Under review as a conference paper at ICLR 2026

FLOW-GUIDED LATENT REFINER POLICIES FOR SAFE
OFFLINE REINFORCEMENT LEARNING

Anonymous authors
Paper under double-blind review

ABSTRACT

Safe offline reinforcement learning remains challenging due to two coupled ob-
stacles: (i) reconciling soft penalty designs with hard safety requirements, and (ii)
avoiding out-of-distribution (OOD) actions when the learned policy departs from
the behavior data. Existing approaches often rely on penalty tuning that under- or
over-regularizes safety, solve constrained objectives that depend on accurate sim-
ulators or online rollouts, or train powerful generative policies that still explore
low-density, safety-unknown regions at deployment. We introduce a constraint-
free offline framework that addresses both issues by (a) learning a flow-based
latent action manifold that concentrates density on empirically safe regions and
admits tractable bounds on policy deviation and OOD shift, and (b) applying a
lightweight refiner stage that performs small, ordered updates in latent space to
decouple reward, safety, and OOD control, stabilizing multi-objective optimiza-
tion. This design keeps policy search inside the modeled data manifold, while a
feasibility-aware training signal steers the refiner toward in-support, low-violation
solutions without requiring explicit constraints or online interaction. Across a
range of safe offline benchmarks, the proposed method achieves lower violation
rates while matching or outperforming baselines in return, demonstrating its po-
tential as a practical and effective approach to safer offline policy learning.

1 INTRODUCTION

Safe offline reinforcement learning (Safe Offline RL) seeks to learn policies that maximize return
while satisfying stringent safety requirements from a fixed dataset—without risky, expensive online
interaction (Levine et al., |2020). Training from logs allows practitioners to leverage prior oper-
ations, simulators, or demonstrations to deploy policies in safety-critical domains (robotics (Wu
et al.| [2024), driving (Zhang et al., |2025)), industrial control (Yu et al.| [2025; Wang et al.l 2025))
where exploration is untenable, offering clear practical benefits over online learning.

However, simultaneously achieving high performance and strict safety from static data remains elu-
sive (Kushwaha et al., [2025)). Most prior work (Ding & Lavaeil 2023} [Le et al., 2019} [Lee et al.
2022;|Fujimoto et al.,[2019) encodes safety as soft constraints—risk penalties or constrained Markov
decision processes (CMDPs) (Altman, 2021) with Lagrangian updates, so violations are discour-
aged in expectation. When constraints are tight or objectives conflict, these updates often under-
enforce safety, yielding policies that either ignore constraints or require brittle penalty tuning, which
is undesirable in engineering settings that demand near-zero violations. Hard-constraint formula-
tions (Wang et al., 2023} [Yu et al, 2022)) strengthen safety but typically induce conservatism and
measurable return sacrifice, especially offline, where feasible exploration is absent.

Orthogonal to constraint design, a second challenge is out-of-distribution (OOD) shift. Offline poli-
cies must evaluate and improve without querying unseen actions; otherwise, bootstrapping on OOD
actions produces extrapolation error and overestimation, which in turn elevates safety risk at de-
ployment (Kumar et al., [2019). Recent studies further note that OOD states at test time can also
degrade behavior, indicating that distribution shift is a coupled state—action phenomenon (Levine
et al., 2020; [Kushwaha et al., 2025). Optimizing safety and return jointly under OOD constraints
is therefore difficult. A prominent line of work learns a generative manifold in the latent action or
trajectory space and restricts policy updates to this manifold by using VAE-, flow-, or diffusion-
based generative policies combined with latent-constraint methods (Zhou et al., 2021} |Koirala et al.}

Under review as a conference paper at ICLR 2026

2024;|Akimov et al.,[2022). These approaches reduce extrapolation by biasing policies toward high-
density regions of the learned model, but OOD control typically remains implicit—through decoder
support, bounded bases, or density thresholds—and is rarely coupled with safety to yield explicit,

tunable guarantees on distribution shift in safe offline RL.

To tackle these challenges, we introduce a
density-first framework for safe offline RL that
enforces stringent safety while simultaneously
optimizing for high returns. Our approach treats
safety assurance and OOD control as a repre-
sentation problem within a task-conditioned la-
tent manifold. Specifically, we equip the crit-
ics with Hamilton—Jacobi (HJ)—inspired (Bansal
et all 2017) safety signals: feasibility values
are learned via a reversed expectile objective,
and action-values are updated using an HJ-style
backup derived from sparse safety labels, yield-
ing reliable feasibility estimates directly from
offline data. On top of this estimator, a struc-
tured conditional flow model acts as a latent
prior that shapes the density so that, for each
state, the induced action distribution concen-
trates around data-supported, empirically safe
regions. Actions are generated by a high-
capacity decoder that remains frozen during re-

Safety-dense embedding

(s,a) —_
!
Flow
s Po(zls,u)

inverse‘ ‘ forward

,—' Safety refiner
V. l

u~N(O1) Reward refiner
| | Inference |

—'a

Offline Dataset

l Training Shared refiner

Figure 1: Overview of the proposed method.
An encoder maps (s, a) into a safety-dense la-
tent embedding. A conditional normalizing flow
pe(z|,u) with base u ~ N(0,1) serves as the
prior, providing exact forward/inverse transforms
between the base and latent spaces; a decoder
then reconstructs actions a from z. At infer-
ence, three refiners (safety, reward, and a shared
refiner) operate in the base Gaussian space to

finement; together with the invertible, exact-
likelihood flow, this enables us to derive theoret-
ical upper bounds on distributional shift in both
the action and policy spaces, thereby offering
principled control over OOD actions in the offline setting. Building on this property, we develop
a three-expert refiner—comprising reward, safety, and shared experts—that performs small, ordered
updates in the base latent space with decoupled, advantage-weighted objectives. This design pushes
reward improvements within feasibility-shaped regions while pulling the policy away from unsafe,
low-density areas, stabilizing multi-objective optimization and tying safety, reward, and OOD sup-
pression together under purely offline training.

adjust samples toward high-density, in-support
regions—maximizing return while suppressing
OOD actions and enforcing safety constraints.

Extensive experiments across diverse safe offline benchmarks demonstrate that combining safety-
shaped density with latent-space refinement yields a consistently better return—safety trade-off under
hard-constraint scenarios compared to strong baselines.

2 PRELIMINARIES

Safe offline RL Safe RL is typically formulated as a Constrained Markov Decision Process M =
(S, A, T,r,h,c,7v), where h : S — R encodes a state constraint and c¢(s) = max{h(s),0} is the
induced cost, with ¢(s) > 0 indicating a constraint violation. The discount factor is v € (0,1). In
the offline setting, we are given a fixed dataset D = {(s,a,r,¢,s’,d)} collected by an unknown
behavior policy mg. We adopt the basic offline safe RL objective:

max Eg[V7(s)] st Eg[V7I(s)] <4, Dxy (7 || mg) <e, (1)

where V7 (s) = Ex[Yo7 (st ae) | so s] is the reward value function and V. (s)
Ex[Y207 c(se) | so = s] is the cost value function. £ is the cost limit. The KL divergence
Dxkr1.(+]]-) constrains the deviation of 7 from the behavior policy mg. In this work, we target on the

zero cost budget case (¢ = 0); see Appendix [B.2]for a discussion of non-zero budgets.

Normalizing flows. Normalizing flows (NFsﬂ (Kobyzev et al., 2020) are powerful generative
models for complex distribution modeling. Let u ~ N(0,I) and z = f4(u; cond) be a bijection

'In this paper, ‘flow’ always refers to normalizing flows (e.g., RealNVP/CNF-style models), and should not
be confused with flow-matching or probability flow ODE terminology.

Under review as a conference paper at ICLR 2026

conditioned on cond (e.g., state or task context). The log-density of z is computed by the change-
of-variables formula (derivation is deferred to Appendix [C.1):

0
log pg(z | cond) = log p(u) + log’det a—j‘ 2)

In our implementation, we adopt a RealNVP-style (Dinh et al., [2016)) flow architecture based on
coupling layers. Each layer splits the input z into two parts: an identity component ziq that remains
unchanged, and a transform component z;, that is updated through an affine transformation:

2, = z[r®exps¢(zid,cond) + t¢(zid,cond), log|det J| = stj(')7 3)

where s4 and ¢4 are scale and translation networks. These layers yield tractable log-likelihoods and
exact inverses by construction. Stacking multiple such layers increases the expressiveness of the
model while preserving efficient computation due to the triangular structure of the Jacobian.

3 METHODOLOGY

To address the twin challenges of under-enforced soft constraints and out-of-distribution drift in of-
fline settings, we first recast the objective as a state-wise zero-violation hard constraint. Concretely,
we require h(s;) < 0 almost surely under a; ~ 7 (- | s¢) for all t € N. Consequently, the soft safety
constraint in Eq. [T]is replaced by a state-wise requirement together with an offline trust region:

max E VT (s)] st VI(s) <0, Diki(m || m5) < e. 4)

Building on this formulation, we adopt a base-space refinement strategy, where optimization is per-
formed entirely within a conditional latent density that is confined to a data-supported manifold,
as illustrated in Figure [I We refer to our method as FLRP—Flow-guided Latent Refiner Poli-
cies—which enables in-distribution policy improvement with near-zero constraint violations. The
core components of FLRP are detailed in the following subsections.

3.1 FEASIBILITY-BASED VALUE FUNCTION

The state-wise zero-violation requirement in Eq. [4] calls for a representation that certifies safety
along the entire trajectory, not only in expectation. Hamilton—Jacobi (HJ) reachability Bansal et al.
(2017) from safe control provides exactly such a representation through signed safety functions and
value-based certificates, and has been shown to be effective for enforcing hard constraints in recent
safe RL studies (Fisac et al., 2018} |Yu et al., |2022). Following this line, we cast the hard constraint
into a pair of feasibility value functions based on Definition [I] that we can learn from offline data
and then use as a unified signal for policy generation and refinement.

Definition 1 (Optimal feasible value functions). Let h : S — R be a signed safety function with
h(s) < 0 denoting safety. The optimal state-wise and action-wise feasibility values are defined by

Vi(s) o= min maxh(s.), s0= s, an(-| 80, son~TC] soad, ©)
Q7 (s,a) ;== min max h(st), so=8, ap=a, ap>1~7(- | s¢). (6)
™ te -

By construction, V;*(s) < 0 implies the existence of a policy whose entire trajectory from s remains
safe; likewise, Q;L(s, a) < 0 certifies zero violations when starting with action a. In offline settings,
they can be estimated by the Feasible Bellman Operator with a discounted factor .

Definition 2 (Feasible Bellman operator). For v € (0,1) and any Q : S x A — R, the feasible
Bellman operator is defined by
(P*Q)(s,a) == (L=7) h(s) + ymax{h(s), V*(s')}, V*(s):=minQ(s",a’). (7

This operator is a y-contraction under the sup norm and admits a unique fixed point wa with
Vh*ﬁ(s) = min, Q, (s,a); as v 1 1, it recovers the HJ-style values Q% and V;* in Definition
Proof is deferred to Appendix

Under review as a conference paper at ICLR 2026

We parameterize (Q,, V},) with neural networks. To avoid extrapolation errors that arise from query-
ing actions outside the data support (Fujimoto et al., 2019), we approximate Qp,(s,) by reversed
expectile regression and train), with a one-step target that uses V}, in place of min,s Qn (s, a’):

Ly, = E(s,a)~D [pf.riv (Qh(& a) — Vh(S))] ’ ®

2
Lau = Beastron | (1= () +ymax(h(s). V) - Qulov)) |
where pi*(u) = |7 — 1{u > 0}|u® and V& is a slowly updated target network. The reversed
expectile with 7, € (0.5, 1) down-weights overly optimistic), values and sharpens the zero level
set V;, =0, while the target network stabilizes bootstrapping.

