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ABSTRACT

Safe offline reinforcement learning remains challenging due to two coupled ob-
stacles: (i) reconciling soft penalty designs with hard safety requirements, and (ii)
avoiding out-of-distribution (OOD) actions when the learned policy departs from
the behavior data. Existing approaches often rely on penalty tuning that under- or
over-regularizes safety, solve constrained objectives that depend on accurate sim-
ulators or online rollouts, or train powerful generative policies that still explore
low-density, safety-unknown regions at deployment. We introduce a constraint-
free offline framework that addresses both issues by (a) learning a flow-based
latent action manifold that concentrates density on empirically safe regions and
admits tractable bounds on policy deviation and OOD shift, and (b) applying a
lightweight refiner stage that performs small, ordered updates in latent space to
decouple reward, safety, and OOD control, stabilizing multi-objective optimiza-
tion. This design keeps policy search inside the modeled data manifold, while a
feasibility-aware training signal steers the refiner toward in-support, low-violation
solutions without requiring explicit constraints or online interaction. Across a
range of safe offline benchmarks, the proposed method achieves lower violation
rates while matching or outperforming baselines in return, demonstrating its po-
tential as a practical and effective approach to safer offline policy learning.

1 INTRODUCTION

Safe offline reinforcement learning (Safe Offline RL) seeks to learn policies that maximize return
while satisfying stringent safety requirements from a fixed dataset—without risky, expensive online
interaction (Levine et al., 2020). Training from logs allows practitioners to leverage prior oper-
ations, simulators, or demonstrations to deploy policies in safety-critical domains (robotics (Wu
et al., 2024), driving (Zhang et al., 2025), industrial control (Yu et al., 2025; Wang et al., 2025))
where exploration is untenable, offering clear practical benefits over online learning.

However, simultaneously achieving high performance and strict safety from static data remains elu-
sive (Kushwaha et al., 2025). Most prior work (Ding & Lavaei, 2023; Le et al., 2019; Lee et al.,
2022; Fujimoto et al., 2019) encodes safety as soft constraints—risk penalties or constrained Markov
decision processes (CMDPs) (Altman, 2021) with Lagrangian updates, so violations are discour-
aged in expectation. When constraints are tight or objectives conflict, these updates often under-
enforce safety, yielding policies that either ignore constraints or require brittle penalty tuning, which
is undesirable in engineering settings that demand near-zero violations. Hard-constraint formula-
tions (Wang et al., 2023; Yu et al., 2022) strengthen safety but typically induce conservatism and
measurable return sacrifice, especially offline, where feasible exploration is absent.

Orthogonal to constraint design, a second challenge is out-of-distribution (OOD) shift. Offline poli-
cies must evaluate and improve without querying unseen actions; otherwise, bootstrapping on OOD
actions produces extrapolation error and overestimation, which in turn elevates safety risk at de-
ployment (Kumar et al., 2019). Recent studies further note that OOD states at test time can also
degrade behavior, indicating that distribution shift is a coupled state–action phenomenon (Levine
et al., 2020; Kushwaha et al., 2025). Optimizing safety and return jointly under OOD constraints
is therefore difficult. A prominent line of work learns a generative manifold in the latent action or
trajectory space and restricts policy updates to this manifold by using VAE-, flow-, or diffusion-
based generative policies combined with latent-constraint methods (Zhou et al., 2021; Koirala et al.,
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2024; Akimov et al., 2022). These approaches reduce extrapolation by biasing policies toward high-
density regions of the learned model, but OOD control typically remains implicit—through decoder
support, bounded bases, or density thresholds—and is rarely coupled with safety to yield explicit,
tunable guarantees on distribution shift in safe offline RL.

Figure 1: Overview of the proposed method.
An encoder maps (s, a) into a safety-dense la-
tent embedding. A conditional normalizing flow
pϕ(z|, u) with base u ∼ N (0, 1) serves as the
prior, providing exact forward/inverse transforms
between the base and latent spaces; a decoder
then reconstructs actions a from z. At infer-
ence, three refiners (safety, reward, and a shared
refiner) operate in the base Gaussian space to
adjust samples toward high-density, in-support
regions—maximizing return while suppressing
OOD actions and enforcing safety constraints.

To tackle these challenges, we introduce a
density-first framework for safe offline RL that
enforces stringent safety while simultaneously
optimizing for high returns. Our approach treats
safety assurance and OOD control as a repre-
sentation problem within a task-conditioned la-
tent manifold. Specifically, we equip the crit-
ics with Hamilton–Jacobi (HJ)–inspired (Bansal
et al., 2017) safety signals: feasibility values
are learned via a reversed expectile objective,
and action-values are updated using an HJ-style
backup derived from sparse safety labels, yield-
ing reliable feasibility estimates directly from
offline data. On top of this estimator, a struc-
tured conditional flow model acts as a latent
prior that shapes the density so that, for each
state, the induced action distribution concen-
trates around data-supported, empirically safe
regions. Actions are generated by a high-
capacity decoder that remains frozen during re-
finement; together with the invertible, exact-
likelihood flow, this enables us to derive theoret-
ical upper bounds on distributional shift in both
the action and policy spaces, thereby offering
principled control over OOD actions in the offline setting. Building on this property, we develop
a three-expert refiner—comprising reward, safety, and shared experts—that performs small, ordered
updates in the base latent space with decoupled, advantage-weighted objectives. This design pushes
reward improvements within feasibility-shaped regions while pulling the policy away from unsafe,
low-density areas, stabilizing multi-objective optimization and tying safety, reward, and OOD sup-
pression together under purely offline training.

Extensive experiments across diverse safe offline benchmarks demonstrate that combining safety-
shaped density with latent-space refinement yields a consistently better return–safety trade-off under
hard-constraint scenarios compared to strong baselines.

2 PRELIMINARIES

Safe offline RL Safe RL is typically formulated as a Constrained Markov Decision ProcessM =
(S,A, T, r, h, c, γ), where h : S → R encodes a state constraint and c(s) = max{h(s), 0} is the
induced cost, with c(s) > 0 indicating a constraint violation. The discount factor is γ ∈ (0, 1). In
the offline setting, we are given a fixed dataset D = {(s, a, r, c, s′, d)} collected by an unknown
behavior policy πβ . We adopt the basic offline safe RL objective:

max
π

Es[V πr (s)] s.t. Es[V πc (s)] ≤ ℓ, DKL(π ∥ πβ) ≤ ε, (1)

where V πr (s) = Eπ
[∑∞

t=0 γ
tr(st, at) | s0 = s

]
is the reward value function and V πc (s) =

Eπ
[∑∞

t=0 γ
tc(st) | s0 = s

]
is the cost value function. ℓ is the cost limit. The KL divergence

DKL(·∥·) constrains the deviation of π from the behavior policy πβ . In this work, we target on the
zero cost budget case (ℓ = 0); see Appendix B.2 for a discussion of non-zero budgets.

Normalizing flows. Normalizing flows (NFs)1. (Kobyzev et al., 2020) are powerful generative
models for complex distribution modeling. Let u ∼ N (0, I) and z = fϕ(u; cond) be a bijection

1In this paper, ‘flow’ always refers to normalizing flows (e.g., RealNVP/CNF-style models), and should not
be confused with flow-matching or probability flow ODE terminology.
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conditioned on cond (e.g., state or task context). The log-density of z is computed by the change-
of-variables formula (derivation is deferred to Appendix C.1):

log pϕ(z | cond) = log p(u) + log
∣∣∣det ∂u

∂z

∣∣∣. (2)

In our implementation, we adopt a RealNVP-style (Dinh et al., 2016) flow architecture based on
coupling layers. Each layer splits the input z into two parts: an identity component zid that remains
unchanged, and a transform component ztr that is updated through an affine transformation:

z′tr = ztr ⊙ exp sϕ
(
zid, cond

)
+ tϕ

(
zid, cond

)
, log | det J | =

∑
sϕ(·), (3)

where sϕ and tϕ are scale and translation networks. These layers yield tractable log-likelihoods and
exact inverses by construction. Stacking multiple such layers increases the expressiveness of the
model while preserving efficient computation due to the triangular structure of the Jacobian.

3 METHODOLOGY

To address the twin challenges of under-enforced soft constraints and out-of-distribution drift in of-
fline settings, we first recast the objective as a state-wise zero-violation hard constraint. Concretely,
we require h(st) ≤ 0 almost surely under at ∼ π(· | st) for all t ∈ N. Consequently, the soft safety
constraint in Eq. 1 is replaced by a state-wise requirement together with an offline trust region:

max
π

Es[V πr (s)] s.t. V πc (s) ≤ 0, DKL(π ∥ πβ) ≤ ε. (4)

Building on this formulation, we adopt a base-space refinement strategy, where optimization is per-
formed entirely within a conditional latent density that is confined to a data-supported manifold,
as illustrated in Figure 1. We refer to our method as FLRP—Flow-guided Latent Refiner Poli-
cies—which enables in-distribution policy improvement with near-zero constraint violations. The
core components of FLRP are detailed in the following subsections.

3.1 FEASIBILITY-BASED VALUE FUNCTION

The state-wise zero-violation requirement in Eq. 4 calls for a representation that certifies safety
along the entire trajectory, not only in expectation. Hamilton–Jacobi (HJ) reachability Bansal et al.
(2017) from safe control provides exactly such a representation through signed safety functions and
value-based certificates, and has been shown to be effective for enforcing hard constraints in recent
safe RL studies (Fisac et al., 2018; Yu et al., 2022). Following this line, we cast the hard constraint
into a pair of feasibility value functions based on Definition 1 that we can learn from offline data
and then use as a unified signal for policy generation and refinement.

Definition 1 (Optimal feasible value functions). Let h : S → R be a signed safety function with
h(s) ≤ 0 denoting safety. The optimal state-wise and action-wise feasibility values are defined by

V ⋆h (s) := min
π

max
t∈N

h(st), s0 = s, at∼π(· | st), st+1∼T (· | st, at), (5)

Q⋆h(s, a) := min
π

max
t∈N

h(st), s0 = s, a0 = a, at≥1∼π(· | st). (6)

By construction, V ⋆h (s) ≤ 0 implies the existence of a policy whose entire trajectory from s remains
safe; likewise, Q⋆h(s, a) ≤ 0 certifies zero violations when starting with action a. In offline settings,
they can be estimated by the Feasible Bellman Operator with a discounted factor γ.

