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ABSTRACT

We consider the decision version of defending and attacking Machine Learning
classifiers. We provide a rationale for known difficulties in building robust models
by proving that, under broad assumptions, attacking a polynomial-time classifier is
NP -complete in the worst case; conversely, training a polynomial-time model that
is robust on even a single input is ΣP

2 -complete, barring collapse of the Polynomial
Hierarchy. We also provide more general bounds for non-polynomial classifiers.
We point out an alternative take on adversarial defenses that can sidestep such
a complexity gap, by introducing Counter-Attack (CA), a system that computes
on-the-fly robustness certificates for a given input up to an arbitrary distance bound
ε. Finally, we empirically investigate how heuristic attacks can approximate the
true decision boundary distance, which has implications for a heuristic version of
CA. As part of our work, we introduce UG100, a dataset obtained by applying both
heuristic and provably optimal attacks to limited-scale networks for MNIST and
for CIFAR10. We hope our contributions can provide guidance for future research.

1 INTRODUCTION

Adversarial attacks, i.e. algorithms designed to fool machine learning models, represent a significant
threat to the applicability of such models in real-world contexts (Brendel et al., 2019; Brown et al.,
2017; Wu et al., 2020). Despite years of research effort, countermeasures (i.e. “defenses”) to
adversarial attacks are frequently fooled by applying small tweaks to existing techniques (Carlini &
Wagner, 2016; 2017a; Croce et al., 2022; He et al., 2017; Hosseini et al., 2019; Tramer et al., 2020).

We argue that this pattern is due to differences between the fundamental mathematical problems that
defenses and attacks need to tackle. Specifically, we prove that while attacking a polynomial-time
classifier is NP -complete in the worst case, training a polynomial-time model that is robust
even on a single input is ΣP

2 -complete. We also provide more general bounds for non-polynomial
classifiers, showing that a A-time classifier can be attacked in NPA time. We then give an informal
intuition for our theoretical results, which also applies to heuristic attacks and defenses. Our result
highlights that, unless the Polynomial Hierarchy collapses, there exists a potential, structural,
difficulty for defense approaches that focus on building robust classifiers at training time.

We then show that the asymmetry can be sidestepped by an alternative perspective on adversarial
defenses. As an exemplification, we introduce a new technique, named Counter-Attack (CA) that,
instead of training a robust model, evaluates robstness on the fly for a specific input by running
an adversarial attack. This simple approach, while very simple, provides robustness guarantees
against perturbations of an arbitrary magnitude ε. Additionally, we prove that while generating a
certificate is NP -complete in the worst case, attacking CA using perturbations of magnitude
ε′ > ε is ΣP

2 -complete, which represents a form of computational robustness – weaker than the one
by (Garg et al., 2020), but holding under much more general assumptions. CA can be applied in any
setting where at least one untargeted attack is known, while also allowing one to capitalize on future
algorithmic improvements: as adversarial attacks become stronger, so does CA.

Finally, we investigate the empirical performance of an approximate version of CA where a
heuristic attack is used instead of an exact one. This version achieves reduced computational time,
at the cost of providing only approximate guarantees. We found heuristic attacks to be high-quality
approximators for exact decision boundary distances, in experiments over a subsample of MNIST
and CIFAR10 and small-scale Neural Networks. In particular, a pool of seven heuristic attacks
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provided an accurate (average over-estimate between 2.04% and 4.65%) and predictable (average
R2 > 0.99) approximation of the true optimum. We compiled our benchmarks and generated
adversarial examples (both exact and heuristic) in a new dataset, named UG100, and made it
publicly available1. Overall, we hope our contributions can support future research by highlighting
potential structural challenges, pointing out key sources of complexity, inspiring research on heuristics
and tractable classes, and suggesting alternative perspectives on how to build robust classifiers.

2 RELATED WORK

Robustness bounds for NNs were first provided in (Szegedy et al., 2013), followed by (Hein &
Andriushchenko, 2017) and (Weng et al., 2018b). One major breakthrough was the introduction
of automatic verification tools, such as the Reluplex solver (Katz et al., 2017). However, the same
work also showed that proving properties of a ReLU network is NP -complete. Researchers tried to
address this issue by working in three directions. The first is building more efficient solvers based
on alternative formulations (Dvijotham et al., 2018; Singh et al., 2018; Tjeng et al., 2019). The
second involves training models that can be verified with less computational effort (Leino et al.,
2021; Xiao et al., 2019) or provide inherent robustness bounds (Sinha et al., 2018). The third focuses
on guaranteeing robustness under specific threat models (Han et al., 2021) or input distribution
assumptions (Dan et al., 2020; Sinha et al., 2018). Since all these approaches have limitations that
reduce their applicability (Silva & Najafirad, 2020), heuristic defenses tend to be more common
in practice. Exact approaches can also be used to compute provably optimal adversarial examples
(Carlini et al., 2017; Tjeng et al., 2019), although generating them requires a non-trivial amount of
computational resources. Refer to Appendix M for a more in-depth overview of certified defenses.

Another line of research has focused on understanding the nature of robustness and adversarial attacks.
Frameworks such as (Dreossi et al., 2019), (Pinot et al., 2019) and (Pydi & Jog, 2021) focused on
formalizing the concept of adversarial robustness. Some studies have highlighted trade-offs between
robustness (under specific definitions) and properties such as accuracy (Dobriban et al., 2020; Zhang
et al., 2019), generalization (Min et al., 2021) and invariance (Tramèr et al., 2020). However, some of
these results have been recently questioned, suggesting that these trade-offs might not be inherent
in considered approaches (Yang et al., 2020; Zhang et al., 2020). Adversarial attacks have also
been studied from the point of view of Bayesian learning to derive robustness bounds and provide
insight into the role of uncertainty (Rawat et al., 2017; Richardson & Weiss, 2021; Vidot et al., 2021).
Adversarial attacks have also been studied in the context of game theory (Ren et al., 2021), identifying
Nash equilibria between attacker and defender (Pal & Vidal, 2020; Zhou et al., 2019).

Finally, some works have also focused on the computational complexity of specific adversarial
attacks and defenses. In particular, Mahloujifar & Mahmoody (2019) showed that there exist exact
polynomial-time attacks against classifiers trained on product distributions. Similarly, Awasthi
et al. (2019) showed that for degree-2 polynomial threshold functions there exists a polynomial-time
algorithm that either proves that the model is robust or finds an adversarial example. Other works have
also provided hardness results; Degwekar et al. (2019) showed that there exist certain classification
tasks such that learning a robust model is as hard as solving the Learning Parity with Noise problem
(which is NP -hard); Song et al. (2021) showed that learning a single periodic neuron over noisy
isotropic Gaussian distributions in polynomial time would imply that the Shortest Vector Problem
(conjectured to be NP -hard) can be solved in polynomial time. Finally, Garg et al. (2020) showed
that, by requiring attackers to provide a valid cryptographic signature for inputs, it is possible to
prevent attacks with limited computational resources from fooling the model in polynomial time.

3 BACKGROUND AND FORMALIZATION

Extensive literature in the field of adversarial attacks suggests that generating adversarial examples is
comparatively easier than building robust classifiers (Carlini & Wagner, 2016; 2017a; Croce et al.,
2022; He et al., 2017; Hosseini et al., 2019; Tramer et al., 2020). In this section, we introduce some
key definitions that we will employ to provide a theoretically grounded, potential, motivation for such

1All our code, datasets, pretrained weights and results are available anonymously under MIT license at
https://anonymous.4open.science/r/counter-attack.
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discrepancy. We aim at capturing the key traits shared by most of the literature on adversarial attacks,
so as to identify properties that are valid under broad assumptions.

We start by defining the concept of adversarial example, which intuitively represents a modification
of a legitimate input that is so limited as to be inconsequential from a practical perspective, but
classified erroneously by a target model. Formally, let f : X → {1, . . . , N} be a discrete classifier.
Let Bp(x, ε) = {x′ ∈ X | ∥x− x′∥p ≤ ε} be a Lp ball of radius ε and center x. Then we have:

Definition 1 (Adversarial Example). Given an input x, a threshold ε, and a Lp norm2, an adversarial
example is an input x′ ∈ Bp(x, ε) such that f(x′) ∈ C(x), where C(x) ⊆ {1, . . . , N} \ {f(x)}.

This definition is a simplification compared to human perception, but it is adequate for a sufficiently
small ε, and it is adopted in most of the relevant literature. An adversarial attack can then be viewed
as an optimization procedure that attempts to find an adversarial example. We define an adversarial
attack for a classifier f as a function af,p : X → X that solves the following optimization problem:

argmin
x′∈X

{∥x′ − x∥p | f(x′) ∈ C(x)} (1)

The attack is considered successful if the returned solution x′ = af,p(x) also satisfies ∥x′−x∥p ≤ ε.
We say that an attack is exact if it solves Equation (1) to optimality; otherwise, we say that the attack
is heuristic. An attack is said to be targeted if C(x) = Ct,y′(x) = {y′} with y′ ̸= f(x); it is instead
untargeted if Cu(x) = {1, . . . , N} \ {f(x)}. We define the decision boundary distance d∗p(x) of a
given input x as the minimum Lp distance between x and another input x′ such that f(x) ̸= f(x′).
Note that this is also the value of ∥af,p(x)− x∥p for an exact, untargeted, attack.

Intuitively, a classifier is robust w.r.t. an example x iff x cannot be successfully attacked. Formally:
Definition 2 ((ε, p)-Local Robustness). A discrete classifier f is (ε, p)-locally robust w.r.t. an example
x ∈ X iff ∀x′ ∈ Bp(x, ε) we have f(x′) = f(x).

We then provide some additional definitions that are needed for our results, namely ReLU networks
and FSFP spaces. ReLU networks are defined as follows:
Definition 3 (ReLU network). A ReLU network is a composition of sum, multiplication by a constant,
and ReLU activation, where ReLU : R → R+

0 is defined as ReLU(x) = max(x, 0).

Note that any hardness result for ReLU classifiers also applies to the more general class of classifiers.
Fixed-Size Fixed-Precision (FSFP) spaces, on the other hand, capture two common assumptions
about real-world input spaces: all inputs can be represented with the same number of bits and there
exists a positive minorant of the distance between inputs.
Definition 4 (Fixed-Size Fixed-Precision space). Given a real p > 0, a space X ⊆ Rn is FSFP if
there exists a ν ∈ R such that ∀x.|r(x′)| ≤ ν (where |r(x)| is the size of the representation of x)
and there exists a µ ∈ R such that µ > 0 and ∀x,x′ ∈ X. (∥x′ − x∥p < µ =⇒ x = x′).

Examples of FSFP spaces include most image encodings, as well as 32-bit and 64-bit IEE754 tensors.
Examples of non-FSFP spaces include the set of all rational numbers in an interval. Similarly to
ReLU networks, hardness results for FSFP spaces also apply to more general spaces.

4 AN ASYMMETRICAL SETTING

In this section, we provide a theoretically sound result that is a viable explanation for why attacks
seem to outperform defenses. The core of our analysis is proving that attacks are less computationally
expensive than defenses in the worst case, unless the Polynomial Hierarchy collapses. Specifically,
we prove that the decision version of attacking a ReLU classifier is NP -complete:
Theorem 13 (Untargeted L∞ attacks against ReLU classifiers are NP -complete). Let U -ATTp be
the set of all tuples ⟨x, ε, f⟩ such that:

∃x′ ∈ Bp(x, ε).f(x
′) ̸= f(x) (2)

where x ∈ X , X is a FSFP space and f is a ReLU classifier. Then U -ATT∞ is NP -complete.
2We use the term "norm" for 0 < p < 1 even if in such cases the Lp function is not subadditive.
3The proofs of all our theorems and corollaries can be found in the appendices.
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Corollary 1.1. For every 0 < p ≤ ∞, U -ATTp is NP -complete.
Corollary 1.2. Targeted Lp attacks (for 0 < p ≤ ∞) against ReLU classifiers are NP -complete.
Corollary 1.3. Theorem 1 holds even if we consider the more general set of polynomial-time
classifiers w.r.t. the size of the tuple.

Theorem 1 represents a minor generalization of existing results in the literature (Katz et al., 2017).
However, together with the following more general bound for non-polynomial-time classifiers, it lays
the groundwork for our main result.
Theorem 2. Let A be a complexity class, let f be a classifier, let Zf = {⟨x, y⟩ | y = f(x),x ∈ X}
and let U -ATTp(f) = {⟨x, ε, g⟩ ∈ U -ATT ′

p | g = f}, where U -ATT ′
p is the same as U -ATTp but

without the ReLU classifier restriction. If Zf ∈ A, then for every 0 < p ≤ ∞, U -ATTp(f) ∈ NPA.
Corollary 2.1. For every 0 < p ≤ ∞, if Zf ∈ ΣP

n , then U -ATTp(f) ∈ ΣP
n+1.

The latter result implies that, if Zf ∈ P , then U -ATTp(f) ∈ NP . Informally, Corollary 2.1
establishes that, under broad assumptions, evaluating and attacking a classifier are in complexity
classes that are strongly conjectured to be distinct, with the attack problem being the harder one.

The decision version of training a robust model is even more complex (again in the worst case):
Theorem 3 (Finding a set of parameters that make a ReLU network (ε, p)-locally robust on an input
is ΣP

2 -complete). Let PL-ROBp be the set of tuples ⟨x, ε, fθ, v⟩ such that:
∃θ′. (vf (θ

′) = 1 =⇒ ∀x′ ∈ Bp(x, ε).fθ′(x′) = fθ′(x)) (3)
where x ∈ X , X is a FSFP space and vf is a polynomial-time function that is 1 iff the input is a
valid parameter set for f . Then PL-ROB∞ is ΣP

2 -complete.
Corollary 3.1. PL-ROBp is ΣP

2 -complete for all 0 < p ≤ ∞.
Corollary 3.2. Theorem 3 holds even if, instead of ReLU classifiers, we consider the more general
set of polynomial-time classifiers w.r.t. the size of the tuple.

Our results rely on worst-case constructions and assume that the Polynomial Hierarchy does not
collapse; moreover, both NP and ΣP

2 can be solved via super-polynomial algorithms. That said,
we believe our theorems to have a strong practical relevance. First, the Polynomial Hierarchy
collapse is strongly conjectured to be false; second, even super-polynomial algorithms can have
dramatically different run times (e.g. SAT vs Quantified Boolean Formula solvers). Finally, generic
classifiers can learn (and are known to learn) complex input-output mappings with many local
optima. Intuitively, this is the core of the scenario captured by our worst-case construction, and also
what makes Equation (1) difficult to solve. Again intuitively, robustness requires solving a nested
optimization problem with universal quantification (since we need to guarantee the same prediction
on all neighboring points), thus motivating the higher complexity class. For this reason, we think our
results provide a plausible explanation for the hardness gap that is routinely observed in the
relevant literature. Of course, there are definitely sub-cases where the problem is simple enough for
exact attacks to run in polynomial time (e.g. (Awasthi et al., 2019)); this suggests that, under specific
circumstances, guaranteed robustness could be achieved at reasonable effort. By this argument, our
proof also provides additional motivation for research on tractable classes of robust classifiers.

Additional Sources of Asymmetry There are additional, complementary, factors that may provide
an advantage to the attacker. We review them informally, since they can support efforts to build
more robust defenses. First, the attacker can gather information about the target model, e.g. by using
genuine queries (Papernot et al., 2017), while the defender has not such advantage. As a result, the
defender often needs to either make assumptions about adversarial examples (Hendrycks & Gimpel,
2017; Roth et al., 2019) or train models to identify common properties (Feinman et al., 2017; Grosse
et al., 2017). These assumptions can be exploited, such as in the case of Carlini & Wagner (2017a),
who generated adversarial examples that did not have the expected properties.Second, the attacker
can focus on one input at the time, while the defender has to guarantee robustness on a large subset
of the input space. This weakness can be exploited: for example, MagNet (Meng & Chen, 2017)
relies on a model of the entire genuine distribution, which can be sometimes inaccurate. Carlini &
Wagner (2017b) broke MagNet by searching for examples that were both classified differently and
mistakenly considered genuine. Finally, defenses cannot significantly compromise the accuracy of
a model. Adversarial training, for example, often reduces the clean accuracy of the model (Madry
et al., 2018), leading to a trade-off between accuracy and robustness.
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5 SIDE-STEPPING THE COMPUTATIONAL ASYMMETRY

The limitations imposed by Theorem 3 cannot be addressed directly in the general case (barring
collapse of the Polynomial Hierarchy). However, they can be sidestepped by changing perspective:
we exemplify this by introducing an alternative approach to provide robust classification, which also
allows us to take advantage of existing defenses. Instead of obtaining a robust model from scratch,
we propose to evaluate the robustness of the classifier on a case-by-case basis, flagging the input if a
robust answer cannot be provided. Specifically, given a norm-order p and threshold ε, we propose to:

• Design a model that is as robust as possible using available and practically viable defenses;
• For every input received, determine if the model is (ε, p)-locally robust on the input by

running an adversarial attack on the input;
• If the attack succeeds, flag the input.