3.2 CONDITIONAL FLOW-BASED SAFE POLICY GENERATION

Rather than learning a policy directly in action space, we model a conditional latent action distri-
bution, where high-quality samples correspond to higher density. Thus, instead of being pushed
by hard constraints, safety is pulled by density: we do not project actions onto an estimated safe
set, but regularize the latent actions to remain in the high-density region of the flow, while unsafe
behaviours are relegated to low-density regions. Given the empirical feasibility signals learned in
Sec. 3.1} we instantiate a conditional flow prior/posterior with a decoder. Compared with other
generative models, normalizing flows offer exact likelihood, tractable inverse mapping, and strong
expressivity (Papamakarios et al.| [2021)—making them well-suited for both density modeling and
OOD control.

Safety-weighted ELBO. Let u ~ A(0,) be a base latent vector. The prior flow maps u to a
latent variable z = f,(u; s), where the log-density is tractable:

0
log pe(z | s) = logp(u) + log‘det a—Z’ (10)

The posterior flow ¢y (z | s,a) serves as an amortized recognizer, while a decoder mg(a | s, 2)
maps latent codes back to actions. Training follows a safety-weighted variational objective that
encourages accurate reconstruction and alignment with the prior:

£ELBO =]E(s,a)ND]EZNqU, [_ U}(S, CL) IOg 7('9((1 | S, Z)] + ﬁE(s,a)ND [w(87 a‘) DKL (q’L[J || p(f?)}) (11)

where w(s, a) = o(—Qn(s,a)/Ty) o(=Vin(s)/T,) is a feasibility-weighted score derived from the
critics in Sec. [3;1'], T, and T, are temperatures, and o is the logistic function. We formally justify
that the above objective remains a consistent variational estimator by showing that it performs a KL
projection of the model joint distribution onto a safety-weighted behavior distribution, as stated in
the following lemma.

Lemma 1. Let pp(s,a) < w(s, a) pp(s,a) be a behavior-weighted empirical distribution. Then

Lrrgo = const + Dk, (pp(s,a) qu(2 | 5,0) || py(z | s)mo(a] s,2)).
This result shows that Lg,,, amounts to a KL projection of the behavior-weighted posterior onto the
generative model distribution. The proof is provided in Appendix|C.3]

Prior Density Shaping. Compared to a Gaussian prior, the flow-based prior is capable of mod-
eling more complex and multimodal latent structures, but this expressiveness also introduces chal-
lenges during training. To mitigate these difficulties, we introduce a regularization objective that
encourages empirically feasible regions in the action space to be mapped back to high-density re-
gions in the latent base space. A key advantage of normalizing flows is their ability to compute an
exact inverse transformation from z to u. We leverage this to define the following prior-shaping loss:

Liape = E(s.ap | exp(Qr(5,0) = Vo(5)/8,) - Trews(s,0) - | T (2 | s)HQ] (12)

Here, Tfeas(s,a) = 1{Qn(s,a) < 0} is a binary indicator derived from the feasibility critic, and
T, ! (z4 | s) denotes the inverse transformation that maps a decoded action back to the latent base
space. This encourages the flow prior to assign higher and smoother base-space density to actions
that are both safe and high-reward, thereby shaping the latent manifold to better align with feasible
and desirable behaviors.

Under review as a conference paper at ICLR 2026

Freezing the decoder and distribution shift. At inference time, actions are generated by sam-
pling u ~ N(0,I), transforming it through the prior flow z = f4(u;s), and decoding via
a = 7g(z, s). In the subsequent refinement stage (Sec. , the decoder 7y is frozen and only u is
updated. This confines policy updates to the safety-shaped latent manifold and avoids reintroducing
distribution shift through unconstrained decoding.

We show in the following that, under a fixed decoder, the divergence between the learned policy and
the behavior policy can be decomposed into controllable terms.

Lemma 2. Let mo(-|s) := Tsu N be the action distribution obtained by pushing the standard Gaus-
sian through the frozen prior and decoder, and Ty (a | s) denotes the learned policy distribution (af-
ter refinement). Assume absolute continuity and a bounded density ratio Ry(s) := sup, :ZEZ“?) <

00 on the data support. Then for any state s (proofs are in Appendix|C.4),
Dxr (Mo (+]s) | m(-|s)) < Dxr(To(-[s) [Imo(-[s)) + log Re(s).

Moreover, by data-processing inequality (DPI) (Beaudry & Renner, 2011) and flow invariance,
D (Ipllmo) < DkL(qullN), hence Dxr(Ig||ms) < DkL(qullN) + log Ro(s).

This result shows that the decoder decouples policy shifts into (i) a base-space divergence term and
(ii) a modeling error term, both of which can be controlled during training.

Full objective. We summarize the flow module’s objective as:
Liow = LELBO + Lshape + At (Ho — Eq, [—1og gy (2 | s, a)])+, (13)

where the final term softly enforces a minimum posterior entropy to prevent mode collapse. Having
shaped a structured latent manifold through feasibility-aware density modeling, we next develop a
refiner module that further improves performance by optimizing within this base space.

3.3 BASE-SPACE OPTIMIZATION VIA EXPERT REFINER

While the flow module already shapes a safety-aware latent manifold, it does not directly optimize
task performance, as a high reward is also desired. Inspired by recent progress on Mixture-of-
Experts (MoE) (Jayawardana et al., 2025} |Obando-Ceron et al., [2024) architectures, we design an
expert refiner that operates on the Gaussian base latent u~ A (0, I) learned in Sec. The refiner
performs small, ordered updates in the base space to improve reward while keeping search confined
to the safety-shaped manifold.

Architecture. The refiner consists of three latent-space experts: a reward expert f,., a safety expert
fn,and a shared expert fy,. Each expert applies a residual update in the latent base space conditioned
on the state s. At each refinement step ¢t = 0,...,T — 1, we start from ug ~N (0, I) and apply the
following sequential updates:

g1 = ug + fr(s,ut), fork € {r, h,sh},

where the final update is always performed by the shared expert fy,. After T" steps, the refined latent
ur is mapped to z = fy(ur; s) via the frozen prior flow, and then decoded to an action distribution
mo(- | s,z) using the decoder. We denote its decoded mean by a(s, ur) and use it for downstream
evaluation or rollouts.

Expert-specific objectives. Let a(s,ur) := argmax, mo(a | s, fo(ur;s)) denote the decoded
mean action, and reuse the learned critics (Q,,V,.) and (Qp, V}) from Sec. Each expert is
trained using a modular, advantage-weighted regression (AWR) (Peng et al.| 2019; |Hansen-Estruch
et al.| 2023)) objective:

(i) Safety expert. Minimizes the violation gap with a push—pull form:
Lh =]Es,aN'D [¢< Qh(sa (_]/(‘57 'LLT)) - Vh(S)) + wh(S, CL) : Hd(sv UT) - a||2]) (14)

where where wy,(s) = exp(— [Qn(s,a) — Vi(s)]/Br) - Lieas» and ¢(*) is a soft penalty (e.g.,
softplus). The first term penalizes the positive safety advantage Qp(s,a) — Vi (s) of the refined
action, while the second term performs supervised regression on safety-weighted behaviour data.

Under review as a conference paper at ICLR 2026

(i) Reward expert. Maximizes return within feasible states as a supervised learning:
L, =—E;qup [wr(s,a) -||a(s,ur) — all2] . (15)

where w,(s,a) = exp([Q,(s,a) — V;.(s)]/B:) - Ltas up-weights positive reward advantage and
prevents reward-only updates from steering into unsafe states.

(iii) Shared expert. Regularizes refinement in the base space. As stated in Lemma [2} once the
decoder is frozen, the policy shift is entirely induced by the divergence of the refined base distribu-
tion Dkr,(qy||V'). Considering the base is a standard Gaussian distribution, we use its energy as an
explicit regularizer, together with a small proximal term that discourages large steps:

Lo = [lur|® + lur — uoll>. (16)

The full refiner loss is:
L:ref =)\Tﬁr +)\h»ch +)\sh»csh (17)

Refining in the base space with a fixed process provides distributional control for all downstream
spaces. Because the flow and decoder are both invertible or frozen, any change in the base space
deterministically propagates through the latent and action spaces. While Lemma [2]establishes a gen-
eral data-processing inequality under pushforward mappings, we now apply this result specifically
to our architecture. The next lemma formalizes the KL chain via pushforwards in our method.

Lemma 3. Let g, be the refined base distribution and N the standard Gaussian. Let f4(-; s) be the
(invertible) flow and q, = fs4qu, Py = f¢#/\/ , and action distributions m = Tsuq,, m0 = T
with Ty (u) := a(s, u). Then (proofs are in Appendix|C.3)):

Dir(m(- | s)[|mo(-] 5)) < Dki(g:lpe) = Dxr(qullN). (13)

The equality follows from the invariance of KL under invertible mappings (the flow), and the in-
equality is the data-processing inequality through the decoder.

Corollary 1 (Deviation bounds from base KL). Let L, be the Lipschitz constant of gg on the latent
chart, Wy (-, -) denotes the 2-Wasserstein distance, and TV (-, -) stands for total variation distance
between distributions. Then for any s (proofs are in Appendix|[C.6):

WQ('IT,']TO) < Lg 2DKL((]u ||N)

TV(m,m5) < 1/ 3 DxL(r || m0) + TV(mo, m5) (19)

and for any measurable OOD region O:

m(0) < 75(0) + 1/ 5 Dxw(qu [| N) + TV (mo, 75). (20)

These results justify our design: keeping Dkr,(¢y || V') small bounds downstream deviation—latent,
action, and final policy—across multiple metrics, whereas direct perturbations in z or a lack such
guarantees. Building on this, Appendix [C.§] derives explicit reward and cost policy-gap guarantees
in terms of the base-space KL upper bound and the prior—behavior mismatch. This further motivates
us to optimize in the base space, where our loss concentrates mass in high-density regions so that
stable base-space updates induce meaningful latent refinements.

3.4 PRACTICAL IMPLEMENTATION

We employ expectile regression to obtain in-sample, asymmetric value estimates that are biased
toward high-value actions without querying out-of-distribution actions, following the practice in
IQL (Kostrikov et al., [2021)), which trains V. using asymmetric expectile regression and (), by TD
updates toward V..

Ly, = E(5a)~p [Pn (Qr(s, a) — W(s))] , pr(u) = |7' —H{u< O}! u?, 21
‘CQr =]E(s,a,s’)ND |:(Q7‘(Sa Cl) - Q,.(S, Cl))2:|) Q’!‘(Sv CL) = T(S7 a’) + Fyvr(sl) (22)

Under review as a conference paper at ICLR 2026

Table 1: Performance Comparison on DSRL benchmark. 1 means the higher the better, | means the
lower the better.