Definition 2 (Feasible Bellman operator). For γ ∈ (0, 1) and any Q : S × A→ R, the feasible
Bellman operator is defined by

(P⋆Q)(s, a) := (1− γ)h(s) + γmax{h(s), V ⋆(s′) }, V ⋆(s′) := min
a′

Q(s′, a′) . (7)

This operator is a γ-contraction under the sup norm and admits a unique fixed point Q⋆h,γ with
V ⋆h,γ(s) = minaQ

⋆
h,γ(s, a); as γ ↑ 1, it recovers the HJ-style values Q⋆h and V ⋆h in Definition 1.

Proof is deferred to Appendix C.3.
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We parameterize (Qh, Vh) with neural networks. To avoid extrapolation errors that arise from query-
ing actions outside the data support (Fujimoto et al., 2019), we approximate Qh(s, ·) by reversed
expectile regression and train Qh with a one-step target that uses Vh in place of mina′ Qh(s

′, a′):

LVh = E(s,a)∼D
[
ρrevτh

(
Qh(s, a)− Vh(s)

)]
, (8)

LQh = E(s,a,s′)∼D

[(
(1− γ)h(s) + γmax{h(s), V tgt

h (s′)} −Qh(s, a)
)2]

. (9)

where ρrevτ (u) =
∣∣τ − 1{u > 0}

∣∣u2 and V tgt
h is a slowly updated target network. The reversed

expectile with τh ∈ (0.5, 1) down-weights overly optimistic Qh values and sharpens the zero level
set Vh≈0, while the target network stabilizes bootstrapping.

3.2 CONDITIONAL FLOW-BASED SAFE POLICY GENERATION

Rather than learning a policy directly in action space, we model a conditional latent action distri-
bution, where high-quality samples correspond to higher density. Thus, instead of being pushed
by hard constraints, safety is pulled by density: we do not project actions onto an estimated safe
set, but regularize the latent actions to remain in the high-density region of the flow, while unsafe
behaviours are relegated to low-density regions. Given the empirical feasibility signals learned in
Sec. 3.1, we instantiate a conditional flow prior/posterior with a decoder. Compared with other
generative models, normalizing flows offer exact likelihood, tractable inverse mapping, and strong
expressivity (Papamakarios et al., 2021)—making them well-suited for both density modeling and
OOD control.

Safety-weighted ELBO. Let u ∼ N (0, I) be a base latent vector. The prior flow maps u to a
latent variable z = fϕ(u; s), where the log-density is tractable:

log pϕ(z | s) = log p(u) + log
∣∣∣det ∂u

∂z

∣∣∣. (10)

The posterior flow qψ(z | s, a) serves as an amortized recognizer, while a decoder πθ(a | s, z)
maps latent codes back to actions. Training follows a safety-weighted variational objective that
encourages accurate reconstruction and alignment with the prior:
LELBO = E(s,a)∼DEz∼qψ [−w(s, a) log πθ(a | s, z)] + β E(s,a)∼D [w(s, a)DKL (qψ ∥ pϕ)] , (11)

where w(s, a) = σ(−Qh(s, a)/Tq) σ(−Vh(s)/Tv) is a feasibility-weighted score derived from the
critics in Sec. 3.1, Tv and Tq are temperatures, and σ is the logistic function. We formally justify
that the above objective remains a consistent variational estimator by showing that it performs a KL
projection of the model joint distribution onto a safety-weighted behavior distribution, as stated in
the following lemma.
Lemma 1. Let p̃D(s, a) ∝ w(s, a) pD(s, a) be a behavior-weighted empirical distribution. Then

LELBO = const +DKL

(
p̃D(s, a) qψ(z | s, a)

∥∥ pϕ(z | s)πθ(a | s, z)) .
This result shows that Lflow amounts to a KL projection of the behavior-weighted posterior onto the
generative model distribution. The proof is provided in Appendix C.3.

Prior Density Shaping. Compared to a Gaussian prior, the flow-based prior is capable of mod-
eling more complex and multimodal latent structures, but this expressiveness also introduces chal-
lenges during training. To mitigate these difficulties, we introduce a regularization objective that
encourages empirically feasible regions in the action space to be mapped back to high-density re-
gions in the latent base space. A key advantage of normalizing flows is their ability to compute an
exact inverse transformation from z to u. We leverage this to define the following prior-shaping loss:

Lshape = E(s,a)∼D

[
exp(Qr(s, a)− Vr(s)/βr) · Ifeas(s, a) ·

∥∥∥T−1
ϕ (zq | s)

∥∥∥2] (12)

Here, Ifeas(s, a) = 1{Qh(s, a) ≤ 0} is a binary indicator derived from the feasibility critic, and
T−1
ϕ (zq | s) denotes the inverse transformation that maps a decoded action back to the latent base

space. This encourages the flow prior to assign higher and smoother base-space density to actions
that are both safe and high-reward, thereby shaping the latent manifold to better align with feasible
and desirable behaviors.
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Freezing the decoder and distribution shift. At inference time, actions are generated by sam-
pling u ∼ N (0, I), transforming it through the prior flow z = fϕ(u; s), and decoding via
a = πθ(z, s). In the subsequent refinement stage (Sec. 3.3), the decoder πθ is frozen and only u is
updated. This confines policy updates to the safety-shaped latent manifold and avoids reintroducing
distribution shift through unconstrained decoding.

We show in the following that, under a fixed decoder, the divergence between the learned policy and
the behavior policy can be decomposed into controllable terms.

Lemma 2. Let π0(·|s) := Ts#N be the action distribution obtained by pushing the standard Gaus-
sian through the frozen prior and decoder, and Πθ(a | s) denotes the learned policy distribution (af-
ter refinement). Assume absolute continuity and a bounded density ratio Rθ(s) := supa

π0(a|s)
πβ(a|s) <

∞ on the data support. Then for any state s (proofs are in Appendix C.4),

DKL

(
Πθ(·|s) ∥πβ(·|s)

)
≤ DKL

(
Πθ(·|s) ∥π0(·|s)

)
+ logRθ(s).

Moreover, by data-processing inequality (DPI) (Beaudry & Renner, 2011) and flow invariance,
DKL(Πθ∥π0) ≤ DKL(qu∥N ), hence DKL(Πθ∥πβ) ≤ DKL(qu∥N ) + logRθ(s).

This result shows that the decoder decouples policy shifts into (i) a base-space divergence term and
(ii) a modeling error term, both of which can be controlled during training.

Full objective. We summarize the flow module’s objective as:

Lflow = LELBO + Lshape + λH
(
H0 − Eqψ [− log qψ(z | s, a)]

)
+
, (13)

where the final term softly enforces a minimum posterior entropy to prevent mode collapse. Having
shaped a structured latent manifold through feasibility-aware density modeling, we next develop a
refiner module that further improves performance by optimizing within this base space.

3.3 BASE-SPACE OPTIMIZATION VIA EXPERT REFINER

While the flow module already shapes a safety-aware latent manifold, it does not directly optimize
task performance, as a high reward is also desired. Inspired by recent progress on Mixture-of-
Experts (MoE) (Jayawardana et al., 2025; Obando-Ceron et al., 2024) architectures, we design an
expert refiner that operates on the Gaussian base latent u∼N (0, I) learned in Sec. 3.2. The refiner
performs small, ordered updates in the base space to improve reward while keeping search confined
to the safety-shaped manifold.

Architecture. The refiner consists of three latent-space experts: a reward expert fr, a safety expert
fh, and a shared expert fsh. Each expert applies a residual update in the latent base space conditioned
on the state s. At each refinement step t = 0, . . . , T − 1, we start from u0∼N (0, I) and apply the
following sequential updates:

ut+1 = ut + fk(s, ut), for k ∈ {r, h, sh},

where the final update is always performed by the shared expert fsh. After T steps, the refined latent
uT is mapped to z = fϕ(uT ; s) via the frozen prior flow, and then decoded to an action distribution
πθ(· | s, z) using the decoder. We denote its decoded mean by ā(s, uT ) and use it for downstream
evaluation or rollouts.

Expert-specific objectives. Let ā(s, uT ) := argmaxa πθ(a | s, fϕ(uT ; s)) denote the decoded
mean action, and reuse the learned critics (Qr, Vr) and (Qh, Vh) from Sec. 3.1. Each expert is
trained using a modular, advantage-weighted regression (AWR) (Peng et al., 2019; Hansen-Estruch
et al., 2023) objective:

(i) Safety expert. Minimizes the violation gap with a push–pull form:

Lh = Es,a∼D
[
ϕ
(
Qh(s, ā(s, uT ))− Vh(s)

)
+ wh(s, a) · ||ā(s, uT )− a||2

]
, (14)

where where wh(s) = exp
(
− [Qh(s, ā) − Vh(s)]/βh

)
· Ifeas, and ϕ(·) is a soft penalty (e.g.,

softplus). The first term penalizes the positive safety advantage Qh(s, ā) − Vh(s) of the refined
action, while the second term performs supervised regression on safety-weighted behaviour data.

5
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(iI) Reward expert. Maximizes return within feasible states as a supervised learning:

Lr = −Es,a∼D [wr(s, a) · ||ā(s, uT )− a||2] . (15)

where wr(s, a) = exp
(
[Qr(s, a) − Vr(s) ]/βr

)
· Ifeas up-weights positive reward advantage and

prevents reward-only updates from steering into unsafe states.

(iii) Shared expert. Regularizes refinement in the base space. As stated in Lemma 2: once the
decoder is frozen, the policy shift is entirely induced by the divergence of the refined base distribu-
tion DKL(qu∥N ). Considering the base is a standard Gaussian distribution, we use its energy as an
explicit regularizer, together with a small proximal term that discourages large steps:

Lsh = ∥uT ∥2 + ∥uT − u0∥2. (16)

The full refiner loss is:
Lref = λrLr + λhLh + λshLsh (17)

Refining in the base space with a fixed process provides distributional control for all downstream
spaces. Because the flow and decoder are both invertible or frozen, any change in the base space
deterministically propagates through the latent and action spaces. While Lemma 2 establishes a gen-
eral data-processing inequality under pushforward mappings, we now apply this result specifically
to our architecture. The next lemma formalizes the KL chain via pushforwards in our method.
Lemma 3. Let qu be the refined base distribution andN the standard Gaussian. Let fϕ(·; s) be the
(invertible) flow and qz = fϕ#qu, pϕ = fϕ#N , and action distributions π = Ts#qu, π0 = Ts#N
with Ts(u) := ā(s, u). Then (proofs are in Appendix C.5):

DKL

(
π(· | s) ∥π0(· | s)

)
≤ DKL

(
qz ∥ pϕ

)
= DKL

(
qu ∥N

)
. (18)

The equality follows from the invariance of KL under invertible mappings (the flow), and the in-
equality is the data-processing inequality through the decoder.
Corollary 1 (Deviation bounds from base KL). Let Lg be the Lipschitz constant of gθ on the latent
chart, W2(·, ·) denotes the 2-Wasserstein distance, and TV(·, ·) stands for total variation distance
between distributions. Then for any s (proofs are in Appendix C.6):

W2

(
π, π0

)
≤ Lg

√
2DKL(qu ∥N )

TV(π, πβ) ≤
√

1
2 DKL(π ∥π0) + TV(π0, πβ) (19)

and for any measurable OOD region O:

π(O) ≤ πβ(O) +
√

1
2 DKL(qu ∥N ) + TV(π0, πβ). (20)

These results justify our design: keepingDKL(qu ∥N ) small bounds downstream deviation—latent,
action, and final policy—across multiple metrics, whereas direct perturbations in z or a lack such
guarantees. Building on this, Appendix C.8 derives explicit reward and cost policy-gap guarantees
in terms of the base-space KL upper bound and the prior–behavior mismatch. This further motivates
us to optimize in the base space, where our loss concentrates mass in high-density regions so that
stable base-space updates induce meaningful latent refinements.