We name this technique Counter-Attack (CA). Instead of attempting to build a robust model, CA
ensures that answers from a partially robust model are flagged as unreliable when they could be
the result of an attack. This approach, while very simple, can take advantage of existing defenses,
provides robustness guarantees, and is considerably hard to fool, as we will later prove.

The behavior in case an input is flagged depends on the context. Examples include relying on a
slower but more robust model (e.g. a human), or rejecting the input altogether. This kind of approach
is viable in all cases where the goal is to support (rather than replace) human decision-making.

Note that the flagging rate of CA is heavily dependent on the robustness of the model: a model that is
robust on the entire input distribution will have a flagging rate of zero. Therefore, any improvement
in the field of adversarial defenses also decreases the flagging rate of CA. Moreover, if there are
known robustness bounds, they can be exploited to simplify the attack: for example, if the model
is known to be (εcert, p)-robust on x, with εcert < ε, the attack can focus on searching adversarial
examples in Bp(x, ε) \Bp(x, εcert). At the same time, developing stronger and faster attacks also
benefits CA, since better attacks can find adversarial examples more quickly.

The major drawback of CA is that it requires running an exact adversarial attack on every input.
We will investigate a possible mitigation for this phenomenon based on employing heuristic attacks,
which still provide a significant degree of robustness (see Section 6). Finally, we stress that CA is just
one of potentially several alternative paradigms that could circumvent the computational asymmetry.
We hope our contribution will encourage other researchers to investigate this direction.

5.1 FORMAL PROPERTIES

When used with an exact attack, CA provides formal robustness guarantees for an arbitrary p and ε:
Theorem 4. Let 0 < p ≤ ∞ and let ε > 0. Let f : X → {1, . . . , N} be a classifier and let a be an
exact attack. Let fa

CA : X → {1, . . . , N} ∪ {⋆} be defined as:

fa
CA(x) =

{
f(x) ∥af,p(x)− x∥p > ε

⋆ otherwise
(4)

Then ∀x ∈ X an Lp attack on x with radius greater than or equal to ε and with ⋆ ̸∈ C(x) fails.

The notation fa
CA(x) refers to the classifier f combined with CA, relying on attack a. The condition

⋆ ̸∈ C(x) requires that the input generated by the attack should not be flagged by CA.
Corollary 4.1. Let 1 ≤ p ≤ ∞ and let ε > 0. Let f be a classifier on inputs with n elements that
uses CA with norm p and radius ε. Then for all inputs and for all 1 ≤ r < p, Lr attacks of radius
greater than or equal to ε and with and ⋆ ̸∈ C(x) will fail. Similarly, for all inputs and for all r > p,
Lr attacks of radius greater than or equal to n

1
r− 1

p ε and with ⋆ ̸∈ C(x) will fail (treating 1
∞ as 0).

Since the only expensive step in CA consists in applying an adversarial attack to an input, the
complexity is the same as that of a regular attack. CA can therefore represent a more feasible task
compared to training a robust model.

Attacking with a Higher Radius In addition to robustness guarantees for a chosen ε, CA provides
a form of computational robustness even beyond its intended radius. To prove this statement, we first

5



Under review as a conference paper at ICLR 2023

formalize the task of attacking CA (referred to as Counter-CA, or CCA).This involves finding, given
a starting point x, an input x′ ∈ Bp(x, ε

′) that is adversarial but not flagged by CA, i.e. such that
f(x′) ∈ C(x) ∧ ∀x′′ ∈ Bp(x

′, ε).f(x′′) = f(x′). Note that, for ε′ ≤ ε, no solution exists, since
x ∈ Bp(x

′, ε) and f(x) ̸= f(x′).

Theorem 5 (Attacking CA with a higher radius is ΣP
2 -complete). Let CCAp be the set of all tuples

⟨x, ε, ε′, C, f⟩ such that:

∃x′ ∈ Bp(x, ε
′). (f(x′) ∈ C(x) ∧ ∀x′′ ∈ Bp(x

′, ε).f(x′′) = f(x′)) (5)

where x ∈ X , X is a FSFP space, ε′ > ε, f(x) ̸∈ C(x) f is a ReLU classifier and whether an
output is in C(x∗) for some x∗ can be decided in polynomial time. Then CCA∞ is ΣP

2 -complete.

Corollary 5.1. CCAp is ΣP
2 -complete for all 0 < p ≤ ∞.

Corollary 5.2. Theorem 5 holds even if, instead of ReLU classifiers, we consider the more general
set of polynomial-time classifiers w.r.t. the size of the tuple.

In other words, under our assumptions, fooling CA is harder than running it. This phenomenon
represents a form of computational robustness, a term introduced by Garg et al. (2020) in a very
different setting where genuine examples can be cryptographically signed. Corollary 2.1 also implies
that, unless the Polynomial Hierarchy collapses, it is impossible to obtain a better gap between
running the model and attacking (e.g. a P -time model that is ΣP

2 -hard to attack). Note that while
Theorem 5 shows that fooling CA is ΣP

2 -complete in general, attacking can be expected to be easy
in practice when ε′ ≫ ε: this is however a very extreme case, where the threshold may have been
poorly chosen or the adversarial examples might be visually distinguishable from genuine examples.

5.2 USING HEURISTIC ATTACKS WITH CA

CA in its exact form has limited scalability due to Theorem 1. This could be addressed by using
approaches with guaranteed bounds, as suggested in Section 5, or by simply relying on heuristic
attacks. In this second scenario, to compensate for the heuristic nature of the employed attacks,
we can flag the input x′ if the attack fails to find an adversarial example in a radius of ε + b(x′),
where b : X → R+

0 is a buffer model. The idea behind b is that if a heuristic attack can identify an
adversarial example within a radius of ε+ b(x′), an exact attack would be able to find an adversarial
example within a radius of ε.

The effectiveness of this approach depends on how well heuristic attacks approximate the decision
boundary distance, which is an interesting topic for investigation by itself. Note that consistency of
the estimation is in fact more important than its accuracy: if a heuristic attack overestimates d∗p(x) in
a predictable manner, we can train a buffer model to accurately correct the error.

With this approach, if the heuristic attack finds an adversarial example with distance less than ε, we
can confidently flag the input (i.e. false positives are guaranteed to be impossible). However, if the
distance is above ε, it is possible to have a false negative. Note that using approaches with guaranteed
bounds would lead to a complementary situation.

Fooling the Heuristic Attack-Based CA The fact that the heuristic relaxation of CA can over-
estimate the decision boundary distance means that it is possible to generate adversarial examples
with ε′ ≤ ε. Specifically, if an adversarial example xadv for an input x is such that d∗p(x

adv) ≤ ε

and f(xadv) ̸= f(x) but ∥af,p(xadv) − xadv∥p > ε + b(xadv), CA will incorrectly accept xadv.
However, there are several informal considerations suggesting that fooling CA might be harder than
running it. Such considerations are backed by empirical evidence in Section 6. First, both CA and
CCA need to attack the same model, but CCA has at most as much information regarding the target
model as CA, thus making the attacker at most as sample efficient as the defender. Second, fooling
CA involves solving a nested optimization problem, while CA only needs to solve one; specifically,
verifying the feasibility of a CCA solution involves running CA on the solution. Finally, as better
attacks are developed the chances of CA being fooled become slimmer, since these attacks will be
less likely to find sub-optimal adversarial examples.
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6 EMPIRICAL INVESTIGATION OF HEURISTIC ATTACKS

Section 5.2 introduced the problem of investigating how accurately heuristic attacks can approximate
the true decision boundary distance, which is needed for the heuristic version of CA to work, but also
an interesting topic per se. In this section, we test whether ∥x− xh∥p, where xh is an adversarial
example found by a heuristic attack, is predictably close to the true decision boundary distance
(i.e. d∗p(x)). Consistently with Athalye et al. (2018) and Weng et al. (2018a), we focus on the L∞

norm. Additionally, we focus on pools of heuristic attacks. The underlying rationale is that different
adversarial attacks should be able to cover for their reciprocal blind spots, providing a more reliable
estimate. Since this evaluation is empirical, it requires sampling from a chosen distribution, in our
case specific classifiers and the MNIST (LeCun et al., 1998) and CIFAR10 (Krizhevsky et al., 2009)
datasets. This means that the results are not guaranteed for other distributions, or for other defended
models: studying how adversarial attacks fare in these cases is an important topic for future work.

Experimental Setup We randomly selected ~2.3k samples each from the test set of two datasets,
MNIST and CIFAR10. We used three architectures per dataset (named A, B and C), each trained
in three settings, namely standard training, PGD adversarial training (Madry et al., 2018) and PGD
adversarial training with ReLU loss and pruning (Xiao et al., 2019) (from now on referred to as
ReLU training), for a total of nine configurations per dataset. Since our analysis requires computing
exact decision boundary distances, and size and depth both have a strong adverse impact on solver
times, we used small and relatively shallow networks with parameters between ~2k and ~80k. Note
that using (more scalable) NN verification approaches that can provide bounds without tightness
guarantees is not an option, as they would prevent us from drawing any firm conclusion. For this
reason, the natural accuracies for standard training are significantly below the state of the art (89.63%
- 95.87% on MNIST and 47.85% - 55.81% on CIFAR10). Adversarial training also had a negative
effect on natural accuracies (84.54% - 94.24% on MNIST and 45.19% - 51.35% on CIFAR10),
similarly to ReLU training (83.69% - 93.57% on MNIST and 32.27% - 37.33% on CIFAR10).

We first ran a pool of heuristic attacks on each example, namely (Kurakin et al., 2017; Brendel et al.,
2019; Carlini & Wagner, 2017c; Moosavi-Dezfooli et al., 2016; Goodfellow et al., 2015; Madry et al.,
2018), as well as simply adding uniform noise to the input. Our main choice of attack parameters
(from now on referred to as the “strong” parameter set) prioritizes finding adversarial examples at the
expense of computational time. For each example, we considered the nearest feasible adversarial
example found by any attack in the pool. We then ran the exact solver-based attack MIPVerify
(Tjeng et al., 2019), which is able to find the nearest adversarial example to a given input. The entire
process (including test runs) required ~45k core-hours on an HPC cluster. Each node of the cluster
has 384 GB of RAM and features two Intel CascadeLake 8260 CPUs, each with 24 cores and a
clock frequency of 2.4GHz. We removed the examples for which MIPVerify crashed in at least one
setting, obtaining 2241 examples for MNIST and 2269 for CIFAR10. We also excluded from our
analysis all adversarial examples for which MIPVerify did not find optimal bounds (atol = 1e-5, rtol
= 1e-10), which represent on average 11.95% of the examples for MNIST and 16.30% for CIFAR10.
Additionally, we ran the same heuristic attacks with a faster parameter set (from now on referred to
as the “balanced” set) on a single machine with an AMD Ryzen 5 1600X six-core 3.6 GHz processor,
16 GBs of RAM and an NVIDIA GTX 1060 6 GB GPU. The process took approximately 8 hours.
Refer to Appendix G for a more comprehensive overview of our experimental setup.

Distance Approximation Across all settings, the mean distance found by the strong attack pool
is 4.09±2.02% higher for MNIST and 2.21±1.16% higher for CIFAR10 than the one found by
MIPVerify. For 79.81±15.70% of the MNIST instances and 98.40±1.63% of the CIFAR10 ones, the
absolute difference is less than 1/255, which is the minimum distance in 8-bit image formats. The
balanced attack pool performs similarly, finding distances that are on average 4.65±2.16% higher for
MNIST and 2.04±1.13% higher for CIFAR10. The difference is below 1/255 for 77.78±16.08% of
MNIST examples and 98.74±1.13% of CIFAR10 examples. We compare the distances found by the
strong attack pool for MNIST A and CIFAR10 (using standard training) with the true decision bound
distances in Figure 1. Refer to Appendix I for the full data.

For all datasets, architectures and training techniques there appears to be a strong, linear, correlation
between the distance of the output of the heuristic attacks and the true decision boundary distance.
We chose to measure this by training a linear regression model linking the two distances. For the
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Figure 1: Distances of the nearest adversarial example found by the strong attack pool compared
to those found by MIPVerify on MNIST A and CIFAR10 A with standard training. The black line
represents the theoretical optimum. Note that no samples are below the black line.

strong parameter set, we find that the average R2 across all settings is 0.992±0.004 for MNIST
and 0.997±0.003 for CIFAR10. The balanced parameter set performs similarly, achieving an R2

of 0.990±0.006 for MNIST and 0.998±0.002 for CIFAR10. From these results, we conjecture that
increasing the computational budget of heuristic attacks does not necessarily improve predictability,
although further tests would be needed to confirm such a claim. Note that such a linear model can
also be used as a buffer function for heuristic CA. Another (possibly more reliable) procedure would
consist in using quantile fitting; results for this approach are reported in Appendix H.

Attack Pool Ablation Study Due to the nontrivial computational requirements of running several
attacks on the same input, we now study whether it is possible to drop some attacks from the pool
without compromising its predictability. Specifically, we consider all possible pools of size n (with
a success rate of 100%) and pick the one with the highest average R2 value over all architectures
and training techniques. As show in Figure 2, adding attacks does increase predictability, although
with diminishing returns. For example, the pool composed of the Basic Iterative Method, the Brendel
& Bethge Attack and the Carlini & Wagner attack achieves on its own a R2 value of 0.988±0.004
for MNIST+strong, 0.986±0.005 for MNIST+balanced, 0.935±0.048 for CIFAR10+strong and
0.993±0.003 for CIFAR10+balanced. Moreover, dropping both the Fast Gradient Sign Method and
uniform noise leads to negligible (≪ 0.001) absolute variations in the mean R2. These findings
suggest that, as far as consistency is concerned, the choice of attacks represents a more important
factor than the number of attacks in a pool. Refer to Appendix J for a more in-depth overview of how
different attack selections affect consistency and accuracy.

Efficient Attacks We then explore if it possible to increase the efficiency of attacks by optimizing
for fast, rather than accurate, results. We pick three new parameter sets (namely Fast-100, Fast-1k
and Fast-10k) designed to find the nearest adversarial examples within the respective number of calls
to the model. We find that while Deepfool is not the strongest adversarial attack (see Appendix I), it
provides adequate results in very few model calls. For details on these results see Appendix K.

Fooling the Heuristic Attack-Based CA An open question from Section 5.2 is the empirical
difficulty of fooling the version of CA based on heuristic attacks. Specifically, we carried on a
limited experimentation by attempting to fool a CA-defended model. We used Deepfool Fast-
1k as a heuristic attack for CA, then we built a proof-of-concept CCA implementation based on
the PGD method, thus setting a baseline for attacks against CA. This variant uses a custom loss
LCCA(x,y) = LPGD(x,y) + λ∥x − af,p(x)∥p, which rewards adversarial examples with over-
estimated decision boundary distances. We then vary λ in order to test various trade-offs between
the two terms. In order to estimate the gradient of the second term, we use Natural Evolution
Strategies (Wierstra et al., 2014). As a sanity check, we also attack using uniform noise. Due
to the high computational requirements of such an experiment (30-60 minutes and ∼1.2M model
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Figure 2: Best mean R2 value in relation to the number of attacks in the pool.

calls per sample on the GTX 1060 machine), we only attack MNIST A Standard and CIFAR10 A
Standard on 100 samples each. For comparison, running DeepFool on ten 250-element batches takes
approximately 10 seconds. Overall, the attacks have a success rate of 0% - 3%. However, we find that
increasing ε′ (while keeping ε constant) increases the success rate, up to 100% for ε′ = 10 · ε. This
suggests that as the difference between ε′ and ε grows, so does the feasibility of fooling CA, which is
consistent with our analysis. More in-depth results of our experiments can be found in Appendix L.

UG100 Dataset We collect all the adversarial examples found by both MIPVerify and the heuristic
attacks into a new dataset, which we name UG100. UG100 can be used to benchmark new adversarial
attacks. Specifically, we can determine how strong an attack is by comparing it to both the theoretical
optimum and heuristic attack pools. Another potential application involves studying factors that
affect whether adversarial attacks perform sub-optimally.

7 CONCLUSION

We proved that attacking is NP -complete in the worst case, while training a robust model is ΣP
2 -

complete, barring collapse of the Polynomial Hierarchy. We then showed how such a structural
asymmetry can be sidestepped by adopting a different perspective on defense. This is exemplified by
Counter-Attack, a technique that can identify non-robust points in NP time. We showed that CA
can provide robustness guarantees up to an arbitrary ε. The CA approach naturally benefits from
improvements in the field of adversarial attacks, and can be combined with other forms of defense.
Due to its independence from the specific characteristics of the defended model, CA can also be
applied to non-ML tools (e.g. signature-based malware detectors). We also believe that it should
be possible to extend CA beyond classification. Finally, in an empirical evaluation we showed that
heuristic attacks can provide an accurate and consistent approximation of the true decision boundary,
which has implications for the viability of a heuristic version of CA. While our investigation is limited
to small scale networks, we expect improvements in the field of NN verification will enable testing
whether the observed results generalize to larger architectures.