Task BCQL CPQ CDT FISOR LSPC FLRP(Ours)

reward 1 cost | reward T cost| reward ! cost| reward{ cost| reward? cost| reward{ cost|

Safety-Gymnasium

CarButton] -0.04 058 -0.15 0.8 0.03 0.36
CarButton?2 2001 022 -0.03 059 0.04 038
CarPushl 0.09 0.56 -0.14 080 0.31 0.40 0.21 0.13 0.20 0.04
CarPush2 0.06 0.61 0.16 0.71 0.24 0.36
CarGoall 0.13 0.90 0.22 0.79 0.42 0.88 0.23 0.71 0.27 0.00
CarGoal2 0.06 0.06 0.11 0.50 0.20 0.28
AntVel -0.31 0.00 0.98 0.39 0.90 0.00 0.91 0.02 0.69 0.00
HalfCheetah Vel 0.97 0.55 0.88 0.00 0.86 0.18 0.94 0.16
Swimmer Vel 0.01 0.01 0.06 0.00
Safety-Gym Avg 0.29 0.40 0.29 0.59 0.33 0.18
Bullet-Safety-Gym
AntRun 0.13 0.01 0.45 0.76 0.52 0.00
BallRun 0.35 0.20 0.88 0.86 0.14 0.00 0.08 0.00 0.16 0.00
CarRun 0.75 0.52 0.80 0.00 0.75 0.22 0.87 0.00
DroneRun 0.65 0.71 0.26 0.44 0.71 0.60 0.41 0.57 0.59 0.02
AntCircle 0.00 0.00 0.23 0.00 0.40 0.78 0.45 0.25
BallCircle 045 0.00 046 0.00
CarCircle 0.34 0.00 0.28 0.04 0.66 0.06
DroneCircle 0.60 0.00 0.54 0.00
Bullet-SG Avg 0.43 0.17 0.50 0.88 0.54 0.04
Safe MetaDrive
Easysparse -0.05 0.15 0.25 0.15 0.41 0.50 0.32 0.20
Easymean -0.06 0.00 0.42 0.25 043 0.67 0.70 0.68 0.25 0.10
Easydense -0.06 0.16 0.33 0.11
Mediumsparse -0.08 0.12 043 0.08 0.97 0.79 0.31 0.06
Mediummean -0.07 0.16 0.36 0.02 0.92 0.89 0.52 0.63
Mediumdense -0.08 0.10 0.51 0.39 0.87 0.88 0.33 0.07
Hardsparse -0.05 0.10 0.26 0.46 0.33 0.24 0.35 0.34
Hardmean -0.05 0.15 0.20 0.61 0.27 0.01 0.41 0.57 0.28 0.10
Harddense -0.04 0.12 0.30 0.26 0.36 0.11
MetaDrive Avg -0.06 0.12 0.40 0.38 0.34 0.19
Note: Bold: safe policy; : unsafe policy; Bold blue: best safe policy; Bold: second best safe policy

As summarized in Appendix Alg. |1} there are two main phases for the overall training pro-
cedure. In Stage 1 (critic and flow pretraining), we jointly train the safety and reward critics
(Qn, Vi), (Qr, V;) together with the flow prior/posterior and decoder using offline transitions, and
the safety-weighted ELBO and density-shaping objectives in Sec. In Stage 2 (latent refiner
training), we freeze this base model and optimize the three refiners in base space via AWR-style
updates to reward and safety, together with the base-space regularizer for OOD control. All com-
ponents are trained purely offline from the fixed dataset, and this two-phase, modular design lets
critics, flow, and refiners specialize in feasibility shaping, density modeling, and reward—safety re-
finement while maintaining a consistent in-distribution optimization pipeline. At inference time, we
sample u ~ N(0, I), apply the expert refiner for T steps to obtain u, decode through the frozen
flow and decoder to obtain the final action. Training details can be found in Appendix [D.3]

4 EXPERIMENTS

Experiment Setup. We evaluate the proposed method against several strong offline safe RL base-
lines across two widely-used benchmark environments: Safety-Gymnasium (Ji et al.,2023)), Bullet-
Safety-Gym (Gronauer}, 2022) and Safe Metadrive (Li et al.,[2022) from the DSRL suite (Liu et al.
2023a)). We adopt normalized return and normalized cost as evaluation metrics, which we refer to
as “reward” and “cost” for clarity and brevity. We set a uniform cost limit of 10 for all tasks.

Under review as a conference paper at ICLR 2026

Decoder action log-density _1.275
0.1315 2775 — e 275
04 0.1300 270.0 < -1.320
i 01285 o 2625 o e -1.365
go 0.1270 3" 255.0 5“ -1.410
T 02 01255 @ w5 G -1.455
§ 0.1240 g 2400 -1.500

2 2 8 S
200 01225 & gig 7 -1.545
0.1210 3 -1.590
0.2 0.1195 217.5 o
02 00 02 04 01180 02 00 02 o4 2100 02 00 02 04 o

Velocity Velocity Velocity
(a) Cost critic change (b) Value critic change (c) Decoder log probability

Figure 2: Example visualization of the refiner principle on CarRun. Each panel shows the 2D
action space (velocity on the horizontal axis, steering angle on the vertical), where background
colors indicate (a) feasibility (darker is safer), (b) reward (lighter is higher), and (c) decoder log-
density (lighter is higher). The black cross is the base action from the flow prior, and colored curves
(H, R, SH) show the refinement trajectories in base space, with triangles marking the final refined
actions toward safer, higher-return, and data-supported regions.

Baselines. We compare our approach against five representative baselines: (1) BCQL
2019): A batch-constrained Q-learning with an adaptive Lagrangian penalty on constraint
violations. (2) CPQ 2022): A Q-learning methods that penalize unsafe and out-of-
distribution state—action pairs. (3) CDT 2023b): A transformer-based offline safe RL
method that learns cost-conditioned action generators for constraint enforcement. (4) LSPC
2024): A latent safety-constrained approach that uses a conditional variational autoencoder to
model safety in the latent space. (5) FISOR (Zheng et al.| [2024): A feasibility-guided method that
uses a diffusion model to policy sampling.

Main Results Table [I] summarizes results on Safety-Gymnasium, Bullet-Safety-Gym, and Safe
MetaDrive. Overall, our method learns safe policies with competitive returns. BCQL uses a La-
grangian trade-off but often fails to meet safety constraints; CPQ is more conservative and im-
proves safety at the cost of reward; and CDT, though capable of high returns via target condition-
ing, tends to violate safety more frequently. FISOR and LSPC are strong baselines with distinct
characteristics. FISOR produces uniformly safe but slightly conservative policies via feasibility
guidance, while LSPC is more aggressive—seeking the most rewarding action in a learned safe
latent space—which can become unreliable under OOD states/actions. Our FLRP trains safety and
shared refiners to concentrate probability mass in high-density regions of the encoder’s latent space,
naturally biasing actions toward on-support, safer choices. FLRP performs strongly on Safety-
Gymnasium and Bullet-Safety-Gym, and is mildly conservative on Safe MetaDrive due to limited
overlap between high-reward and low-cost regions, which complicates hard-constrained optimiza-
tion. Even so, it enforces safety effectively, achieving violation rates far below the second-best
method (e.g., 0.18 vs. 0.40 in Safety-Gymnasium, 0.04 vs. 0.88 in Bullet-Safety-Gym, and 0.19 vs.
0.38 in Safe MetaDrive) while maintaining strong performance.

5 ABLATION STUDY AND ANALYSIS

Justification of Each Refiner. A core challenge in safe RL is reconciling reward maximization
with safety constraints, which can pull updates in opposite directions. Figure [2illustrates this on a
fixed state from the CarRun task. Each panel visualizes the 2D action space with velocity on the
horizontal axis and steering angle on the vertical axis; the background color represents, respectively,
(a) feasibility Qx (s, a) (darker is safer), (b) reward value Q,(s,a) (lighter is higher return), and
(c) decoder log-density log 7y (a|s) (lighter is higher density). In this particular state, the regions
associated with high reward and high safety are largely non-overlapping, and both can be misaligned
with the high-density area of the action decoder. As a result, the refinement steps taken by the
reward and safety refiners can diverge significantly, often steering the latent action representation
into areas that are poorly supported by the decoder and thus prone to OOD issues. The shared

Under review as a conference paper at ICLR 2026

B H->R—-SH R—H—-SH I Random I No refine

Reward Cost

1.0 0.6

0.8 1 I

0.4 1

0.4 0.2 4
0.2 4 I

0.0 1 =

Normalized reward
(=]
(=)}
—_
——
—
Normalized cost

car®® [\“\C“C\e ()xo“ec\‘c\e ga\\c‘“de ca®® N\‘C\‘C\e oﬁoﬂ\ec‘“c\e 3@\\0‘0\e

Figure 3: Effect of refiner order on normalized reward (left) and cost (right) across four tasks .
Each group of bars corresponds to four refinement schedules (H—R—SH, R—H—SH, Random,
No refine), with error bars showing one standard deviation.

refiner stabilizes and regularizes this process by keeping actions on support while balancing both
experts, coordinating their updates when reward, safety, and data support are in tension.

HJ-feasibility Function. We first assess the ben-) .
efit of incorporating HJ reachability by replacing Table 2: Ablations on HJ reachability.

the feasibility function with a cost value function. Task w/o HJ FLRP

states/actions whose cost falls below the empirical rt cl rt cl
75th percentile of zero-violation samples are treated A tRun 0.65 0.13 0.52 0.00
as feasible and used for flow training, while refiner BaRun 008 014 016 000
training is unchanged; we denote this variant as w/o CarRun 0.83 0.13 0.87 0.00

HJ. As reported in Table 2] this heuristic threshold- DroneRun 0.16 524 059 0.02
ing yields noisier feasibility estimates, which in turn ~ AntCircle ~ 0.23 0.01 0.45 0.25
leads to higher evaluation costs and lower returns BallCircle 044~ 0.00 046 0.00
than the HJ-based approach. In contrast, HJ reach- CarCircle 0.63 0.49 0.66 0.06
ability propagates safety constraints through the dy- DroneCircle 0.56 ~ 0.67 0.54 0.00
namics, which is robust to sampling noise and un-

even cost distributions. The results indicate that structured HJ reachability is crucial for stable
constraint satisfaction in offline settings.

The Order of Refinement. We compare four refiner schedules on four tasks (BallCircle,
CarRun, AntCircle, DroneCircle) to assess how sensitive FLRP is to the refiner order: two
fixed orders (H—-R—SH and R—H—SH), a random permutation, and a “No refine”” baseline that
samples directly from the flow prior. The results in Figure 3] show that all refiner variants substan-
tially improve normalized return over No refine, confirming the benefit of latent refinement. Across
all tasks, H—-R—SH and R—+H— SH achieve clearly higher return than no refinement baseline with
low normalized cost, while the random-order variant is intermediate but with larger variability. We
also observe a consistent trade-off pattern: H—+R—SH generally yields lower cost with strong but
slightly lower return, whereas R—H—SH attains the highest return at the price of higher cost. This
supports our design choice of using a fixed schedule with the shared refiner applied last so that it
can consistently regularize and coordinate the preceding safety and reward updates.

Other Ablations. We further examine the effect of the prior. As a comparison, we train a variant
that replaces our flow-based prior with a conventional Gaussian prior and report results in Table 3]
The flow prior consistently yields higher returns and lower costs. We also study the number of
refinement steps 7" at inference on CarCircle. We do not vary the refinement order: the safety
expert is always applied first, and the shared expert last. This design choice reflects our latent
geometry—density concentrates on safety rather than reward—so an early safety refinement helps
place trajectories in high-density (feasible) regions. The intermediate refiners alternate between
safety and reward experts. As shown in Figure[d] increasing T" reduces cost and variability: a larger
T is more likely to explore the learned latent space and lowers the rate of out-of-distribution actions.
The trade-off is that a very large 7" can induce slightly more conservative behavior. In practice, an
intermediate value (e.g., " = 3) can yield a favorable trade-off.

Under review as a conference paper at ICLR 2026

Table 3: Ablations on the prior used. Normalized Return Normalized Cost

0.60 — 4
Task Gaussian Prior Flow Prior /7

0.40

rt el vt et 0¥ A
CarButtonl -0.14 022 0.03 0.36 voo
CarButton2 0.01 0.82 0.04 0.38 ’ 8 =
000 025 050 075 100 000 025 050 075 1.00

CarPushl 0.07 0.08 0.20 0.04 Train Steps(x10°) Train Steps(x10°)
CarPush2 0.06 000 024 0.36 T=1 =3 — T=6 =9

CarGoall 0.06 0.00 027 0.00
CarGoal2 0.05 074 020 028 Figure 4: Ablation on the number of refinement steps.

Table 4: Representative generative latent(-space) policy methods for offline (safe) RL.

