2 GENERATION SETUP

We use gpt-40-2024-05-13 to generate the script and trajectory. We will save all trajectories that can
pass verification in 4 LLM calls (including script generation and trajectory generation). We primarily
adopt the 1-shot trajectory example approach in trajectory generation and the 3-shot script examples
in script generation to help LLM follow the format and give a diversified result. In Appendix [5] we
use deepseek-v2.5 (Liu et al.,|2024) as the open-source LLM to generate the script and trajectory.

3.3 REFINEMENT TUNING

After generating the complete trajectory, we convert the trajectory into a Refinement Tuning dataset
Drgr, specifically, the user turn is the DM’s observation, while the assistant turn is the Player’s
thought and action, in ReAct (Yao et al,, |2022)) format. To prevent interference from error turns
generated by the LLM, we changed the loss function J(6), as shown in Equation Where N, is the
total turn number of a given data x, T}, A;, O; is the thought, action, and observation in turn j. If
Ajiscorrect 1(A;) = lelse 1(4;) = 0.

N,
J(0) = Eanppr | O _10g (w0 (Ti, Al {T}, A;, 05} j=o....i-1) 1(4;)) (1)

i=1

"Due to the near-infinite parameter space of actions in virtual environments such as code editing, answering,
and searching, these actions will not be verified in both script generation and trajectory generation

Published as a conference paper at ICLR 2025

4 EXPERIMENTS

4.1 EXPERIMENT SETUP

Training We use the LLaMA3-base series models (Dubey et al., [2024) for most of our experiments.
For mistral (Jiang et al., |2023)), we use mistral-v0.3. We applied the original llama3 (or mistral)’s
multi-turn chat template. We use LLaMA-Factory (Zheng et al 2024)) to train our models. The
training hyperparameter details can be seen in Appendix D}

Tasks We select 5 tasks: SciWorld (Wang et al., 2022)), Alfworld (Shridhar et al., 2020), BabyAl
(Chevalier-Boisvert et al., [2018]), PDDL (Vallati et al.| 2015]), and Jericho (Hausknecht et al.| 2020),
all of them are testing models’ decision-making ability. We use the AgentBoard (Ma et al., 2024)
framework for experiments, this framework can determine whether the agent has completed all tasks
(success rate) and whether the agent has reached key nodes (progress rate). The Held-in task refers
to Alfworld, while the Held-out tasks are the results obtained by the weighted average of other tasks
based on AgentBoard (Ma et al.| 2024) We change AgentBoard’s prompts from Act-only to ReAct
and the historical thought, action, and observation will be transformed into the chat format instead
of plaintext. We adjusted the example prompts on Llama-3-8B-Instruct and never changed them
during this work. (except §4.3). The max turn is 30 for all these tasks in inference. To further
prove AgentRefine’s generalization, followed by the choice in ReAct (Yao et al.| 2022)), We choose
a reasoning task HotpotQA (Yang et al., 2018) in the ablation experiment. We use Wikipedia search
in LATS (Zhou et al.| [2023) as the environment, randomly sample 300 questions from HotpotQA,
and test the exact match (EM) and F1 score of those methods. The max turn is 8 for HotpotQA task
in inference. It should be emphasized that we will only use environment feedback in the inference
and we will not use GPT4’s judgement as the feedback.

Baseline For the close-source model, we choose GPT-40 (gpt-40-2024-05-13) and GPT40-mini
(gpt-40-mini-2024-07-18). For the open source model, we choose Meta-Llama-3-8B-Instruct, Meta-
Llama-3-70B-Instruct, and Mistral-7B-Instruct-v0.3. For fine-tuned mode, we choose Agent-FLAN
(Chen et al., |2024), AgentGym (X1 et al., [2024), and AgentGen (Hu et al.| |2024) as the baseline.
They are all trying to solve the agent generalization problem. Agent-FLAN is an improvement of
AgentTunning (Zeng et al.l [2023), focusing on training “thought” in ReAct. AgentGym uses lots
of environments to ensure generalization and AgentGen uses LIMA (Zhou et al., [2024) to synthe-
size diversified agent-tuning data. Agent-FLAN includes Alfworld in its training set. AgentGym
includes Alfworld, BabyAl, and SciWorld in its training set. These datasets will be seen as Held-
in test tasks for the corresponding method. Since Agent-FLAN and AgentGym’s original model
is LLaMA2-Chat, for a fair comparison, we reproduce them under LLaMA3 and Mistral. Since
AgentGym has not open sourced, we only report the result in (Hu et al., [2024)

4.2 MAIN RESULTS

Table[T] shows the performance comparison of AgentRefine and other methods across different fam-
ilies and sizes. It is important to emphasize that some methods sample training data in the same
environment as the task; in such cases, we consider this task for these methods to be held-in. We
identify the held-in metrics for each method with an underscore. It can be observed that compared to
other agent works, our method shows significant advantages in held-out tasks. For example, it leads
Agent-FLAN by 13.3% in Sciworld Success Rate. Notably, in some tasks, AgentRefine can even
match the performance of the GPT-4o0 series. This demonstrates the strong generalization capability
of AgentRefine. We also observe that AgentRefine can not outperform held-in training methods.
However, in § 4.3] we will demonstrate that these held-in methods simply memorize the mapping
between observation and action, and a very small perturbation can render these methods ineffec-
tive. Furthermore, we also notice that LLaMA-3-8B-Instruct exhibits very strong performance in
many tasks. We attribute this to its extensive use of Alignment data and additional RL training. In
subsequent experiments, we also mix alignment data and AgentRefine and achieve further gains.

Effect of Refinement Tuning To further investigate the effectiveness of Refinement Tuning, we
mask the loss of refinement trajectory tokens. Table [2| shows that after masking the refinement, the
model’s performance over 5 tasks drops dramatically. For instance, there is approximately 43%
performance drop in Sciworld which, to some extent, reflects the necessity of Refinement Tuning
for Agent tasks. we also re-generated a training set without error and refinement trajectories, which

Published as a conference paper at ICLR 2025

Method Alfworld BabyAl SciWorld PDDL Jericho
Success Progress Success Progress Success Progress Success Progress Success Progress
GPT Series
GPT-40 66.4 79.9 48.2 64.1 40 76.9 61.7 69.8 10.0 34.0
GPT-40-mini 37.3 65.0 36.6 51.9 233 49.8 25.0 49.1 10.0 28.5
LLaMA-3-8B Series
LLaMA-3-8B-Instruct 22.4 46.1 455 56.5 7.8 41.1 10.0 38.4 0.0 24.3
AgentGen 29.1 47.6 20.5 35.0 - - 11.7 23.0 - -
AgentGym 61.9 76.9 47.3 614 18.9 47.5 1.7 16.6 0.0 12.9
Agent-FLAN 67. 79.7 25.0 353 1.1 10.9 8.3 25.5 0.0 10.1
AgentRefine 4.8 63.8 37.5 50.4 14.4 42.6 16.6 37.8 10.0 323
Mistral Series
Mistral-7B-Instruct-v0.3 124 359 36.6 45.8 6.7 24.7 133 27.8 0.0 17.3
AgentGym 76.9 86.7 40.2 56.3 15.6 48.3 1.7 73 0.0 13.0
Agent-FLAN 71.6 87.6 15.2 21.0 0 6.7 0 32 0.0 0.7
AgentRefine S1. 68.8 259 424 44 224 11.7 32.8 5.0 28.8
LLaMA-3-70B Series

LLaMA-3-70B-Instruct 67.2 75.2 48.2 61.8 422 75.4 55.0 79.8 25.0 46.4
Agent-FLAN 80.5 86.8 32.1 412 55 16.4 25.0 53.7 0.0 13.6
AgentRefine 67.2 72.1 44.6 59.7 17.7 46.4 38.3 58.6 15.0 37.2

Table 1: Main Results. The underlined text indicates that the training data is sampled in the same
environment as the task and is considered as held-in evaluation. We use the original result in Agent-
Gen and reproduce AgentGym and Agent-FLAN’s results.