Overall, we hope that our contributions can provide broad benefits to the field of adversarial robustness
by 1) highlighting a potential, structural, challenge; 2) pointing out how that can be sidestepped by a
change in perspective; 3) showing a proof-of-concept defense based on this idea; 4) providing an
experimentation and dataset to serve as a baseline and starting point.

REPRODUCIBILITY

We provide all our code and data in the repository linked in Section 1. Additionally, we report
the key reproducibility information in Section 6, while all the other information can be found in
Appendices G and L. To ensure maximum reproducibility, we also used consistent seeds across all
experiments (one for parameter tuning and one for actual experiments). We also made sure to only
rely on tools that are either open-source or for which there are free academic licenses. Concerning
theoretical results, we provide full proofs of all theorems and corollaries in the appendices. Finally,
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for users with a slow internet connection, we also provide UG100 in JSON format (containing only
the found adversarial distances).

REFERENCES

Anish Athalye, Nicholas Carlini, and David Wagner. Obfuscated gradients give a false sense of
security: Circumventing defenses to adversarial examples. In International Conference on Machine
Learning, pp. 274–283. PMLR, 2018.

Pranjal Awasthi, Abhratanu Dutta, and Aravindan Vijayaraghavan. On robustness to adversarial
examples and polynomial optimization. Advances in Neural Information Processing Systems, 32,
2019.

Wieland Brendel, Jonas Rauber, Matthias Kümmerer, Ivan Ustyuzhaninov, and Matthias Bethge.
Accurate, reliable and fast robustness evaluation. Advances in Neural Information Processing
Systems, 32, 2019.

Tom B Brown, Dandelion Mané, Aurko Roy, Martín Abadi, and Justin Gilmer. Adversarial patch.
arXiv preprint arXiv:1712.09665, 2017.

Nicholas Carlini and David Wagner. Defensive distillation is not robust to adversarial examples.
arXiv preprint arXiv:1607.04311, 2016.

Nicholas Carlini and David Wagner. Adversarial examples are not easily detected: Bypassing ten
detection methods. In Proceedings of the 10th ACM Workshop on Artificial Intelligence and
Security, pp. 3–14, 2017a.

Nicholas Carlini and David Wagner. Magnet and "efficient defenses against adversarial attacks" are
not robust to adversarial examples. arXiv preprint arXiv:1711.08478, 2017b.

Nicholas Carlini and David Wagner. Towards evaluating the robustness of neural networks. In 2017
IEEE Symposium on Security and Privacy (SP), pp. 39–57. IEEE, 2017c.

Nicholas Carlini, Guy Katz, Clark Barrett, and David L Dill. Provably minimally-distorted adversarial
examples. arXiv preprint arXiv:1709.10207, 2017.

Nicholas Carlini, Florian Tramer, J Zico Kolter, et al. (certified!!) adversarial robustness for free!
arXiv preprint arXiv:2206.10550, 2022.

Jeremy Cohen, Elan Rosenfeld, and Zico Kolter. Certified adversarial robustness via randomized
smoothing. In International Conference on Machine Learning, pp. 1310–1320. PMLR, 2019.

Francesco Croce, Sven Gowal, Thomas Brunner, Evan Shelhamer, Matthias Hein, and Taylan
Cemgil. Evaluating the adversarial robustness of adaptive test-time defenses. arXiv preprint
arXiv:2202.13711, 2022.

Chen Dan, Yuting Wei, and Pradeep Ravikumar. Sharp statistical guaratees for adversarially robust
gaussian classification. In International Conference on Machine Learning, pp. 2345–2355. PMLR,
2020.

Akshay Degwekar, Preetum Nakkiran, and Vinod Vaikuntanathan. Computational limitations in
robust classification and win-win results. In Conference on Learning Theory, pp. 994–1028. PMLR,
2019.

Gavin Weiguang Ding, Luyu Wang, and Xiaomeng Jin. AdverTorch v0.1: An adversarial robustness
toolbox based on pytorch. arXiv preprint arXiv:1902.07623, 2019.

Edgar Dobriban, Hamed Hassani, David Hong, and Alexander Robey. Provable tradeoffs in adversar-
ially robust classification. arXiv preprint arXiv:2006.05161, 2020.

Tommaso Dreossi, Shromona Ghosh, Alberto Sangiovanni-Vincentelli, and Sanjit A Seshia. A
formalization of robustness for deep neural networks. arXiv preprint arXiv:1903.10033, 2019.

10



Under review as a conference paper at ICLR 2023

Krishnamurthy Dvijotham, Robert Stanforth, Sven Gowal, Timothy A Mann, and Pushmeet Kohli. A
dual approach to scalable verification of deep networks. In UAI, volume 1, pp. 3, 2018.

Reuben Feinman, Ryan R Curtin, Saurabh Shintre, and Andrew B Gardner. Detecting adversarial
samples from artifacts. arXiv preprint arXiv:1703.00410, 2017.

Sanjam Garg, Somesh Jha, Saeed Mahloujifar, and Mahmoody Mohammad. Adversarially robust
learning could leverage computational hardness. In Algorithmic Learning Theory, pp. 364–385.
PMLR, 2020.

Ian Goodfellow, Jonathon Shlens, and Christian Szegedy. Explaining and harnessing adversarial
examples. In International Conference on Learning Representations, 2015. URL http://
arxiv.org/abs/1412.6572.

Kathrin Grosse, Praveen Manoharan, Nicolas Papernot, Michael Backes, and Patrick McDaniel. On
the (statistical) detection of adversarial examples. arXiv preprint arXiv:1702.06280, 2017.

Gurobi Optimization, LLC. Gurobi Optimizer Reference Manual, 2022. URL https://www.
gurobi.com.

Husheng Han, Kaidi Xu, Xing Hu, Xiaobing Chen, Ling Liang, Zidong Du, Qi Guo, Yanzhi Wang,
and Yunji Chen. Scalecert: Scalable certified defense against adversarial patches with sparse
superficial layers. Advances in Neural Information Processing Systems, 34, 2021.

Warren He, James Wei, Xinyun Chen, Nicholas Carlini, and Dawn Song. Adversarial example
defenses: ensembles of weak defenses are not strong. In Proceedings of the 11th USENIX
Conference on Offensive Technologies, pp. 15–15, 2017.

Matthias Hein and Maksym Andriushchenko. Formal guarantees on the robustness of a classifier
against adversarial manipulation. Advances in Neural Information Processing Systems, 30, 2017.

Dan Hendrycks and Kevin Gimpel. Early methods for detecting adversarial images. In International
Conference on Learning Representations (Workshop Track), 2017.

Hossein Hosseini, Sreeram Kannan, and Radha Poovendran. Are odds really odd? bypassing
statistical detection of adversarial examples. arXiv preprint arXiv:1907.12138, 2019.

Robin Jia, Aditi Raghunathan, Kerem Göksel, and Percy Liang. Certified robustness to adversarial
word substitutions. arXiv preprint arXiv:1909.00986, 2019.

Guy Katz, Clark Barrett, David Dill, Kyle Julian, and Mykel Kochenderfer. Reluplex: An efficient
smt solver for verifying deep neural networks. arXiv preprint arXiv:1702.01135, 2017.

Diederik P Kingma and Jimmy Ba. Adam: A method for stochastic optimization. arXiv preprint
arXiv:1412.6980, 2014.

Roger Koenker and Gilbert Bassett Jr. Regression quantiles. Econometrica: journal of the Economet-
ric Society, pp. 33–50, 1978.

Alex Krizhevsky, Geoffrey Hinton, et al. Learning multiple layers of features from tiny images.
Technical report, 2009.

Alexey Kurakin, Ian Goodfellow, and Samy Bengio. Adversarial machine learning at scale. 2017.

Yann LeCun, Corinna Cortes, and Christopher J.C. Burges. The MNIST database of handwritten
digits. http://yann.lecun.com/exdb/mnist/, 1998.

Klas Leino, Zifan Wang, and Matt Fredrikson. Globally-robust neural networks. In International
Conference on Machine Learning, pp. 6212–6222. PMLR, 2021.

Aleksander Madry, Aleksandar Makelov, Ludwig Schmidt, Dimitris Tsipras, and Adrian Vladu.
Towards deep learning models resistant to adversarial attacks. In International Conference on
Learning Representations, 2018.

11

http://arxiv.org/abs/1412.6572
http://arxiv.org/abs/1412.6572
https://www.gurobi.com
https://www.gurobi.com
http://yann.lecun.com/exdb/mnist/


Under review as a conference paper at ICLR 2023

Saeed Mahloujifar and Mohammad Mahmoody. Can adversarially robust learning leverage computa-
tional hardness? In Algorithmic Learning Theory, pp. 581–609. PMLR, 2019.

Dongyu Meng and Hao Chen. Magnet: a two-pronged defense against adversarial examples. In
Proceedings of the 2017 ACM SIGSAC Conference on Computer and Communications Security,
pp. 135–147, 2017.

Yifei Min, Lin Chen, and Amin Karbasi. The curious case of adversarially robust models: More
data can help, double descend, or hurt generalization. In Uncertainty in Artificial Intelligence, pp.
129–139. PMLR, 2021.

Seyed-Mohsen Moosavi-Dezfooli, Alhussein Fawzi, and Pascal Frossard. Deepfool: a simple and
accurate method to fool deep neural networks. In Proceedings of the IEEE Conference on Computer
Vision and Pattern Recognition, pp. 2574–2582, 2016.

Ambar Pal and René Vidal. A game theoretic analysis of additive adversarial attacks and defenses.
Advances in Neural Information Processing Systems, 33:1345–1355, 2020.

Nicolas Papernot, Patrick McDaniel, Ian Goodfellow, Somesh Jha, Z Berkay Celik, and Ananthram
Swami. Practical black-box attacks against machine learning. In Proceedings of the 2017 ACM on
Asia Conference on Computer and Communications Security, pp. 506–519, 2017.

Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer, James Bradbury, Gregory Chanan, Trevor
Killeen, Zeming Lin, Natalia Gimelshein, Luca Antiga, Alban Desmaison, Andreas Kopf, Edward
Yang, Zachary DeVito, Martin Raison, Alykhan Tejani, Sasank Chilamkurthy, Benoit Steiner,
Lu Fang, Junjie Bai, and Soumith Chintala. Pytorch: An imperative style, high-performance
deep learning library. In H. Wallach, H. Larochelle, A. Beygelzimer, F. d'Alché-Buc, E. Fox, and
R. Garnett (eds.), Advances in Neural Information Processing Systems 32, pp. 8024–8035. Curran
Associates, Inc., 2019.

Rafael Pinot, Florian Yger, Cédric Gouy-Pailler, and Jamal Atif. A unified view on differential
privacy and robustness to adversarial examples. arXiv preprint arXiv:1906.07982, 2019.

Muni Sreenivas Pydi and Varun Jog. The many faces of adversarial risk. Advances in Neural
Information Processing Systems, 34, 2021.

Aditi Raghunathan, Jacob Steinhardt, and Percy Liang. Certified defenses against adversarial
examples. arXiv preprint arXiv:1801.09344, 2018.

Jonas Rauber, Roland Zimmermann, Matthias Bethge, and Wieland Brendel. Foolbox native: Fast
adversarial attacks to benchmark the robustness of machine learning models in pytorch, tensorflow,
and jax. Journal of Open Source Software, 5(53):2607, 2020.

Ambrish Rawat, Martin Wistuba, and Maria-Irina Nicolae. Adversarial phenomenon in the eyes of
bayesian deep learning. arXiv preprint arXiv:1711.08244, 2017.

Jie Ren, Die Zhang, Yisen Wang, Lu Chen, Zhanpeng Zhou, Yiting Chen, Xu Cheng, Xin Wang,
Meng Zhou, Jie Shi, et al. A unified game-theoretic interpretation of adversarial robustness. arXiv
preprint arXiv:2111.03536, 2021.

Eitan Richardson and Yair Weiss. A bayes-optimal view on adversarial examples. Journal of Machine
Learning Research, 22(221):1–28, 2021.

Kevin Roth, Yannic Kilcher, and Thomas Hofmann. The odds are odd: A statistical test for detecting
adversarial examples. In International Conference on Machine Learning, pp. 5498–5507. PMLR,
2019.

Hadi Salman, Mingjie Sun, Greg Yang, Ashish Kapoor, and J Zico Kolter. Denoised smoothing: A
provable defense for pretrained classifiers. Advances in Neural Information Processing Systems,
33:21945–21957, 2020.

Samuel Henrique Silva and Peyman Najafirad. Opportunities and challenges in deep learning
adversarial robustness: A survey. arXiv preprint arXiv:2007.00753, 2020.

12



Under review as a conference paper at ICLR 2023

Gagandeep Singh, Timon Gehr, Matthew Mirman, Markus Püschel, and Martin Vechev. Fast and
effective robustness certification. Advances in Neural Information Processing Systems, 31, 2018.

Aman Sinha, Hongseok Namkoong, Riccardo Volpi, and John Duchi. Certifying some distribu-
tional robustness with principled adversarial training. In International Conference on Learning
Representations, 2018.

Min Jae Song, Ilias Zadik, and Joan Bruna. On the cryptographic hardness of learning single periodic
neurons. Advances in neural information processing systems, 34:29602–29615, 2021.

Larry J Stockmeyer. The polynomial-time hierarchy. Theoretical Computer Science, 3(1):1–22, 1976.

Christian Szegedy, Wojciech Zaremba, Ilya Sutskever, Joan Bruna, Dumitru Erhan, Ian Goodfellow,
and Rob Fergus. Intriguing properties of neural networks. arXiv preprint arXiv:1312.6199, 2013.

Vincent Tjeng, Kai Y Xiao, and Russ Tedrake. Evaluating robustness of neural networks with mixed
integer programming. In International Conference on Learning Representations, 2019.

Florian Tramèr, Jens Behrmann, Nicholas Carlini, Nicolas Papernot, and Jörn-Henrik Jacobsen. Fun-
damental tradeoffs between invariance and sensitivity to adversarial perturbations. In International
Conference on Machine Learning, pp. 9561–9571. PMLR, 2020.

Florian Tramer, Nicholas Carlini, Wieland Brendel, and Aleksander Madry. On adaptive attacks to
adversarial example defenses. Advances in Neural Information Processing Systems, 33:1633–1645,
2020.

Guillaume Vidot, Paul Viallard, Amaury Habrard, and Emilie Morvant. A pac-bayes analysis of
adversarial robustness. arXiv preprint arXiv:2102.11069, 2021.

Lily Weng, Huan Zhang, Hongge Chen, Zhao Song, Cho-Jui Hsieh, Luca Daniel, Duane Boning,
and Inderjit Dhillon. Towards fast computation of certified robustness for relu networks. In
International Conference on Machine Learning, pp. 5276–5285. PMLR, 2018a.

Tsui-Wei Weng, Huan Zhang, Pin-Yu Chen, Jinfeng Yi, Dong Su, Yupeng Gao, Cho-Jui Hsieh, and
Luca Daniel. Evaluating the robustness of neural networks: An extreme value theory approach. In
International Conference on Learning Representations, 2018b.

Daan Wierstra, Tom Schaul, Tobias Glasmachers, Yi Sun, Jan Peters, and Jürgen Schmidhuber.
Natural evolution strategies. The Journal of Machine Learning Research, 15(1):949–980, 2014.

Zuxuan Wu, Ser-Nam Lim, Larry S Davis, and Tom Goldstein. Making an invisibility cloak: Real
world adversarial attacks on object detectors. In European Conference on Computer Vision, pp.
1–17. Springer, 2020.

Kai Y Xiao, Vincent Tjeng, Nur Muhammad Shafiullah, and Aleksander Madry. Training for faster
adversarial robustness verification via inducing relu stability. In International Conference on
Learning Representations, 2019.

Yao-Yuan Yang, Cyrus Rashtchian, Hongyang Zhang, Russ R Salakhutdinov, and Kamalika Chaud-
huri. A closer look at accuracy vs. robustness. In Advances in Neural Information Processing
Systems, volume 33, pp. 8588–8601, 2020.

Bohang Zhang, Tianle Cai, Zhou Lu, Di He, and Liwei Wang. Towards certifying l-infinity robustness
using neural networks with l-inf-dist neurons. In International Conference on Machine Learning,
pp. 12368–12379. PMLR, 2021.

Hongyang Zhang, Yaodong Yu, Jiantao Jiao, Eric Xing, Laurent El Ghaoui, and Michael Jordan.
Theoretically principled trade-off between robustness and accuracy. In International Conference
on Machine Learning, pp. 7472–7482. PMLR, 2019.