Method Backbone Safety-aware? Likelihood OOD control
PLAS (Zhou et al.; 2021) CVAE No Approx. Implicit (latent manifold)
LSPC (Koirala et al., [2024) CVAE Yes Approx. Implicit (bounded latent)
LDGC (Venkatraman et al., 2023) Diffusion No Implicit Implicit (batch-constrained)
FISOR (Zheng et al.|2024) Diffusion Yes Implicit Implicit (HJ-weighted data)
CNF (Akimov et al.,[2022) Flow No Exact Implicit (bounded latent)
FLRP (ours) Flow Yes Exact Explicit (base-KL)

6 RELATED WORK

Offline safe RL aims to learn constraint-satisfying policies from fixed datasets, avoiding risky on-
line interaction. Early work incorporates penalty or Lagrangian terms into value learning—e.g.,
CPQ (Xu et al., [2022), BCQ-Lag (Fujimoto et al., 2019), and BEAR-Lag (Liu et al.l 2023a)—to
account for safety in the Bellman objectives. Others adopt distribution-correction methods such
as COptiDICE (Lee et al., 2022), which model the stationary distribution under constraints. Se-
quence models like CDT (Liu et al., 2023b) and SaFormer (Zhang et al., |2023b) encode safety via
cost-aware conditioning in Decision Transformer frameworks. These methods typically enforce soft
constraints, allowing for occasional violations. Recent approaches (Yu et al.| 2022} Ganai et al.,
2023)) instead leverage Hamilton—Jacobi (HJ) reachability to enforce strict state-wise safety. Com-
plementary to these formulations, another line of work learns a generative policy or latent manifold
to encourage safe behavior. Notably, LSPC (Koirala et al.l[2024) learns a cost-sensitive latent pol-
icy via a CVAE prior, while FISOR (Zheng et al., 2024) couples diffusion-based behavior learning
with HJ-based feasibility guidance. While these methods achieve strong empirical safety, they typi-
cally handle OOD generalization implicitly by relying on the expressivity of the generative prior or
support-based constraints, without substantial improvements over general offline RL methods (Zhou
et al.l 2021; |Akimov et al., 2022 |Chen et al.| [2022) in OOD robustness. Table E| summarizes rep-
resentative generative approaches and compares the key distinctions along four axes, with an ex-
tended discussion on FLRP unifies these two lines by combining a flow-based latent policy
with explicit base-space KL control, and by using HJ reachability not as an external filter but as a
feasibility-guided signal that shapes the latent manifold, yielding provable bounds on total variation.

7 CONCLUSION

We present a safe offline RL framework based on latent refinement. A multi-expert policy itera-
tively adjusts a base latent via safety- and reward-guided residuals, while a normalizing-flow prior
shapes a feasible latent manifold for explicit safety control. We prove order-agnostic bounds on
the final policy distribution and show strong performance across three standard safe RL bench-
marks. The main limitations arise from the feasibility critics. The offline feasibility critics use a
Hamilton—Jacobi—style Bellman operator with sparse cost, which can over-conservatively estimate
value; genuinely safe but rare samples may be undervalued, introducing bias or sample inefficiency.
Latent-space refinement also adds hyperparameters (e.g., expert loss weights and prior shaping tem-
perature). That said, we used a single configuration across 26 tasks, suggesting reasonable robust-
ness. Future work includes adaptive refinement schedules, more principled objectives for shaping
the prior, and hierarchical expert architectures to improve flexibility and generalization.

10

Under review as a conference paper at ICLR 2026

Ethics Statement. This research does not involve human subjects, sensitive data, or practices that
pose foreseeable harm. Our methodology builds upon well-established safe offline reinforcement
learning benchmarks and standard datasets that are publicly available. All experiments were con-
ducted in simulation environments with no real-world deployment or safety risk. We have made
efforts to ensure transparency and reproducibility by providing code and detailed algorithmic de-
scriptions. We adhere to the ICLR Code of Ethics, and this work upholds responsible stewardship
and scientific integrity throughout.

Reproducibility Statement. We have taken several steps to ensure the reproducibility of
our work. All theoretical results, including key lemmas and corollaries, are presented
with complete assumptions and detailed proofs in the appendix. Additional implementa-
tion details, including dataset setup, training pipeline, and evaluation protocol, are also pro-
vided in the appendix. We also include an anonymous link to our core source code at:
https://anonymous.4open.science/r/FLRP-9776/

11

Under review as a conference paper at ICLR 2026

REFERENCES

Dmitriy Akimov, Vladislav Kurenkov, Alexander Nikulin, Denis Tarasov, and Sergey Kolesnikov.
Let offline rl flow: Training conservative agents in the latent space of normalizing flows. arXiv
preprint arXiv:2211.11096, 2022.

Marvin Alles, Philip Becker-Ehmck, Patrick van der Smagt, and Maximilian Karl. Constrained
latent action policies for model-based offline reinforcement learning. Advances in Neural Infor-
mation Processing Systems, 37:70381-70405, 2024.

Eitan Altman. Constrained Markov decision processes. Routledge, 2021.

Somil Bansal, Mo Chen, Sylvia Herbert, and Claire J Tomlin. Hamilton-jacobi reachability: A brief
overview and recent advances. In 2017 IEEE 56th Annual Conference on Decision and Control
(CDC), pp. 2242-2253. IEEE, 2017.

Normand J Beaudry and Renato Renner. An intuitive proof of the data processing inequality. arXiv
preprint arXiv:1107.0740, 2011.

Xi Chen, Ali Ghadirzadeh, Tianhe Yu, Jianhao Wang, Alex Yuan Gao, Wenzhe Li, Liang Bin,
Chelsea Finn, and Chongjie Zhang. Lapo: Latent-variable advantage-weighted policy optimiza-
tion for offline reinforcement learning. Advances in Neural Information Processing Systems, 35:
36902-36913, 2022.

Yinlam Chow, Ofir Nachum, Aleksandra Faust, Edgar Duenez-Guzman, and Mohammad
Ghavamzadeh. Lyapunov-based safe policy optimization for continuous control. arXiv preprint
arXiv:1901.10031, 2019.

Imre Csiszar and Paul C Shields. Information theory and statistics: A tutorial. Foundations and
Trends in Communications and Information Theory, 1(4):417-528, 2004.

Yuhao Ding and Javad Lavaei. Provably efficient primal-dual reinforcement learning for cmdps with
non-stationary objectives and constraints. In Proceedings of the AAAI Conference on Artificial
Intelligence, volume 37, pp. 73967404, 2023.

Laurent Dinh, Jascha Sohl-Dickstein, and Samy Bengio. Density estimation using real nvp. arXiv
preprint arXiv:1605.08803, 2016.

Jaime F Fisac, Anayo K Akametalu, Melanie N Zeilinger, Shahab Kaynama, Jeremy Gillula, and
Claire J Tomlin. A general safety framework for learning-based control in uncertain robotic
systems. IEEE Transactions on Automatic Control, 64(7):2737-2752, 2018.

Justin Fu, Aviral Kumar, Ofir Nachum, George Tucker, and Sergey Levine. D4rl: Datasets for deep
data-driven reinforcement learning. arXiv preprint arXiv:2004.07219, 2020.

Scott Fujimoto, David Meger, and Doina Precup. Off-policy deep reinforcement learning without
exploration. In International conference on machine learning, pp. 2052-2062. PMLR, 2019.

Milan Ganai, Zheng Gong, Chenning Yu, Sylvia Herbert, and Sicun Gao. Iterative reachability
estimation for safe reinforcement learning. Advances in Neural Information Processing Systems,

36:69764-69797, 2023.

Sven Gronauer. Bullet-safety-gym: A framework for constrained reinforcement learning. Technical
report, mediaTUM, 2022.

Ishaan Gulrajani, Faruk Ahmed, Martin Arjovsky, Vincent Dumoulin, and Aaron C Courville. Im-
proved training of wasserstein gans. Advances in neural information processing systems, 30,
2017.

Xinchen Han, Hossam Afifi, and Michel Marot. Elapse: Expand latent action projection space for
policy optimization in offline reinforcement learning. Neurocomputing, 631:129665, 2025.

Philippe Hansen-Estruch, Ilya Kostrikov, Michael Janner, Jakub Grudzien Kuba, and Sergey Levine.
Idql: Implicit g-learning as an actor-critic method with diffusion policies. arXiv preprint
arXiv:2304.10573, 2023.

12

Under review as a conference paper at ICLR 2026

Vindula Jayawardana, Sirui Li, Yashar Farid, and Cathy Wu. Multi-residual mixture of experts
learning for cooperative control in multi-vehicle systems. arXiv preprint arXiv:2507.09836, 2025.

Jiaming Ji, Borong Zhang, Jiayi Zhou, Xuehai Pan, Weidong Huang, Ruiyang Sun, Yiran Geng, Yi-
fan Zhong, Josef Dai, and Yaodong Yang. Safety gymnasium: A unified safe reinforcement learn-
ing benchmark. Advances in Neural Information Processing Systems, 36:18964—18993, 2023.

Ivan Kobyzev, Simon JD Prince, and Marcus A Brubaker. Normalizing flows: An introduction and
review of current methods. IEEE transactions on pattern analysis and machine intelligence, 43

(11):3964-3979, 2020.

Prajwal Koirala, Zhanhong Jiang, Soumik Sarkar, and Cody Fleming. Latent safety-constrained
policy approach for safe offline reinforcement learning. arXiv preprint arXiv:2412.08794, 2024.

Ilya Kostrikov, Ashvin Nair, and Sergey Levine. Offline reinforcement learning with implicit g-
learning. 2021.

Aviral Kumar, Justin Fu, Matthew Soh, George Tucker, and Sergey Levine. Stabilizing off-policy
g-learning via bootstrapping error reduction. Advances in neural information processing systems,

32,2019.

Ankita Kushwaha, Kiran Ravish, Preeti Lamba, and Pawan Kumar. A survey of safe reinforcement
learning and constrained mdps: A technical survey on single-agent and multi-agent safety. arXiv
preprint arXiv:2505.17342, 2025.

Hoang Le, Cameron Voloshin, and Yisong Yue. Batch policy learning under constraints. In Inter-
national Conference on Machine Learning, pp. 3703-3712. PMLR, 2019.

Jongmin Lee, Cosmin Paduraru, Daniel] Mankowitz, Nicolas Heess, Doina Precup, Kee-Eung Kim,
and Arthur Guez. Coptidice: Offline constrained reinforcement learning via stationary distribution
correction estimation. arXiv preprint arXiv:2204.08957, 2022.

Sergey Levine, Aviral Kumar, George Tucker, and Justin Fu. Offline reinforcement learning: Tuto-
rial, review, and perspectives on open problems. arXiv preprint arXiv:2005.01643, 2020.

Quanyi Li, Zhenghao Peng, Lan Feng, Qihang Zhang, Zhenghai Xue, and Bolei Zhou. Metadrive:
Composing diverse driving scenarios for generalizable reinforcement learning. IEEE Transactions
on Pattern Analysis and Machine Intelligence, 2022.

Qian Lin, Bo Tang, Zifan Wu, Chao Yu, Shangqin Mao, Qianlong Xie, Xingxing Wang, and Dong
Wang. Safe offline reinforcement learning with real-time budget constraints. In International
Conference on Machine Learning, pp. 21127-21152. PMLR, 2023.

Zuxin Liu, Zijian Guo, Haohong Lin, Yihang Yao, Jiacheng Zhu, Zhepeng Cen, Hanjiang Hu, Wen-
hao Yu, Tingnan Zhang, Jie Tan, et al. Datasets and benchmarks for offline safe reinforcement
learning. arXiv preprint arXiv:2306.09303, 2023a.

Zuxin Liu, Zijian Guo, Yihang Yao, Zhepeng Cen, Wenhao Yu, Tingnan Zhang, and Ding Zhao.
Constrained decision transformer for offline safe reinforcement learning. In International Con-
ference on Machine Learning, pp. 21611-21630. PMLR, 2023b.

Takeru Miyato, Toshiki Kataoka, Masanori Koyama, and Yuichi Yoshida. Spectral normalization
for generative adversarial networks. arXiv preprint arXiv:1802.05957, 2018.