3.4 PRACTICAL IMPLEMENTATION

We employ expectile regression to obtain in-sample, asymmetric value estimates that are biased
toward high-value actions without querying out-of-distribution actions, following the practice in
IQL (Kostrikov et al., 2021), which trains Vr using asymmetric expectile regression and Qr by TD
updates toward Vr.

LVr = E(s,a)∼D
[
ρτr
(
Qr(s, a)− Vr(s)

)]
, ρτ (u) =

∣∣τ − 1{u < 0}
∣∣u2, (21)

LQr = E(s,a,s′)∼D

[(
Qr(s, a)− Q̂r(s, a)

)2]
, Q̂r(s, a) := r(s, a) + γVr(s

′). (22)
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Table 1: Performance Comparison on DSRL benchmark. ↑ means the higher the better, ↓ means the
lower the better.

Task BCQL CPQ CDT FISOR LSPC FLRP(Ours)

reward ↑ cost ↓ reward ↑ cost ↓ reward ↑ cost ↓ reward ↑ cost ↓ reward ↑ cost ↓ reward ↑ cost ↓

Safety-Gymnasium
CarButton1 0.16 4.20 0.13 2.44 0.21 1.60 -0.04 0.58 -0.15 0.58 0.03 0.36
CarButton2 0.07 3.47 0.17 7.05 0.13 1.58 -0.01 0.22 -0.03 0.59 0.04 0.38
CarPush1 0.09 0.56 -0.14 0.80 0.31 0.40 0.26 1.23 0.21 0.13 0.20 0.04
CarPush2 0.06 0.61 0.10 5.66 0.19 1.30 0.16 0.71 0.04 1.37 0.24 0.36
CarGoal1 0.13 0.90 0.22 0.79 0.66 1.21 0.42 0.88 0.23 0.71 0.27 0.00
CarGoal2 0.13 2.38 0.17 3.10 0.48 1.25 0.06 0.06 0.11 0.50 0.20 0.28

AntVel 0.29 2.08 -0.31 0.00 0.98 0.39 0.90 0.00 0.91 0.02 0.69 0.00
HalfCheetahVel 1.04 7.06 0.08 2.56 0.97 0.55 0.88 0.00 0.86 0.18 0.94 0.16

SwimmerVel 0.29 4.10 0.31 2.66 0.67 1.47 0.01 0.01 0.47 1.26 0.06 0.00

Safety-Gym Avg 0.25 2.82 0.08 2.78 0.51 1.08 0.29 0.40 0.29 0.59 0.33 0.18

Bullet-Safety-Gym
AntRun 0.05 4.63 0.13 0.01 0.69 1.24 0.45 0.76 0.94 1.46 0.52 0.00
BallRun 0.35 0.20 0.85 13.67 0.88 0.86 0.14 0.00 0.08 0.00 0.16 0.00
CarRun 0.75 2.51 0.75 0.52 0.99 1.47 0.80 0.00 0.75 0.22 0.87 0.00

DroneRun 0.65 0.71 0.26 0.44 0.71 0.60 0.41 0.57 0.62 1.34 0.59 0.02
AntCircle 0.61 1.42 0.00 0.00 0.46 2.74 0.23 0.00 0.40 0.78 0.45 0.25
BallCircle 0.79 1.20 0.40 4.37 0.79 1.64 0.45 0.00 0.29 1.83 0.46 0.00
CarCircle 0.64 1.80 0.49 4.48 0.70 1.20 0.34 0.00 0.28 0.04 0.66 0.06

DroneCircle 0.68 1.19 -0.27 1.29 0.59 1.56 0.60 0.00 0.66 1.37 0.54 0.00

Bullet-SG Avg 0.57 1.71 0.33 3.10 0.73 1.41 0.43 0.17 0.50 0.88 0.54 0.04

Safe MetaDrive
Easysparse 0.94 9.25 -0.05 0.15 0.25 0.15 0.41 0.50 0.74 1.55 0.32 0.20
Easymean 0.99 7.22 -0.06 0.00 0.42 0.25 0.43 0.67 0.70 0.68 0.25 0.10
Easydense 0.20 1.76 -0.06 0.16 0.35 1.17 0.52 1.26 0.74 1.48 0.33 0.11

Mediumsparse 0.94 2.83 -0.08 0.12 0.78 1.24 0.43 0.08 0.97 0.79 0.31 0.06
Mediummean 0.70 4.45 -0.07 0.16 0.72 2.74 0.36 0.02 0.92 0.89 0.52 0.63
Mediumdense 0.76 3.90 -0.08 0.10 0.70 2.62 0.51 0.39 0.87 0.88 0.33 0.07

Hardsparse 0.49 3.16 -0.05 0.10 0.26 0.46 0.33 0.24 0.52 1.32 0.35 0.34
Hardmean 0.29 3.80 -0.05 0.15 0.20 0.61 0.27 0.01 0.41 0.57 0.28 0.10
Harddense 0.42 2.95 -0.04 0.12 0.22 1.38 0.30 0.26 0.53 1.63 0.36 0.11

MetaDrive Avg 0.64 4.37 -0.06 0.12 0.45 1.18 0.40 0.38 0.71 1.09 0.34 0.19

Note: Bold: safe policy; Gray: unsafe policy; Bold blue: best safe policy; Bold: second best safe policy

As summarized in Appendix D.5, Alg. 1, there are two main phases for the overall training pro-
cedure. In Stage 1 (critic and flow pretraining), we jointly train the safety and reward critics
(Qh, Vh), (Qr, Vr) together with the flow prior/posterior and decoder using offline transitions, and
the safety-weighted ELBO and density-shaping objectives in Sec. 3.2. In Stage 2 (latent refiner
training), we freeze this base model and optimize the three refiners in base space via AWR-style
updates to reward and safety, together with the base-space regularizer for OOD control. All com-
ponents are trained purely offline from the fixed dataset, and this two-phase, modular design lets
critics, flow, and refiners specialize in feasibility shaping, density modeling, and reward–safety re-
finement while maintaining a consistent in-distribution optimization pipeline. At inference time, we
sample u ∼ N (0, I), apply the expert refiner for T steps to obtain uT , decode through the frozen
flow and decoder to obtain the final action. Training details can be found in Appendix D.5.

4 EXPERIMENTS

Experiment Setup. We evaluate the proposed method against several strong offline safe RL base-
lines across two widely-used benchmark environments: Safety-Gymnasium (Ji et al., 2023), Bullet-
Safety-Gym (Gronauer, 2022) and Safe Metadrive (Li et al., 2022) from the DSRL suite (Liu et al.,
2023a). We adopt normalized return and normalized cost as evaluation metrics, which we refer to
as “reward” and “cost” for clarity and brevity. We set a uniform cost limit of 10 for all tasks.

7
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(a) Cost critic change (b) Value critic change (c) Decoder log probability

Figure 2: Example visualization of the refiner principle on CarRun. Each panel shows the 2D
action space (velocity on the horizontal axis, steering angle on the vertical), where background
colors indicate (a) feasibility (darker is safer), (b) reward (lighter is higher), and (c) decoder log-
density (lighter is higher). The black cross is the base action from the flow prior, and colored curves
(H, R, SH) show the refinement trajectories in base space, with triangles marking the final refined
actions toward safer, higher-return, and data-supported regions.

Baselines. We compare our approach against five representative baselines: (1) BCQL (Fujimoto
et al., 2019): A batch-constrained Q-learning with an adaptive Lagrangian penalty on constraint
violations. (2) CPQ (Xu et al., 2022): A Q-learning methods that penalize unsafe and out-of-
distribution state–action pairs. (3) CDT (Liu et al., 2023b): A transformer-based offline safe RL
method that learns cost-conditioned action generators for constraint enforcement. (4) LSPC (Koirala
et al., 2024): A latent safety-constrained approach that uses a conditional variational autoencoder to
model safety in the latent space. (5) FISOR (Zheng et al., 2024): A feasibility-guided method that
uses a diffusion model to policy sampling.

Main Results Table 1 summarizes results on Safety-Gymnasium, Bullet-Safety-Gym, and Safe
MetaDrive. Overall, our method learns safe policies with competitive returns. BCQL uses a La-
grangian trade-off but often fails to meet safety constraints; CPQ is more conservative and im-
proves safety at the cost of reward; and CDT, though capable of high returns via target condition-
ing, tends to violate safety more frequently. FISOR and LSPC are strong baselines with distinct
characteristics. FISOR produces uniformly safe but slightly conservative policies via feasibility
guidance, while LSPC is more aggressive—seeking the most rewarding action in a learned safe
latent space—which can become unreliable under OOD states/actions. Our FLRP trains safety and
shared refiners to concentrate probability mass in high-density regions of the encoder’s latent space,
naturally biasing actions toward on-support, safer choices. FLRP performs strongly on Safety-
Gymnasium and Bullet-Safety-Gym, and is mildly conservative on Safe MetaDrive due to limited
overlap between high-reward and low-cost regions, which complicates hard-constrained optimiza-
tion. Even so, it enforces safety effectively, achieving violation rates far below the second-best
method (e.g., 0.18 vs. 0.40 in Safety-Gymnasium, 0.04 vs. 0.88 in Bullet-Safety-Gym, and 0.19 vs.
0.38 in Safe MetaDrive) while maintaining strong performance.