Method Alfworld BabyAl SciWorld PDDL Jericho
Success Progress Success Progress Success Progress Success Progress Success Progress

AgentRefine 48.5 61.5 37.1 51.7 7.1 33.1 21.7 374 5.0 26.2

- w/o refinement loss 40.3 58.8 34.8 45.6 4.4 22.7 20.0 37.4 0.0 16.1

- w/o refinement data 49.3 65.2 30.4 43.1 55 21.3 11.7 32.5 0.0 13.8

- w erroneous loss 29.9 439 232 31.6 33 19.0 8.3 28.3 5.0 18.4

Table 2: Ablation study of Refinement Tuning. This experiment is in the data size of 8000.

completely eliminates the impact of Refinement Tuning. From Table 2] we can observe that the
model trained on data without refinement trajectories experiences a similar magnitude of perfor-
mance drop across all tasks.

In our proposed Refinement Tuning, we mask the loss of
erroneous turn tokens to prevent the model from learning Average Success and Progress by Size

B Success

incorrect thought processes. To verify whether this process =~ = o

is necessary, we train a model learning all assistant turn to-

kens on the same data. Table[2lshows that the model learned ~*
erroneous tokens results in very adverse consequences, with 5"
nearly a 75% drop in Sciworld. This conclusion is contrary =

Scores

to (Ye et al., [2024). In fact, we find that the model’s per-
formance on these tasks can continue to drop to a low level
with the continued learning of data with erroneous trajecto- ses
ries. We believe that at least for agent Refinement Tuning,
eliminating the loss of erroneous turns is crucial. Other-
wise, models will learn incorrect reasoning processes, lead-
ing to poor performance on held-out tasks.

Figure 5: The model’s performance as
the AgentRefine train data scales up.

Scaling AgentRefine We experiment and analyze the relationship between the data size of the Agen-
tRefine training set and model performance, with the results shown in Figure[5] From the results, we
can observe that the model demonstrates significant gains in performance as the data size increases
from 4k to 64k, which illustrates the effectiveness of the AgentRefine data.

4.3 ROBUSTNESS ANALYSIS

Previous work has extensively trained on held-in tasks but shows poor performance on held-out
tasks. One possible reason is that models simply memorize the key-value pairs between observation

Published as a conference paper at ICLR 2025

Model Alfworld Perturbation 1 Perturbation 2 Perturbation 3

Perturbation 4 Perturbation 5 Average Std

Success Progress Success Progress Success Progress Success Progress Success Progress Success Progress Success Progress Success Progress

LLaMA3-8B-Instruct
AgentGym
Agent-FLAN
AgentRefine

224 46.1 23.1
29.1
21.6

50.0

45.6 24.6
492
51.4

515

45.0 179
61.9
67.2

44.8

76.9
79.7
63.8

59.2
58.8
66.5

65.3
71.3
66.7

32.8
27.6
54.5

45.1
53.9
53.5
70.0

17.9 45.1
482
67.9

60.6

224
59
1.5

44.8

46.1
28.7
19.7
63.8

21.4
36.3
36.9
48.5

45.5 2.68 0.47
38.8
522

455

55.4
58.5
65.2

19.97
21.98
373

16.66
22.53
3.56

Table 3: Performance for different models across various perturbations.

and actions from training data, rather than learning to infer correct actions based on the task and
observation. To test the hypothesis above, we conduct data perturbation experiments on a held-in
task. Specifically, we select the Alfworld, which belongs to the held-in category for both AgentGym
and Agent-FLAN. We perturb the candidate actions in Alfworld ensuring that the perturbed ones
consist of different tokens (or token order) but express the same semantic information. The detail

perturbation rules are shown in Appendix [K]

Table [3] shows the experimental results. It can be observed that simple data perturbation leads to
a significant performance drop on the original held-in task. For example, under the average score,
AgentGym’s Success Rate drops by 25.6%, while Agent-FLAN experiences an even more severe
performance decline of 30.4%. Their standard deviation is close to 20%. In comparison, Our Agen-
tRefine has a 3.7% increase in the average and low standard deviation, 3.73%, indicating that it
learns decision-making capabilities rather than just simple memorization.

4.4 DIVERSITY ANALYSIS

Thought Diversity Figure [6] illustrates the distribu-
tion of chain-of-thought diversity across three agent
datasets. We extracted the thought content from all
ReAct rounds and vectorized them. We randomly
sampled 8100 data from all thoughts and visual-
ized them via dimensionality reduction using t-SNE
(Van der Maaten & Hinton|, 2008). Compared to
Agent-FLAN and AgentGym, the data of AgentRe-
fine are more widely distributed and numerous in
Figure [6] indicating a higher diversity of thoughts
in AgentRefine. This suggests that the AgentRefine
data can better teach the model to think diversely,
achieving a broader exploration space.

Environment Diversity Figure [7] shows the simi-
larity relationship between the AgentRefine environ-
ment and the test datasets. We randomly selected the
instructions from 100 data (50 from AgentRefine

and 10 from each test set) and removed the one-shot
examples from the test sets. As shown in Figure 3,
the similarity between the AgentRefine environment
and the test environments is less than 0.5 (bottom left
and top right sections), indicating a certain degree
of difference between our environment and the test
environments.

Best-of-N Table [] presents the performance of the
three agents on Best-of-N (BoN). We set the decod-
ing temperature to 1, executed each target task ten
times, and took the highest score as the progress rate.
If there was at least one successful result among the
ten executions, the success rate would be 1; other-
wise, it would be 0. The results in Table 4| show
that the BoN performance using any training data
is always better than greedy, with the improvement
of AgentRefine being particularly notable, averaging

Agent-FLAN

AgentGym °

AgentRefine .

.
. - * e
L] 'S .
.
13

Figure 6: The t-SNE figure among Agent-
FLAN, AgentGym, and AgentRefine’s
Thought.

Alfworld -
BabyAl
Sciworld
PDDL

Jericho

Figure 7: The similarity heatmap between
different environments in 6 sources.