Johan Obando-Ceron, Ghada Sokar, Timon Willi, Clare Lyle, Jesse Farebrother, Jakob Foerster,
Gintare Karolina Dziugaite, Doina Precup, and Pablo Samuel Castro. Mixtures of experts unlock
parameter scaling for deep rl. arXiv preprint arXiv:2402.08609, 2024.

Felix Otto and Cédric Villani. Generalization of an inequality by talagrand and links with the loga-
rithmic sobolev inequality. Journal of Functional Analysis, 173(2):361-400, 2000.

George Papamakarios, Eric Nalisnick, Danilo Jimenez Rezende, Shakir Mohamed, and Balaji Lak-
shminarayanan. Normalizing flows for probabilistic modeling and inference. Journal of Ma-
chine Learning Research, 22(57):1-64, 2021. URL http://Jjmlr.org/papers/v22/
19-1028.html.

13

http://jmlr.org/papers/v22/19-1028.html
http://jmlr.org/papers/v22/19-1028.html

Under review as a conference paper at ICLR 2026

Xue Bin Peng, Aviral Kumar, Grace Zhang, and Sergey Levine. Advantage-weighted regression:
Simple and scalable off-policy reinforcement learning. arXiv preprint arXiv:1910.00177, 2019.

Tim Salimans and Durk P Kingma. Weight normalization: A simple reparameterization to accelerate
training of deep neural networks. Advances in neural information processing systems, 29, 2016.

Siddarth Venkatraman, Shivesh Khaitan, Ravi Tej Akella, John Dolan, Jeff Schneider, and Glen
Berseth. Reasoning with latent diffusion in offline reinforcement learning. arXiv preprint
arXiv:2309.06599, 2023.

Xiangwei Wang, Peng Wang, Renke Huang, Xiuli Zhu, Javier Arroyo, and Ning Li. Safe deep
reinforcement learning for building energy management. Applied Energy, 377:124328, 2025.

Yixuan Wang, Simon Sinong Zhan, Ruochen Jiao, Zhilu Wang, Wanxin Jin, Zhuoran Yang, Zhaoran
Wang, Chao Huang, and Qi Zhu. Enforcing hard constraints with soft barriers: Safe reinforcement
learning in unknown stochastic environments. In International Conference on Machine Learning,
pp. 36593-36604. PMLR, 2023.

Jingda Wu, Chao Huang, Hailong Huang, Chen Lv, Yuntong Wang, and Fei-Yue Wang. Recent ad-
vances in reinforcement learning-based autonomous driving behavior planning: A survey. Trans-
portation Research Part C: Emerging Technologies, 164:104654, 2024.

Haoran Xu, Xianyuan Zhan, and Xiangyu Zhu. Constraints penalized g-learning for safe offline rein-
forcement learning. In Proceedings of the AAAI Conference on Artificial Intelligence, volume 36,
pp. 8753-8760, 2022.

Dongjie Yu, Haitong Ma, Shengbo Li, and Jianyu Chen. Reachability constrained reinforcement
learning. In International conference on machine learning, pp. 25636-25655. PMLR, 2022.

Peipei Yu, Hongcai Zhang, Yonghua Song, Zhenyi Wang, Huiyu Dong, and Liang Ji. Safe reinforce-
ment learning for power system control: A review. Renewable and Sustainable Energy Reviews,
223:116022, 2025.

Jing Zhang, Chi Zhang, Wenjia Wang, and Bingyi Jing. Constrained policy optimization with ex-
plicit behavior density for offline reinforcement learning. Advances in Neural Information Pro-
cessing Systems, 36:5616-5630, 2023a.

Qin Zhang, Linrui Zhang, Haoran Xu, Li Shen, Bowen Wang, Yongzhe Chang, Xueqian Wang,
Bo Yuan, and Dacheng Tao. Saformer: A conditional sequence modeling approach to offline safe
reinforcement learning. arXiv preprint arXiv:2301.12203, 2023b.

Ziqgian Zhang, Haojie Li, Tiantian Chen, NN Sze, Wenzhang Yang, Yihao Zhang, and Gang Ren.
Decision-making of autonomous vehicles in interactions with jaywalkers: A risk-aware deep re-
inforcement learning approach. Accident Analysis & Prevention, 210:107843, 2025.

Weiye Zhao, Tairan He, Rui Chen, Tianhao Wei, and Changliu Liu. State-wise safe reinforcement
learning: A survey. arXiv preprint arXiv:2302.03122, 2023.

Yinan Zheng, Jianxiong Li, Dongjie Yu, Yujie Yang, Shengbo Eben Li, Xianyuan Zhan, and Jingjing
Liu. Safe offline reinforcement learning with feasibility-guided diffusion model. arXiv preprint
arXiv:2401.10700, 2024.

Wenxuan Zhou, Sujay Bajracharya, and David Held. Plas: Latent action space for offline reinforce-
ment learning. In Conference on Robot Learning, pp. 1719-1735. PMLR, 2021.

14

Under review as a conference paper at ICLR 2026

A LLM USAGE

The authors used large language models (LLMs), specifically ChatGPT (GPT-4), solely as a lan-
guage editing assistant. The LLM was employed only for grammar correction, stylistic improve-
ments, and minor clarity revisions of the authors’ own writing.

All ideas, algorithms, experimental designs, theoretical proofs, and scientific contributions presented
in this paper are the sole work of the authors. The authors take full responsibility for the technical
content and claims made in the paper. No content was generated or suggested by the LLM regarding
methodology, experiments, or results.

B EXTENDED DISCUSSIONS ON RELATED WORKS

B.1 GENERATIVE LATENT-SPACE OFFLINE RL METHODS

A growing line of offline RL methods learns policies in a low-dimensional latent action or trajectory
space induced by a generative model. These approaches typically fit a conditional generative model
on offline data and optimize a latent policy whose outputs are decoded back to actions, thereby con-
straining policy search to a data-supported manifold and reducing OOD actions. PLAS (Zhou et al.
2021) and its CVAE-based extensions, such as LAPO and ELAPSE (Han et al.
2025)), enhance this framework by shaping the latent distribution to emphasize high-return behav-
iors and mitigate collapse. In the model-based setting, C-LAP (Alles et all, [2024) learns a latent
action state-space model and constrains imagined rollouts to remain within the latent prior, provid-
ing implicit conservatism. Latent diffusion approaches (Venkatraman et al.} [2023)) extend this idea
to trajectory-level latent spaces, enabling policy optimization over semantically structured latent tra-
jectories. Flow-based generative policies have also been explored; CNF (Akimov et al.,[2022)) trains
a normalizing flow over actions and reduces OOD actions by bounding the base distribution under a
frozen decoder. CPED (Zhang et al}[2023a) explicitly estimates the behavior density using a flow-
GAN and constrains policy updates within high-density regions. For safe offline RL, LSPC
[2024) encodes latent safety constraints with a CVAE and regularizes the latent policy using a
safety critic, though it still relies on ELBO training and support-based constraints.

Compared with these generative latent(-space) policy methods, FLRP differs along four comple-
mentary dimensions, summarized here and in Table d]in the main text.

1. Task scope and safety objective. Prior flow-based methods such as CNF
do not target safe offline RL. FLRP lies in the same flow-based family but is instantiated
for hard-constrained safe offline RL with near-zero violation, rather than for unconstrained or
budgeted objectives.

2. Generative backbone and likelihood. CVAE-, flow-, and diffusion-based policies all exploit
latent manifolds, but flows are invertible and admit exact likelihoods. With a Gaussian base,
FLRP can monitor a base-space KL divergence and propagate it into bounds on action/policy
deviation (TV/W3) and OOD mass, providing a quantified, tunable notion of conservatism not
available to ELBO-trained CVAEs (Zhou et al 2021}, [Chen et all 2022} [Han et al., [2025)) or
multi-step latent diffusion models (Venkatraman et al.,[2023).

3. OOD-control mechanism. CNF reduces OOD by making the flow’s base uniform-bounded
and freezing the decoder (Akimov et al.,[2022), but does not explicitly control policy deviation.
FLRP instead (a) retains a Gaussian base with an explicit OOD/shift bound from the base-space
KL and (b) performs feasibility-guided density shaping on the base (using the flow’s inverse).
Together, this makes conservatism measurable and controllable, while keeping policy search
within empirically safe, high-density regions.

4. Training and inference protocol. Safe offline RL couples reward, safety, and OOD control.
Instead of relying on a single entangled loss, FLRP employs ordered small-step refiners in the
base space with a frozen decoder—Safety — Reward — Shared—so updates remain in-support
and non-expansive. This protocol tightly links safety, reward, and OOD suppression, exposes a
clear trade-off handle, and avoids the instability of lumping all terms into one gradient..

15

Under review as a conference paper at ICLR 2026

B.2 ADDITIONAL DISCUSSION ON HARD AND SOFT CONSTRAINT

Hard vs. soft formulations. In safe RL, a hard (state-wise) safety constraint requires that the
policy never leaves the safe set. Let & : S — R encodes a state constraint and ¢(s) = max{h(s),0}
is the induced cost. A hard constraint enforces

h(St) S 0, Ay ~ 7T(' | St)7 YVt € N, (23)
which can equivalently be written as a zero-violation cost condition

c(sy) =0, ar~mn(-]st), Vt €N (24)

By contrast, soft or budgeted constraints are typically expressed at the level of expected cumulative
cost. Given a cost limit [> 0, the constraint is

ETww{ic(st)] <!l or]ETN,r[i'ytc(st)} <l, (25)
t=0

t=0

and the policy is allowed to incur nonzero instantaneous violations as long as the long-term budget

is respected. Recent work further extends this perspective to real-time budgeted safety, where the
agent must adapt to dynamically specified cost budgets in the offline setting (Lin et al., 2023)), as
well as to risk- and distributionally-robust variants (Chow et al.l[2019; [Kushwaha et al., 2025).

Design philosophies and use cases. Hard and soft formulations reflect different safety philoso-
phies rather than a strict ordering of capability. Hard/near-zero-violation methods
2018}, [Yu et al} 2022} [Zheng et al.| 2024} [Zhao et al., [2023) target scenarios where every violation
corresponds to an unacceptable safety breach (e.g., collisions, irreversible damage, or regulatory vi-
olations); here, the emphasis is on characterizing and staying inside the feasible region. Budgeted or
soft methods (Le et al, 2019} [Lee et al, 2022} [Liu et al,[2023b)), in contrast, model cost as an allo-
catable resource: small, occasional violations are acceptable if they enable substantially better task
performance, which is appropriate for risk-sensitive but non-safety-critical domains or applications
with tunable risk budgets.

Our framework intentionally follows the hard / near-zero-violation viewpoint: we are interested in
safe offline RL settings where violations correspond to genuine safety failures, and thus focus on
maximizing return while keeping state-wise safety rates close to 100%. We view budgeted-safety
approaches as complementary rather than competing; in principle, similar generative latent-space
and flow-based techniques could be adapted to budgeted formulations by conditioning critics and
refiners on a dynamic cost budget, which we leave as an interesting direction for future work.

C THEORETICAL ANALYSIS

In this section, we provide the missing proofs for the theoretical results to support or validate the
proposed method.

C.1 DERIVATION OF THE FLOW DENSITY

Normalizing flows model complex distributions by transporting samples from a simple base den-
sity through an invertible transformation. In the conditional setting, let u ~ po(u) denote a latent
variable drawn from a base distribution, typically A'(0, 1), and define z = f,(u;cond), where
fo(+; cond) is a bijective mapping parameterized by ¢ and conditioned on an external variable cond
(e.g., a state or context).