5 ABLATION STUDY AND ANALYSIS

Justification of Each Refiner. A core challenge in safe RL is reconciling reward maximization
with safety constraints, which can pull updates in opposite directions. Figure 2 illustrates this on a
fixed state from the CarRun task. Each panel visualizes the 2D action space with velocity on the
horizontal axis and steering angle on the vertical axis; the background color represents, respectively,
(a) feasibility Qh(s, a) (darker is safer), (b) reward value Qr(s, a) (lighter is higher return), and
(c) decoder log-density log πθ(a|s) (lighter is higher density). In this particular state, the regions
associated with high reward and high safety are largely non-overlapping, and both can be misaligned
with the high-density area of the action decoder. As a result, the refinement steps taken by the
reward and safety refiners can diverge significantly, often steering the latent action representation
into areas that are poorly supported by the decoder and thus prone to OOD issues. The shared
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Figure 3: Effect of refiner order on normalized reward (left) and cost (right) across four tasks .
Each group of bars corresponds to four refinement schedules (H→R→SH, R→H→SH, Random,
No refine), with error bars showing one standard deviation.

refiner stabilizes and regularizes this process by keeping actions on support while balancing both
experts, coordinating their updates when reward, safety, and data support are in tension.

Table 2: Ablations on HJ reachability.
Task w/o HJ FLRP

r ↑ c ↓ r ↑ c ↓
AntRun 0.65 0.13 0.52 0.00
BallRun 0.08 0.14 0.16 0.00
CarRun 0.83 0.13 0.87 0.00
DroneRun 0.16 5.24 0.59 0.02
AntCircle 0.23 0.01 0.45 0.25
BallCircle 0.44 0.00 0.46 0.00
CarCircle 0.63 0.49 0.66 0.06
DroneCircle 0.56 0.67 0.54 0.00

HJ-feasibility Function. We first assess the ben-
efit of incorporating HJ reachability by replacing
the feasibility function with a cost value function.
states/actions whose cost falls below the empirical
75th percentile of zero-violation samples are treated
as feasible and used for flow training, while refiner
training is unchanged; we denote this variant as w/o
HJ. As reported in Table 2, this heuristic threshold-
ing yields noisier feasibility estimates, which in turn
leads to higher evaluation costs and lower returns
than the HJ-based approach. In contrast, HJ reach-
ability propagates safety constraints through the dy-
namics, which is robust to sampling noise and un-
even cost distributions. The results indicate that structured HJ reachability is crucial for stable
constraint satisfaction in offline settings.

The Order of Refinement. We compare four refiner schedules on four tasks (BallCircle,
CarRun, AntCircle, DroneCircle) to assess how sensitive FLRP is to the refiner order: two
fixed orders (H→R→SH and R→H→SH), a random permutation, and a “No refine” baseline that
samples directly from the flow prior. The results in Figure 3 show that all refiner variants substan-
tially improve normalized return over No refine, confirming the benefit of latent refinement. Across
all tasks, H→R→SH and R→H→SH achieve clearly higher return than no refinement baseline with
low normalized cost, while the random-order variant is intermediate but with larger variability. We
also observe a consistent trade-off pattern: H→R→SH generally yields lower cost with strong but
slightly lower return, whereas R→H→SH attains the highest return at the price of higher cost. This
supports our design choice of using a fixed schedule with the shared refiner applied last so that it
can consistently regularize and coordinate the preceding safety and reward updates.

Other Ablations. We further examine the effect of the prior. As a comparison, we train a variant
that replaces our flow-based prior with a conventional Gaussian prior and report results in Table 3.
The flow prior consistently yields higher returns and lower costs. We also study the number of
refinement steps T at inference on CarCircle. We do not vary the refinement order: the safety
expert is always applied first, and the shared expert last. This design choice reflects our latent
geometry—density concentrates on safety rather than reward—so an early safety refinement helps
place trajectories in high-density (feasible) regions. The intermediate refiners alternate between
safety and reward experts. As shown in Figure 4, increasing T reduces cost and variability: a larger
T is more likely to explore the learned latent space and lowers the rate of out-of-distribution actions.
The trade-off is that a very large T can induce slightly more conservative behavior. In practice, an
intermediate value (e.g., T = 3) can yield a favorable trade-off.

9
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Table 3: Ablations on the prior used.

Task Gaussian Prior Flow Prior
r ↑ c ↓ r ↑ c ↓

CarButton1 -0.14 0.22 0.03 0.36
CarButton2 0.01 0.82 0.04 0.38
CarPush1 0.07 0.08 0.20 0.04
CarPush2 0.06 0.00 0.24 0.36
CarGoal1 0.06 0.00 0.27 0.00
CarGoal2 0.05 0.74 0.20 0.28 Figure 4: Ablation on the number of refinement steps.

Table 4: Representative generative latent(-space) policy methods for offline (safe) RL.

Method Backbone Safety-aware? Likelihood OOD control

PLAS (Zhou et al., 2021) CVAE No Approx. Implicit (latent manifold)
LSPC (Koirala et al., 2024) CVAE Yes Approx. Implicit (bounded latent)
LDGC (Venkatraman et al., 2023) Diffusion No Implicit Implicit (batch-constrained)
FISOR (Zheng et al., 2024) Diffusion Yes Implicit Implicit (HJ-weighted data)
CNF (Akimov et al., 2022) Flow No Exact Implicit (bounded latent)
FLRP (ours) Flow Yes Exact Explicit (base-KL)

6 RELATED WORK

Offline safe RL aims to learn constraint-satisfying policies from fixed datasets, avoiding risky on-
line interaction. Early work incorporates penalty or Lagrangian terms into value learning—e.g.,
CPQ (Xu et al., 2022), BCQ-Lag (Fujimoto et al., 2019), and BEAR-Lag (Liu et al., 2023a)—to
account for safety in the Bellman objectives. Others adopt distribution-correction methods such
as COptiDICE (Lee et al., 2022), which model the stationary distribution under constraints. Se-
quence models like CDT (Liu et al., 2023b) and SaFormer (Zhang et al., 2023b) encode safety via
cost-aware conditioning in Decision Transformer frameworks. These methods typically enforce soft
constraints, allowing for occasional violations. Recent approaches (Yu et al., 2022; Ganai et al.,
2023) instead leverage Hamilton–Jacobi (HJ) reachability to enforce strict state-wise safety. Com-
plementary to these formulations, another line of work learns a generative policy or latent manifold
to encourage safe behavior. Notably, LSPC (Koirala et al., 2024) learns a cost-sensitive latent pol-
icy via a CVAE prior, while FISOR (Zheng et al., 2024) couples diffusion-based behavior learning
with HJ-based feasibility guidance. While these methods achieve strong empirical safety, they typi-
cally handle OOD generalization implicitly by relying on the expressivity of the generative prior or
support-based constraints, without substantial improvements over general offline RL methods (Zhou
et al., 2021; Akimov et al., 2022; Chen et al., 2022) in OOD robustness. Table 4 summarizes rep-
resentative generative approaches and compares the key distinctions along four axes, with an ex-
tended discussion on B.1. FLRP unifies these two lines by combining a flow-based latent policy
with explicit base-space KL control, and by using HJ reachability not as an external filter but as a
feasibility-guided signal that shapes the latent manifold, yielding provable bounds on total variation.

7 CONCLUSION

We present a safe offline RL framework based on latent refinement. A multi-expert policy itera-
tively adjusts a base latent via safety- and reward-guided residuals, while a normalizing-flow prior
shapes a feasible latent manifold for explicit safety control. We prove order-agnostic bounds on
the final policy distribution and show strong performance across three standard safe RL bench-
marks. The main limitations arise from the feasibility critics. The offline feasibility critics use a
Hamilton–Jacobi–style Bellman operator with sparse cost, which can over-conservatively estimate
value; genuinely safe but rare samples may be undervalued, introducing bias or sample inefficiency.
Latent-space refinement also adds hyperparameters (e.g., expert loss weights and prior shaping tem-
perature). That said, we used a single configuration across 26 tasks, suggesting reasonable robust-
ness. Future work includes adaptive refinement schedules, more principled objectives for shaping
the prior, and hierarchical expert architectures to improve flexibility and generalization.
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Ethics Statement. This research does not involve human subjects, sensitive data, or practices that
pose foreseeable harm. Our methodology builds upon well-established safe offline reinforcement
learning benchmarks and standard datasets that are publicly available. All experiments were con-
ducted in simulation environments with no real-world deployment or safety risk. We have made
efforts to ensure transparency and reproducibility by providing code and detailed algorithmic de-
scriptions. We adhere to the ICLR Code of Ethics, and this work upholds responsible stewardship
and scientific integrity throughout.

Reproducibility Statement. We have taken several steps to ensure the reproducibility of
our work. All theoretical results, including key lemmas and corollaries, are presented
with complete assumptions and detailed proofs in the appendix. Additional implementa-
tion details, including dataset setup, training pipeline, and evaluation protocol, are also pro-
vided in the appendix. We also include an anonymous link to our core source code at:
https://anonymous.4open.science/r/FLRP-9776/
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A LLM USAGE

The authors used large language models (LLMs), specifically ChatGPT (GPT-4), solely as a lan-
guage editing assistant. The LLM was employed only for grammar correction, stylistic improve-
ments, and minor clarity revisions of the authors’ own writing.

All ideas, algorithms, experimental designs, theoretical proofs, and scientific contributions presented
in this paper are the sole work of the authors. The authors take full responsibility for the technical
content and claims made in the paper. No content was generated or suggested by the LLM regarding
methodology, experiments, or results.

B EXTENDED DISCUSSIONS ON RELATED WORKS

B.1 GENERATIVE LATENT-SPACE OFFLINE RL METHODS

A growing line of offline RL methods learns policies in a low-dimensional latent action or trajectory
space induced by a generative model. These approaches typically fit a conditional generative model
on offline data and optimize a latent policy whose outputs are decoded back to actions, thereby con-
straining policy search to a data-supported manifold and reducing OOD actions. PLAS (Zhou et al.,
2021) and its CVAE-based extensions, such as LAPO (Chen et al., 2022) and ELAPSE (Han et al.,
2025), enhance this framework by shaping the latent distribution to emphasize high-return behav-
iors and mitigate collapse. In the model-based setting, C-LAP (Alles et al., 2024) learns a latent
action state-space model and constrains imagined rollouts to remain within the latent prior, provid-
ing implicit conservatism. Latent diffusion approaches (Venkatraman et al., 2023) extend this idea
to trajectory-level latent spaces, enabling policy optimization over semantically structured latent tra-
jectories. Flow-based generative policies have also been explored; CNF (Akimov et al., 2022) trains
a normalizing flow over actions and reduces OOD actions by bounding the base distribution under a
frozen decoder. CPED (Zhang et al., 2023a) explicitly estimates the behavior density using a flow-
GAN and constrains policy updates within high-density regions. For safe offline RL, LSPC (Koirala
et al., 2024) encodes latent safety constraints with a CVAE and regularizes the latent policy using a
safety critic, though it still relies on ELBO training and support-based constraints.