Published as a conference paper at ICLR 2025

Model Alfworld BabyAl SciWorld PDDL Jericho
Success Progress Success Progress Success Progress Success Progress Success Progress
AgentGym-greedy 61.9 76.9 473 61.4 18.9 475 1.7 16.6 0.0 12.9
AgentGym-BoN 99.3 99.3 73.2 87.2 58.9 85.6 16.6 42.1 5.0 222
A 374 224 25.9 25.8 40.0 38.1 14.9 25.5 5.0 9.3
Agent-FLAN-greedy 67.2 79.7 25.0 353 1.1 10.9 83 255 0.0 10.1
Agent-FLAN-BoN 85.5 98.1 438 56.7 10.0 335 11.7 39.8 5.0 222
A 28.3 18.4 18.8 214 8.9 22.6 3.4 14.3 5.0 12.1
AgentRefine-greedy 44.8 63.8 37.5 50.4 144 42.6 16.6 37.8 10.0 323
AgentRefine-BoN 93.3 96.6 67.0 81.5 40.0 71.0 30.0 573 25 525
A 48.5 32.8 29.5 31.1 25.6 28.4 13.4 19.5 15.0 20.2

Table 4: Best-of-N results among three methods.

over 25%. The marked improvement of AgentRefine compared to the other two datasets is likely due
to its higher diversity and quality of chain-of-thought. It also demonstrates that existing agent-tuning
models have great potential. To gradually improve the model’s performance, this result suggests that
we should construct better reinforcement learning agent data towards generalization in future work.

5 SYNTHESIS FROM OPEN SOURCE MODEL

In the main experiment, we use GPT-40 to synthesize the AgentRefine data. In this chapter, we
attempt to replace it with open-source models to complete the data synthesis process. Table[5]shows
our results under 4000 training data. It can be observed that, compared to Agent-FLAN, which used
GPT-4 for data synthesis, the AgentRefine data synthesized with the open-source model DeepSeek-
v2.5 exhibits significant advantages on the held-out tasks. For example, it leads Agent-FLAN by
11.6% in the BabyAlI Success Rate metric, further proving the advantages of AgentRefine. Ad-
ditionally, we observe a noticeable gap between the data synthesized with DeepSeek and the data
synthesized with GPT-40. This indicates that using more capable models for data synthesis does
indeed yield higher-quality training data and results in greater performance gains.

Model Alfworld BabyAl SciWorld PDDL Jericho
Success Progress Success Progress Success Progress Success Progress Success Progress
Agent-FLAN 67.2 79.7 25.0 353 1.1 10.9 8.3 25.5 0.0 10.1
AgentRefine-DeepSeek 32.0 442 36.6 48.1 22 21.6 16.6 36.7 5.0 29.0
AgentRefine-GPT-40 36.6 55.9 33.9 44.1 11.1 314 18.3 37.9 10.0 28.8

Table 5: Performance on Different Synthesis Models, we synthesize 4000 data via deepseek-v2.5.
The underlined text indicates that the training data is sampled in the same environment as the task
and is considered as held-in evaluation

6 GENERLIZATION IN REASONING TASK

. . Method EM F1
Figure resents the results on the reasoning task
gure |9/ p g task, LLaMA-3-8B-Instruct 29.3 36.6
HotpotQA (Yang et al.,2018)). The result shows that
AgentGym 28.0 374
AgentRefine outperforms other methods on Hot-
potQA’s EM and F1 metrics. It proves that AgentRe- Agent-FLAN 246 324
AgentRefine 37.0 446

fine’s generalization still works on reasoning prob-
lems.

Figure 8: Model Performance on reasoning
task, Hotpot QA.
7 CASE STUDY

Figure [0 presents examples of Agent-FLAN and AgentRefine in Jericho and Sciworld. The cases
show that Refinement Tuning can enhance the diversity and quality of the model’s thinking, which
helps improve the model’s exploration breadth and efficiency and avoid always getting stuck in loops
in a new environment.

In Jericho, Agent-FLAN mistakenly believes it is not in the cell and attempts to go to cell. After
failing, it chooses to check valid actions. Although check valid actions is a correct choice,

Published as a conference paper at ICLR 2025

a) Jericho Yo b) SciWorld

Goal: : You are prisoner on ship Zenon, locked in your cell. You need to Goal: : metal fork, which is located around the bedroom. You can find the

get out of your cell out into the corridor without getting caught. You could thermometer in the kitchen... If the metal fork is above 0.0 degrees celsius,

use a distraction _place it in the orange box. ...

(Both 2 agents have found a key after some turns) (Both 2 agents are located in the kitchen after some turns)
Agent-Flan AgentRefine Agent-Flan AgentRefine

- . Action 2: go bedroom
Thought n: There are H0 actions Thought 13: Lf)oks like | gol.caughl. I Thought 6: 1 need tolfind the fork Observation 2: No known action. ..
available to escape from the ship. I need to try asam. e anslald Teren IEhEKitehen-1it might be in the
should go back to the cell and try to a‘pPl.'oac?;T{%h & I\:Vurl](d JU drav_ver or on the countertop. Thought 5: 1 see that 'go bedroom' is
[idithe keyagain: (); mu.J e ec. valid actions Action 6:|gooldTawer not a valid action. I should try navigating
Action n: go to cell Uhser vation 13: ... to another location related to the task.
Observation n: You can't see any Thought 14: 1 should keheGHiNg Action 7: [EOHOICOUTIEHOP Action 5: go hallway
such thing. Z\}nounfi o C 19Ok R o . Thought 6: Since navigating to the
Thought n+1:1 can't find the key in MSERERHIN that might help me escape. Action 8: inventory. bedroom directly isn't possible...

the cell anymore. [Tt seems I've lost Action 14: Look Action 6:look around

... Observation 14: ... :”“'H},’/"]-7.-' The 'fork is not in the Observation 6: ...A door to the bedroom
Action n+1: check valid actions , . . inventory either. I've run out f’f (that is open)...
Thought 26: I'm being cal{ght again. I places to check. Fil have fo give up Thought 7: Given the available doors, I
(repeat above action to the end) need to.use some.son of distraction. I and restart the task. should go to the bedroom to find the
should interact with the pressure gauge. Action 12:|faSKITestars el i,

Action 26: push guage Action 7: g6 bedroom

d 2L S 3

Figure 9: Comparison case study on Jericho and SciWorld between Agent-FLAN and AgentRefine.

Agent-FLAN does not correct its erroneous decision based on the returned results and repeats the
go to cell and check valid actions error loop. In contrast, AgentRefine, upon realizing its actions
are not achieving the goal, tries various new methods instead of endlessly repeating previously tried
incorrect actions.

In Sciworld, Agent-FLAN ignores the hint in the Goal that the fork is in the bedroom and
chooses to search in the kitchen. Additionally, Agent-FLAN, having memorized the Alfworld
dataset, attempts to output locations can only be found in Alfworld (drawer, countertop, and the
action format go to {place}), which do not exist in SciWorld. Conversely, AgentRefine can clearly
find the thermometer and decide to go bedroom to search for the fork. After go bedroom fails, it
decides to go hallway based on several rounds of observation. In T'hought 6, although AgentRefine
mistakenly believes it cannot reach the bedroom, its judgement shows it can revise its decisions
using short-term memory (from turn 2). When Observation 6 provides clear information about
the bedroom, AgentRefine can correct its wrong decision in Thought 6 and reach the bedroom.
This indicates that AgentRefine’s improvement in results is not due to memorizing prior knowledge
from training data but rather its ability to efficiently utilize and integrate multiple key pieces of
information from short-term memory to correct errors in historical decisions.