Jingfeng Zhang, Xilie Xu, Bo Han, Gang Niu, Lizhen Cui, Masashi Sugiyama, and Mohan Kankan-
halli. Attacks which do not kill training make adversarial learning stronger. In International
Conference on Machine Learning, pp. 11278–11287. PMLR, 2020.

Yan Zhou, Murat Kantarcioglu, and Bowei Xi. A survey of game theoretic approach for adversarial
machine learning. Wiley Interdisciplinary Reviews: Data Mining and Knowledge Discovery, 9(3):
e1259, 2019.

13



Under review as a conference paper at ICLR 2023

A PROOF PRELIMINARIES

A.1 NOTATION

We use fi to denote the i-th output of a network. We define f as

f(x) = argmax
i

{fi(x)} (6)

for situations where multiple outputs are equal to the maximum, we use the class with the lowest
index.

A.2 µ ARITHMETIC

Given two FSFP spaces X and X ′ with distance minorants µ and µ′, we can compute new positive
minorants after applying functions to the spaces as follows:

• Sum of two vectors: µX+X′ = min(µ, µ′);
• Multiplication by a constant: µαX = αµ;
• ReLU: µReLU(X) = µ.

Since it is possible to compute the distance minorant of a space transformed by any of these functions
in polynomial time, it is also possible to compute the distance minorant of a space transformed by
any composition of such functions in polynomial time.

A.3 FUNCTIONS

We now provide an overview of several functions that can be obtained by using linear combinations
and ReLUs.

max Carlini et al. (2017) showed that we can implement the max function using linear combinations
and ReLUs as follows:

max(x, y) = ReLU(x− y) + y (7)

We can also obtain an n-ary version of max by chaining multiple instances together.

step If X is a FSFP space, then the following scalar function:

step0(x) =
1

µ
(ReLU(x)−ReLU(x− µ)) (8)

is such that ∀i.∀x ∈ X , step0(xi) is 0 for xi ≤ 0 and 1 for xi > 0.

Similarly, let step1 be defined as follows:

step1(x) =
1

µ
(ReLU(x+ µ)−ReLU(x)) (9)

Note that ∀i.∀x ∈ X , step1(xi) = 0 for xi < 0 and step1(xi) = 1 for xi ≥ 0.

Boolean Functions We then define the Boolean functions not : {0, 1} → {0, 1}, and : {0, 1}2 →
{0, 1}, or : {0, 1}2 → {0, 1} and if : {0, 1}3 → {0, 1} as follows:

not(x) = 1− x (10)
and(x, y) = step1(x+ y − 2) (11)
or(x, y) = step1(x+ y) (12)

if(a, b, c) = or(and(not(a), b), and(a, c)) (13)

where if(a, b, c) returns b if a = 0 and c otherwise.

Note that we can obtain n-ary variants of and and or by chaining multiple instances together.
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cnf3 Given a set z = {{z1,1, . . . , z1,3}, . . . , {zn,1, zn,3}} of Boolean atoms (i.e. zi,j(x) = xk or
¬xk for a certain k) defined on an n-long Boolean vector x, cnf3(z) returns the following Boolean
function:

cnf ′
3(x) =

∧
i=1,...,n

∨
j=1,...,3

zi,j(x) (14)

We refer to z as a 3CNF formula.

Since cnf ′
3 only uses negation, conjunction and disjunction, it can be implemented using respectively

neg, and and or. Note that, given z, we can build cnf ′
3 in polynomial time w.r.t. the size of z.

Comparison Functions We can use step0, step1 and neg to obtain comparison functions as
follows:

geq(x, k) = step1(x− k) (15)
gt(x, k) = step0(x, k) (16)
leq(x, k) = not(gt(x, k)) (17)
lt(x, k) = not(geq(x, k)) (18)
eq(x, k) = and(geq(x, k), leq(x, k)) (19)

Moreover, we define open : R3 → {0, 1} as follows:
open(x, a, b) = and(gt(x, a), lt(x, b)) (20)

B PROOF OF THEOREM 1

B.1 U -ATT∞ ∈ NP

To prove that U -ATT∞ ∈ NP , we show that there exists a polynomial certificate for U -ATT that
can be checked in polynomial time. The certificate is the value of x′, which will have a representation
of the same size as x (due to the FSFP space assumption) and can be checked by verifying:

• ∥x− x′∥∞ ≤ ε, which can be checked in linear time;
• fθ(x

′) ̸= f(x), which can be checked in polynomial time.

B.2 U -ATT∞ IS NP -HARD

We will prove that U -ATT∞ is NP -Hard by showing that 3SAT ≤ U -ATT∞.

Given a set of 3CNF clauses z = {{z11, z12, z13}, . . . , {zm1, zm2, zm3}} defined on n Boolean
variables x1, . . . , xn, we construct the following query q(z) for U -ATT∞:

q(z) = ⟨x(s),
1

2
, f⟩ (21)

where x(s) =
(
1
2 , . . . ,

1
2

)
is a vector with n elements. Verifying q(z) ∈ U -ATT∞ is equivalent to

checking:

∃x′ ∈ B∞

(
xs,

1

2

)
.f(x′) ̸= f(x(s)) (22)

Note that x ∈ B∞
(
x(s), 1

2

)
is equivalent to x ∈ [0, 1]n.

Truth Values We will encode the truth values of x̂ as follows:

x′
i ∈
[
0,

1

2

]
⇐⇒ x̂i = 0 (23)

x′
i ∈
(
1

2
, 1

]
⇐⇒ x̂i = 1 (24)

We can obtain the truth value of a scalar variable by using isT (xi) = gt
(
xi,

1
2

)
. Let bin(x) =

or(isT (x1), . . . , isT (xn)).
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Definition of f We define f as follows:

f1(x) = and(not(isx(s)(x)), cnf ′
3(bin(x))) (25)

f0(x) = not(f1(x)) (26)

where cnf ′
3 = cnf3(z) and isx(s) is defined as follows:

isx(s)(x) = and

(
eq

(
x1,

1

2

)
, . . . , eq

(
xn,

1

2

))
(27)

Note that f is designed such that f(x(s)) = 0, while for x′ ̸= x(s), f(x′) = 1 iff the formula z is
true for the variable assignment bin(x′).
Lemma 1. z ∈ 3SAT =⇒ q(z) ∈ U -ATT∞

Proof. Let z ∈ 3SAT . Therefore ∃x∗ ∈ {0, 1}n such that cnf3(z)(x∗) = 1. Since bin(x∗) = x∗

and x∗ ̸= x(s), f(x∗) = 1, which means that it is a valid solution for Equation (22). From this we
can conclude that q(z) ∈ U -ATT∞.

Lemma 2. q(z) ∈ U -ATT∞ =⇒ z ∈ 3SAT

Proof. Since q(z) ∈ U -ATT∞, ∃x∗ ∈ [0, 1]n \ {x(s)} that is a solution to Equation (22) (i.e.
f(x∗) = 1). Then cnf ′

3(bin(x
∗)) = 1, which means that there exists a x̂ (i.e. bin(x∗)) such that

cnf ′
3(x̂) = 1. From this we can conclude that z ∈ 3SAT .

Since:

• q(z) can be computed in polynomial time;
• z ∈ 3SAT =⇒ q(z) ∈ U -ATT∞;
• q(z) ∈ U -ATT =⇒ z ∈ 3SAT .

we can conclude that 3SAT ≤ U -ATT∞.

B.3 PROOF OF COROLLARY 1.1

B.3.1 U -ATTp ∈ NP

The proof is identical to the one for U -ATT∞.

B.3.2 U -ATTp IS NP -HARD

The proof that q(z) ∈ U -ATTp =⇒ z ∈ 3SAT is very similar to the one for U -ATT∞. Since
q(z) ∈ U -ATTp, we know that ∃x∗ ∈ Bp(x

(s), ε) \ {x(s)}.f(x∗) = 1, which means that there
exists a x̂ (i.e. bin(x∗)) such that cnf ′

3(x̂) = 1. From this we can conclude that z ∈ 3SAT .

The proof that z ∈ 3SAT =⇒ q(z) ∈ U -ATTp is slightly different, due to the fact that since
x∗ ̸∈ Bp(x

(s), 1
2 ) we need to use a different input to prove that ∃x′ ∈ Bp(x

(s)).f(x′) = 1.

Let 0 < p < ∞. Given a positive integer n and a real 0 < p < ∞, let ρp,n(r) be a positive minorant
of the L∞ norm of a vector on the Lp sphere of radius r. For example, for n = 2, p = 2 and r = 1,
any positive value less than or equal to

√
2
2 is suitable. Note that, for 0 < p < ∞ and n, r > 0,

ρp,n(r) < r.

Let z ∈ 3SAT . Therefore ∃x∗ ∈ {0, 1}n such that cnf3(z)(x∗) = 1. Let x∗∗ be defined as:

x∗∗
i =

{
1
2 − ρp,n

(
1
2

)
x∗
i = 0

1
2 + ρp,n

(
1
2

)
x∗
i = 1

(28)

By construction, x∗∗ ∈ Bp

(
x(s), ρp,n

(
1
2

))
. Additionally, bin(x∗∗) = x∗, and since we know that

z is true for the variable assignment x∗, we can conclude that f(x∗∗) = 1, which means that x∗∗ is
a valid solution for Equation (22). From this we can conclude that q(z) ∈ U -ATTp.
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B.4 PROOF OF COROLLARY 1.2

The proof is identical to the proof of Theorem 1 (for p = ∞) and Corollary 1.1 (for 0 < p < ∞),
with the exception of requiring f(x′) = 1.

B.5 PROOF OF COROLLARY 1.3

The proof that attacking a polynomial-time classifier is in NP is the same as that for Theorem 1.

Attacking a polynomial-time classifier is NP -hard due to the fact that the ReLU networks defined in
the proof of Theorem 1 are polynomial-time classifiers. Since attacking a general polynomial-time
classifier is a generalization of attacking a ReLU polynomial-time classifier, the problem is NP -hard.

C PROOF OF THEOREM 2

Proving that U -ATTp(f) ∈ NPA means proving that it can be solved in polynomial time by a
non-deterministic Turing machine with an oracle that can solve a problem in A. Since Zf ∈ A, we
can do so by picking a non-deterministic Turing machine with access to an oracle that solves Zf . We
then generate non-deterministically the adversarial example and return the output of the oracle. Due
to the FSFP assumption, we know that the size of this input is the same as the size of the starting
point, which means that it can be generated non-deterministically in polynomial time. Therefore,
U -ATTp(f) ∈ NPA.

C.1 PROOF OF COROLLARY 2.1

Follows directly from Theorem 2 and the definition of ΣP
n .

D PROOF OF THEOREM 3

D.1 PRELIMINARIES

ΠP
2 3SAT is the set of all z such that:

∀x̂∃ŷ.R(x̂, ŷ) (29)

where R(x̂, ŷ) = cnf3(z)(x̂1, . . . , x̂n, ŷ1, . . . , ŷn).

Stockmeyer (1976) showed that Π23SAT is ΠP
2 -complete. Therefore, coΠ23SAT , which is defined

as the set of all z such that:
∃x̂∀ŷ¬R(x̂, ŷ) (30)

is ΣP
2 -complete.

D.2 PL-ROB∞ ∈ ΣP
2

PL-ROB∞ ∈ ΣP
2 if there exists a problem A ∈ P and a polynomial q such that ∀Γ = ⟨x, ε, fθ, vf ⟩:

Γ ∈ PL-ROB ⇐⇒ ∃y.|y| ≤ q(|Γ|) ∧ (∀z.(|z| ≤ q(|Γ|) =⇒ ⟨Γ,y, z⟩ ∈ A)) (31)

This can be proven by setting y = θ′, z = x′ and A as the set of triplets ⟨Γ,θ′,x′⟩ such that all of
the following are true:

• vf (θ
′) = 1;

• ∥x− x′∥∞ ≤ ε;

• fθ(x) = fθ(x
′).

Since all properties can be checked in polynomial time, A ∈ P and thus PL-ROB∞ ∈ ΣP
2 .
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D.3 PL-ROB∞ IS ΣP
2 -HARD

We will prove that PL-ROB∞ is ΣP
2 -hard by showing that coΠ23SAT ≤ PL-ROB∞.

Let nx̂ be the length of x̂ and let nŷ be the length of ŷ.

Given a set z of 3CNF clauses, we construct the following query q(z) for PL-ROB:

q(z) = ⟨x(s),
1

2
, fθ, vf ⟩ (32)

where x(s) =
(
1
2 , . . . ,

1
2

)
is a vector with nŷ elements and vf (θ) = 1 ⇐⇒ θ ∈ {0, 1}nx̂ . Note

that θ′ ∈ {0, 1}nx̂ can be checked in polynomial time w.r.t. the size of the input.

Truth Values We will encode the truth values of x̂ as a set of binary parameters θ′, while we will
encode the truth values of ŷ using x′ through the same technique mentioned in Appendix B.2.

Definition of fθ We define fθ as follows:

• fθ,1(x) = and(not(isx(s)(x)), cnf ′′
3 (θ,x)), where cnf ′′

3 is defined over θ and bin(x) us-
ing the same technique mentioned in Appendix B.2 and isx(s)(x) = andi=1,...,neq(xi,

1
2 );

• fθ,0(x) = not(fθ,1(x)).

Note that fθ(x(s)) = 0 for all choices of θ. Additionally, fθ is designed such that:

∀x′ ∈ B∞

(
x(s),

1

2

)
\ {x(s)}.∀θ′. (vf (θ

′) = 1 =⇒ (fθ′(x′) = 1 ⇐⇒ R(θ′, bin(x′)))) (33)

Lemma 3. z ∈ coΠ23SAT =⇒ q(z) ∈ PL-ROB∞

Proof. Since z ∈ coΠ23SAT , there exists a Boolean vector x∗ such that ∀ŷ.¬R(x∗, ŷ).

Then both of the following statements are true:

• vf (x
∗) = 1, since x∗ ∈ {0, 1}nx̂ ;

• ∀x′ ∈ B∞(x(s), ε).fx∗(x′) = 0, since fx∗(x′) = 1 ⇐⇒ R(x∗, bin(x′));

Therefore, x∗ is a valid solution for Equation (3) and thus q(z) ∈ PL-ROB∞.

Lemma 4. q(z) ∈ PL-ROB∞ =⇒ z ∈ coΠ23SAT

Proof. Since q(z) ∈ PL-ROB∞, there exists a θ∗ such that:

vf (θ) = 1 ∧ ∀x′ ∈ B∞(x(s), ε).fθ∗(x′) = fθ∗(x(s)) (34)

Note that θ∗ ∈ {0, 1}nx̂ , since vf (θ
∗) = 1. Moreover, ∀ŷ.¬R(θ∗, ŷ), since bin(ŷ) = ŷ and

fθ∗(ŷ) = 1 ⇐⇒ R(θ∗, ŷ).

Therefore, θ∗ is a valid solution for Equation (30), which implies that z ∈ coΠ23SAT .

Since:

• q(z) can be computed in polynomial time;

• z ∈ coΠ23SAT =⇒ q(z) ∈ PL-ROB∞;

• q(z) ∈ PL-ROB∞ =⇒ z ∈ coΠ23SAT .

we can conclude that coΠ23SAT ≤ PL-ROB∞.
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D.4 PROOF OF COROLLARY 3.1

D.4.1 PL-ROBp ∈ ΣP
2

The proof is identical to the one for PL-ROB∞.

D.4.2 PL-ROBp IS ΣP
2 -HARD

We follow the same approach used in the proof for Corollary 1.1.

Proof of q(z) ∈ PL-ROBp =⇒ z ∈ coΠ23SAT If q(z) ∈ PL-ROBp, it means that
∃θ∗.

(
vf (θ

∗) = 1 =⇒ ∀x′ ∈ Bp

(
x(s), 1

2

)
.f(x′) = 0

)
. Then ∀ŷ, there exists a corresponding

input y∗∗ ∈ Bp

(
x(s), 1

2

)
defined as follows:

y∗∗i =

{
1
2 − ρp,n

(
1
2

)
ŷi = 0

1
2 + ρp,n

(
1
2

)
ŷi = 1

(35)

such that e(y)(y∗∗) = ŷ. Since y∗∗ ∈ Bp

(
x(s), 1

2

)
, cnf ′′

3 (θ
∗, bin(y∗∗)) = 0, which means that

R(θ∗, ŷ) is false. In other words, ∃θ∗.∀ŷ.¬R(θ∗, ŷ), i.e. z ∈ coΠ23SAT .

Proof of z ∈ coΠ23SAT =⇒ q(z) ∈ PL-ROBp The proof is very similar to the corresponding
one for Theorem 3.