Compared with these generative latent(-space) policy methods, FLRP differs along four comple-
mentary dimensions, summarized here and in Table 4 in the main text.

1. Task scope and safety objective. Prior flow-based methods such as CNF (Akimov et al.,
2022) do not target safe offline RL. FLRP lies in the same flow-based family but is instantiated
for hard-constrained safe offline RL with near-zero violation, rather than for unconstrained or
budgeted objectives.

2. Generative backbone and likelihood. CVAE-, flow-, and diffusion-based policies all exploit
latent manifolds, but flows are invertible and admit exact likelihoods. With a Gaussian base,
FLRP can monitor a base-space KL divergence and propagate it into bounds on action/policy
deviation (TV/W2) and OOD mass, providing a quantified, tunable notion of conservatism not
available to ELBO-trained CVAEs (Zhou et al., 2021; Chen et al., 2022; Han et al., 2025) or
multi-step latent diffusion models (Venkatraman et al., 2023).

3. OOD-control mechanism. CNF reduces OOD by making the flow’s base uniform-bounded
and freezing the decoder (Akimov et al., 2022), but does not explicitly control policy deviation.
FLRP instead (a) retains a Gaussian base with an explicit OOD/shift bound from the base-space
KL and (b) performs feasibility-guided density shaping on the base (using the flow’s inverse).
Together, this makes conservatism measurable and controllable, while keeping policy search
within empirically safe, high-density regions.

4. Training and inference protocol. Safe offline RL couples reward, safety, and OOD control.
Instead of relying on a single entangled loss, FLRP employs ordered small-step refiners in the
base space with a frozen decoder—Safety→ Reward→ Shared—so updates remain in-support
and non-expansive. This protocol tightly links safety, reward, and OOD suppression, exposes a
clear trade-off handle, and avoids the instability of lumping all terms into one gradient..
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B.2 ADDITIONAL DISCUSSION ON HARD AND SOFT CONSTRAINT

Hard vs. soft formulations. In safe RL, a hard (state-wise) safety constraint requires that the
policy never leaves the safe set. Let h : S→R encodes a state constraint and c(s) = max{h(s), 0}
is the induced cost. A hard constraint enforces

h(st) ≤ 0, at ∼ π(· | st), ∀t ∈ N, (23)

which can equivalently be written as a zero-violation cost condition

c(st) = 0, at ∼ π(· | st), ∀t ∈ N. (24)

By contrast, soft or budgeted constraints are typically expressed at the level of expected cumulative
cost. Given a cost limit l > 0, the constraint is

Eτ∼π
[ ∞∑
t=0

c(st)
]
≤ l or Eτ∼π

[ ∞∑
t=0

γtc(st)
]
≤ l, (25)

and the policy is allowed to incur nonzero instantaneous violations as long as the long-term budget
is respected. Recent work further extends this perspective to real-time budgeted safety, where the
agent must adapt to dynamically specified cost budgets in the offline setting (Lin et al., 2023), as
well as to risk- and distributionally-robust variants (Chow et al., 2019; Kushwaha et al., 2025).

Design philosophies and use cases. Hard and soft formulations reflect different safety philoso-
phies rather than a strict ordering of capability. Hard/near-zero-violation methods (Fisac et al.,
2018; Yu et al., 2022; Zheng et al., 2024; Zhao et al., 2023) target scenarios where every violation
corresponds to an unacceptable safety breach (e.g., collisions, irreversible damage, or regulatory vi-
olations); here, the emphasis is on characterizing and staying inside the feasible region. Budgeted or
soft methods (Le et al., 2019; Lee et al., 2022; Liu et al., 2023b), in contrast, model cost as an allo-
catable resource: small, occasional violations are acceptable if they enable substantially better task
performance, which is appropriate for risk-sensitive but non-safety-critical domains or applications
with tunable risk budgets.

Our framework intentionally follows the hard / near-zero-violation viewpoint: we are interested in
safe offline RL settings where violations correspond to genuine safety failures, and thus focus on
maximizing return while keeping state-wise safety rates close to 100%. We view budgeted-safety
approaches as complementary rather than competing; in principle, similar generative latent-space
and flow-based techniques could be adapted to budgeted formulations by conditioning critics and
refiners on a dynamic cost budget, which we leave as an interesting direction for future work.

C THEORETICAL ANALYSIS

In this section, we provide the missing proofs for the theoretical results to support or validate the
proposed method.

C.1 DERIVATION OF THE FLOW DENSITY

Normalizing flows model complex distributions by transporting samples from a simple base den-
sity through an invertible transformation. In the conditional setting, let u ∼ p0(u) denote a latent
variable drawn from a base distribution, typically N (0, I), and define z = fϕ(u; cond), where
fϕ(·; cond) is a bijective mapping parameterized by ϕ and conditioned on an external variable cond
(e.g., a state or context).

Because the map is invertible for fixed cond, the inverse u = f−1
ϕ (z; cond) is well defined. To obtain

the conditional density pϕ(z | cond), we apply the change-of-variables formula for differentiable
bijections:

p(z) = p0
(
f−1(z)

)
·
∣∣∣∣det ∂f−1(z)

∂z

∣∣∣∣ = p0(u) ·
∣∣∣∣det ∂f(u)∂u

∣∣∣∣−1

, (26)
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where the second equality follows from the inverse function theorem. In our conditional setting we
thus have

pϕ(z | cond) = p0(u) ·
∣∣∣∣det ∂u∂z

∣∣∣∣ , u = f−1
ϕ (z; cond). (27)

Using ∂u
∂z =

(
∂z
∂u

)−1
, we can express the inverse Jacobian in terms of the forward transformation:∣∣∣∣det ∂u∂z

∣∣∣∣ = ∣∣∣∣det ∂fϕ(u; cond)∂u

∣∣∣∣−1

. (28)

Substituting this identity back into the density expression gives

pϕ(z | cond) = p0(u) ·
∣∣∣∣det ∂fϕ(u; cond)∂u

∣∣∣∣−1

, u = f−1
ϕ (z; cond). (29)

Taking logarithms yields the exact log-likelihood of the conditional flow:

log pϕ(z | cond) = log p0(u) + log

∣∣∣∣det ∂u∂z
∣∣∣∣ , u = f−1

ϕ (z; cond), (2)

which corresponds to Eq. 2 in the main text.

In practice, the Jacobian determinant is computed analytically using affine coupling layers, whose
triangular structure reduces the log-determinant to a sum of layerwise log-scale outputs. This makes
the likelihood term efficient to compute while preserving the exactness afforded by the invertibility
of the flow.

When the transformation is a composition of L conditional bijections,

u0 ∼ p0, uℓ = fℓ(uℓ−1; cond), ℓ = 1, . . . , L, z = uL, (30)

The change-of-variables formula yields

log pϕ(z | cond) = log p0(u0) +

L∑
ℓ=1

log

∣∣∣∣det ∂uℓ−1

∂uℓ

∣∣∣∣ , (31)

where each term uses the inverse Jacobian of layer fℓ. Equivalently, this can be written as the
negative sum of forward log-determinants,

log pϕ(z | cond) = log p0(u0)−
L∑
ℓ=1

log

∣∣∣∣det ∂fℓ(uℓ−1; cond)

∂uℓ−1

∣∣∣∣ , (32)

which is the form implemented in practice when accumulating the density term across multiple flow
layers.

C.2 PROOF OF DEFINITION 2.

For a fixed γ ∈ (0, 1) and we define Vi(s) := minaQi(s, a) for i ∈ {1, 2}. Then for any (s, a),∣∣(P⋆Q1)(s, a)− (P⋆Q2)(s, a)
∣∣ = γ

∣∣∣Es′[max{h(s), V1(s′)} −max{h(s), V2(s′)}
]∣∣∣

≤ γ Es′
∣∣V1(s′)− V2(s′)∣∣. (33)

Since Vi(s
′) = mina′ Qi(s

′, a′) and the pointwise min is 1-Lipschitz,
∣∣V1(s′) − V2(s

′)
∣∣ ≤

supa′ |Q1(s
′, a′)−Q2(s

′, a′)| ≤ ∥Q1 −Q2∥∞. Taking the supremum over (s, a) yields

∥P⋆Q1 − P⋆Q2∥∞ ≤ γ ∥Q1 −Q2∥∞, (34)

so P⋆ is a γ-contraction under the sup norm. By Banach’s fixed-point theorem, there exists a unique
fixed point Q⋆h,γ and we set V ⋆h,γ(s) := minaQ

⋆
h,γ(s, a).
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To connect to the undiscounted HJ-style values, assume h is bounded. Let γn ↑ 1 and consider the
fixed points Q⋆h,γn . Because {Q⋆h,γn}n is uniformly bounded and P⋆ is continuous in γ, any limit
point Q† satisfies, for all (s, a),

Q†(s, a) = lim
n→∞

[
(1− γn)h(s) + γn Es′

[
max{h(s),min

a′
Q⋆h,γn(s

′, a′)}
]]

= Es′
[
max{h(s),min

a′
Q†(s′, a′)}

]
.

(35)

This is the dynamic programming equation for the HJ-style (statewise zero-violation) feasibility
values; hence Q† = Q⋆h and V † = minaQ

†(·, a) = V ⋆h . Therefore Q⋆h,γ → Q⋆h and V ⋆h,γ → V ⋆h as
γ ↑ 1.

C.3 PROOF OF LEMMA 1.

Recall the weighted objective in full form:

Lflow = E(s,a)∼pD

[
w(s, a) Ez∼qψ(z|s,a)

[
− log πθ(a | s, z)

]]
+ β E(s,a)∼pD

[
w(s, a) DKL

(
qψ(· | s, a)

∥∥ pϕ(· | s))]. (36)

and we define the behavior-weighted data distribution p̃D(s, a) := w(s, a) pD(s, a)/Z with normal-
izer Z = EpD [w(s, a)] (a constant independent of (ϕ, ψ, θ)). For clarity, first consider β = 1; we
return to β ̸= 1 at the end. Then, up to the positive constant factor Z,

Lflow = Z · E(s,a)∼p̃D

{
Ez∼qψ

[
− log πθ(a | s, z)

]
+DKL

(
qψ ∥ pϕ

)}
.