8 GPT-4 JUDGEMENT’S RELIABILITY

Figure [T0] shows the comparison of GPT-4 and hu- GPT4)

man judgement on whether a turn needs to be re- Human Right Wrong
fined. We randomly sampled 50 trajectories from Right 47 0
the generated trajectory. In each trajectory, we ran- Wrong 3 41

domly sampled 1 right turn and 1 wrong turn. We
asked the human annotator to label the correctness
of the turn. The human annotator receives the his-
torical thought, action, and observation before the
right/wrong turn as well as the right/wrong turn’s
thought, and action in ReAct format. It also receives
the script corresponding to the trajectories. The re-
sults show that in the turns that GPT-4 labeled right,
94% are aligned with human judgment, and in the turns that GPT-4 labeled wrong, 82% are aligned
with human judgment. This indicates that GPT-4’s judgement is reasonable.

Figure 10: The comparison of GPT-4’s
judgement and human’s judgement. The
right column/line means human/GPT-4 con-
siders this turn doesn’t need to be refined.
The wrong column/line means human/GPT-
4 considers this turn needs to be refined.

9 GENERALIZATON BETWEEN GENERAL DATA AND AGENT DATA

Published as a conference paper at ICLR 2025

BN w/o ShareGPT
BN w ShareGPT

Both Agent-FLAN and AgentTuning have found that incor-
porating general data can enhance the model’s generalization
ability. This improvement arises from the improvement of
instruction-following capability. Figure [TT]shows the changes
in model performance after incorporating ShareGPT. Aligned
with them, we also found that general data like ShareGPT can Agent-FLAN AgentRefine

continually improve the model’s Held-out task performance.

Success Rate

Figure 11: The success rate by in-
corporating ShareGPT
10 RELATED WORK

Agent Finetuning To enhance the decision-making capabilities of open-source models, a series
of works currently focus on training Agent trajectories. A small number of models choose the
decompose-then-execution paradigm (Yin et al.| [2024), while the majority opt for using ReAct (Yao
et al.,|2022). Most works sample from the dataset and train the model using methods such as SFT or
DPO (Rafailov et al., [2024) to improve their ability to handle Held-in problems(Zeng et al., 2023;
Hu et al.| 2024} [Xi et al.| 2024} (Chen et al.l 2024). AgentTuning, Agent-FLAN, and AgentGen
attempt to train generalizable agent models. AgentTuning and Agent-FLAN have found that using
general data like ShareGPT can improve generalization. AgentGym aims to enhance generalization
by enabling the model to continuously learn new tasks and treating all tasks as Held-in. AgentGen is
the first to attempt direct environment synthesis, improving generalization by enhancing the diver-
sity of training data. In this work, we demonstrate that the above approaches still have limitations in
terms of generalization, specifically in terms of easily overfitting on single data sets, getting stuck
in reasoning, and learning incorrect reasoning patterns. To address this issue, we increased the di-
versity of training agent data through synthetic data, significantly alleviating the model’s overfitting
problem. Additionally, we add refinement steps in the trajectory. We show that whether the train-
ing data includes the refinement process affects the model’s reasoning pattern, and adding synthetic
refinement processes greatly enhances the generalization performance of LLM:s.

Data Synthesis Due to the impending depletion of web data, the use of synthetic data has become
a research hotspot. The synthesis can be divided into query synthesis and response synthesis. Most
agent-tuning approaches synthesize the response in different ways like the plan (Yin et al., [2024)),
ReAct format (Zeng et al., 2023)), JSON format (Zhang et al.,|2024), chat format (Chen et al.,|2024),
pair format (Xiong et al., |2024), or evaluation of the state knowledge (Qiao et al [2024), etc. The
other way is to synthesize queries, like evolving a given query (Xu et al., 2023) or using pre-train
data as a seed to generate new data (Chan et al.| 2024). Among agent research, only AgentGen
explores query synthesis. AgentRefine tries to synthesize queries and responses at the same time
and uses a verifier to supervise the quality of the responses.

Self-Refine Self-refine refers to the process where a model iteratively generates better results
through feedback. SELF-REFINE (Madaan et al.| 2024} Huang et al., 2023) finds GPT-4 can find
and correct mistakes itself in a compulsory pipeline - generate answer, asking a refinement advise
and use the question and the advise to generate answer again. AgentRefine trains models to develop
step-level refinement abilities. This means the model can spontaneously adjust its decision pro-
cesses based on feedback from the environment, rather than relying on compulsory guidance from a
pipeline at instance-level. AgentRefine is also the first approach to identify the connection between
step-level refinement and agent generalization.

11 CONCLUSION

In this work, we study the generalized agent abilities for open-source LLMs via agent tuning. Cur-
rent work performs well on held-in evaluation sets but fails to generalize to held-out sets because of
overfitting to several manual agent environments. We present the AgentRefine approach to enable
the model to correct its mistakes based on the environment feedback. Experiments demonstrate that
AgentRefine significantly outperforms state-of-the-art agent-tuning work in terms of generalization
ability on diverse agent benchmarks. Our analysis shows that self-refinement enables the robust-
ness of agent capability and the diversity of agent environments and thoughts further enhances the
performance. We hope to provide new insight for future agent research.

10

Published as a conference paper at ICLR 2025

REFERENCES

Significant-gravitas/autogpt: Autogpt is the vision of accessible ai for everyone, to use and to build
on. our mission is to provide the tools, so that you can focus on what matters. https://
github.com/Significant—-Gravitas/AutoGPT. (Accessed on 09/29/2024).

gpt-engineer-org/gpt-engineer: Platform to experiment with the ai software engineer. termi-
nal based. note: Very different from https://gptengineer.app. |https://github.com/
gpt—-engineer—-org/gpt—engineer. (Accessed on 09/29/2024).

yoheinakajima/babyagi. https://github.com/yoheinakajima/babyagi, (Accessed on
09/29/2024).

Xin Chan, Xiaoyang Wang, Dian Yu, Haitao Mi, and Dong Yu. Scaling synthetic data creation with
1,000,000,000 personas. arXiv preprint arXiv:2406.20094, 2024.

Zehui Chen, Kuikun Liu, Qiuchen Wang, Wenwei Zhang, Jiangning Liu, Dahua Lin, Kai Chen, and
Feng Zhao. Agent-flan: Designing data and methods of effective agent tuning for large language
models. arXiv preprint arXiv:2403.12881, 2024.

Maxime Chevalier-Boisvert, Dzmitry Bahdanau, Salem Lahlou, Lucas Willems, Chitwan Saharia,
Thien Huu Nguyen, and Yoshua Bengio. Babyai: A platform to study the sample efficiency of
grounded language learning. arXiv preprint arXiv:1810.08272, 2018.

Wei-Lin Chiang, Zhuohan Li, Zi Lin, Ying Sheng, Zhanghao Wu, Hao Zhang, Lianmin Zheng,
Siyuan Zhuang, Yonghao Zhuang, Joseph E. Gonzalez, Ion Stoica, and Eric P. Xing. Vicuna: An
open-source chatbot impressing gpt-4 with 90%* chatgpt quality, March 2023. URL https:
//1lmsys.org/blog/2023-03-30-vicuna/.

Xiang Deng, Yu Gu, Boyuan Zheng, Shijie Chen, Sam Stevens, Boshi Wang, Huan Sun, and Yu Su.
Mind2web: Towards a generalist agent for the web. Advances in Neural Information Processing
Systems, 36, 2024.

Abhimanyu Dubey, Abhinav Jauhri, Abhinav Pandey, Abhishek Kadian, Ahmad Al-Dahle, Aiesha
Letman, Akhil Mathur, Alan Schelten, Amy Yang, Angela Fan, et al. The llama 3 herd of models.
arXiv preprint arXiv:2407.21783, 2024.