Because the map is invertible for fixed cond, the inverse u = f - !(2; cond) is well defined. To obtain
the conditional density py(z | cond), we apply the change-of-variables formula for differentiable
bijections:

-1

o1 (=) 7 26)

0z

Of (u)
ou

p(z) =po(f~"(2)) - |det

‘ = po(u) - ’det

16

Under review as a conference paper at ICLR 2026

where the second equality follows from the inverse function theorem. In our conditional setting we
thus have
ou
det —
0z

Py (2 | cond) = po(u) - , u= f¢_1(z; cond). 27

. 5 92\ —1
Using % = (?Ti) , we can express the inverse Jacobian in terms of the forward transformation:

’ . 1t
‘detfﬁtl‘detfiﬁﬁ0u,con>‘ , 28)
0z ou
Substituting this identity back into the density expression gives
f4(u; cond) |~
pe(z | cond) = po(u) - |det W’ , u= f;l(z;cond). (29)
U
Taking logarithms yields the exact log-likelihood of the conditional flow:
log ps(z | cond) = log po(u) + log |det ? , u= f(;l(z; cond), (2)
z

which corresponds to Eq. 2]in the main text.

In practice, the Jacobian determinant is computed analytically using affine coupling layers, whose
triangular structure reduces the log-determinant to a sum of layerwise log-scale outputs. This makes
the likelihood term efficient to compute while preserving the exactness afforded by the invertibility
of the flow.

When the transformation is a composition of L conditional bijections,
up ~ Po, uf:fZ(uffl;CondL {= 11"'7L7 Z=1ur, (30)
The change-of-variables formula yields

Oug_q
(%

det ; €2y

L
log (2 | cond) = log po(uo) + Y _ log
=1

where each term uses the inverse Jacobian of layer f,. Equivalently, this can be written as the
negative sum of forward log-determinants,

Ofe(up—1;cond)

| (32)

L
log ps(z | cond) = log po(uo) — Z log ’det
=1

which is the form implemented in practice when accumulating the density term across multiple flow
layers.

C.2 PROOF OF DEFINITION[2]
For a fixed v € (0, 1) and we define V;(s) := min, Q;(s, a) for i € {1,2}. Then for any (s, a),

[(P*Q1)(s,a) = (P*Q2)(s,a)| =~ ‘]Esf[max{h(S), Vi(s')} — max{h(s), Va(s')}] ‘
<y Eo|Vi(s') — Va(s')|.

(33)

Since V;(s') = ming Qi(s’,a’) and the pointwise min is 1-Lipschitz, |Vi(s') — Va(s)| <
sup,, |Q1(s',a’) — Q2(s',a’)| < [|Q1 — Q2]|o- Taking the supremum over (s, a) yields

[P*Q1 = P*Q2llec < 7[Q1 = Q2o (34)

so P* is a y-contraction under the sup norm. By Banach’s fixed-point theorem, there exists a unique
fixed point @7, ., and we set V;*_ (s) := min, @}, . (s, a).

17

Under review as a conference paper at ICLR 2026

To connect to the undiscounted HJ-style values, assume h is bounded. Let ,, T 1 and consider the
fixed points Qj, ., . Because {Q)}, ., }, is uniformly bounded and P* is continuous in -, any limit

point QT satisfies, for all (s, a),

Qf(s,a) = lim [(1 — Y)h(8) + Vn Esl[max{h(s),n(lli/n Qo (8/7(1/)}]}

n—oo

(35)
= Eo[max{h(s), min Q'(s',a')}].

This is the dynamic programming equation for the HJ-style (statewise zero-violation) feasibility
values; hence QT = Qj, and VT = min, QT(-,a) = V}}. Therefore Q}, , — Q} and V' — V}* as
~ 1 1. O

C.3 PROOF OF LEMMA[Il

Recall the weighted objective in full form:

Liow = E(sya)wm[w(s,a) Ezrvqw(z\s,a)[logmg(a | s,z }
(36)
+ BE(aypo|w(5,0) Dicifan(- | 5,0) || ps(- | 5))

and we define the behavior-weighted data distribution pp (s, a) := w(s, a) pp(s, a)/Z with normal-

izer Z = E,, [w(s, a)] (a constant independent of (¢, 1, 8)). For clarity, first consider 5 = 1; we
return to 8 # 1 at the end. Then, up to the positive constant factor Z,

Liow = Z - E(s,a)wﬁD{EZqu [—log 71—0(@ ‘ S, Z)] + DKL(qw ” p¢) }
Expand the KL term inside the expectation:

E.ngy, [—logmg(a | s,z)] +E.nq, [logq,/,(z | s,a) —logpe(z | s)]

B qy(z | s,a) (37)
= By [k’g polz | 5)mola | s,z)]'

Taking the expectation over (s, a) ~ pp yields

1 pp(s,a)qy(z]| s,a
E Low = IE:(s a)NpDEZqu |:10g ~ () 71’(|) :|

pp(s a) p¢(z | s)mo(a]s,) (38)

= DKL(ﬁD(S’a) G (,a)py(z | s)mo(a | Saz))-

Finally, use the identity Dk, (P||C - Q) = Dk1(P||Q) — Ep[log C] for a positive constant density
factor C' that does not depend on the model parameters (¢, v, 8); here C' = pp(s, a). Therefore,

Liow = const + DKL<ﬁD(5,a) qy(z | s,a) || pe(2 | s) mo(a | s,z)), (39)

where the constant depends only on pp (hence on w and the dataset) and not on (¢,), 6). This
proves the claim for g = 1.

Extension to 3 # 1. For a general 8 > 0, the same algebra shows that

Liow = const + DKL(pD(S a)qy(z|s,a || p(ﬂ) (z | s)mg(a| 5,2)), (40)
with a temperature-adjusted prior pff) (2 | 5) o pg(z | 5)? (i.e., the energy scaled by 3). Equiva-
lently, if one wishes to keep p, unchanged, absorb /3 by rescaling the KL term or by introducing a

decoder temperature; both formulations are strictly equivalent up to a parameter-independent con-
stant. O

18

Under review as a conference paper at ICLR 2026

C.4 PROOF OF LEMMA[2

Let p :=IIy(+|s), r := mo(-|s), ¢ := ma(-|s) w.r.t. a common dominating measure. By the elemen-
tary inequality (chain rule with a bounded density ratio)
r(a
Dxw(pllg) = DxL(p|r)+E,[log ﬂ < Dx1(p||r)+log sup an; = Dk (p||r)+log Re(s). (41)

Under a frozen decoder T, : U — A, we treat the transformation from base latent u to action a
as a measurable pushforward mapping. Let ¢, be the refined base distribution and N the standard
Gaussian. Then the induced action distributions satisfy

DKL(TS#qu H TS#N) < KL(Qu || N)7 (42)

by the data-processing inequality (DPI) for Kullback—Leibler divergence under measurable maps;
(e.g.,see |Csiszar & Shields|(2004)). This result states that any deterministic or stochastic channel
(here, the frozen decoder Ts) cannot increase KL divergence. O

C.5 PrROOF oF LEMMA[3]

Let f5 : RY — R? be a smooth bijection (the prior flow). Define ¢, = fs4q, and py = fsxN. By
the change-of-variables formula,

2=(2) = qu(u) ‘det %), Pe(2) = N(u) ’det%

;2= folu). (43)

Hence

Dra(a-le) = [a-(e)tox 5 az = [a,wtox §e du = D).

i.e., KL is invariant under the bijection f.

Let T, : R? — A be the deterministic decoder mapping (e.g., decoded mean) with frozen . The

data-processing inequality for f-divergences (including KL) under a measurable pushforward gives
Dxi(Tspq- H Tsups) < Dxr(g:|pg). (45)

With 7 = Tsxq, = Tsxq. and 19 = TsyN = Toupgs, we obtain Dgy,(7]|mg) < KL(g.||ps) =
Dx1,(qu||NV'), which proves Eq.

C.6 PROOF OF COROLLARY[I]
For the Wasserstein bound, write 7 = Tsxq. and mg = Toupy with Ts = go(-,s). If go is L,-
Lipschitz on the latent chart, then the pushforward is L4-Lipschitz in W:

WQ(’R—7 7TO) S Lg WZ(QZ7P¢) (46)

By Talagrand’s 75 inequality (Gaussian reference or log-Sobolev under mild conditions) (Otto

& Villani, [2000), Wa(q.,ps) < +/2Dxki(g:|py), and Lemma |3| implies Wa(m, m9) <
Ly+\/2 Dk1,(qu||IN).

For total variation (TV) and OOD probability, the triangle inequality yields TV (rw,mg)
TV (m,m9) + TV (mg,m3). Pinsker’s inequality (Csiszar & Shields| 2004) gives TV (7, mo)

\/% Dk, (r||mo) < \/% Dx1,(gu||N), using Lemma For any measurable O,

INIA

m(0) =m(0) < TV(m,75) < /5 Dxu(qullN) + TV (mo, mp). (47)
Rearranging completes the proof.

Remark. The Wasserstein bound in Corollary 1 relies on the Lipschitz continuity of the decoder
ge with constant L,. We note that this is a mild and practically enforceable assumption. During
training, the decoder’s Lipschitz constant can be implicitly constrained through techniques such as
weight normalization Salimans & Kingma) (2016)), spectral normalization [Miyato et al.| (2018)), or
the gradient penalty |Gulrajani et al.| (2017), which are commonly used in generative modelling to
enhance stability and generalization. Consequently, the theoretical bounds derived herein are not
only sound but also practically relevant, as the key quantity Dkr,(g,|N) remains the primary lever
for controlling distributional shift.

19

Under review as a conference paper at ICLR 2026

C.7 ORDER-AGNOSTIC BOUNDS FOR SEQUENTIAL REFINEMENT

We formalize that the KL/Wasserstein/TV bounds in Lemma [3]and Corollary [T are independent of
the update order used by the experts.

Proposition 1 (Order-agnosticity of base-space bounds). Let R be any (possibly stochastic) mea-
surable refinement operator on the base space that maps the standard Gaussian N to a refined
distribution q,, = R(N), obtained by any composition/order of expert updates (e.g., Gauss—Seidel,
Jacobi, interleaved mini-steps) subject to a trust region ||ur — ug|| < p. With the prior flow f, and
decoder gy fixed (as in Sec. , define m = Tsuq, and my = Tsx N where Ts(u) = go(fp(u; s), s).
Then the conclusions of Lemma[3|and Corollary [[|hold verbatim with this q,,:

Dxi(n(- | s) || mo(- 5)) < Dki(au(- | s) | V),
Wa(m(- | s),mo(| 8)) < Lg/2 Dxw(qullNV),
and the TV/Pinsker OOD bound remains unchanged.

(48)

Proof. The proofs of Lemma [3] and Corollary [T use only: (i) invariance of KL under the bijection
fe; (ii) data-processing for pushforwards through the frozen decoder go; (iii) Talagrand/Pinsker
inequalities. None of these depend on the path that produces g,,, only on the resulting distribution
Gu- Any expert ordering defines a measurable map whose pushforward of N is gq,,; substituting this
¢, into the same steps yields the stated bounds. The optional trust region ensures KL finiteness and
well-definedness but does not affect order independence. O

C.8 POLICY GAP AND COMPARISON WITH PRIOR PERFORMANCE BOUNDS

We first derive simple performance bounds that relate the reward and cost gaps between the refined
policy and the flow prior / behavior policy to the base-space KL regularizer used in FLRP.

Preliminaries. Let 7 denote the final refined policy, g the flow prior policy, and 73 the behavior
policy. Rewards and costs are bounded as |r(s,a)] < Rmax and |c(s,a)] < Cpax. We write
Jr(m) == E[X,507 7] and Jp () := E[32,5(7"c] for the reward and cost return under 7, and
dj, for the discounted state-visitation distribution induced by 7 from initial distribution po. For a
reference policy 7/, we define A7 (s,a) = Q7 (s,a)— V™ (s) and AT (s,a) = QT (s,a)—V/™ (s).