Expand the KL term inside the expectation:

Ez∼qψ
[
− log πθ(a | s, z)

]
+ Ez∼qψ

[
log qψ(z | s, a)− log pϕ(z | s)

]
= Ez∼qψ

[
log

qψ(z | s, a)
pϕ(z | s)πθ(a | s, z)

]
.

(37)

Taking the expectation over (s, a) ∼ p̃D yields

1

Z
Lflow = E(s,a)∼p̃DEz∼qψ

[
log

p̃D(s, a) qψ(z | s, a)
p̃D(s, a) pϕ(z | s)πθ(a | s, z)

]
= DKL

(
p̃D(s, a) qψ(z | s, a)

∥∥ p̃D(s, a) pϕ(z | s)πθ(a | s, z)). (38)

Finally, use the identity DKL(P∥C ·Q) = DKL(P∥Q)− EP [logC] for a positive constant density
factor C that does not depend on the model parameters (ϕ, ψ, θ); here C = p̃D(s, a). Therefore,

Lflow = const + DKL

(
p̃D(s, a) qψ(z | s, a)

∥∥ pϕ(z | s)πθ(a | s, z)), (39)

where the constant depends only on p̃D (hence on w and the dataset) and not on (ϕ, ψ, θ). This
proves the claim for β = 1.

Extension to β ̸= 1. For a general β > 0, the same algebra shows that

Lflow = const + DKL

(
p̃D(s, a) qψ(z | s, a)

∥∥ p(β)ϕ (z | s)πθ(a | s, z)
)
, (40)

with a temperature-adjusted prior p(β)ϕ (z | s) ∝ pϕ(z | s)β (i.e., the energy scaled by β). Equiva-
lently, if one wishes to keep pϕ unchanged, absorb β by rescaling the KL term or by introducing a
decoder temperature; both formulations are strictly equivalent up to a parameter-independent con-
stant.
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C.4 PROOF OF LEMMA 2

Let p := Πθ(·|s), r := π0(·|s), q := πβ(·|s) w.r.t. a common dominating measure. By the elemen-
tary inequality (chain rule with a bounded density ratio)

DKL(p∥q) = DKL(p∥r)+Ep
[
log r

q

]
≤ DKL(p∥r)+log sup

a

r(a)

q(a)
= DKL(p∥r)+logRθ(s). (41)

Under a frozen decoder Ts : U → A, we treat the transformation from base latent u to action a
as a measurable pushforward mapping. Let qu be the refined base distribution and N the standard
Gaussian. Then the induced action distributions satisfy

DKL(Ts#qu ∥Ts#N ) ≤ KL(qu ∥N ), (42)
by the data-processing inequality (DPI) for Kullback–Leibler divergence under measurable maps;
(e.g.,see Csiszár & Shields (2004)). This result states that any deterministic or stochastic channel
(here, the frozen decoder Ts) cannot increase KL divergence.

C.5 PROOF OF LEMMA 3

Let fϕ : Rd→Rd be a smooth bijection (the prior flow). Define qz = fϕ#qu and pϕ = fϕ#N . By
the change-of-variables formula,

qz(z) = qu(u)
∣∣∣det ∂u

∂z

∣∣∣, pϕ(z) = N (u)
∣∣∣det ∂u

∂z

∣∣∣, z = fϕ(u). (43)

Hence

DKL(qz∥pϕ) =
∫
qz(z) log

qz(z)

pϕ(z)
dz =

∫
qu(u) log

qu(u)

N (u)
du = DKL(qu∥N ), (44)

i.e., KL is invariant under the bijection fϕ.

Let Ts : Rd→A be the deterministic decoder mapping (e.g., decoded mean) with frozen θ. The
data-processing inequality for f -divergences (including KL) under a measurable pushforward gives

DKL

(
Ts#qz

∥∥Ts#pϕ) ≤ DKL(qz∥pϕ). (45)

With π = Ts#qu = Ts#qz and π0 = Ts#N = Ts#pϕ, we obtain DKL(π∥π0) ≤ KL(qz∥pϕ) =
DKL(qu∥N ), which proves Eq. 18.

C.6 PROOF OF COROLLARY 1

For the Wasserstein bound, write π = Ts#qz and π0 = Ts#pϕ with Ts = gθ(·, s). If gθ is Lg-
Lipschitz on the latent chart, then the pushforward is Lg-Lipschitz in W2:

W2(π, π0) ≤ LgW2(qz, pϕ). (46)
By Talagrand’s T2 inequality (Gaussian reference or log-Sobolev under mild conditions) (Otto
& Villani, 2000), W2(qz, pϕ) ≤

√
2DKL(qz∥pϕ), and Lemma 3 implies W2(π, π0) ≤

Lg
√

2DKL(qu∥N ).

For total variation (TV) and OOD probability, the triangle inequality yields TV(π, πβ) ≤
TV(π, π0) + TV(π0, πβ). Pinsker’s inequality (Csiszár & Shields, 2004) gives TV(π, π0) ≤√

1
2 DKL(π∥π0) ≤

√
1
2 DKL(qu∥N ), using Lemma 3. For any measurable O,

π(O)− πβ(O) ≤ TV(π, πβ) ≤
√

1
2 DKL(qu∥N ) + TV(π0, πβ). (47)

Rearranging completes the proof.

Remark. The Wasserstein bound in Corollary 1 relies on the Lipschitz continuity of the decoder
gθ with constant Lg . We note that this is a mild and practically enforceable assumption. During
training, the decoder’s Lipschitz constant can be implicitly constrained through techniques such as
weight normalization Salimans & Kingma (2016), spectral normalization Miyato et al. (2018), or
the gradient penalty Gulrajani et al. (2017), which are commonly used in generative modelling to
enhance stability and generalization. Consequently, the theoretical bounds derived herein are not
only sound but also practically relevant, as the key quantity DKL(qu|N ) remains the primary lever
for controlling distributional shift.
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C.7 ORDER-AGNOSTIC BOUNDS FOR SEQUENTIAL REFINEMENT

We formalize that the KL/Wasserstein/TV bounds in Lemma 3 and Corollary 1 are independent of
the update order used by the experts.

Proposition 1 (Order-agnosticity of base-space bounds). Let R be any (possibly stochastic) mea-
surable refinement operator on the base space that maps the standard Gaussian N to a refined
distribution qu = R(N ), obtained by any composition/order of expert updates (e.g., Gauss–Seidel,
Jacobi, interleaved mini-steps) subject to a trust region ∥uT − u0∥≤ρ. With the prior flow fϕ and
decoder gθ fixed (as in Sec. 3.2), define π = Ts#qu and π0 = Ts#N where Ts(u) = gθ(fϕ(u; s), s).
Then the conclusions of Lemma 3 and Corollary 1 hold verbatim with this qu:

DKL

(
π(· | s)

∥∥π0(· | s)) ≤ DKL

(
qu(· | s)

∥∥N ),
W2

(
π(· | s), π0(· | s)

)
≤ Lg

√
2DKL(qu∥N ),

(48)

and the TV/Pinsker OOD bound remains unchanged.

Proof. The proofs of Lemma 3 and Corollary 1 use only: (i) invariance of KL under the bijection
fϕ; (ii) data-processing for pushforwards through the frozen decoder gθ; (iii) Talagrand/Pinsker
inequalities. None of these depend on the path that produces qu, only on the resulting distribution
qu. Any expert ordering defines a measurable map whose pushforward of N is qu; substituting this
qu into the same steps yields the stated bounds. The optional trust region ensures KL finiteness and
well-definedness but does not affect order independence.

C.8 POLICY GAP AND COMPARISON WITH PRIOR PERFORMANCE BOUNDS

We first derive simple performance bounds that relate the reward and cost gaps between the refined
policy and the flow prior / behavior policy to the base-space KL regularizer used in FLRP.

Preliminaries. Let π denote the final refined policy, π0 the flow prior policy, and πβ the behavior
policy. Rewards and costs are bounded as |r(s, a)| ≤ Rmax and |c(s, a)| ≤ Cmax. We write
Jr(π) := E[

∑
t≥0 γ

trt] and Jh(π) := E[
∑
t≥0 γ

tct] for the reward and cost return under π, and
dπρ0 for the discounted state-visitation distribution induced by π from initial distribution ρ0. For a
reference policy π′, we defineAπ

′

r (s, a) = Qπ
′

r (s, a)−V π′

r (s) andAπ
′

h (s, a) = Qπ
′

h (s, a)−V π′

h (s).

Lemma 4 (Performance difference via TV). For any two policies π and π′, we have

Jr(π)− Jr(π′) =
1

1− γ
Es∼dπρ0 , a∼π(·|s)

[
Aπ

′

r (s, a)
]
,

Jh(π)− Jh(π′) =
1

1− γ
Es∼dπρ0 , a∼π(·|s)

[
Aπ

′

h (s, a)
]
.

(49)

Moreover, if |r(s, a)| ≤ Rmax then∣∣Jr(π)− Jr(π′)
∣∣ ≤ 2Rmax

(1− γ)2
sup
s

TV
(
π(·|s), π′(·|s)

)
, (50)

and an analogous bound holds for Jh with Rmax replaced by Cmax.

Proof. The equalities are the standard performance-difference lemma obtained by unrolling the
Bellman equations and telescoping the resulting series.

For the inequality, bounded rewards imply |V π′

r (s)| ≤ Rmax/(1 − γ) and |Qπ′

r (s, a)| ≤
Rmax/(1 − γ) for all (s, a), hence

∣∣Aπ′

r (s, a)
∣∣ ≤ 2Rmax/(1 − γ). Moreover, for every s we have

Ea∼π′(·|s)[A
π′

r (s, a)] = 0, so∣∣∣Ea∼π(·|s)Aπ′

r (s, a)
∣∣∣ = ∣∣∣Ea∼π(·|s)Aπ′

r (s, a)− Ea∼π′(·|s)A
π′

r (s, a)
∣∣∣ ≤ 2

Rmax

1− γ
TV
(
π(·|s), π′(·|s)

)
,

(51)
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where we used the standard inequality |Epf − Eqf | ≤ 2∥f∥∞TV(p, q). Plugging this bound into
the performance-difference lemma and taking the supremum over s yields∣∣Jr(π)−Jr(π′)

∣∣ ≤ 1

1− γ
Es∼dπρ0 qu

[
2
Rmax

1− γ
TV
(
π(·|s), π′(·|s)

)]
≤ 2Rmax

(1− γ)2
sup
s

TV
(
π(·|s), π′(·|s)

)
.

(52)
The bound for Jh follows by replacing Rmax with Cmax.