Dayuan Fu, Jianzhao Huang, Siyuan Lu, Guanting Dong, Yejie Wang, Keqing He, and Weiran
Xu. Preact: Predicting future in react enhances agent’s planning ability. arXiv preprint
arXiv:2402.11534, 2024.

Matthew Hausknecht, Prithviraj Ammanabrolu, Marc-Alexandre C6té, and Xingdi Yuan. Interac-
tive fiction games: A colossal adventure. In Proceedings of the AAAI Conference on Artificial
Intelligence, volume 34, pp. 7903-7910, 2020.

Mengkang Hu, Pu Zhao, Can Xu, Qingfeng Sun, Jianguang Lou, Qingwei Lin, Ping Luo, Saravan
Rajmohan, and Dongmei Zhang. Agentgen: Enhancing planning abilities for large language
model based agent via environment and task generation. arXiv preprint arXiv:2408.00764, 2024.

Jie Huang, Xinyun Chen, Swaroop Mishra, Huaixiu Steven Zheng, Adams Wei Yu, Xinying Song,
and Denny Zhou. Large language models cannot self-correct reasoning yet. arXiv preprint
arXiv:2310.01798, 2023.

Albert Q Jiang, Alexandre Sablayrolles, Arthur Mensch, Chris Bamford, Devendra Singh Chaplot,
Diego de las Casas, Florian Bressand, Gianna Lengyel, Guillaume Lample, Lucile Saulnier, et al.
Mistral 7b. arXiv preprint arXiv:2310.06825, 2023.

Aixin Liu, Bei Feng, Bin Wang, Bingxuan Wang, Bo Liu, Chenggang Zhao, Chengqi Dengr, Chong
Ruan, Damai Dai, Daya Guo, et al. Deepseek-v2: A strong, economical, and efficient mixture-
of-experts language model. arXiv preprint arXiv:2405.04434, 2024.

Chang Ma, Junlei Zhang, Zhihao Zhu, Cheng Yang, Yujiu Yang, Yaohui Jin, Zhenzhong Lan, Ling-
peng Kong, and Junxian He. Agentboard: An analytical evaluation board of multi-turn 1lm agents.
arXiv preprint arXiv:2401.13178, 2024.

11

https://github.com/Significant-Gravitas/AutoGPT
https://github.com/Significant-Gravitas/AutoGPT
https://github.com/gpt-engineer-org/gpt-engineer
https://github.com/gpt-engineer-org/gpt-engineer
https://github.com/yoheinakajima/babyagi
https://lmsys.org/blog/2023-03-30-vicuna/
https://lmsys.org/blog/2023-03-30-vicuna/

Published as a conference paper at ICLR 2025

Aman Madaan, Niket Tandon, Prakhar Gupta, Skyler Hallinan, Luyu Gao, Sarah Wiegreffe, Uri
Alon, Nouha Dziri, Shrimai Prabhumoye, Yiming Yang, et al. Self-refine: Iterative refinement
with self-feedback. Advances in Neural Information Processing Systems, 36, 2024.

Grégoire Mialon, Roberto Dessi, Maria Lomeli, Christoforos Nalmpantis, Ramakanth Pasunuru,
Roberta Raileanu, Baptiste Roziere, Timo Schick, Jane Dwivedi-Yu, Asli Celikyilmaz, Edouard
Grave, Yann LeCun, and Thomas Scialom. Augmented language models: a survey. Trans. Mach.
Learn. Res., 2023, 2023. URL https://api.semanticscholar.org/CorpusID:
256868474.

Shuofei Qiao, Runnan Fang, Ningyu Zhang, Yuqi Zhu, Xiang Chen, Shumin Deng, Yong Jiang,
Pengjun Xie, Fei Huang, and Huajun Chen. Agent planning with world knowledge model, 2024.
URLhttps://arxiv.org/abs/2405.14205.

Yujia Qin, Shihao Liang, Yining Ye, Kunlun Zhu, Lan Yan, Yaxi Lu, Yankai Lin, Xin Cong, Xiangru
Tang, Bill Qian, et al. Toolllm: Facilitating large language models to master 16000+ real-world
apis. arXiv preprint arXiv:2307.16789, 2023.

Rafael Rafailov, Archit Sharma, Eric Mitchell, Christopher D Manning, Stefano Ermon, and Chelsea
Finn. Direct preference optimization: Your language model is secretly a reward model. Advances
in Neural Information Processing Systems, 36, 2024.

Jeff Rasley, Samyam Rajbhandari, Olatunji Ruwase, and Yuxiong He. Deepspeed: System opti-
mizations enable training deep learning models with over 100 billion parameters. In Proceedings
of the 26th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining,
pp. 3505-3506, 2020.

Noah Shinn, Federico Cassano, Ashwin Gopinath, Karthik Narasimhan, and Shunyu Yao. Reflexion:
Language agents with verbal reinforcement learning. Advances in Neural Information Processing
Systems, 36, 2024.

Mohit Shridhar, Xingdi Yuan, Marc-Alexandre C6té, Yonatan Bisk, Adam Trischler, and Matthew
Hausknecht. Alfworld: Aligning text and embodied environments for interactive learning. arXiv
preprint arXiv:2010.03768, 2020.

Theodore R. Sumers, Shunyu Yao, Karthik Narasimhan, and Thomas L. Griffiths. Cognitive
architectures for language agents. Trans. Mach. Learn. Res., 2024, 2023. URL https:
//api.semanticscholar.org/CorpusID:261556862.

Mauro Vallati, Lukas Chrpa, Marek Grze$, Thomas Leo McCluskey, Mark Roberts, Scott Sanner,
et al. The 2014 international planning competition: Progress and trends. Ai Magazine, 36(3):
90-98, 2015.

Laurens Van der Maaten and Geoffrey Hinton. Visualizing data using t-sne. Journal of machine
learning research, 9(11), 2008.

Ruoyao Wang, Peter Jansen, Marc-Alexandre C6té, and Prithviraj Ammanabrolu. Scienceworld: Is
your agent smarter than a 5th grader? arXiv preprint arXiv:2203.07540, 2022.

Zhiheng Xi, Yiwen Ding, Wenxiang Chen, Boyang Hong, Honglin Guo, Junzhe Wang, Dingwen
Yang, Chenyang Liao, Xin Guo, Wei He, et al. Agentgym: Evolving large language model-based
agents across diverse environments. arXiv preprint arXiv:2406.04151, 2024.

Weimin Xiong, Yifan Song, Xiutian Zhao, Wenhao Wu, Xun Wang, Ke Wang, Cheng Li, Wei Peng,
and Sujian Li. Watch every step! 1lm agent learning via iterative step-level process refinement.
arXiv preprint arXiv:2406.11176, 2024.

Can Xu, Qingfeng Sun, Kai Zheng, Xiubo Geng, Pu Zhao, Jiazhan Feng, Chongyang Tao, and
Daxin Jiang. Wizardlm: Empowering large language models to follow complex instructions.
arXiv preprint arXiv:2304.12244, 2023.

Zhilin Yang, Peng Qi, Saizheng Zhang, Yoshua Bengio, William W Cohen, Ruslan Salakhutdinov,
and Christopher D Manning. Hotpotqa: A dataset for diverse, explainable multi-hop question
answering. arXiv preprint arXiv:1809.09600, 2018.