If z ∈ coΠ23SAT , then ∃x̂∗.∀ŷ.¬R(x̂, ŷ). Set θ∗ = x̂∗. We know that f∗
θ (x

(s)) = 0. We also
know that ∀x′ ∈ Bp

(
x(s), 1

2

)
\ {x(s)}. (fθ∗(x) = 1 ⇐⇒ cnf ′′

3 (θ
∗,x′) = 1). In other words,

∀x′ ∈ Bp

(
x(s), 1

2

)
\ {x(s)}. (fθ∗(x′) = 1 ⇐⇒ R(θ∗, bin(x′))). Since R(θ∗, ŷ) is false for all

choices of ŷ, ∀x′ ∈ Bp

(
x(s), 1

2

)
\ {x(s)}.fθ∗(x′) = 0. Given the fact that fθ∗(x(s)) = 0, we can

conclude that θ∗ satisfies Equation (3).

D.5 PROOF OF COROLLARY 3.2

Similarly to the proof of Corollary 1.3, it follows from the fact that ReLU classifiers are polynomial-
time classifiers (w.r.t. the size of the tuple).

E PROOF OF THEOREM 4

There are two cases:

• ∀x′ ∈ Bp(x, ε).f(x
′) = f(x): then the attack fails because f(x) ̸∈ C(x);

• ∃x′ ∈ Bp(x, ε).f(x
′) ̸= f(x): then due to the symmetry of the Lp norm x ∈ Bp(x

′, ε).
Since f(x) ̸= f(x′), x is a valid adversarial example for x′, which means that f(x′) = ⋆.
Since ⋆ ̸∈ C(x), the attack fails.

E.1 PROOF OF COROLLARY 4.1

Assume that ∀x.||x||r ≥ η||x||p and fix x(s) ∈ X . Let x′ ∈ Br(x
(s), ηε) be an adversarial example.

Then ||x′ − x(s)||r ≤ ηε, and thus η||x′ − x(s)||p ≤ ηε. Dividing by η, we get ||x′ − x(s)||p ≤ ε,
which means that x(s) is a valid adversarial example for x′ and thus x′ is rejected by p-CA.

We now proceed to find the values of η.

E.1.1 1 ≤ r < p

We will prove that ||x||r ≥ ||x||p.
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Case p < ∞ Consider e = x
||x||p . e is such that ||e||p = 1 and for all i we have |ei| ≤ 1. Since

r < p, for all 0 ≤ t ≤ 1 we have |t|p ≤ |t|r. Therefore:

||e||r =

(
n∑

i=1

|ei|r
)1/r

≥
(

n∑
i=1

|ei|p
)1/r

= ||e||p/rp = 1 (36)

Then, since ||e||r ≥ 1:
||x||r = || ||x||pe||r = ||x||p||e||r ≥ ||x||p (37)

Case p = ∞ Since ||x||r ≥ ||x||p for all r < p and since the expressions on both sides of the
inequality are compositions of continuous functions, as p → ∞ we get ||x||r ≥ ||x||∞.

E.1.2 r > p

We will prove that ||x||r ≥ n
1
r− 1

p ||x||p.

Case r < ∞ Hölder’s inequality states that, given α, β ≥ 1 such that 1
α + 1

β = 1 and given f and
g, we have:

||fg||1 ≤ ||f ||α||g||β (38)

Setting α = r
r−p , β = r

p , f = (1, . . . , 1) and g = (xp
1, . . . , x

p
n), we know that:

• ||fg||1 =
∑n

i=1(1 · x
p
i ) = ||x||pp;

• ||f ||α = (
∑n

i=1 1)
1/α

= n1/α;

• ||g||β =
(∑

i=1 x
pr/p
i

)p/r
= (
∑

i=1 x
r
i )

p/r
= ||x||pr .

Therefore ||x||pp ≤ n1/α||x||pr . Raising both sides to the power of 1/p, we get ||x||p ≤ n1/(pα)||x||r.
Therefore:

||x||p ≤ n(r−p)/(pr)||x||r = n
1
p− 1

r ||x||r (39)

Dividing by n
1
p− 1

r we get:
n

1
r− 1

p ||x||p ≤ ||x||r (40)

Case r = ∞ Since the expressions on both sides of the inequality are compositions of continuous
functions, as r → ∞ we get ||x||∞ ≥ n− 1

p ||x||p.

F PROOF OF THEOREM 5

F.1 CCA∞ ∈ ΣP
2

CCA∞ ∈ ΣP
2 iff there exists a problem A ∈ P and a polynomial p such that ∀Γ = ⟨x, ε, ε′, C, f⟩:

Γ ∈ CCA∞ ⇐⇒ ∃y.|y| ≤ p (|Γ|) ∧ (∀z.(|z| ≤ p(|Γ|) =⇒ ⟨Γ,y, z⟩ ∈ A)) (41)

This can be proven by setting y = x′,z = x′′ and A as the set of all triplets ⟨Γ,x′,x′′⟩ such that all
of the following are true:

• ∥x− x′∥∞ ≤ ε′

• f(x′) ∈ C(x)

• ∥x′′ − x′∥∞ ≤ ε

• f(x′′) = f(x′)

Since all properties can be checked in polynomial time, A ∈ P .
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F.2 CCA∞ IS ΣP
2 -HARD

We will show that CCA∞ is ΣP
2 -hard by proving that coΠ23SAT ≤ CCA∞.

First, suppose that the length of x̂ and ŷ differ. In that case, we pad the shortest one with additional
variables that will not be used.

Let n be the maximum of the lengths of x̂ and ŷ.

Given a set z of 3CNF clauses, we construct the following query q(z) for CCA∞:

q(z) = ⟨x(s), γ,
1

2
, Cu, h⟩ (42)

where 1
4 < γ < 1

2 and x(s) =
(
1
2 , . . . ,

1
2

)
is a vector with n elements. Verifying q(z) ∈ CCA∞ is

equivalent to checking:

∃x′ ∈ B

(
xs,

1

2

)
.

(
h(x′) ̸= h(x) ∧

(
∀x′′ ∈ B

(
x′,

1

4

)
. h(x′′) = h(x′)

))
(43)

Note that x′ ∈ [0, 1]n.

Truth Values We will encode the truth values of x̂ and ŷ as follows:

x′′
i ∈

(
0,

1

4

)
⇐⇒ x̂i = 0 ∧ ŷi = 0

x′′
i ∈

(
1

4
,
1

2

)
⇐⇒ x̂i = 0 ∧ ŷi = 1

x′′
i ∈

(
1

2
,
3

4

)
⇐⇒ x̂i = 1 ∧ ŷi = 0

x′′
i ∈

(
3

4
, 1

)
⇐⇒ x̂i = 1 ∧ ŷi = 1

(44)

Let ex̂i(x) = gt
(
xi,

1
2

)
. Let:

eŷi(x) = or

(
open

(
xi,

1

4
,
1

2

)
, open

(
xi,

3

4
, 1

))
(45)

Note that ex̂i(x′′
i ) returns the truth value of x̂i and eŷi(x

′′
i ) returns the truth value of ŷi (as long as

the input is within one of the ranges described in Equation (44)).

Invalid Encodings All the encodings other than the ones described in Equation (44) are not valid.
We define invF as follows:

invF (x) = ori=1,...,nor(out(xi), edge(xi)) (46)

where out(xi) = or(leq(xi, 0), geq(xi, 1)) and

edge(xi) = or

(
eq

(
xi,

1

4

)
, eq

(
xi,

1

2

)
, eq

(
xi,

3

4

))
(47)

On the other hand, we define invT as follows:

invT (x) = ori=1,...,neq

(
xi,

1

2

)
(48)
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Definition of h Let g be a Boolean formula defined over e(x)(x) and e(y)(x) that returns the value
of R (using the same technique as cnf ′

3).

We define h as a two-class classifier, where:

h1(x) = or(invT (x), and(not(invF (x)), g(x))) (49)

and h0(x) = not(h1(x)).

Note that:

• If xi =
1
2 for some i, the top class is 1; therefore, h(x(s)) = 1;

• Otherwise, if x is not a valid encoding, the top class is 0;

• Otherwise, the top class is 1 if R(e(x)(x), e(y)(x)) is true and 0 otherwise.
Lemma 5. z ∈ coΠ23SAT =⇒ q(z) ∈ CCA∞

Proof. If z ∈ coΠ23SAT , then there exists a Boolean vector x∗ such that ∀ŷ.¬R(x∗, ŷ).

We now prove that setting x′ = x∗ satisfies Equation (5). First, note that h(x∗) = 0, which satisfies
h(x′) ̸= h(x). Then we need to verify that ∀x′′ ∈ B∞(x∗, γ).h(x) = 0.

For every x′′ ∈ B∞(x∗, γ), we know that x′′ ∈ ([−γ, γ] ∪ [1− γ, 1 + γ])
n. There are thus two

cases:

• x′′ is not a valid encoding, i.e. x′′
i ≤ 0∨x′′

i ≥ 1∨x′′
i ∈

{
1
4 ,

3
4

}
for some i. Then h(x′′) = 0.

Note that, since γ < 1
2 , 1

2 ̸∈ [−γ, γ] ∪ [1− γ, 1 + γ], so it is not possible for x′′ to be an
invalid encoding that is classified as 1;

• x′′ is a valid encoding. Then, since γ < 1
2 , e(x)(x′′) = x∗. Since h(x′′) = 1 iff

R(e(x)(x′′), e(y)(x′′)) is true and since R(x∗, ŷ) is false for all choices of ŷ, h(x′′) = 0.

Therefore, x∗ satisfies Equation (43) and thus q(z) ∈ CCA∞.

Lemma 6. q(z) ∈ CCA∞ =⇒ z ∈ coΠ23SAT

Proof. Since q(z) ∈ CCA, there exists a x∗ ∈ B
(
x(s), 1

2

)
such that h(x∗) ̸= h(x(s)) and

∀x′′ ∈ B∞(x∗, γ).h(x′′) = h(x′). We will prove that e(x)(x∗) is a solution to coΠ23SAT .

Since h(x(s)) = 1, h(x∗) = 0, which means that ∀x′′ ∈ B∞(x∗, γ).h(x′′) = 0.

We know that x∗ ∈ B∞
(
x(s), 1

2

)
= [0, 1]n. We first prove by contradiction that x∗ ∈(

[0, 1
2 − γ) ∪ ( 12 + γ, 1]

)n
. If x∗

i ∈ [ 12 − γ, 1
2 + γ] for some i, then the vector x(w) defined as

follows:

x
(w)
j =

{
1
2 i = j

x∗
i otherwise

(50)

is such that x(w) ∈ B∞(x∗
i , γ) and h

(
x(w)

)
= 1 (since invT

(
x(w)

)
= 1). This contradicts the fact

that ∀x′′ ∈ Bp(x
∗, γ).h(x) = 0. Therefore, x∗ ∈

(
[0, 1

2 − γ) ∪ ( 12 + γ, 1]
)n

.

As a consequence, ∀x′′ ∈ B∞(x∗, γ).e(x)(x′′) = e(x)(x∗).

We now prove that ∀ŷ∗.∃x′′∗ ∈ B∞(x∗, γ) such that e(y)(x′′∗) = ŷ∗. We can construct such x′′∗

as follows. For every i:

• If e(x)(x∗) = 0 and e(y)(x∗) = 0, set x′′∗
i equal to a value in

(
0, 1

4

)
;

• If e(x)(x∗) = 0 and e(y)(x∗) = 1, set x′′∗
i equal to a value in

(
1
4 , γ
)
;

• If e(x)(x∗) = 1 and e(y)(x∗) = 0, set x′′∗
i equal to a value in

(
1− γ, 3

4

)
;
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• If e(x)(x∗) = 1 and e(y)(x∗) = 1, set x′′∗
i equal to a value in

(
3
4 , 1
)
.

By doing so, we have obtained a x′′∗ such that x′′∗ ∈ B∞(x∗, γ) and e(y)(x′′∗) = ŷ∗.

Since:

• e(x)(x′′) = e(x)(x∗) for all x′′;

• h(x′′) = 0 for all x′′;

• h(x′′) = 1 iff R(e(x)(x′′)), e(y)(x′′)) is true;

R(e(x)(x∗), ŷ∗) is false for all choices of ŷ∗. In other words, x̂∗ is a solution to Equation (30) and
thus z ∈ coΠ23SAT .

Since:

• q(z) can be computed in polynomial time;
• z ∈ coΠ23SAT =⇒ q(z) ∈ CCA∞;
• q(z) ∈ CCA∞ =⇒ z ∈ coΠ23SAT ;

we can conclude that coΠ23SAT ≤ CCA.

F.3 PROOF OF COROLLARY 5.1

The proof of CCAp ∈ ΣP
2 is the same as the one for Theorem 5.

For the hardness proof, we follow a more involved approach compared to those for Corollaries 1.1
and 3.1.

First, let ερp,n
be the value of epsilon such that ρp,n

(
ερp,n

)
= 1

2 . In other words, Bp(x
(s), ερp,n

) is
an Lp ball that contains [0, 1]n, while the intersection of the corresponding Lp sphere and [0, 1]n is
the set {0, 1}n (for p < ∞).

Let inv′T (x) be defined as follows:

inv′T (x) = ori=1,...,n

(
or

(
eq

(
xi,

1

2

)
, leq(xi, 0), geq(xi, 1)

))
(51)

Let inv′F (x) be defined as follows:

inv′F (x) = ori=1,...,n

(
or

(
eq

(
xi,

1

4

)
, eq

(
xi,

3

4

)))
(52)

We define h′ as follows:

h′
1 = or(inv′T (x), and(not(inv

′
F (x)), g(x)) (53)

with h′
0(x) = not(h′

1(x)).

Note that:

• If xi ∈ (−∞, 0] ∪ { 1
2} ∪ [1,∞) for some i, then the top class is 1;

• Otherwise, if x is not a valid encoding, the top class is 0;

• Otherwise, the top class is 1 if R(e(x)(x), e(y)(x)) is true and 0 otherwise.

Finally, let 1
8 < γ′ < 1

4 . Our query is thus:

q(z) = ⟨x(s), γ′,
1

2
, Cu, h

′⟩ (54)
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Proof of z ∈ coΠ23SAT =⇒ q(z) ∈ CCAp If z ∈ coΠ23SAT , then ∃x∗.∀ŷ.¬R(x∗, ŷ). Let
x∗∗ be defined as follows:

x∗∗
i =

{
1
4 x∗

i = 0
3
4 x∗

i = 1
(55)

Note that:

• x∗∗ ∈ Bp

(
x(s), ερp,n

)
;

• e(x)(x∗∗) = x∗;
• f(x∗∗) = 0, since x∗∗ ∈ { 1

4 ,
3
4}n;

• Since γ′ < 1
4 , there is no i such that ∃x′′ ∈ Bp(x

∗∗, γ′).x′′
i ∈ (−∞, 0] ∪

{
1
2

}
∪ [1,∞);

• For all x′′ ∈ Bp(x
∗∗, γ′):

– If x′′ is not a valid encoding (i.e. x′′
i ∈ { 1

4 ,
3
4} for some i), then h′(x′′) = 0;

– Otherwise, h′(x′′) = 1 iff R(e(x)(x′′), e(y)(x′′)) is true.

Therefore, since ∀ŷ.¬R(x∗, ŷ), we know that ∀x′′ ∈ Bp(x
∗∗, γ′).f(x′′) = 0. In other words, x∗∗

is a solution to Equation (5).

Proof of q(z) ∈ CCAp =⇒ z ∈ coΠ23SAT If q(z) ∈ CCAp, then we know
that ∃x∗ ∈ Bp

(
x(s), ερp,n

)
.
(
h′(x∗) ̸= h(x(s)) ∧ ∀x′′ ∈ Bp(x

∗, γ′).h′(x′′) = h′(x∗)
)
. In other

words, ∃x∗ ∈ Bp

(
x(s), ερp,n

)
. (h′(x∗) = 0 ∧ ∀x′′ ∈ Bp(x

∗, γ′).h′(x′′) = 0).

We will first prove by contradiction that x∗ ∈
(
(γ′, 1

2 − γ′) ∪ ( 12 + γ′, 1− γ′)
)n

.

First, suppose that x∗
i ∈ (−∞, 0) ∪ (1,∞) for some i. Then h′(x∗) = 0 due to the fact that

invT (x
∗) = 1.

Second, suppose that x∗
i ∈ [0, γ′] ∪ [1− γ′, 1] for some i. Then x(w), defined as follows:

x
(w)
j =


0 i = j ∧ x∗

i ∈ [0, γ′]
1 i = j ∧ x∗

i ∈ [1− γ′, 1]
x∗
j j ̸= i

(56)

is such that x(w) ∈ Bp(x
∗, γ′) but h′(x(w)) = 1.

Finally, suppose that x∗
i ∈ [ 12 − γ, 1

2 + γ] for some i. Then x(w), defined as follows:

x
(w)
j =

{
1
2 i = j

x∗
j otherwise

(57)

is such that x(w) ∈ Bp(x
∗, γ′) but h′(x(w)) = 1.

Therefore, x∗ ∈
(
(γ′, 1

2 − γ′) ∪ ( 12 + γ′, 1− γ′)
)n

.