Lemma 4 (Performance difference via TV). For any two policies m and 7', we have

1 iy
Jr(’/T) — J,,,(ﬂ'/) — i Eswdgo,aNTr(ﬂs) [Ar (S, a)],
L (49)
Jh(ﬂ') - Jh(’ﬂ'/) = m E(S‘ngo,a/\/ﬂ("s) [A;lr (S, a)] .
Moreover; if |r(s,a)| < Rmax then
/ 2Rmax /
| Jp () = Jp ()| < T2 sup TV(n(-[s), 7' (-]s)), (50)

and an analogous bound holds for Jy with Ry, ax replaced by Chyax.

Proof. The equalities are the standard performance-difference lemma obtained by unrolling the
Bellman equations and telescoping the resulting series.

For the inequality, bounded rewards imply |V™ (s)] < Ruax/(1 —) and |Q7 (s,a)| <
Rpnax/(1 —) for all (s,a), hence |A£/(s, a)| < 2Rmax/(1 — 7). Moreover, for every s we have
Eqmr(]5) [A™' (s,a)] = 0, so

' o ! Rmax
Egror(.fs) AT (s,a)‘ = [Eannin A7 (5,0) = Eanwr i A7 (5,0)| < 272 TV(r(:[s),7'(]s))

-
(G

20

Under review as a conference paper at ICLR 2026

where we used the standard inequality |E, f — E, f| < 2|/ f||ccTV(p, q). Plugging this bound into
the performance-difference lemma and taking the supremum over s yields

| T ()= ()] < ﬁ Esndy qu [2% TV(W(-\S)m’(-\S))] < ﬁim;; sup TV(7T(-|S),(7;’2(;|5)).

The bound for J;, follows by replacing Ryax With Chpax. O

Proposition 2 (Policy gap under base-space KL control). Assume that the base latent distribution
qu(-|s) used by the refined policy satisfies a uniform KL constraint

Dii(qu(-|$) IN(-)) < evbase foralls, (53)

where N is the standard Gaussian base of the flow prior and we refer to the upper bound €p,qse as
the base-space KL radius. Let

Ag = sup TV(mo(-]s), ma(:|s))

denote the mismatch between the flow prior and the behavior policy. Then the refined policy satisfies
the following reward and cost bounds:

|7 () = Jy(mo)| < 5}3—“‘7)2 \/ % Ebaser (P1)
() = ()] < T2 e *2)
9:) = T)| < 225 (1 e+ 89), (P3)
90(m) =)] < T2 (/3 e+ B). (P4

Proof. We first consider the gap between 7 and the flow prior my. By LemmaEl with 7/ = mq it
suffices to control sup, TV (7 (+|s), 7 (-|s)). By Pinsker’s inequality we have

TV(r(s). mo(1s)) < /% Dre((ls) | mo(-]s))- (54)

Lemma [3]shows that the policy KL is bounded by the base-space KL under the flow+decoder map-
ping:

Dxr(n(-[s) [70(-]s)) < Dxr(qu(-|s) [N()) < ebase, (55)

supTV(ﬁ(~|s),7r0(-\s)) < \/%Ebase. (56)

Substituting this into LemmaEl yields (P1) and (P2).

and hence

For the gap to the behavior policy, Corollary [T]in the main text implies that for each state s,

TV(r(ls), ms(15)) < /3 Dalaa(C13) INC) + TV(mo([s),5(1s). 5T)

Applying the uniform bounds on the base-space KL and on TV (7, 73) gives

sup TV(7T(~|S), ﬂﬁ(\s)) <4/ %Sbase + Ag. (58)

Plugging this into LemmaEl with 7/ = g yields (P3) and (P4). O

21

Under review as a conference paper at ICLR 2026

Discussion The above results show that FLRP admits explicit reward and cost policy-gap bounds
(Proposition |z[) in terms of the base-space KL radius ep,sc and th prior-behavior mismatch Ag.
In particular, Eqs. (P1)-(P4) make the role of e},,¢¢ transparent: by constraining the refined base
distribution ¢, (- | s) to stay within a KL ball around the Gaussian base of the flow prior, we directly
bound the TV/W, shift between the refined policy and the prior/behavior policies, and hence obtain
tunable control over out-of-distribution (OOD) extrapolation. This aligns with the central tension in
offline RL between policy improvement and staying close to the data distribution.

Within offline safe RL, LSPC (Koirala et al., [2024) also derives policy-gap and violation bounds in
a CMDP setting. For example, they show that

* 2Rmax ¢ :
|4 (PO) -Vr (PO) < W (\/§+ \/%) s (59)

where 7* is the optimal safe policy and €, €/, collect approximation errors from the CVAE-based

latent model and value estimators. Although similar in form, our guarantees are not a stronger ver-
sion of LSPC’s global policy-gap bounds, but a complementary type of result. LSPC focuses on
how far the learned safe policy can be from the optimal safe policy in terms of return and constraint
satisfaction, with bounds expressed via abstract approximation errors (e.g., €7, 5). Our analysis
instead focuses on how far refinement can move the policy away from the data/prior distribution in a
flow-based latent space, and how a base-space KL regularizer keeps this shift controlled and tunable.
Crucially, compared with €/, £}, epase is not a latent error term but a regularization parameter in the
training objective: it has a direct geometric interpretation and can be monitored and adjusted in prac-
tice, providing an explicit and controllable mechanism for OOD risk suppression that is embedded
into the shared refiner and Gaussian regularization.

D IMPLEMENTATION DETAILS

In this section, we describe our experimental framework and implementation of the proposed
method, including benchmark and datasets, task descriptions and evaluation metrics, and training
details.

D.1 BENCHMARK DETAILS

We use the Datasets for Safe Reinforcement Learning (DSRL) benchmark suite (Liu et al.| 2023a))
to train and evaluate our method as well as all baselines. DSRL provides 38 offline datasets spanning
multiple safe RL environments (Safety-Gymnasium, Bullet-Safety-Gym, and Safe MetaDrive) with
varying difficulty levels. These datasets follow a D4RL-style (Fu et al. |2020) API and include
detailed cost signals in addition to reward returns.

For the baselines, we adopt the authors’ official implementations and default hyperparameters when
available (especially for FISOR and LSPC). For other methods (BCQL / BCQ-Lag, CPQ, CDT), we
use the OSRL framework’s implementations and settings to ensure fair comparison.

D.2 TASK DESCRIPTIONS

Below are the three environment suites used in our experiments, with their main task types and
distinguishing safety vs. complexity features. Figure [5]shows three example visualizations.

D.2.1 SAFETY-GYMNASIUM

Safety-Gymnasium (Ji et al.,|2023) is a unified MuJoCo-based benchmark collection offering a va-
riety of continuous control tasks (e.g. Goal, Button, Push, Circle, Velocity, etc.). Agents include
Point, Car, Ant, HalfCheetah, etc. The tasks vary both in goal structure (e.g. reach a goal, push an
object, navigate through buttons) and safety constraints (velocity limits, obstacle avoidance, colli-
sion cost). Some tasks include hazards or “sigwalls” that act as soft or hard boundaries. These tasks
test both navigation and locomotion under safety constraints.

22

Under review as a conference paper at ICLR 2026

-8R
3 -9 -0 >
Wy _® -
X 8%e° o = |
%]
® O ® @ o
(a) Safety Gymnasium (b) Metadrive (c) Bullet Safety Gym

Figure 5: Example visualization from the simulation environments used in our experiments.

D.2.2 BULLET-SAFETY-GYM

Bullet-Safety-Gym (Gronauer, [2022) is based on the PyBullet physics engine. It includes similar
task types (Circle, Run, Gather, Reach) with agents such as Ball, Car, Drone, Ant. The dynamics
tend to have shorter horizons and more variability in physics (collision, friction) compared to Mu-
JoCo, which raises safety risk under state/action noise. Cost signals usually arise from collisions or
from exceeding safe boundaries. This makes the tasks more challenging in terms of generalization
and handling unsafe transitions.

D.2.3 SAFE METADRIVE

MetaDrives (Li et al.,|[2022) is a simulator for driving/traffic/autonomous vehicle tasks under safety
constraint. Its “safe RL” subset includes tasks with realistic road networks, dynamic agents, pro-
cedural map generation, traffic rules, and hazards. Observations often include vehicle state, road
context; actions are continuous control of speed/steering. Safety constraints include collisions, lane
infractions, and staying within road limits. These tasks are more realistic in terms of environment
unpredictability, driving constraints, and possibly partial observability or environmental stochastic-

1ty.
D.3 DATASET VISUALIZATION

We further present the distribution of offline trajectories in the cost—return space across three repre-
sentative environments, as shown in Figure[6] In the CarPush task from Safety-Gymnasium, the
reward distribution is narrow and low, while the cost spans a wide range. This results in a weak corre-
lation between reward and safety: most trajectories incur significant costs even when achieving only
modest returns, making strict constraint satisfaction particularly challenging. In the MediumMean
task from Safe MetaDrive, the reward exhibits distinct discrete bands, each associated with a specific
cost level. This reflects mode-switching behaviors and a strong reward—cost coupling; although fea-
sible trajectories exist, achieving high reward under tight cost limits requires careful selection among
these behavioral clusters. The CarRun task from Bullet Safety Gym demonstrates a smoother trade-
off frontier, where reward gradually increases with cost, forming a continuous and diverse distribu-
tion. While safe, high-reward trajectories remain sparse, the presence of mid-reward, intermediate-
cost episodes renders this dataset more amenable to constrained policy optimization compared to
the other two.

D.4 EVALUATION METRICS

We evaluate the performance of all methods using two metrics: normalized reward return and nor-
malized cost return, following standard evaluation practices used in offline RL benchmarks like
DA4RL [Fu et al| (2020) and adopted by recent safe RL methods such as CDT [Liu et al.| (2023b),
LSPC (Koirala et al., 2024) and FISOR (Zheng et al., 2024). The normalized reward is defined as:

R-rr — T'min (T>
Tmax (T) — Tmin (T)

Rnorm = (60)

23

Under review as a conference paper at ICLR 2026

150 | : : A LI

Reward Return
Reward Return
@

3
Reward Return
w
8
8

505

O e e — a1

0 50 100 150 200 0 10 20 30 40 50 20 40 60 80 100
Cost Return Cost Return Cost Return

(a) CarPushGymnasium (b) MediumMean (c) BulletCarRun

Figure 6: Example visualization of the dataset used in our experiments.

where R, is the total reward return of the trained policy 7, and 7max (7), "min(7) denote the maxi-
mum and minimum reward returns observed in the dataset T, respectively.

The normalized cost is computed as:
Cr
K+ €

where C'; is the total cost return of policy 7, « is the cost limit, which we set to 10 for all tasks, and
€ is a small constant added to avoid numerical instability when £ = 0.

(61)

Cvnorm =

D.5 TRAINING DETAILS

For all baseline methods, we adopt their default hyperparameter configurations. To ensure a fair
comparison across all methods, we set the rollout length for each task to match the maximum number
of allowed interaction steps. The cost limit for the baselines is set to 10 for all tasks. The common
key hyperparameters used for our method and baselines are shown in Table[5] Table[§]lists other key
hyperparameters used for FLRP. We apply the same configuration across all tasks and environments
without per-task tuning.

Table 5: Model Configuration Parameters

Parameter CPQ BCQ-L CDT LSPC FISOR FLRP
Common Settings:

Training steps 1 x 108

Batch size 512

Discount factor 0.99

Activate function ReLu

Algorithm-Specific Settings:

Hidden layer size 256 256 256 256 256 256

Soft update rate (1) 0.005 0.005 0.005 0.005 0.001 0.001

Cost limit 10 10 10 - - -
Learning Rates (x1073):

Actor learning rate 1.0 1.0 0.1 0.3 0.3 0.3

Critic learning rate 1.0 1.0 0.1 0.3 0.3 0.3

The pseudocode for FLRP is provided in Algorithm [T} All experiments were conducted on eight
NVIDIA RTX 6000 Ada Generation GPUs, each with 48 GB of memory. Each experiment is run
with 3 random seeds, and results are averaged over 10 evaluation episodes per seed.