12

https://api.semanticscholar.org/CorpusID:256868474
https://api.semanticscholar.org/CorpusID:256868474
https://arxiv.org/abs/2405.14205
https://api.semanticscholar.org/CorpusID:261556862
https://api.semanticscholar.org/CorpusID:261556862

Published as a conference paper at ICLR 2025

Shunyu Yao, Jeffrey Zhao, Dian Yu, Nan Du, Izhak Shafran, Karthik Narasimhan, and Yuan Cao.
React: Synergizing reasoning and acting in language models. arXiv preprint arXiv:2210.03629,
2022.

Shunyu Yao, Dian Yu, Jeffrey Zhao, Izhak Shafran, Tom Griffiths, Yuan Cao, and Karthik
Narasimhan. Tree of thoughts: Deliberate problem solving with large language models. Advances
in Neural Information Processing Systems, 36, 2024.

Tian Ye, Zicheng Xu, Yuanzhi Li, and Zeyuan Allen-Zhu. Physics of language models: Part 2.2,
how to learn from mistakes on grade-school math problems, 2024. URL https://arxiv.
org/abs/2408.16293.

Da Yin, Faeze Brahman, Abhilasha Ravichander, Khyathi Chandu, Kai-Wei Chang, Yejin Choi, and
Bill Yuchen Lin. Agent lumos: Unified and modular training for open-source language agents.
In Proceedings of the 62nd Annual Meeting of the Association for Computational Linguistics
(Volume 1: Long Papers), pp. 12380-12403, 2024.

Aohan Zeng, Mingdao Liu, Rui Lu, Bowen Wang, Xiao Liu, Yuxiao Dong, and Jie Tang. Agenttun-
ing: Enabling generalized agent abilities for llms. arXiv preprint arXiv:2310.12823, 2023.

Jianguo Zhang, Tian Lan, Rithesh Murthy, Zhiwei Liu, Weiran Yao, Juntao Tan, Thai Hoang, Liang-
wei Yang, Yihao Feng, Zuxin Liu, et al. Agentohana: Design unified data and training pipeline
for effective agent learning. arXiv preprint arXiv:2402.15506, 2024.

Andrew Zhao, Daniel Huang, Quentin Xu, Matthieu Lin, Yong-Jin Liu, and Gao Huang. Expel: LIm
agents are experiential learners. In Proceedings of the AAAI Conference on Artificial Intelligence,
volume 38, pp. 19632-19642, 2024.

Lianmin Zheng, Wei-Lin Chiang, Ying Sheng, Siyuan Zhuang, Zhanghao Wu, Yonghao Zhuang,
Zi Lin, Zhuohan Li, Dacheng Li, Eric Xing, et al. Judging llm-as-a-judge with mt-bench and
chatbot arena. Advances in Neural Information Processing Systems, 36:46595-46623, 2023.

Yaowei Zheng, Richong Zhang, Junhao Zhang, Yanhan Ye, and Zheyan Luo. Llamafactory: Unified
efficient fine-tuning of 100+ language models. arXiv preprint arXiv:2403.13372, 2024.

Andy Zhou, Kai Yan, Michal Shlapentokh-Rothman, Haohan Wang, and Yu-Xiong Wang. Lan-
guage agent tree search unifies reasoning acting and planning in language models. arXiv preprint
arXiv:2310.04406, 2023.

Chunting Zhou, Pengfei Liu, Puxin Xu, Srinivasan Iyer, Jiao Sun, Yuning Mao, Xuezhe Ma, Avia
Efrat, Ping Yu, Lili Yu, et al. Lima: Less is more for alignment. Advances in Neural Information
Processing Systems, 36, 2024.

ACKNOWLEDGMENT

This work was partially supported by the State Key Laboratory of Massive Personalized Customiza-
tion System and Technology (No. H&C-MPC-2023-02-07(Q)), State Grid Technology Project
(5700-202416236A-1-1-ZN) “Research on active semantic discovery technology based on SG-CIM
and its application in power grid equipment supply chain optimization”, China Unicom Software
Research Institute “Framework Agreement for Seven Model Technology Research and Application
Demonstration Projects (Software Development for Government Enterprise Content Generation) of
China Unicom Software Research Institute from 2024 to 2025” (N0.5500331818), and the National
Natural Science Foundation of China (NSFC No0.62076031 and No.62076036).

ETHICS STATEMENT

When using a large amount of open-source resources for data synthesis, an important issue is the
generation of harmful and malicious data. In our work, we use Persona-Hub, a synthesized dataset
that has undergone security processing. We use it to synthesize tasks and environmental information,
which pass our secondary review and are safe to use. However, our method may have potential risks

13

https://arxiv.org/abs/2408.16293
https://arxiv.org/abs/2408.16293

Published as a conference paper at ICLR 2025

of misuse, such as enhancing LLM’s capabilities in malicious agent tasks, like generating attack
codes. Therefore, adhering to ethical guidelines is crucial to ensuring the responsible use of this
technology.

A TASKS STATISTIC

Table [6] presents the number of test data and domains in the 5 tasks. These number calcu-
lates the Held-out Task score. Specifically, Held — outTaskscore = (BabyAlscore x 112 +
SciWorldscore x 90 + PDD Lscore % 60 + Jerichoscore x 20) /282

task Alfworld BabyAlI SciWorld PDDL Jericho
#num 134 112 90 60 20
Domain Science Experiment Household Tasks Robot Exploration — Strategy Games Long Text Games

Table 6: tasks statistic in AgentBoard. #num refers to the number of data for testing.

B THE HISTORY OF AGENT-TUNING

In recent years, LLM-Based Agents have become a popular paradigm. However, improving LLM
performance on agent tasks during the post-training phase remains a challenging issue. Previous
work typically sampled and trained in fixed environments (with Held-in data that is distributionally
similar to the test data)(Xi et al.,[2024), which significantly improved performance on specific tasks
(test sets that are distributionally similar to the training data). However, performance drops sharply
once the task changes.

AgentTuning (Zeng et al.,|2023)) was the first to recognize this issue by adding a portion of general
alignment data to the single-agent data, alleviating the problem and demonstrating initial generaliza-
tion capabilities. Agent-FLAN (Chen et al.}|2024) further improved the single-agent data, enhancing
the model’s generalization in agent tasks.

In our work, we demonstrate that the above approaches still have significant limitations in terms of
generalization, specifically in terms of easily overfitting on single data sets, getting stuck in reason-
ing, and learning incorrect reasoning patterns (as discussed in Figure [2] Figure [9] and Section
etc.). To address this issue, we increased the diversity of training agent data through synthetic data,
significantly alleviating the model’s overfitting problem. Additionally, we add refinement steps in
the trajectory. We show that whether the training data includes the refinement process affects the
model’s reasoning pattern, and adding synthetic refinement processes greatly enhances the general-
ization performance of LLMs.

C SYNTHESIS DATA WITH PERSONA

Persona represents diverse and rich information content. Persona hub (Chan et al., 2024)) contains
1,000,000,000 personas after filtering via diverse. If the filter cosine similarity is 0.5, it can still
generate 1 million diverse personas. The persona hub also demonstrated that the data generated via
the persona hub has similar diversity to the persona data and its scaling experience shows that data
generated via the persona hub is not yet saturated at the size of 1M under math problem.