As a consequence ∀x′′ ∈ Bp(x
∗, γ′).e(x)(x′′) = e(x)(x′).

From this, due to the fact that γ′ > 1
8 and that p > 0, we can conclude that for all ŷ, there exists a

x′′ ∈ Bp(x
∗, γ′) such that:

x′′
i ∈

(
0,

1

4

)
for x∗

i ∈
(
γ′,

1

2
− γ′

)
, ŷi = 0

x′′
i ∈

(
1

4
,
1

2

)
for x∗

i ∈
(
γ′,

1

2
− γ′

)
, ŷi = 1

x′′
i ∈

(
1

2
,
3

4

)
for x∗

i ∈
(
1

2
+ γ′, 1− γ′

)
, ŷi = 0

x′′
i ∈

(
3

4
, 1

)
for x∗

i ∈
(
1

2
+ γ′, 1− γ′

)
, ŷi = 1

(58)
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In other words, for all ŷ there exists a corresponding x′′ ∈ Bp(x
∗, γ′) such that e(y)(x′′) = ŷ.

Therefore, since h′(x′′) = 1 iff R(e(x)(x′′), e(y)(x′′)) is true and since ∀x′′ ∈ Bp(x
∗, γ′).h′(x′′) =

0, we can conclude that ∀ŷ.¬R(e(x)(x∗), ŷ). In other words, z ∈ coΠ23SAT .

F.4 PROOF OF COROLLARY 5.2

Similarly to the proof of Corollary 1.3, it follows from the fact that ReLU classifiers are polynomial-
time classifiers (w.r.t. the size of the tuple).

G FULL EXPERIMENTAL SETUP

All our code is written in Python + PyTorch (Paszke et al., 2019), with the exception of the MIPVerify
interface, which is written in Julia. When possible, most experiments were run in parallel, in order to
minimize execution times.

Models All models were trained using Adam (Kingma & Ba, 2014) and dataset augmentation.
We performed a manual hyperparameter and architecture search to find a suitable compromise
between accuracy and MIPVerify convergence. The process required approximately 4 months. When
performing adversarial training, following (Madry et al., 2018) we used the final adversarial example
found by the Projected Gradient Descent attack, instead of the closest. To maximize uniformity, we
used for each configuration the same training and pruning hyperparameters (when applicable), which
we report in Table 1. We report the chosen architectures in Tables 2 and 3, while Table 4 outlines
their accuracies and parameter counts.

UG100 The first 250 samples of the test set of each dataset were used for hyperparameter tuning
and were thus not considered in our analysis. For our G100 dataset, we sampled uniformly across
each ground truth label and removed the examples for which MIPVerify crashed. Table 5 details the
composition of the dataset by ground truth label.

Attacks For the Basic Iterative Method (BIM), the Fast Gradient Sign Method (FGSM) and the
Projected Gradient Descent (PGD) attack, we used the implementations provided by the AdverTorch
library (Ding et al., 2019). For the Brendel & Bethge (B&B) attack and the Deepfool (DF) attack, we
used the implementations provided by the Foolbox Native library (Rauber et al., 2020). The Carlini
& Wagner and the uniform noise attacks were instead implemented by the authors. We modified
the attacks that did not return the closest adversarial example found (i.e. BIM, Carlini & Wagner,
Deepfool, FGSM and PGD) to do so. For the attacks that accept ε as a parameter (i.e. BIM, FGSM,
PGD and uniform noise), for each example we first performed an initial search with a decaying value
of ε, followed by a binary search. In order to pick the attack parameters, we first selected the strong
set by performing an extensive manual search. The process took approximately 3 months. We then
modified the strong set in order to obtain the balanced parameter set. We report the parameters of
both sets (as well as the parameters of the binary and ε decay searches) in Table 6.

MIPVerify We ran MIPVerify using the Julia library MIPVerify.jl and Gurobi (Gurobi Optimization,
LLC, 2022). Since MIPVerify can be sped up by providing a distance upper bound, we used the
same pool of adversarial examples utilized throughout the paper. For CIFAR10 we used the strong
parameter set, while for MNIST we used the strong parameter set with some differences (reported in
Table 7). Since numerical issues might cause the distance upper bound computed by the heuristic
attacks to be slightly different from the one computed by MIPVerify, we ran a series of exploratory
runs, each with a different correction factor (1.05, 1.25, 1.5, 2), and picked the first factor that caused
MIPVerify to find a feasible (but not necessarily optimal) solution. If the solution was not optimal,
we then performed a main run with a higher computational budget. We provide the parameters of
MIPVerify in Table 8. We also report in Table 9 the percentage of tight bounds for each combination.
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Table 1: Training and pruning hyperparameters.

Parameter Name Value
MNIST CIFAR10

Common Hyperparameters

Epochs 425
Learning Rate 1e-4
Batch Size 32 128
Adam β (0.9, 0.999)
Flip % 50%
Translation Ratio 0.1
Rotation (deg.) 15°

Adversarial Hyperparameters (Adversarial and ReLU only)

Attack PGD
Attack #Iterations 200
Attack Learning Rate 0.1
Adversarial Ratio 1
ε 0.05 2/255

ReLU Hyperparameters (ReLU only)

L1 Regularization Coeff. 2e-5 1e-5
RS Loss Coeff. 1.2e-4 1e-3
Weight Pruning Threshold 1e-3
ReLU Pruning Threshold 90%

Table 2: MNIST Architectures.

(a) MNIST A

Input
Flatten

Linear (in = 784, out = 100)
ReLU

Linear (in = 100, out = 10)
Output

(b) MNIST B

Input
Conv2D (in = 1, out = 4, 5x5 kernel, stride = 3, padding = 0)

ReLU
Flatten

Linear (in = 256, out = 10)
Output

(c) MNIST C

Input
Conv2D (in = 1, out = 8, 5x5 kernel, stride = 4, padding = 0)

ReLU
Flatten

Linear (in = 288, out = 10)
Output
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Table 3: CIFAR10 architectures.

(a) CIFAR10 A

Input
Conv2D (in = 3, out = 8, 3x3 kernel, stride = 2, padding = 0)

ReLU
Flatten

Linear (in = 1800, out = 10)
Output

(b) CIFAR10 B

Input
Conv2D (in = 3, out = 20, 5x5 kernel, stride = 4, padding = 0)

ReLU
Flatten

Linear (in = 980, out = 10)
Output

(c) CIFAR10 C

Input
Conv2D (in = 3, out = 8, 5x5 kernel, stride = 4, padding = 0)

ReLU
Conv2D (in = 8, out = 8, 3x3 kernel, stride = 2, padding = 0)

ReLU
Flatten

Linear (in = 72, out = 10)
Output

Table 4: Parameter counts and accuracies of trained models.

Architecture #Parameters Training Accuracy

MNIST A 79510
Standard 95.87%
Adversarial 94.24%
ReLU 93.57%

MNIST B 2674
Standard 89.63%
Adversarial 84.54%
ReLU 83.69%

MNIST C 3098
Standard 90.71%
Adversarial 87.35%
ReLU 85.67%

CIFAR10 A 18234
Standard 53.98%
Adversarial 50.77%
ReLU 32.85%

CIFAR10 B 11330
Standard 55.81%
Adversarial 51.35%
ReLU 37.33%

CIFAR10 C 1922
Standard 47.85%
Adversarial 45.19%
ReLU 32.27%
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Table 5: Ground truth labels of the UG100 dataset.

(a) MNIST

Ground Truth Count %
0 219 9.77%
1 228 10.17%
2 225 10.04%
3 225 10.04%
4 225 10.04%
5 220 9.82%
6 227 10.13%
7 221 9.86%
8 225 10.04%
9 226 10.08%

(b) CIFAR10

Ground Truth Count %
Airplane 228 10.05%
Automobile 227 10.00%
Bird 228 10.05%
Cat 228 10.05%
Deer 226 9.96%
Dog 227 10.00%
Frog 227 10.00%
Horse 227 10.00%
Ship 225 9.92%
Truck 226 9.96%

H QUANTILE-BASED CALIBRATION

The buffer function in CA can be empirically calibrated so as to control the chance of false positives
(i.e. inputs wrongly reported as not robust) and false negatives (i.e. non-robust inputs reported as
being robust).

Given the strong correlation that we observed between the distance of heuristic adversarial examples
and the true decision boundary distance, using a linear model for bα seems a reasonable choice.
Under this assumption, the buffer value depends only on the distance between the original example
and the adversarial one, i.e. on d(x, af,θ(x)). This property allows us to rewrite the main check
performed by CA as:

||x− af (x))||p − b(x) = α1||x− af,θ(x)||p + α0 ≤ ε (59)

The parameters α1, α0 can then be obtained via quantile regression (Koenker & Bassett Jr, 1978) by
using the true decision boundary distance (i.e. d∗p(x)) as a target.

The approach provides a simple, interpretable mechanism to control how conservative the detection
check should be: with a small quantile, CA will tend to underestimate the decision boundary distance,
leading to fewer missed detections, but more false alarms; using a high quantile will lead to the
opposite behavior.

We test this type of buffer using 5-fold cross-validation on each configuration. Specifically, we
calibrate the model using 1%, 50% and 99% as quantiles. Tables 10 to 13 provide a comparison
between the expected quantile and the average true quantile of each configuration on the validation
folds. Additionally, we plot in Figures 3 to 8 the mean F1 score in relation to the choice of ε.

I ADDITIONAL RESULTS

Tables 14 to 17 detail the performance of the various attack sets on every combination, while Figures 9
to 14 showcase the relation between the true and estimated decision boundary distances.

J ABLATION STUDY

We outline the best attack pools by size in Tables 18 to 21. Additionally, we report the performance
of pools composed of individual attacks in Tables 22 to 25. Finally, we detail the performance of
dropping a specific attack in Tables 26 to 29.

K FAST PARAMETER SET TESTS

We list the chosen parameter sets for Fast-100, Fast-1k and Fast-10k in Table 30. We plot the
difference between the distance of the closest adversarial examples and the true decision boundary
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Table 6: Parameters of heuristic attacks.

Attack Parameter Name MNIST CIFAR10
Strong Balanced Strong Balanced

BIM

Initial Search Factor 0.75
Initial Search Steps 30
Initial Search Factor 0.75
Binary Search Steps 20
#Iterations 2k 200 5k 200
Learning Rate 1e-3 1e-2 1e-5 1e-3

Brendel & Bethge

Initial Attack Blended Noise
Overshoot 1.1
LR Decay 0.75
LR Decay Every n Steps 50
#Iterations 5k 200 5k 200
Learning Rate 1e-3 1e-3 1e-5 1e-3
Momentum 0.8
Initial Directions 1000
Init Steps 1000

Carlini & Wagner

Minimum τ 1e-5
Initial τ 1
τ Factor 0.95 0.9 0.99 0.9
Initial Const 1e-5
Const Factor 2
Maximum Const 20
Reduce Const False
Warm Start True
Abort Early True
Learning Rate 1e-2 1e-2 1e-5 1e-4
Max Iterations 1k 100 5k 100
τ Check Every n Steps 1
Const Check Every n Steps 5
Iter. Check Every n Steps Disabled

Deepfool

#Iterations 5k
Candidates 10
Overshoot 1e-5
Loss Logits

FGSM
Initial Search Factor 0.75
Initial Search Steps 30
Initial Search Factor 0.75
Binary Search Steps 20
Starting ε 1

PGD

Initial Search Factor 0.75
Initial Search Steps 30
Initial Search Factor 0.75
Binary Search Steps 20
#Iterations 5k 200 5k 200
Learning Rate 1e-4 1e-3 1e-4 1e-3
Random Initialization True

Uniform Noise

Initial Search Factor 0.75
Initial Search Steps 30
Initial Search Factor 0.75
Binary Search Steps 20
Runs 8k 200 8k 200
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Table 7: Parameter set used to initialize MIPVerify for MNIST. All other parameters are identical to
the strong MNIST attack parameter set.

Attack Name Parameter Name Value

BIM #Iterations 5k
Learning Rate 1e-5

Brendel & Bethge Learning Rate 1e-3

Carlini & Wagner
Tau Factor 0.99
Learning Rate 1e-3
#Iterations 5k

Table 8: Parameters of MIPVerify.

Parameter Name Value
Exploration Main

Absolute Tolerance 1e-5
Relative Tolerance 1e-10
Threads 1
Timeout (s) 120 7200
Tightening Absolute Tolerance 1e-4
Tightening Relative Tolerance 1e-10
Tightening Timeout (s) 20 240
Tightening Threads 1

Table 9: MIPVerify bound tightness statistics.

Architecture Training % Tight

MNIST A
Standard 95.40%
Adversarial 99.60%
ReLU 82.46%

MNIST B
Standard 74.61%
Adversarial 85.68%
ReLU 75.55%

MNIST C
Standard 86.21%
Adversarial 97.28%
ReLU 95.63%

CIFAR10 A
Standard 81.18%
Adversarial 82.50%
ReLU 92.73%

CIFAR10 B
Standard 56.32%
Adversarial 58.88%
ReLU 81.67%

CIFAR10 C
Standard 100.00%
Adversarial 100.00%
ReLU 100.00%
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Table 10: Expected vs true quantile for MNIST strong with 5-fold cross validation.

Architecture Training Expected Quantile True Quantile

A

Standard
1.00% 0.99±1.02%
50.00% 49.93±2.35%
99.00% 95.60±3.77%

Adversarial
1.00% 1.11±0.53%
50.00% 50.25±1.58%
99.00% 89.84±6.42%

ReLU
1.00% 1.11±0.45%
50.00% 50.02±1.72%
99.00% 91.95±5.64%

B

Standard
1.00% 1.07±0.48%
50.00% 49.80±0.76%
99.00% 97.76±0.71%

Adversarial
1.00% 1.22±1.01%
50.00% 49.88±4.63%
99.00% 98.10±0.36%

ReLU
1.00% 1.04±0.77%
50.00% 49.98±3.17%
99.00% 97.69±1.41%

C

Standard
1.00% 1.07±0.37%
50.00% 50.17±1.64%
99.00% 98.73±0.42%

Adversarial
1.00% 1.05±0.29%
50.00% 49.87±3.58%
99.00% 99.00±0.47%

ReLU
1.00% 1.06±0.67%
50.00% 50.02±1.85%
99.00% 93.99±3.51%
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Table 11: Expected vs true quantile for MNIST balanced with 5-fold cross validation.

Architecture Training Expected Quantile True Quantile

A

Standard
1.00% 1.30±0.79%
50.00% 49.98±3.10%
99.00% 93.99±2.59%

Adversarial
1.00% 0.97±0.40%
50.00% 50.12±1.14%
99.00% 90.44±1.90%

ReLU
1.00% 1.02±0.31%
50.00% 50.02±1.05%
99.00% 95.10±2.82%

B

Standard
1.00% 1.03±0.36%
50.00% 49.98±0.70%
99.00% 98.88±0.45%

Adversarial
1.00% 1.17±0.97%
50.00% 50.17±4.54%
99.00% 98.69±0.59%

ReLU
1.00% 1.04±0.49%
50.00% 50.34±2.49%
99.00% 98.73±0.53%

C

Standard
1.00% 1.07±0.33%
50.00% 49.98±0.91%
99.00% 98.88±0.55%

Adversarial
1.00% 1.10±0.37%
50.00% 50.12±4.15%
99.00% 99.00±0.35%

ReLU
1.00% 1.06±0.67%
50.00% 50.12±2.67%
99.00% 98.62±0.50%
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Table 12: Expected vs true quantile for CIFAR10 strong with 5-fold cross validation.

Architecture Training Expected Quantile True Quantile

A

Standard
1.00% 1.09±0.86%
50.00% 50.09±1.84%
99.00% 98.82±0.63%

Adversarial
1.00% 1.05±0.23%
50.00% 49.86±3.59%
99.00% 98.90±0.62%

ReLU
1.00% 0.97±0.41%
50.00% 49.93±3.42%
99.00% 97.66±1.35%

B

Standard
1.00% 0.98±0.18%
50.00% 49.91±1.18%
99.00% 98.84±0.56%

Adversarial
1.00% 0.91±0.48%
50.00% 50.00±3.58%
99.00% 98.69±0.72%

ReLU
1.00% 1.10±0.72%
50.00% 49.98±2.21%
99.00% 98.85±0.61%

C

Standard
1.00% 0.93±0.60%
50.00% 50.00±1.86%
99.00% 98.71±0.71%

Adversarial
1.00% 1.09±0.17%
50.00% 50.14±2.63%
99.00% 98.27±0.81%

ReLU
1.00% 1.01±0.62%
50.00% 50.02±2.09%
99.00% 96.17±2.40%
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Table 13: Expected vs true quantile for CIFAR10 balanced with 5-fold cross validation.