Proposition 2 (Policy gap under base-space KL control). Assume that the base latent distribution
qu(·|s) used by the refined policy satisfies a uniform KL constraint

DKL

(
qu(·|s) ∥N (·)

)
≤ εbase for all s, (53)

where N is the standard Gaussian base of the flow prior and we refer to the upper bound εbase as
the base-space KL radius. Let

∆β := sup
s

TV
(
π0(·|s), πβ(·|s)

)
denote the mismatch between the flow prior and the behavior policy. Then the refined policy satisfies
the following reward and cost bounds:∣∣Jr(π)− Jr(π0)∣∣ ≤ 2Rmax

(1− γ)2
√

1
2 εbase, (P1)

∣∣Jh(π)− Jh(π0)∣∣ ≤ 2Cmax

(1− γ)2
√

1
2 εbase, (P2)

∣∣Jr(π)− Jr(πβ)∣∣ ≤ 2Rmax

(1− γ)2
(√

1
2 εbase +∆β

)
, (P3)

∣∣Jh(π)− Jh(πβ)∣∣ ≤ 2Cmax

(1− γ)2
(√

1
2 εbase +∆β

)
. (P4)

Proof. We first consider the gap between π and the flow prior π0. By Lemma 4 with π′ = π0 it
suffices to control sups TV(π(·|s), π0(·|s)). By Pinsker’s inequality we have

TV
(
π(·|s), π0(·|s)

)
≤
√

1
2 DKL

(
π(·|s) ∥π0(·|s)

)
. (54)

Lemma 3 shows that the policy KL is bounded by the base-space KL under the flow+decoder map-
ping:

DKL

(
π(·|s) ∥π0(·|s)

)
≤ DKL

(
qu(·|s) ∥N (·)

)
≤ εbase, (55)

and hence

sup
s

TV
(
π(·|s), π0(·|s)

)
≤
√

1
2 εbase. (56)

Substituting this into Lemma 4 yields (P1) and (P2).

For the gap to the behavior policy, Corollary 1 in the main text implies that for each state s,

TV
(
π(·|s), πβ(·|s)

)
≤
√

1
2 DKL

(
qu(·|s) ∥N (·)

)
+TV

(
π0(·|s), πβ(·|s)

)
. (57)

Applying the uniform bounds on the base-space KL and on TV(π0, πβ) gives

sup
s

TV
(
π(·|s), πβ(·|s)

)
≤
√

1
2 εbase +∆β . (58)

Plugging this into Lemma 4 with π′ = πβ yields (P3) and (P4).
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Discussion The above results show that FLRP admits explicit reward and cost policy-gap bounds
(Proposition 2) in terms of the base-space KL radius εbase and th prior–behavior mismatch ∆β .
In particular, Eqs. (P1)–(P4) make the role of εbase transparent: by constraining the refined base
distribution qu(· | s) to stay within a KL ball around the Gaussian base of the flow prior, we directly
bound the TV/W2 shift between the refined policy and the prior/behavior policies, and hence obtain
tunable control over out-of-distribution (OOD) extrapolation. This aligns with the central tension in
offline RL between policy improvement and staying close to the data distribution.

Within offline safe RL, LSPC (Koirala et al., 2024) also derives policy-gap and violation bounds in
a CMDP setting. For example, they show that

V π
⋆

r (ρ0)− V πr (ρ0) ≤
2Rmax

(1− γ)2

(√
ε′1
2

+

√
ε′2
2

)
, (59)

where π⋆ is the optimal safe policy and ε′1, ε
′
2 collect approximation errors from the CVAE-based

latent model and value estimators. Although similar in form, our guarantees are not a stronger ver-
sion of LSPC’s global policy-gap bounds, but a complementary type of result. LSPC focuses on
how far the learned safe policy can be from the optimal safe policy in terms of return and constraint
satisfaction, with bounds expressed via abstract approximation errors (e.g., ε′1, ε

′
2). Our analysis

instead focuses on how far refinement can move the policy away from the data/prior distribution in a
flow-based latent space, and how a base-space KL regularizer keeps this shift controlled and tunable.
Crucially, compared with ε′1, ε

′
2, εbase is not a latent error term but a regularization parameter in the

training objective: it has a direct geometric interpretation and can be monitored and adjusted in prac-
tice, providing an explicit and controllable mechanism for OOD risk suppression that is embedded
into the shared refiner and Gaussian regularization.

D IMPLEMENTATION DETAILS

In this section, we describe our experimental framework and implementation of the proposed
method, including benchmark and datasets, task descriptions and evaluation metrics, and training
details.

D.1 BENCHMARK DETAILS

We use the Datasets for Safe Reinforcement Learning (DSRL) benchmark suite (Liu et al., 2023a)
to train and evaluate our method as well as all baselines. DSRL provides 38 offline datasets spanning
multiple safe RL environments (Safety-Gymnasium, Bullet-Safety-Gym, and Safe MetaDrive) with
varying difficulty levels. These datasets follow a D4RL-style (Fu et al., 2020) API and include
detailed cost signals in addition to reward returns.

For the baselines, we adopt the authors’ official implementations and default hyperparameters when
available (especially for FISOR and LSPC). For other methods (BCQL / BCQ-Lag, CPQ, CDT), we
use the OSRL framework’s implementations and settings to ensure fair comparison.

D.2 TASK DESCRIPTIONS

Below are the three environment suites used in our experiments, with their main task types and
distinguishing safety vs. complexity features. Figure 5 shows three example visualizations.

D.2.1 SAFETY-GYMNASIUM

Safety-Gymnasium (Ji et al., 2023) is a unified MuJoCo-based benchmark collection offering a va-
riety of continuous control tasks (e.g. Goal, Button, Push, Circle, Velocity, etc.). Agents include
Point, Car, Ant, HalfCheetah, etc. The tasks vary both in goal structure (e.g. reach a goal, push an
object, navigate through buttons) and safety constraints (velocity limits, obstacle avoidance, colli-
sion cost). Some tasks include hazards or “sigwalls” that act as soft or hard boundaries. These tasks
test both navigation and locomotion under safety constraints.
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(a) Safety Gymnasium (b) Metadrive (c) Bullet Safety Gym

Figure 5: Example visualization from the simulation environments used in our experiments.

D.2.2 BULLET-SAFETY-GYM

Bullet-Safety-Gym (Gronauer, 2022) is based on the PyBullet physics engine. It includes similar
task types (Circle, Run, Gather, Reach) with agents such as Ball, Car, Drone, Ant. The dynamics
tend to have shorter horizons and more variability in physics (collision, friction) compared to Mu-
JoCo, which raises safety risk under state/action noise. Cost signals usually arise from collisions or
from exceeding safe boundaries. This makes the tasks more challenging in terms of generalization
and handling unsafe transitions.

D.2.3 SAFE METADRIVE

MetaDrives (Li et al., 2022) is a simulator for driving/traffic/autonomous vehicle tasks under safety
constraint. Its “safe RL” subset includes tasks with realistic road networks, dynamic agents, pro-
cedural map generation, traffic rules, and hazards. Observations often include vehicle state, road
context; actions are continuous control of speed/steering. Safety constraints include collisions, lane
infractions, and staying within road limits. These tasks are more realistic in terms of environment
unpredictability, driving constraints, and possibly partial observability or environmental stochastic-
ity.

D.3 DATASET VISUALIZATION

We further present the distribution of offline trajectories in the cost–return space across three repre-
sentative environments, as shown in Figure 6. In the CarPush task from Safety-Gymnasium, the
reward distribution is narrow and low, while the cost spans a wide range. This results in a weak corre-
lation between reward and safety: most trajectories incur significant costs even when achieving only
modest returns, making strict constraint satisfaction particularly challenging. In the MediumMean
task from Safe MetaDrive, the reward exhibits distinct discrete bands, each associated with a specific
cost level. This reflects mode-switching behaviors and a strong reward–cost coupling; although fea-
sible trajectories exist, achieving high reward under tight cost limits requires careful selection among
these behavioral clusters. The CarRun task from Bullet Safety Gym demonstrates a smoother trade-
off frontier, where reward gradually increases with cost, forming a continuous and diverse distribu-
tion. While safe, high-reward trajectories remain sparse, the presence of mid-reward, intermediate-
cost episodes renders this dataset more amenable to constrained policy optimization compared to
the other two.

D.4 EVALUATION METRICS

We evaluate the performance of all methods using two metrics: normalized reward return and nor-
malized cost return, following standard evaluation practices used in offline RL benchmarks like
D4RL Fu et al. (2020) and adopted by recent safe RL methods such as CDT Liu et al. (2023b),
LSPC (Koirala et al., 2024) and FISOR (Zheng et al., 2024). The normalized reward is defined as:

Rnorm =
Rπ − rmin(T )

rmax(T )− rmin(T )
(60)
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(a) CarPushGymnasium (b) MediumMean (c) BulletCarRun

Figure 6: Example visualization of the dataset used in our experiments.

where Rπ is the total reward return of the trained policy π, and rmax(T ), rmin(T ) denote the maxi-
mum and minimum reward returns observed in the dataset T , respectively.

The normalized cost is computed as:

Cnorm =
Cπ
κ+ ϵ

(61)

where Cπ is the total cost return of policy π, κ is the cost limit, which we set to 10 for all tasks, and
ϵ is a small constant added to avoid numerical instability when κ = 0.

D.5 TRAINING DETAILS

For all baseline methods, we adopt their default hyperparameter configurations. To ensure a fair
comparison across all methods, we set the rollout length for each task to match the maximum number
of allowed interaction steps. The cost limit for the baselines is set to 10 for all tasks. The common
key hyperparameters used for our method and baselines are shown in Table 5. Table 6 lists other key
hyperparameters used for FLRP. We apply the same configuration across all tasks and environments
without per-task tuning.

Table 5: Model Configuration Parameters

Parameter CPQ BCQ-L CDT LSPC FISOR FLRP
Common Settings:

Training steps 1× 106

Batch size 512
Discount factor 0.99
Activate function ReLu

Algorithm-Specific Settings:
Hidden layer size 256 256 256 256 256 256
Soft update rate (τ ) 0.005 0.005 0.005 0.005 0.001 0.001
Cost limit 10 10 10 – – –

Learning Rates (×10−3):
Actor learning rate 1.0 1.0 0.1 0.3 0.3 0.3
Critic learning rate 1.0 1.0 0.1 0.3 0.3 0.3

The pseudocode for FLRP is provided in Algorithm 1. All experiments were conducted on eight
NVIDIA RTX 6000 Ada Generation GPUs, each with 48 GB of memory. Each experiment is run
with 3 random seeds, and results are averaged over 10 evaluation episodes per seed.