D TRAINING HYPER PARAMETER

For all models, the learning rate is Se-6 with a cosine learning rate scheduler and no warm-up steps.
The batch size is 64. The max length is 8192 for 7/8b models and 4096 for 70b models due to
limited storage for DeepSpeed (Rasley et al.| 2020) usage. Aligned with Agent-FLAN, we choose
AgentRefine with 32000 data for the default training setting. Aligned with AgentGen (Hu et al.,
2024), we train our model for 10 epochs and select the checkpoint with the best average results to
report. We also modified the LLaMA-Factory’s SFT loss to Equation [} Other settings are aligned
with LLaMA-Factory’s default settings.

14

Published as a conference paper at ICLR 2025

E COMPARISON AMONG AGENT DATASETS

Table[7|compares the number of trajectories, the methods to obtain environments and trajectories, the
held-in tasks in the AgentBoard benchmark, and the availability of refinement steps among Agent-
FLAN, AgentGym, AgentGen, and AgentRefine. AgentRefine can easily scale its data and includes
refinement steps in the training set. AgentGen and our work are contemporary. Our commonality
lies in synthesizing diverse environments, but we place more emphasis on enhancing refinement
abilities.

Method Trajectory num Environment construction Trajectory construction Held-in environment Refinement step
Agent-FLAN 34440 manual sampled Alfworld No
AgentGym 14485 manual sampled Alfworld, BabyAl, SciWorld No
AgentGen 7246 synthetic sampled N/A No
AgentRefine (max) 64000 synthetic synthetic N/A Yes

Table 7: Comparison of AgentRefine with other method covers several aspects: the number of
trajectories, the way to get environment, the way to get trajectory, the held-in task in AgentBoard,
availability of refinement step

F IND FILTERING EXPERIMENTS

To remove the interference from IND data, we perform an experiment where we train model using
data that excludes all IND training data. Agent-FLAN removes 672 samples out of 34440 samples,
and AgentGym removes 5350 samples out of 14485 samples. The result in Table [§] shows that
AgentRefine outperforms the other two methods in all tasks. This demonstrates that our method
significantly improves over previous methods.

Method Alfworld BabyAlI SciWorld PDDL Jericho
Success Progress Success Progress Success Progress Success Progress Success Progress
LLaMA-3-8B-Instruct 224 46.1 455 56.5 7.8 41.1 10.0 38.4 0.0 243
AgentGen 29.1 47.6 20.5 35.0 - - 11.7 23.0 - -
AgentGym w/o ind data 59 28.7 27.7 40.0 22 14.3 8.2 18.8 5.0 13.7
Agent-FLAN w/o ind data 1.5 19.7 32.1 45.0 22 12.1 6.6 23.6 0.0 14.5
AgentRefine 44.8 63.8 375 50.4 14.4 42.6 16.6 37.8 10.0 32.3

Table 8: IND Filtering Experiments

G REFLEXION EXPERIMENT

Table [9] presents the results with Reflexion (Shinn et al.l 2024). It shows that AgentRefine outper-
forms other methods when adding Reflexion, especially in Alfworld, since AgentRefine isn’t trained
on any Alfworld data, yet it outperforms AgentGym, and Agent-FLAN, whose models are trained
on Alfworld data. This indicates that AgentRefine can utilize Reflexion more effectively than other
methods.

Method Alfworld BabyAl SciWorld PDDL Jericho
Success Progress Success Progress Success Progress Success Progress Success Progress
LLaMA-3-8B-Instruct + Reflexion 412 56.2 455 56.5 7.8 39.4 10.0 384 5.0 209
AgentGym + Reflexion 86.5 91.8 473 60.9 23.3 50.6 1.7 16.6 0.0 12.1
Agent-FLAN + Reflexion 83.1 89.4 32.1 423 55 13.1 10.0 24.8 0.0 9.7
AgentRefine + Reflexion 90.3 95.6 375 50.4 16.6 445 16.6 37.8 10.0 327

Table 9: Reflexion Experiment. The underlined text indicates that the training data is sampled in the
same environment as the task and is considered as held-in evaluation

H STANDARD DEVIATIONS

Table [T0] shows the average and standard deviation for each task. We use the results from Table []
(decoding temperature = 1.0 with 10 sample times). AgentRefine’s average performance exceeds

15

Published as a conference paper at ICLR 2025

that of other methods by at least 2 standard deviations in most OOD tasks. This demonstrates that
our method represents a significant improvement over previous methods.

Model Alfworld BabyAl SciWorld PDDL Jericho
Success Progress Success Progress Success Progress Success Progress Success Progress

AgentGym 64.3133 780431 482133 64.2103 25.5447 554432 45118 169131 00100 153415
Agcnt—FLAN 54‘7:&3_9 71.612_5 31.413,0 41‘413_1 1.2110 11.111.2 3.8:&1_5 16.4:&2_7 0‘0:&0_0 10‘5:&1_9
AgentRefine 60.142¢ 729424 37.6413 522419 104432 35.0432 132420 3744922 11.0446 30.9432

Table 10: Model’s average performance and standard deviations on different data. We used a high
temperature and randomly sampled 10 times. The underlined text indicates that the training data is
sampled in the same environment as the task and is considered as the held-in evaluation.

I ROBUSTNESS ANALYSIS WITH DIFFERENT COMPONENTS

Model Alfworld Perturbation 1 Perturbation 2 Perturbation 3 Perturbation 4 Average STD
Success Progress Success Progress Success Progress Success Progress Success Progress Success Progress Success Progress
AgentRefine 48.5 61.5 56.7 67.7 515 63.1 40.2 65.1 45.5 60.6 48.48 63.60 578 2.71
- w half training data 36.6 559 41.8 59.0 373 58.4 26.1 43.2 13.4 24.2 31.04 48.14 10.79 13.50
- w/o refinement data 49.3 65.2 53.7 69.7 49.2 65.0 529 65.6 38.8 59.7 48.78 65.04 547 3.39
- w/o verification 25.4 36.1 39.5 49.2 239 34.9 239 34.0 15.6 27.3 25.66 36.30 6.24 7.08

Table 11: Ablation study across various perturbations. We experimented with small data size
(1..8000) and in ”w half training data” setting, we use 4000 data. The w/o verification setting
contains data in 3 styles: 1. The data that does not contain a refinement step. 2. The data with
wrong parameter/action name but is not identified by the GPT-4. 3. The data is correct and has the
refinement step (i.e. a subset of the AgentRefine data). We remove incomplete data or the data that
can not be parsed into the training data

Table [T1] presents the contribution to robustness among different components. When training on
4000 data, the standard deviation of the success score is almost double that of the baseline which
means the number of the training data is the most important factor for the model’s robustness.

J MODEL’S INSTRUCTION-FOLLOWING ABILITY

We use MT-bench (Zheng et al.| [2023) to test mod- Method MT-bench
els’ instruction-following ability and use gpt-4o- Agent-FLAN 3.73
2024-05-13 to judge the score. +ShareGPT 5.71

. . AgentRefine 3.96
The score of AgentRefine is approximately 0.2 +ShareGPT 591

points higher than that of Agent-FLAN regardless
of whether ShareGPT is 1ncorporat<;d. After incor- Figure 12: Model Performance on Different
porating ShareGPT, both show an improvement of Tasks

about 2 points.