Architecture Training Expected Quantile True Quantile

A

Standard
1.00% 0.95±0.61%
50.00% 50.32±2.38%
99.00% 98.87±0.59%

Adversarial
1.00% 1.05±0.23%
50.00% 50.23±2.65%
99.00% 98.81±0.96%

ReLU
1.00% 4.14±5.32%
50.00% 50.37±1.02%
99.00% 94.62±2.87%

B

Standard
1.00% 1.07±0.46%
50.00% 49.91±2.78%
99.00% 98.93±0.73%

Adversarial
1.00% 1.13±0.57%
50.00% 50.18±2.05%
99.00% 98.82±0.71%

ReLU
1.00% 1.23±0.38%
50.00% 50.11±0.38%
99.00% 98.77±0.51%

C

Standard
1.00% 0.98±0.50%
50.00% 50.09±2.21%
99.00% 98.85±0.43%

Adversarial
1.00% 1.09±0.26%
50.00% 49.96±2.72%
99.00% 98.86±0.32%

ReLU
1.00% 1.01±0.36%
50.00% 49.93±1.60%
99.00% 97.93±0.63%

Table 14: Performance of the strong attack set on MNIST.

Architecture Training Success Rate Difference % Below 1/255 R2

MNIST A
Standard 100.00% 1.51% 98.16% 0.996
Adversarial 100.00% 2.48% 81.43% 0.994
ReLU 100.00% 2.14% 84.33% 0.995

MNIST B
Standard 100.00% 3.38% 97.36% 0.995
Adversarial 100.00% 4.34% 75.09% 0.991
ReLU 100.00% 4.80% 68.02% 0.992

MNIST C
Standard 100.00% 4.52% 96.92% 0.996
Adversarial 100.00% 8.76% 48.78% 0.981
ReLU 100.00% 4.84% 68.24% 0.988
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(a) MNIST A Standard Strong
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(b) MNIST A Standard Balanced
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(c) MNIST A Adversarial Strong
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(d) MNIST A Adversarial Balanced
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(e) MNIST A ReLU Strong
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(f) MNIST A ReLU Balanced

Figure 3: F1 scores in relation to ε for MNIST A for each considered percentile. For ease of
visualization, we set the graph cutoff at F1 = 0.8. We also mark 8/255 (a common choice for ε) with
a dotted line.
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(a) MNIST B Standard Strong
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Figure 4: F1 scores in relation to ε for MNIST B for each considered percentile. For ease of
visualization, we set the graph cutoff at F1 = 0.8. We also mark 8/255 (a common choice for ε) with
a dotted line.

36



Under review as a conference paper at ICLR 2023

0 2 4 6 8 10 12

·10−2

0.8

0.85

0.9

0.95

1

ε

M
ea
n
F
1

1%

50%

99%

(a) MNIST C Standard Strong

0 2 4 6 8 10 12

·10−2

0.8

0.85

0.9

0.95

1

ε

M
ea
n
F
1

1%

50%

99%

(b) MNIST C Standard Balanced

0 5 10 15 20 25

·10−2

0.8

0.85

0.9

0.95

1

ε

M
ea
n
F
1

1%

50%

99%

(c) MNIST C Adversarial Strong

0 5 10 15 20 25

·10−2

0.8

0.85

0.9

0.95

1

ε

M
ea
n
F
1

1%

50%

99%

(d) MNIST C Adversarial Balanced

0 5 10 15 20 25

·10−2

0.8

0.85

0.9

0.95

1

ε

M
ea
n
F
1

1%

50%

99%

(e) MNIST C ReLU Strong

0 5 10 15 20 25

·10−2

0.8

0.85

0.9

0.95

1

ε

M
ea
n
F
1

1%

50%

99%

(f) MNIST C ReLU Balanced

Figure 5: F1 scores in relation to ε for MNIST C for each considered percentile. For ease of
visualization, we set the graph cutoff at F1 = 0.8. We also mark 8/255 (a common choice for ε) with
a dotted line.
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(f) CIFAR10 A ReLU Balanced

Figure 6: F1 scores in relation to ε for CIFAR10 A for each considered percentile. For ease of
visualization, we set the graph cutoff at F1 = 0.8. We also mark 8/255 (a common choice for ε) with
a dotted line.
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Figure 7: F1 scores in relation to ε for CIFAR10 B for each considered percentile. For ease of
visualization, we set the graph cutoff at F1 = 0.8. We also mark 8/255 (a common choice for ε) with
a dotted line.
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Figure 8: F1 scores in relation to ε for CIFAR10 C for each considered percentile. For ease of
visualization, we set the graph cutoff at F1 = 0.8. We also mark 8/255 (a common choice for ε) with
a dotted line.
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Table 15: Performance of the balanced attack set on MNIST.

Architecture Training Success Rate Difference % Below 1/255 R2

MNIST A
Standard 100.00% 1.68% 97.94% 0.995
Adversarial 100.00% 2.87% 77.64% 0.993
ReLU 100.00% 2.55% 80.86% 0.993

MNIST B
Standard 100.00% 4.09% 96.55% 0.995
Adversarial 100.00% 4.90% 72.60% 0.988
ReLU 100.00% 5.53% 62.96% 0.989

MNIST C
Standard 100.00% 5.43% 96.04% 0.995
Adversarial 100.00% 9.50% 48.43% 0.977
ReLU 100.00% 5.28% 66.96% 0.986

Table 16: Performance of the strong attack set on CIFAR10.

Architecture Training Success Rate Difference % Below 1/255 R2

CIFAR10 A
Standard 100.00% 1.62% 100.00% 0.999
Adversarial 100.00% 4.42% 95.88% 0.995
ReLU 100.00% 0.26% 100.00% 1.000

CIFAR10 B
Standard 100.00% 1.44% 100.00% 0.999
Adversarial 100.00% 3.17% 97.69% 0.997
ReLU 100.00% 1.38% 98.81% 0.999

CIFAR10 C
Standard 100.00% 2.11% 100.00% 0.999
Adversarial 100.00% 3.10% 97.14% 0.996
ReLU 100.00% 2.35% 96.12% 0.990

Table 17: Performance of the balanced attack set on CIFAR10.

Architecture Training Success Rate Difference % Below 1/255 R2

CIFAR10 A
Standard 100.00% 1.71% 100.00% 0.999
Adversarial 100.00% 4.18% 96.57% 0.995
ReLU 100.00% 0.18% 100.00% 1.000

CIFAR10 B
Standard 100.00% 1.53% 100.00% 0.999
Adversarial 100.00% 2.92% 98.46% 0.996
ReLU 100.00% 1.19% 98.94% 0.999

CIFAR10 C
Standard 100.00% 2.06% 100.00% 0.999
Adversarial 100.00% 3.12% 97.28% 0.996
ReLU 100.00% 1.45% 97.44% 0.995

Table 18: Best pools of a given size by success rate and R2 for MNIST strong.

n Attacks Success Rate Difference < 1/255 R2

1 PGD 100.00±0.00% 10.98±4.41% 51.83±27.78% 0.975±0.010
2 C&W, PGD 100.00±0.00% 7.99±3.31% 60.68±25.43% 0.986±0.005
3 B&B, C&W, PGD 100.00±0.00% 4.71±1.97% 77.97±15.52% 0.989±0.004
4 B&B, C&W, DF, PGD 100.00±0.00% 4.36±2.03% 79.02±15.62% 0.991±0.005
5 No FGSM, Uniform 100.00±0.00% 4.09±2.02% 79.81±15.70% 0.992±0.005
6 No Uniform 100.00±0.00% 4.09±2.02% 79.81±15.70% 0.992±0.005
7 All 100.00±0.00% 4.09±2.02% 79.81±15.70% 0.992±0.005
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Figure 9: Decision boundary distances found by the attack pools compared to those found by
MIPVerify on MNIST A. The black line represents the theoretical optimum. Note that no samples
are below the black line.
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Figure 10: Decision boundary distances found by the attack pools compared to those found by
MIPVerify on MNIST B. The black line represents the theoretical optimum. Note that no samples are
below the black line.
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Figure 11: Decision boundary distances found by the attack pools compared to those found by
MIPVerify on MNIST C. The black line represents the theoretical optimum. Note that no samples are
below the black line.
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Figure 12: Decision boundary distances found by the attack pools compared to those found by
MIPVerify on CIFAR10 A. The black line represents the theoretical optimum. Note that no samples
are below the black line.
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Figure 13: Decision boundary distances found by the attack pools compared to those found by
MIPVerify on CIFAR10 B. The black line represents the theoretical optimum. Note that no samples
are below the black line.
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Figure 14: Decision boundary distances found by the attack pools compared to those found by
MIPVerify on CIFAR10 C. The black line represents the theoretical optimum. Note that no samples
are below the black line.
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Table 19: Best pools of a given size by success rate and R2 for MNIST balanced.

n Attacks Success Rate Difference < 1/255 R2

1 BIM 100.00±0.00% 11.72±4.18% 50.92±26.43% 0.965±0.010
2 BIM, B&B 100.00±0.00% 6.11±2.28% 73.23±15.90% 0.980±0.007
3 BIM, B&B, C&W 100.00±0.00% 5.29±2.06% 75.72±16.10% 0.986±0.005
4 BIM, B&B, C&W, DF 100.00±0.00% 4.85±2.10% 77.33±15.85% 0.989±0.005
5 No FGSM, Uniform 100.00±0.00% 4.65±2.16% 77.78±16.08% 0.990±0.006
6 No Uniform 100.00±0.00% 4.65±2.16% 77.78±16.08% 0.990±0.006
7 All 100.00±0.00% 4.65±2.16% 77.78±16.08% 0.990±0.006

Table 20: Best pools of a given size by success rate and R2 for CIFAR10 strong.

n Attacks Success Rate Difference < 1/255 R2

1 DF 100.00±0.00% 6.11±3.49% 95.06±4.81% 0.989±0.011
2 DF, PGD 100.00±0.00% 4.71±2.37% 96.32±3.56% 0.995±0.007
3 C&W, DF, PGD 100.00±0.00% 2.54±1.30% 98.17±2.00% 0.996±0.006
4 B&B, C&W, DF, PGD 100.00±0.00% 2.21±1.16% 98.40±1.63% 0.997±0.003
5 No FGSM, Uniform 100.00±0.00% 2.21±1.16% 98.40±1.63% 0.997±0.003
6 No Uniform 100.00±0.00% 2.21±1.16% 98.40±1.63% 0.997±0.003
7 All 100.00±0.00% 2.21±1.16% 98.40±1.63% 0.997±0.003

Table 21: Best pools of a given size by success rate and R2 for CIFAR10 balanced.

n Attacks Success Rate Difference < 1/255 R2

1 DF 100.00±0.00% 6.11±3.49% 95.06±4.81% 0.989±0.011
2 B&B, DF 100.00±0.00% 2.52±1.51% 98.23±1.81% 0.995±0.004
3 BIM, B&B, DF 100.00±0.00% 2.21±1.25% 98.53±1.52% 0.997±0.002
4 BIM, B&B, C&W, DF 100.00±0.00% 2.06±1.16% 98.73±1.32% 0.998±0.002
5 No FGSM, Uniform 100.00±0.00% 2.04±1.13% 98.74±1.29% 0.998±0.002
6 No FGSM 100.00±0.00% 2.04±1.13% 98.74±1.29% 0.998±0.002
7 All 100.00±0.00% 2.04±1.13% 98.74±1.29% 0.998±0.002

Table 22: Performance of individual attacks for MNIST strong.

Attack Success Rate Difference < 1/255 R2

BIM 100.00±0.00% 10.90±4.42% 53.57±28.07% 0.966±0.012
B&B 99.99±0.01% 18.50±7.09% 58.78±9.91% 0.812±0.044
C&W 100.00±0.00% 17.52±2.74% 48.02±21.28% 0.910±0.024
Deepfool 100.00±0.00% 21.59±7.73% 44.15±20.02% 0.923±0.027
FGSM 99.72±0.51% 44.43±15.76% 28.20±17.30% 0.761±0.132
PGD 100.00±0.00% 10.98±4.41% 51.83±27.78% 0.975±0.010
Uniform 99.52±0.91% 414.47±140.54% 0.82±0.55% 0.623±0.138

Table 23: Performance of individual attacks for MNIST balanced.

Attack Success Rate Difference < 1/255 R2

BIM 100.00±0.00% 11.72±4.18% 50.92±26.43% 0.965±0.010
B&B 99.99±0.03% 18.65±7.29% 58.43±9.61% 0.812±0.039
C&W 100.00±0.00% 22.55±3.83% 38.95±22.49% 0.904±0.025
Deepfool 100.00±0.00% 21.59±7.73% 44.15±20.02% 0.923±0.027
FGSM 99.72±0.51% 44.43±15.76% 28.20±17.30% 0.761±0.132
PGD 100.00±0.00% 16.23±6.59% 48.08±28.88% 0.905±0.070
Uniform 98.66±1.90% 521.61±181.40% 0.57±0.38% 0.484±0.122
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Table 24: Performance of individual attacks for CIFAR10 strong.

Attack Success Rate Difference < 1/255 R2

BIM 91.96±7.40% 19.97±5.95% 80.32±12.97% 0.934±0.041
B&B 100.00±0.00% 508.66±196.37% 42.74±7.85% 0.174±0.074
C&W 99.98±0.02% 10.67±3.64% 90.09±5.51% 0.926±0.030
Deepfool 100.00±0.00% 6.11±3.49% 95.06±4.81% 0.989±0.011
FGSM 100.00±0.00% 31.80±11.12% 69.20±17.72% 0.847±0.123
PGD 100.00±0.00% 19.36±5.99% 77.23±15.89% 0.952±0.027
Uniform 99.99±0.02% 1206.79±277.68% 2.48±0.88% 0.910±0.044

Table 25: Performance of individual attacks for CIFAR10 balanced.

Attack Success Rate Difference < 1/255 R2

BIM 100.00±0.00% 19.23±5.92% 77.33±15.89% 0.954±0.025
B&B 100.00±0.00% 50.64±52.17% 81.20±10.68% 0.615±0.349
C&W 99.89±0.09% 17.44±4.01% 84.82±8.51% 0.923±0.026
Deepfool 100.00±0.00% 6.11±3.49% 95.06±4.81% 0.989±0.011
FGSM 100.00±0.00% 31.80±11.12% 69.20±17.72% 0.847±0.123
PGD 100.00±0.00% 20.18±6.56% 76.97±16.07% 0.947±0.031
Uniform 99.85±0.26% 1617.74±390.50% 1.80±0.67% 0.853±0.068

Table 26: Performance of pools without a specific attack for MNIST strong.

Dropped Attack Success Rate Difference < 1/255 R2

None 100.00±0.00% 4.09±2.02% 79.81±15.70% 0.992±0.005
BIM 100.00±0.00% 4.35±2.03% 79.02±15.62% 0.991±0.005
B&B 100.00±0.00% 6.76±3.31% 64.46±25.01% 0.990±0.005
C&W 100.00±0.00% 4.65±2.20% 77.70±16.02% 0.989±0.006
Deepfool 100.00±0.00% 4.33±1.97% 79.04±15.75% 0.990±0.004
FGSM 100.00±0.00% 4.09±2.02% 79.81±15.70% 0.992±0.005
PGD 100.00±0.00% 4.26±1.99% 79.36±15.59% 0.991±0.004
Uniform 100.00±0.00% 4.09±2.02% 79.81±15.70% 0.992±0.005

Table 27: Performance of pools without a specific attack for MNIST balanced.

Dropped Attack Success Rate Difference < 1/255 R2

None 100.00±0.00% 4.65±2.16% 77.78±16.08% 0.990±0.006
BIM 100.00±0.00% 5.13±2.27% 76.14±15.98% 0.988±0.007
B&B 100.00±0.00% 7.93±3.69% 60.79±25.99% 0.987±0.006
C&W 100.00±0.00% 4.93±2.22% 77.05±15.96% 0.988±0.006
Deepfool 100.00±0.00% 5.03±2.14% 76.34±16.36% 0.988±0.005
FGSM 100.00±0.00% 4.65±2.16% 77.78±16.08% 0.990±0.006
PGD 100.00±0.00% 4.85±2.10% 77.33±15.85% 0.989±0.005
Uniform 100.00±0.00% 4.65±2.16% 77.78±16.08% 0.990±0.006
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Table 28: Performance of pools without a specific attack for CIFAR10 strong.

Dropped Attack Success Rate Difference < 1/255 R2

None 100.00±0.00% 2.21±1.16% 98.40±1.63% 0.997±0.003
BIM 100.00±0.00% 2.21±1.16% 98.40±1.63% 0.997±0.003
B&B 100.00±0.00% 2.54±1.30% 98.17±2.00% 0.996±0.006
C&W 100.00±0.00% 3.83±2.06% 96.84±3.12% 0.996±0.004
Deepfool 100.00±0.00% 4.02±1.19% 95.65±3.10% 0.992±0.005
FGSM 100.00±0.00% 2.21±1.16% 98.40±1.63% 0.997±0.003
PGD 100.00±0.00% 2.50±1.48% 98.11±1.93% 0.995±0.005
Uniform 100.00±0.00% 2.21±1.16% 98.40±1.63% 0.997±0.003

Table 29: Performance of pools without a specific attack for CIFAR10 balanced.