D.6 COMPUTATIONAL COST

Compute overhead of the flow prior. As an extension of the ablation study, to quantify the com-
putational footprint of the flow prior, we compare it against an otherwise identical refiner equipped

24

Under review as a conference paper at ICLR 2026

Table 6: Hyperparameters of FLRP.

Parameter Value
Expectile T 0.9
Asymmetric L2 loss coeff 0.9

Target temperature 3

Value temperature 5
Advantage weight clip (reward) (—o0, 100]
Advantage weight clip (cost) (—o0, 150]
Refine steps T' 3

Refiner loss weight A, A, Asn 1,1,0.5

Table 7: Compute profile of the refiner with a Gaussian prior vs. a flow prior (identical architecture
and training setup). FLOPs are per training step; NF Time fraction is the proportion of wall-clock
per step spent in the prior.

Train time Peak mem. Infer. latency Refiner FLOPs Prior FLOPs NF time frac.

Prior / step (s) (GB) (ms) (GFLOPs/step) (GFLOPs/call) (%)
Gaussian 0.052 1.06 1.21 0.29 0.00 0.05
Flow 0.086 1.07 2.13 0.48 0.18 333

with a Gaussian prior (Table [7). The flow prior increases per-step training time from 0.052,s to
0.086,s (about x1.6) and single-step inference latency from 1.21, ms to 2.13, ms (about x1.7),
while peak memory remains essentially unchanged (1.06, GB vs. 1.07, GB). In terms of arithmetic
cost, refiner updates require 0.29, GFLOPs per step with a Gaussian prior and 0.47, GFLOPs with
a flow prior (roughly x1.6); the flow prior itself accounts for about 0.18, GFLOPs per call, corre-
sponding to approximate 38% of the refiner’s FLOPs and approximate 3.3% of the wall-clock time
per training step. In contrast, the Gaussian prior baseline incurs essentially zero prior FLOPs and a
negligible NF time fraction (= 0.05%). Overall, the flow prior introduces a modest but measurable
overhead, while keeping both training and inference well within a practical compute budget.

Architectural simplicity of the flow prior. Our normalizing flow prior is intentionally designed to
be lightweight. We use a coupling-based architecture with affine transformations (RealNVP-style),
so the Jacobian of each layer is triangular and the log-determinant can be computed in O(d) time
without any matrix inversion. Forward and inverse mappings share the same couplings and remain
strictly first-order—there is no need to invert Hessians, solve inner optimization problems, or run
costly fixed-point iterations. Combined with a moderate latent dimension and a small number of
coupling layers, this keeps the flow prior numerically stable and computationally inexpensive while
still providing exact likelihoods and invertible latent transformations.

E ADDITIONAL EXPERIMENTS

Reversed expectile for feasibility function. The reversed expectile parameter 7;, controls how
conservative the feasibility critic is and thus how the safe region is learned. We sweep different
T, values to quantify the gap between our HJ-based feasibility estimates and the true safe region
constructed from the offline dataset. Intuitively, a smaller 7, emphasizes lower ()}, values, making
V1, more pessimistic and shrinking the induced feasible set {s | V}(s) < 0}; this should yield
high precision but low recall w.r.t. the true safe set. A larger 7, has the opposite effect, expanding
the feasible set and trading precision for recall. Table [§] confirms this trend on both CarRun and
AntCircle: as 7y increases, recall consistently improves while precision decreases. The effect
is much sharper on AntCircle, whose safe region is more complex, indicating that harder tasks
require a more optimistic critic (larger 73,) to achieve comparable coverage of the true safe set.

25

Under review as a conference paper at ICLR 2026

Algorithm 1 FLRP Training (Two-Stage)

Require: Offline dataset D
L: Init critics (Qr, Vi), (Qn, Va); flows py, qy; decoder mg; refiners { R, R,., Rsn }

2. Stage 1: Critic and flow pretraining
3: while not convergedy,s. do
4: Sample minibatch (s, a,r, ¢, s’) ~ D, draw z, ~ gy (2 | s,a)

5: // Critic updates

6: Update safety critics (@, V) by HJ-style backup > Eq. 8,Eq. 9

7: Update reward/value critics (Q;, V;.) by TD / advantage targets > Eq. 21, Eq. 22

8: // Flow prior and decoder

9: Compute BC loss and prior-shaping loss Lgow > Eq. 12
10: Update pg, g, and g using flow objective > Eq. 13

11: end while

12: Stage 2: Latent refiner training (freeze base model)

13: Freeze parameters of (Qr, Vi), (Qr, V1), De, ¢y, and my

14: while not converged,.s do

15: Sample minibatch (s, a,r, ¢, s') ~ D, draw z, ~ gy (z | s, a)
16: Compute base code u, < Tgl(zq | 5)

17: (a) Safety refiner

18: us < Rg(ug, s)

19: Decode a, < g (T (us | s), s)

20: Compute safety loss £, from Qp, (s, as) > Eq. 14
21: Update parameters of R w.r.t. Lp

22: (b) Reward refiner

23: U — Ry (ug, s)

24: Decode i, + mo(Ty(ur | s), s)

25: Compute reward loss £, from @Q,(s, @,) (masked by feasibility) >Eq. 15
26: Update parameters of R, w.r.t. L,

27: (c) Shared refiner / OOD control

28: Ush < Ren(ug, 5)

29: Compute base-space regularizer Lg, (e.g., KL to (0, I) or |Jug||?) > Eq. 16
30: Update parameters of Ry, w.r.t. Ly,

31: end while

Table 8: Sensitivity of the HJ-based feasibility classifier to the expectile parameter 75,. Re-
call/precision are computed on the offline buffer on task by treating steps from zero-cost trajectories
as ground-truth safe.

Task Metric i
0.6 0.7 0.8 0.9 0.95
CarRun Recall 0.32 0.39 0.54 0.76 0.85
Precision 0.76 0.68 0.51 0.24 0.21
AntCircle Recall 0.04 0.08 0.27 0.79 0.88

Precision 0.78 042 0.06 0.05 0.05

Decoder freezing ablation. Freezing the decoder is a core modeling choice in our method: the
theoretical coupling between the latent prior and the refiner—and the resulting bounds on action
and policy shift—critically rely on the decoder remaining fixed. Allowing the decoder to change

26

Under review as a conference paper at ICLR 2026

0.7 1.6
E
> % E E c
o 2
-4
5 0.5 & 0.9
g —e— R 3
) O
o —m— H

—A— SH
0.3+ T T T T 0.2 T T T T
0.1 0.3 0.5 0.7 0.9 0.1 0.3 0.5 0.7 0.9
Overall loss weight A Overall loss weight A

Figure 7: Effect of refiner loss weights on FLRP performance: varying the relative weights of the
reward (R), safety (H), and shared (SH) refiners yields a robust response and enables a smooth trade-
off between reward return and cost.

would break this coupling and make both the analysis and the interpretation of the refinement steps
much less clear. To quantify how much performance is potentially sacrificed by this restriction,
we compare our default “frozen decoder” training with an alternative scheme where the refiner and
decoder are updated in alternating phases. The result is shown in Table [Da] On the simpler task
CarRun, the two variants achieve very similar performance: with a frozen decoder, we obtain a
reward of 0.87 at zero cost, while alternating updates yield a reward of 0.84, also at zero cost. On
the more challenging AntCircle task, alternating updates increase the reward from 0.45 to 0.69,
but at the price of a higher cost (from 0.25 to 0.56). Thus, while partially unfreezing the decoder can
improve returns on complex tasks, it does so by relaxing safety, whereas the frozen-decoder variant
preserves our theoretical guarantees and achieves tighter cost control.

Effect of refiner loss weights. Figure[7]investigates)
how the relative weights assigned to the three refin- Table 9: Decoder and refiner ablations.
ers (R, H, SH) affect performance. Overall, FLRP is
quite robust: within a broad range of loss weights,
the reward and cost curves remain stable without

(a) Frozen vs. alternating decoder

sudden degradation. When the safety refiner H is Task Reward Cost
severely under-weighted (left part of the curves), the CarRun (frozen) 0.87 0.00
policy becomes noticeably less safe, confirming that CarRun (alter.) 0.84 0.00
H is the main driver toward low-cost regions. As AntCircle (frozen) 0.45 0.25
the weight of H increases, the policy consistently ~AntCircle (alter.) 0.69 0.56

moves to safer operating points. In contrast, putting
more emphasis on the reward refiner R tends to in-
crease the reward return, but also leads to higher
cost, which is consistent with its role of exploiting

(b) Refiner optimization strategy on AntCircle

. . . Refiner Deisgn Reward Cost
high-return directions near the constraint boundary.
The shared refiner SH behaves like a regularizer: Decoupled 3-refiners 0.45 0.25
when its weight is too small, the policy becomes Single unified refiner 0.07 0.00
less coordinated and slightly more unstable; when its Averaged 3-refiners 0.51 0.45

weight is too large, over-regularization harms both
reward and safety. The best performance is obtained
for intermediate SH weights, where it can effectively absorb residual interactions between R and H
while keeping the refinement close to the flow prior. These trends show that (i) FLRP’s performance
is not overly sensitive to the exact choice of refiner weights, and (ii) by tuning the relative weights
of R, H, and SH, practitioners can smoothly control the reward—cost trade-off without changing the
underlying critics or flow model.

Ablation on refiner optimization strategy. We further investigate whether the three-refiner ar-
chitecture is really necessary, or whether one can obtain similar behavior by changing only the
optimization scheme while keeping the same total loss. On AntCircle, we fix the loss weights
(Ary An, Asn) and compare our default design—three decoupled refiners (H, R, SH) optimized se-
quentially—with two alternatives (Table : (i) a single unified refiner, which directly optimizes

27

Under review as a conference paper at ICLR 2026

the sum of the three refiner losses, and (ii) an averaged 3-refiner update, where we still learn three
refiners but average their latent updates before applying a single step to the base code.

The results show that the three-refiner design is crucial for obtaining a good reward—cost trade-off.
The unified refiner collapses to an overly conservative solution (reward 0.07, cost 0.00): because a
single set of parameters must simultaneously satisfy safety, reward, and regularization objectives, the
gradients from these components frequently conflict, and the optimizer converges to a compromise
that prioritizes low cost but fails to exploit high-return directions. By contrast, the averaged-update
variant achieves high reward (0.51) but with much higher cost (0.45): averaging the three latent
updates at a single point mixes conflicting safety and reward gradients, partially canceling the safety
correction and diluting the shared refiner’s regularization, which leads to high-return but unsafe so-
lutions. Our sequential H—-R—SH updates (0.45 reward, 0.25 cost) strike a substantially better
balance that cannot be mimicked by a single averaged step. Overall, these results indicate that sep-
arating safety, reward, and shared refiners—each with its own parameters and update direction—is
more effective than collapsing them into a single refiner or naively averaging their gradients.

28

	Introduction
	Preliminaries
	Methodology
	Feasibility-based Value Function
	Conditional Flow-based Safe Policy Generation
	Base-space Optimization via Expert Refiner
	Practical Implementation

	Experiments
	Ablation Study and Analysis
	Related Work
	Conclusion
	LLM Usage
	Extended Discussions on Related Works
	Generative Latent-Space Offline RL Methods
	Additional Discussion on Hard and Soft Constraint

	Theoretical Analysis
	Derivation of the Flow density
	Proof of Definition 2.
	Proof of Lemma 1.
	Proof of Lemma 2
	Proof of Lemma 3
	Proof of Corollary 1
	Order-agnostic bounds for sequential refinement
	Policy gap and comparison with prior performance bounds

	Implementation Details
	Benchmark Details
	Task Descriptions
	Safety‑Gymnasium
	Bullet‑Safety‑Gym
	Safe MetaDrive

	Dataset Visualization
	Evaluation Metrics
	Training Details
	Computational Cost

	Additional Experiments