K PERTURBATION DETAILS

We have made 5 perturbation in Alfworld:

Perturbation 1: change clean {obj} with {recep}, cool {obj} with {recep},
heat {objlwith {recep} to clean {obj} wusing {recep}, cool {obj} wusing {recep},
heat {obj} using {recep} in the instruction

- Perturbation 2: change go to {recep} to move to {recep} in the instruction

- Perturbation 3: change take {0bj} from {recep}to from {recep} take {obj} in the instruction
- Perturbation 4: delete all space between item name and item number in the instruction.

- Perturbation 5: remove all IND data in the training set and retrain the model.

We also revise the environment to adjust to these changes.

16

Published as a conference paper at ICLR 2025

L SCRIPT GENERATION

Script Generation Format

"Thought" : (string, compulsory) "The design of the
environment, goal and available actions of the
player to achieve.",

"Environment" : {

"initial state" : (string, compulsory) "The
initial state of the environment.",
"places and objects" : {
"<The name of the place or object>" : {

"information" : (string, optional) "The
information of the place or object,
which will only be shown to player
when the object is examined/opened/
looked or the player have just step in

its receptacle etc.",

"<The information of the place or object
>" : (string, optional) "The
information of the place or object,
which will only be provide to DM",

"<The name of the place or object>" : {
"information" : (string, optional) "

The information of the place or
object, which will only be shown
to player when the object is
examined/opened/looked or the
player have just step in its
receptacle etc. It must be
concrete (for example, if you add
information in a document, you
need to give the important part of
the document context instead of a
brief introduction.).",

"location" : (string, optional) "The
relative location between the
object/place and its json upper
level object/place (i.e.
receptacle) .",

"relative location" : (list of string
, optional) ["The relative
location of the places or objects
in the same Jjson level."]

}

by

"relative location" : (list of string,
optional) ["The relative location of the
places or objects in the same json level

."]

b
"player":{
"information": (string, compulsory) "The
player’s restrictions."

}y

17

Published as a conference paper at ICLR 2025

4)

"Goal" : (string, compulsory) "The goal of the player
to achieve. It need to be clear (has unique and
concrete completion conditions), achievable and
can be finished by one person.",

"Completion Conditions" : (list of string, compulsory
)

"The specific conditions that the player must
meet to complete the task."

1,

"Available Actions" : {
"<The name of the action>" : {

"description" : (string, optional) "The
description of the action.",

"special format" : (string, optional) "The
special format of the action. Only when
the parameter is not in the place/object
and their information above can use this
key. (This key is compulsory when
answering the question and editing the
code.)",

"verification code" : (string, compulsory) "
The regular expression of the action.",

"parameters" : {

"<The name of the parameter>" : (list of
string, optional) ["The value of the
parameter if action has placeholder.
Remember all possible parameter (the
possible place, possible object or the
possible item/text in the \"
information\" of place/object or the
imformation in the completion
conditions) should be in the list. DM
will strictly check the player’s
actions according to the given
parameters. So you should give all
possible parameters with correct name

"]

M TRAJECTORY GENERATION

Trajectory Generation Format

"turn": (int, compulsory) "The turn number, the
first turn number should be 0, DM’s turn
number should be even.",

"role": (compulsory) "DM",

18

Published as a conference paper at ICLR 2025

"Thought": (string, compulsory) "The thought of
the DM, contains the analyze of the knowledge
the player have known and the chain-of-thought

to decide the observation.",

"Observation": (string, compulsory) "The
observation of the DM, contains the
information the player should know.",

"parameter_error": (bool, compulsory) "The error
log of the DM, if the player’s last action did

not match the format of the available actions

n
14

"place_error": (bool, compulsory) "The error log
of the DM, if the player’s last action act at
a wrong place",

"logic_error": (bool, compulsory) "The error log
of the DM, if the player’s last action matches
the available action but the observation is
not changed under the action or went back to

the sitiuation that history has been. (for
example, go north then go south)",
"progress_rate": (float, compulsory) "The

progress rate of the task, the max value
should be 1.0 which means task finsihed.",

"finished": (bool, compulsory) "The flag of the
task, if the task is finished, the value
should be true."

"turn": (int, compulsory) "The turn number, the
first turn number should be 1, Player’s turn
number should be odd.",

"role": (compulsory) "Player",

"Thought": (string, compulsory) "The thought of
the Player, contains the chain-of-thought to
decide the action. You should remove the \"
Thought:\" at the beginning of this string in
the json output, although DM should ask for
this format in the first turn.",

"Action": (string, compulsory) "The action of the
Player, its format and the parameter MUST
follow the script. You should remove the \"
Action:\" at the beginning of this string in
the json output, although DM should ask for

this format in the first turn."

Error Turn Statistics

N ERROR TURN STATISTICS

probabilty

Figure[I3|presents the error turn statistics in AgentRefine Y N e
(32000). Most of the error-refine pairs consist of one turn, e
which accounts for about 16% among all turns. How-
ever, AgentRefine also includes error-refine pairs whose
lengths exceed three turns.

Figure 13: The statistics of Continuous
Error Turns in AgentRefine

19

Published as a conference paper at ICLR 2025

O TRAJECTORY VERIFICATION

Algorithm|l|presents the Trajectory Verification pipeline.

Algorithm 1 Trajectory Verification

—_

Input: Available Actions, Trajectory, Verified Trajectory

2: # The Verified Trajectory will be set to an empty list if this is the first verification of the persona
or the last generation’s fault is error_-num <1
3: Initialize: error_num=0
4: if JSON format verification does not pass then
5: JSON format verification does not pass
6: end if
7: for turn in Trajectory do
8: if JSON keys in turn do not match the requirement then
9: return Verified Trajectory and the signal
10: end if
11: if Player’s turn then
12: # We only check the action when DM considers it correct.
13: if not next DM turn shows error signal then
14: if Player’s action doesn’t match any action; (and its parameter) in Available Actions
then
15: return Verified Trajectory and the signal
16: end if
17: end if
18: end if
19: if DM’s turn then
20: if Error signal then
21: error_num += 1
22: end if
23: if This is the last turn then
24: # The last turn should not have any error
25: if Error signal then
26: return Verified Trajectory and the signal
27: end if
28: # The last turn should finish the task
29: if No *Task Succeed’ in Observation then
30: return Verified Trajectory and the signal
31: end if
32: # We need at least 2 error-refine turns.
33: if error_num < 1 then
34: return Verified Trajectory and the signal
35: end if
36: end if
37: end if
38: Verified Trajectory <— Verified Trajectory + turn
39: end for

20

	Introduction
	Rethink the Generalization of agent-tuning
	Methodology
	Data Construction
	Generation Setup
	Refinement Tuning

	Experiments
	Experiment Setup
	Main Results
	Robustness Analysis
	Diversity Analysis

	Synthesis from Open Source Model
	Generlization in Reasoning Task
	Case Study
	GPT-4 judgement's reliability
	Generalizaton between General Data and Agent Data
	Related work
	Conclusion
	tasks statistic
	The history of Agent-tuning
	Synthesis Data with persona
	Training Hyper parameter
	Comparison among Agent datasets
	IND Filtering Experiments
	Reflexion experiment
	Standard Deviations
	Robustness analysis with different components
	Model's Instruction-Following Ability
	Perturbation Details
	Script Generation
	Trajectory Generation
	Error Turn Statistics
	Trajectory Verification