Dropped Attack Success Rate Difference < 1/255 R2

None 100.00±0.00% 2.04±1.13% 98.74±1.29% 0.998±0.002
BIM 100.00±0.00% 2.07±1.15% 98.72±1.31% 0.998±0.002
B&B 100.00±0.00% 4.08±1.95% 97.26±2.70% 0.996±0.006
C&W 100.00±0.00% 2.18±1.22% 98.54±1.50% 0.997±0.002
Deepfool 100.00±0.00% 4.00±0.99% 95.89±3.13% 0.993±0.003
FGSM 100.00±0.00% 2.04±1.13% 98.74±1.29% 0.998±0.002
PGD 100.00±0.00% 2.06±1.16% 98.73±1.32% 0.998±0.002
Uniform 100.00±0.00% 2.04±1.13% 98.74±1.29% 0.998±0.002

distance in Figures 15 to 23, while we plot the R2 values in Figures 24 to 32. We do not study
the Brendel & Bethge and the Carlini & Wagner attacks due to the fact that the number of model
calls varies depending on how many inputs are attacked at the same time. Note that, for attacks
that do not have the a 100% success rate, the mean adversarial example distance can increase with
the number of steps as new adversarial examples (for inputs for which there were previously no
successful adversarial examples) are added.

L RESULTS FOR ATTACKS AGAINST CA

We report the parameters for the variant of our attack in Table 31, while we report its success rate
in Table 32. We set ε = ε′ equal to {0.025, 0.05, 0.1} for MNIST and {2/255, 4/255, 8/255} for
CIFAR10. Note that, since Deepfool is a deterministic attack, no measures against randomizations
were taken.
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Table 30: Parameters for the Fast-100, Fast-1k and Fast-10k sets.

Attack Parameter Name MNIST CIFAR10

100 1k 10k 100 1k 10k

BIM

Initial Search Factor N/A
Initial Search Steps N/A
Binary Search Steps 10 20 20 10 20 20
Starting ε 0.5 0.1
#Iterations 10 50 500 10 50 500
Learning Rate 0.1 0.01 1e-3 0.01 1e-3 1e-3

Deepfool

#Iterations 100 500 500 500
Candidates 10
Overshoot 0.1 1e-5 1e-5 1e-4
Loss Logits

FGSM

Initial Search Factor 0.75 0.5
Initial Search Steps 30 10
Binary Search Steps 20
Starting ε 1 0.1

PGD

Initial Search Factor N/A 0.5 0.5 N/A 0.5 0.75
Initial Search Steps N/A 10 10 N/A 10 30
Binary Search Steps 10 10 10 20
Starting ε 0.1 0.1 0.1 1
#Iterations 10 50 500 10 50 200
Learning Rate 0.1 0.01 1e-3 0.01 1e-3 1e-3
Random Initialization True

Uniform Noise

Initial Search Factor 0.75 0.75 0.75 0.25
Initial Search Steps 30 30 30 5
Binary Search Steps 20 20 20 15
Starting ε 1 1 1 0.5
Runs 200 500 200 10 50 500

Table 31: Parameters for the variant of the PGD attack.

Parameter Value

λ {10−4, 10−2, 1, 102, 104}
NES Estimation Samples 200

NES Estimation ε 10−4

PGD Iterations 400

PGD ε 10−3

Table 32: Success rate of the pool composed of the anti-CA variant of PGD and uniform noise for the
A architectures.

ε
ε′ Multiplier

1x 2x 5x 10x
0.025 0% 23% 95% 100%

0.05 3% 41% 97% 100%

0.1 2% 50% 96% 100%

(a) MNIST A Standard

ε
ε′ Multiplier

1x 2x 5x 10x
2/255 0% 34% 96% 100%

4/255 1% 50% 100% 100%

8/255 1% 58% 100% 100%

(b) CIFAR10 A Standard
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(b) CIFAR10 A Standard Fast-100
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(c) MNIST A Standard Fast-1k
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(d) CIFAR10 A Standard Fast-1k
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(e) MNIST A Standard Fast-10k
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(f) CIFAR10 A Standard Fast-10k

BIM Deepfool Fast Gradient PGD Uniform

Figure 15: Mean difference between the distance of the closest adversarial examples and the exact
decision boundary distance for MNIST & CIFAR10 A Standard. A dashed line means that the attack
found adversarial examples (of any distance) for only some inputs, while the absence of a line means
that the attack did not find any adversarial examples. The loosely and densely dotted black lines
respectively represent the balanced and strong attack pools. Both axes are logarithmic.
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(a) MNIST A Adversarial Fast-100
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(b) CIFAR10 A Adversarial Fast-100
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(c) MNIST A Adversarial Fast-1k
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(d) CIFAR10 A Adversarial Fast-1k
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(e) MNIST A Adversarial Fast-10k
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(f) CIFAR10 A Adversarial Fast-10k

BIM Deepfool Fast Gradient PGD Uniform

Figure 16: Mean difference between the distance of the closest adversarial examples and the exact
decision boundary distance for MNIST & CIFAR10 A Adversarial. A dashed line means that the
attack found adversarial examples (of any distance) for only some inputs, while the absence of a line
means that the attack did not find any adversarial examples. The loosely and densely dotted black
lines respectively represent the balanced and strong attack pools. Both axes are logarithmic.
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(a) MNIST A ReLU Fast-100
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(b) CIFAR10 A ReLU Fast-100
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(c) MNIST A ReLU Fast-1k
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(d) CIFAR10 A ReLU Fast-1k
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(e) MNIST A ReLU Fast-10k
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(f) CIFAR10 A ReLU Fast-10k

BIM Deepfool Fast Gradient PGD Uniform

Figure 17: Mean difference between the distance of the closest adversarial examples and the exact
decision boundary distance for MNIST & CIFAR10 A ReLU. A dashed line means that the attack
found adversarial examples (of any distance) for only some inputs, while the absence of a line means
that the attack did not find any adversarial examples. The loosely and densely dotted black lines
respectively represent the balanced and strong attack pools. Both axes are logarithmic.
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(a) MNIST B Standard Fast-100
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(b) CIFAR10 B Standard Fast-100
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(c) MNIST B Standard Fast-1k
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(d) CIFAR10 B Standard Fast-1k

102 103 104

10−3

10−2

10−1

100

Calls to the Model

H
eu
ri
st
ic

D
is
ta
n
ce

-
E
x
a
ct

D
is
ta
n
ce

(e) MNIST B Standard Fast-10k

102 103 104

10−4

10−3

10−2

10−1

100

Calls to the Model

H
eu
ri
st
ic

D
is
ta
n
ce

-
E
x
ac
t
D
is
ta
n
ce

(f) CIFAR10 B Standard Fast-10k

BIM Deepfool Fast Gradient PGD Uniform

Figure 18: Mean difference between the distance of the closest adversarial examples and the exact
decision boundary distance for MNIST & CIFAR10 B Standard. A dashed line means that the attack
found adversarial examples (of any distance) for only some inputs, while the absence of a line means
that the attack did not find any adversarial examples. The loosely and densely dotted black lines
respectively represent the balanced and strong attack pools. Both axes are logarithmic.
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(a) MNIST B Adversarial Fast-100
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(b) CIFAR10 B Adversarial Fast-100
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(c) MNIST B Adversarial Fast-1k
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(d) CIFAR10 B Adversarial Fast-1k
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(e) MNIST B Adversarial Fast-10k
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(f) CIFAR10 B Adversarial Fast-10k

BIM Deepfool Fast Gradient PGD Uniform

Figure 19: Mean difference between the distance of the closest adversarial examples and the exact
decision boundary distance for MNIST & CIFAR10 B Adversarial. A dashed line means that the
attack found adversarial examples (of any distance) for only some inputs, while the absence of a line
means that the attack did not find any adversarial examples. The loosely and densely dotted black
lines respectively represent the balanced and strong attack pools. Both axes are logarithmic.
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(a) MNIST B ReLU Fast-100
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(b) CIFAR10 B ReLU Fast-100
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(c) MNIST B ReLU Fast-1k
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(d) CIFAR10 B ReLU Fast-1k
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(e) MNIST B ReLU Fast-10k
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(f) CIFAR10 B ReLU Fast-10k

BIM Deepfool Fast Gradient PGD Uniform

Figure 20: Mean difference between the distance of the closest adversarial examples and the exact
decision boundary distance for MNIST & CIFAR10 B ReLU. A dashed line means that the attack
found adversarial examples (of any distance) for only some inputs, while the absence of a line means
that the attack did not find any adversarial examples. The loosely and densely dotted black lines
respectively represent the balanced and strong attack pools. Both axes are logarithmic.
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(a) MNIST C Standard Fast-100
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(b) CIFAR10 C Standard Fast-100
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(c) MNIST C Standard Fast-1k
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(d) CIFAR10 C Standard Fast-1k
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(e) MNIST C Standard Fast-10k
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(f) CIFAR10 C Standard Fast-10k

BIM Deepfool Fast Gradient PGD Uniform

Figure 21: Mean difference between the distance of the closest adversarial examples and the exact
decision boundary distance for MNIST & CIFAR10 C Standard. A dashed line means that the attack
found adversarial examples (of any distance) for only some inputs, while the absence of a line means
that the attack did not find any adversarial examples. The loosely and densely dotted black lines
respectively represent the balanced and strong attack pools. Both axes are logarithmic.
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(a) MNIST C Adversarial Fast-100
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(b) CIFAR10 C Adversarial Fast-100
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(c) MNIST C Adversarial Fast-1k
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(d) CIFAR10 C Adversarial Fast-1k
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(e) MNIST C Adversarial Fast-10k
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(f) CIFAR10 C Adversarial Fast-10k

BIM Deepfool Fast Gradient PGD Uniform

Figure 22: Mean difference between the distance of the closest adversarial examples and the exact
decision boundary distance for MNIST & CIFAR10 C Adversarial. A dashed line means that the
attack found adversarial examples (of any distance) for only some inputs, while the absence of a line
means that the attack did not find any adversarial examples. The loosely and densely dotted black
lines respectively represent the balanced and strong attack pools. Both axes are logarithmic.
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Figure 23: Mean difference between the distance of the closest adversarial examples and the exact
decision boundary distance for MNIST & CIFAR10 C ReLU. A dashed line means that the attack
found adversarial examples (of any distance) for only some inputs, while the absence of a line means
that the attack did not find any adversarial examples. The loosely and densely dotted black lines
respectively represent the balanced and strong attack pools. Both axes are logarithmic.
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Figure 24: R2 of linear model for the heuristic adversarial distances given the exact decision boundary
distances for MNIST & CIFAR10 A Standard. A dashed line means that the attack found adversarial
examples (of any distance) for only some inputs, while the absence of a line means that the attack did
not find any adversarial examples. The loosely and densely dotted black lines respectively represent
the balanced and strong attack pools. The x axis is logarithmic.
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Figure 25: R2 of linear model for the heuristic adversarial distances given the exact decision
boundary distances for MNIST & CIFAR10 A Adversarial. A dashed line means that the attack
found adversarial examples (of any distance) for only some inputs, while the absence of a line means
that the attack did not find any adversarial examples. The loosely and densely dotted black lines
respectively represent the balanced and strong attack pools. The x axis is logarithmic.
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Figure 26: R2 of linear model for the heuristic adversarial distances given the exact decision boundary
distances for MNIST & CIFAR10 A ReLU. A dashed line means that the attack found adversarial
examples (of any distance) for only some inputs, while the absence of a line means that the attack did
not find any adversarial examples. The loosely and densely dotted black lines respectively represent
the balanced and strong attack pools. The x axis is logarithmic.
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Figure 27: R2 of linear model for the heuristic adversarial distances given the exact decision boundary
distances for MNIST & CIFAR10 B Standard. A dashed line means that the attack found adversarial
examples (of any distance) for only some inputs, while the absence of a line means that the attack did
not find any adversarial examples. The loosely and densely dotted black lines respectively represent
the balanced and strong attack pools. The x axis is logarithmic.
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Figure 28: R2 of linear model for the heuristic adversarial distances given the exact decision
boundary distances for MNIST & CIFAR10 B Adversarial. A dashed line means that the attack
found adversarial examples (of any distance) for only some inputs, while the absence of a line means
that the attack did not find any adversarial examples. The loosely and densely dotted black lines
respectively represent the balanced and strong attack pools. The x axis is logarithmic.
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Figure 29: R2 of linear model for the heuristic adversarial distances given the exact decision boundary
distances for MNIST & CIFAR10 B ReLU. A dashed line means that the attack found adversarial
examples (of any distance) for only some inputs, while the absence of a line means that the attack did
not find any adversarial examples. The loosely and densely dotted black lines respectively represent
the balanced and strong attack pools. The x axis is logarithmic.
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Figure 30: R2 of linear model for the heuristic adversarial distances given the exact decision boundary
distances for MNIST & CIFAR10 C Standard. A dashed line means that the attack found adversarial
examples (of any distance) for only some inputs, while the absence of a line means that the attack did
not find any adversarial examples. The loosely and densely dotted black lines respectively represent
the balanced and strong attack pools. The x axis is logarithmic.
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Figure 31: R2 of linear model for the heuristic adversarial distances given the exact decision
boundary distances for MNIST & CIFAR10 C Adversarial. A dashed line means that the attack
found adversarial examples (of any distance) for only some inputs, while the absence of a line means
that the attack did not find any adversarial examples. The loosely and densely dotted black lines
respectively represent the balanced and strong attack pools. The x axis is logarithmic.
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Figure 32: R2 of linear model for the heuristic adversarial distances given the exact decision boundary
distances for MNIST & CIFAR10 C ReLU. A dashed line means that the attack found adversarial
examples (of any distance) for only some inputs, while the absence of a line means that the attack did
not find any adversarial examples. The loosely and densely dotted black lines respectively represent
the balanced and strong attack pools. The x axis is logarithmic.

69



Under review as a conference paper at ICLR 2023

M OVERVIEW OF CERTIFIED DEFENSES

In order to put our defense into context, we provide a slightly more in-depth overview of common
approaches to certified robustness, as well as their strengths and weaknesses.

Initially, theoretical work focused on providing robustness bounds based on general properties. For
example, Szegedy et al. (2013) computed robustness bounds against L2-bounded perturbations by
studying the upper Lipschitz constant of each layer, while Hein & Andriushchenko (2017) achieved
similar results for Lp-bounded perturbations by focusing on local Lipschitzness. While these studies
do not require any modifications to the network or distribution hypotheses, in practice the provided
bounds are too loose to be used in practice. For this reason, Weng et al. (2018b) derived stronger
bounds through a local Lipschitz constant estimation technique; however, finding this bound is
computationally expensive, which is why the authors also provide a heuristic to estimate it.

Similarly, solver-based approaches provide tight bounds but require expensive computations. For
example, Reluplex was used to verify networks of at most ∼300 ReLU nodes (Katz et al., 2017).
Tjeng et al. (2019) was able to use a MIP-based formulation to significantly speed up verification,
although large networks are still not feasible to verify. Solver-friendly training techniques can boost
the performance of verifiers (such as in (Xiao et al., 2019)); however, this increase in speed often
comes at the cost of accuracy (see Section 6).

Another solution to the trade-off between speed and bound tightness is to focus on specific (and
more tractable) threat models. For example, Han et al. (2021) provide robustness guarantees against
adversarial patches (Brown et al., 2017), while Jia et al. (2019) focus on adversarial word substitutions.
In the same vein, Raghunathan et al. (2018) provide robustness bounds for specific architectures (i.e.
1-layer and 2-layer neural networks), while Zhang et al. (2021) introduce custom neurons that, if
used in place of regular neurons, provide L∞ robustness guarantees. These techniques thus trade
generality for speed.

The most common approach, however, consists in providing statistical guarantees. For example,
Sinha et al. (2018) showed that using a custom loss can bound the adversarial risk. Similarly, Dan et al.
(2020) proved adversarial risk bounds for Gaussian mixture models depending on the "adversarial
Signal-to-Noise Ratio". Finally, Cohen et al. (2019) introduced a smoothing-based certified defense
that, due to its high computational cost, is replaced by a Monte Carlo estimate with a given probability
of being robust. This work was later expanded upon in (Salman et al., 2020) and (Carlini et al.,
2022). The main drawback of these techniques is the fact that they cannot be used in contexts where
statistical guarantees are not sufficient, such as safety-critical applications.

All of these certified defenses prioritize certain aspects (speed, strength, generality) over others. In
the context of this (simplified) framework, CA in its exact form can be thus considered a defense that
prioritizes strength and generality over speed, similarly to Katz et al. (2017) and Tjeng et al. (2019).
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