D.6 COMPUTATIONAL COST

Compute overhead of the flow prior. As an extension of the ablation study, to quantify the com-
putational footprint of the flow prior, we compare it against an otherwise identical refiner equipped
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Table 6: Hyperparameters of FLRP.

Parameter Value

Expectile τ 0.9
Asymmetric L2 loss coeff 0.9
Target temperature 3
Value temperature 5
Advantage weight clip (reward) (−∞, 100]
Advantage weight clip (cost) (−∞, 150]
Refine steps T 3
Refiner loss weight λr, λh, λsh 1,1,0.5

Table 7: Compute profile of the refiner with a Gaussian prior vs. a flow prior (identical architecture
and training setup). FLOPs are per training step; NF Time fraction is the proportion of wall-clock
per step spent in the prior.

Prior Train time Peak mem. Infer. latency Refiner FLOPs Prior FLOPs NF time frac.
/ step (s) (GB) (ms) (GFLOPs/step) (GFLOPs/call) (%)

Gaussian 0.052 1.06 1.21 0.29 0.00 0.05
Flow 0.086 1.07 2.13 0.48 0.18 3.33

with a Gaussian prior (Table 7). The flow prior increases per-step training time from 0.052,s to
0.086,s (about ×1.6) and single-step inference latency from 1.21, ms to 2.13, ms (about ×1.7),
while peak memory remains essentially unchanged (1.06, GB vs. 1.07, GB). In terms of arithmetic
cost, refiner updates require 0.29, GFLOPs per step with a Gaussian prior and 0.47, GFLOPs with
a flow prior (roughly ×1.6); the flow prior itself accounts for about 0.18, GFLOPs per call, corre-
sponding to approximate 38% of the refiner’s FLOPs and approximate 3.3% of the wall-clock time
per training step. In contrast, the Gaussian prior baseline incurs essentially zero prior FLOPs and a
negligible NF time fraction (≈ 0.05%). Overall, the flow prior introduces a modest but measurable
overhead, while keeping both training and inference well within a practical compute budget.

Architectural simplicity of the flow prior. Our normalizing flow prior is intentionally designed to
be lightweight. We use a coupling-based architecture with affine transformations (RealNVP-style),
so the Jacobian of each layer is triangular and the log-determinant can be computed in O(d) time
without any matrix inversion. Forward and inverse mappings share the same couplings and remain
strictly first-order—there is no need to invert Hessians, solve inner optimization problems, or run
costly fixed-point iterations. Combined with a moderate latent dimension and a small number of
coupling layers, this keeps the flow prior numerically stable and computationally inexpensive while
still providing exact likelihoods and invertible latent transformations.

E ADDITIONAL EXPERIMENTS

Reversed expectile for feasibility function. The reversed expectile parameter τh controls how
conservative the feasibility critic is and thus how the safe region is learned. We sweep different
τh values to quantify the gap between our HJ-based feasibility estimates and the true safe region
constructed from the offline dataset. Intuitively, a smaller τh emphasizes lower Qh values, making
Vh more pessimistic and shrinking the induced feasible set {s | Vh(s) ≤ 0}; this should yield
high precision but low recall w.r.t. the true safe set. A larger τh has the opposite effect, expanding
the feasible set and trading precision for recall. Table 8 confirms this trend on both CarRun and
AntCircle: as τh increases, recall consistently improves while precision decreases. The effect
is much sharper on AntCircle, whose safe region is more complex, indicating that harder tasks
require a more optimistic critic (larger τh) to achieve comparable coverage of the true safe set.
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Algorithm 1 FLRP Training (Two-Stage)

Require: Offline dataset D
1: Init critics (Qr, Vr), (Qh, Vh); flows pϕ, qψ; decoder πθ; refiners {Rs, Rr, Rsh}

2: Stage 1: Critic and flow pretraining
3: while not convergedbase do
4: Sample minibatch (s, a, r, c, s′) ∼ D, draw zq ∼ qψ(z | s, a)

5: // Critic updates
6: Update safety critics (Qh, Vh) by HJ-style backup ▷ Eq. 8, Eq. 9
7: Update reward/value critics (Qr, Vr) by TD / advantage targets ▷ Eq. 21, Eq. 22

8: // Flow prior and decoder
9: Compute BC loss and prior-shaping loss Lflow ▷ Eq. 12

10: Update pϕ, qψ and πθ using flow objective ▷ Eq. 13
11: end while

12: Stage 2: Latent refiner training (freeze base model)
13: Freeze parameters of (Qr, Vr), (Qh, Vh), pϕ, qψ , and πθ
14: while not convergedref do
15: Sample minibatch (s, a, r, c, s′) ∼ D, draw zq ∼ qψ(z | s, a)
16: Compute base code uq ← T−1

ϕ (zq | s)

17: (a) Safety refiner
18: us ← Rs(uq, s)
19: Decode ãs ← πθ

(
Tϕ(us | s), s

)
20: Compute safety loss Lh from Qh(s, ãs) ▷ Eq. 14
21: Update parameters of Rs w.r.t. Lh

22: (b) Reward refiner
23: ur ← Rr(uq, s)
24: Decode ãr ← πθ

(
Tϕ(ur | s), s

)
25: Compute reward loss Lr from Qr(s, ãr) (masked by feasibility) ▷ Eq. 15
26: Update parameters of Rr w.r.t. Lr

27: (c) Shared refiner / OOD control
28: ush ← Rsh(uq, s)
29: Compute base-space regularizer Lsh (e.g., KL to N (0, I) or ∥ush∥2) ▷ Eq. 16
30: Update parameters of Rsh w.r.t. Lsh
31: end while

Table 8: Sensitivity of the HJ-based feasibility classifier to the expectile parameter τh. Re-
call/precision are computed on the offline buffer on task by treating steps from zero-cost trajectories
as ground-truth safe.

Task Metric τh

0.6 0.7 0.8 0.9 0.95

CarRun Recall 0.32 0.39 0.54 0.76 0.85
Precision 0.76 0.68 0.51 0.24 0.21

AntCircle Recall 0.04 0.08 0.27 0.79 0.88
Precision 0.78 0.42 0.06 0.05 0.05

Decoder freezing ablation. Freezing the decoder is a core modeling choice in our method: the
theoretical coupling between the latent prior and the refiner—and the resulting bounds on action
and policy shift—critically rely on the decoder remaining fixed. Allowing the decoder to change
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Figure 7: Effect of refiner loss weights on FLRP performance: varying the relative weights of the
reward (R), safety (H), and shared (SH) refiners yields a robust response and enables a smooth trade-
off between reward return and cost.

would break this coupling and make both the analysis and the interpretation of the refinement steps
much less clear. To quantify how much performance is potentially sacrificed by this restriction,
we compare our default “frozen decoder” training with an alternative scheme where the refiner and
decoder are updated in alternating phases. The result is shown in Table 9a. On the simpler task
CarRun, the two variants achieve very similar performance: with a frozen decoder, we obtain a
reward of 0.87 at zero cost, while alternating updates yield a reward of 0.84, also at zero cost. On
the more challenging AntCircle task, alternating updates increase the reward from 0.45 to 0.69,
but at the price of a higher cost (from 0.25 to 0.56). Thus, while partially unfreezing the decoder can
improve returns on complex tasks, it does so by relaxing safety, whereas the frozen-decoder variant
preserves our theoretical guarantees and achieves tighter cost control.

Table 9: Decoder and refiner ablations.

(a) Frozen vs. alternating decoder

Task Reward Cost

CarRun (frozen) 0.87 0.00
CarRun (alter.) 0.84 0.00
AntCircle (frozen) 0.45 0.25
AntCircle (alter.) 0.69 0.56

(b) Refiner optimization strategy on AntCircle

Refiner Deisgn Reward Cost

Decoupled 3-refiners 0.45 0.25
Single unified refiner 0.07 0.00
Averaged 3-refiners 0.51 0.45

Effect of refiner loss weights. Figure 7 investigates
how the relative weights assigned to the three refin-
ers (R, H, SH) affect performance. Overall, FLRP is
quite robust: within a broad range of loss weights,
the reward and cost curves remain stable without
sudden degradation. When the safety refiner H is
severely under-weighted (left part of the curves), the
policy becomes noticeably less safe, confirming that
H is the main driver toward low-cost regions. As
the weight of H increases, the policy consistently
moves to safer operating points. In contrast, putting
more emphasis on the reward refiner R tends to in-
crease the reward return, but also leads to higher
cost, which is consistent with its role of exploiting
high-return directions near the constraint boundary.
The shared refiner SH behaves like a regularizer:
when its weight is too small, the policy becomes
less coordinated and slightly more unstable; when its
weight is too large, over-regularization harms both
reward and safety. The best performance is obtained
for intermediate SH weights, where it can effectively absorb residual interactions between R and H
while keeping the refinement close to the flow prior. These trends show that (i) FLRP’s performance
is not overly sensitive to the exact choice of refiner weights, and (ii) by tuning the relative weights
of R, H, and SH, practitioners can smoothly control the reward–cost trade-off without changing the
underlying critics or flow model.

Ablation on refiner optimization strategy. We further investigate whether the three-refiner ar-
chitecture is really necessary, or whether one can obtain similar behavior by changing only the
optimization scheme while keeping the same total loss. On AntCircle, we fix the loss weights
(λr, λh, λsh) and compare our default design—three decoupled refiners (H, R, SH) optimized se-
quentially—with two alternatives (Table 9b): (i) a single unified refiner, which directly optimizes
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the sum of the three refiner losses, and (ii) an averaged 3-refiner update, where we still learn three
refiners but average their latent updates before applying a single step to the base code.

The results show that the three-refiner design is crucial for obtaining a good reward–cost trade-off.
The unified refiner collapses to an overly conservative solution (reward 0.07, cost 0.00): because a
single set of parameters must simultaneously satisfy safety, reward, and regularization objectives, the
gradients from these components frequently conflict, and the optimizer converges to a compromise
that prioritizes low cost but fails to exploit high-return directions. By contrast, the averaged-update
variant achieves high reward (0.51) but with much higher cost (0.45): averaging the three latent
updates at a single point mixes conflicting safety and reward gradients, partially canceling the safety
correction and diluting the shared refiner’s regularization, which leads to high-return but unsafe so-
lutions. Our sequential H→R→SH updates (0.45 reward, 0.25 cost) strike a substantially better
balance that cannot be mimicked by a single averaged step. Overall, these results indicate that sep-
arating safety, reward, and shared refiners—each with its own parameters and update direction—is
more effective than collapsing them into a single refiner or naively averaging their gradients.
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