
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2026

FLOW-GUIDED LATENT REFINER POLICIES FOR SAFE
OFFLINE REINFORCEMENT LEARNING

Anonymous authors
Paper under double-blind review

ABSTRACT

Safe offline reinforcement learning remains challenging due to two coupled ob-
stacles: (i) reconciling soft penalty designs with hard safety requirements, and (ii)
avoiding out-of-distribution (OOD) actions when the learned policy departs from
the behavior data. Existing approaches often rely on penalty tuning that under- or
over-regularizes safety, solve constrained objectives that depend on accurate sim-
ulators or online rollouts, or train powerful generative policies that still explore
low-density, safety-unknown regions at deployment. We introduce a constraint-
free offline framework that addresses both issues by (a) modeling the latent action
manifold via a trainable flow-based density conditioned on state to explicitly con-
centrate probability mass on high-density—and empirically safe—regions, and (b)
applying a lightweight refiner stage that performs small, ordered updates in the la-
tent space to jointly improve reward and safety before decoding actions. This
design keeps policy search inside the modelled data manifold, while a feasibility-
aware training signal steers the refiner toward low-violation solutions without
requiring explicit constraints or online interaction. Across various safe offline
benchmarks, the proposed method achieves lower violation rates while matching
or outperforming baselines in return, demonstrating its potential as a practical and
effective approach to safer offline policy learning.

1 INTRODUCTION

Safe offline reinforcement learning (Safe Offline RL) seeks to learn policies that maximize return
while satisfying stringent safety requirements from a fixed dataset—without risky, expensive online
interaction (Levine et al., 2020). Training from logs allows practitioners to leverage prior oper-
ations, simulators, or demonstrations to deploy policies in safety-critical domains (robotics (Wu
et al., 2024), driving (Zhang et al., 2025), industrial control (Yu et al., 2025; Wang et al., 2025))
where exploration is untenable, offering clear practical benefits over online learning.

However, simultaneously achieving high performance and strict safety from static data remains elu-
sive (Kushwaha et al., 2025). Most prior work (Ding & Lavaei, 2023; Le et al., 2019; Lee et al., 2022;
Fujimoto et al., 2019) encodes safety as soft constraints—risk penalties or constrained Markov de-
cision processes (CMDPs) (Altman, 2021) with Lagrangian updates—so violations are discouraged
in expectation. When constraints are tight or objectives conflict, these updates often under-enforce
safety, yielding policies that either ignore constraints or require brittle penalty tuning—undesirable
in engineering settings that demand near-zero violations. Hard-constraint formulations (Wang et al.,
2023; Yu et al., 2022) strengthen safety but typically induce conservatism and measurable return
sacrifice, especially offline, where feasible exploration is absent. Orthogonal to constraint design,
a second challenge is out-of-distribution (OOD) shift. Offline policies must evaluate and improve
without querying unseen actions; otherwise, bootstrapping on OOD actions produces extrapolation
error and overestimation, which in turn elevates safety risk at deployment (Kumar et al., 2019).
Recent studies further note that OOD states at test time can also degrade behavior, indicating that
distribution shift is a coupled state–action phenomenon Levine et al. (2020); Xu et al. (2025).

Optimizing safety and return jointly under OOD constraints is therefore difficult: soft constraints
under-enforce safety, hard constraints induce pessimism and missed returns, and generative policies
may allocate mass to low-density, safety-unknown regions at inference (Vuong et al., 2022). There-
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fore, preventing OOD while improving both objectives remains the central open problem (Kushwaha
et al., 2025).

Figure 1: Overview of the proposed method.
An encoder maps (s, a) into a safety-dense la-
tent embedding. A conditional normalizing flow
pϕ(z|, u) with base u ∼ N (0, 1) serves as the
prior, providing exact forward/inverse transforms
between the base and latent spaces; a decoder
then reconstructs actions a from z. At infer-
ence, three refiners (safety, reward, and a shared
refiner) operate in the base Gaussian space to
adjust samples toward high-density, in-support
regions—maximizing return while suppressing
OOD actions and enforcing safety constraints.

To tackle these challenges, we introduce a
density-first, constraint-free framework for safe
offline RL, which delivers stringent safety
while simultaneously optimizing for high re-
turns. Our approach views safety assur-
ance and OOD control as a representation
problem in a task-conditioned latent manifold.
Specifically, we equip the critics with Hamil-
ton–Jacobi(HJ)–inspired (Bansal et al., 2017)
safety signals: feasibility values are learned with
a reversed expectile objective and action-values
are updated by an HJ-style backup built from
sparse labels, yielding a reliable estimate of fea-
sibility directly from the offline data. On top of
this estimator, a pair of structured conditional
flow models—one serving as a latent prior and
the other as a posterior—sculpts the density so
that the projection of actions under a given state
concentrates around data-supported regions that
are empirically safe. Actions are produced by a
high-capacity decoder that is kept fixed during
refinement; combined with the coupling struc-
ture of the flows, this confines search to a safety-
shaped shell in the latent space and suppresses
out-of-distribution drift. Building on this mani-
fold, we develop a three-expert (reward, safety,
and shared) refiner that performs small, ordered updates in the base latent space with decoupled,
advantage-weighted objectives—pushing reward inside feasible regions while pulling away from
safety risks in infeasible ones—so that constraint satisfaction and return maximization can proceed
jointly in purely offline training.

Furthermore, we provide theoretical guarantees that our refinement procedure constrains distribu-
tional shift, offering principled control over OOD actions in the offline setting. Extensive exper-
iments across diverse safe offline benchmarks demonstrate that combining safety-shaped density
with latent-space refinement leads to a better return–safety trade-off under hard-constraint scenar-
ios, compared to strong baselines.

2 PRELIMINARIES

Safe offline RL Safe RL is typically formulated as a Constrained Markov Decision Process M =
(S,A, T, r, h, c, γ), where h : S → R encodes a state constraint and c(s) = max{h(s), 0} is the
induced cost, with c(s) > 0 indicating a constraint violation. The discount factor is γ ∈ (0, 1). In
the offline setting, we are given a fixed dataset D = {(s, a, r, c, s′, d)} collected by an unknown
behavior policy πβ . We adopt the basic offline safe RL objective:

max
π

Es[V πr (s)] s.t. Es[V πc (s)] ≤ ℓ, DKL(π ∥ πβ) ≤ ε, (1)

where V πr (s) = Eπ
[∑∞

t=0 γ
tr(st, at) | s0 = s

]
is the reward value function and V πc (s) =

Eπ
[∑∞

t=0 γ
tc(st) | s0 = s

]
is the cost value function. ℓ is the cost limit. The KL divergence

DKL(·∥·) constrains the deviation of π from the behavior policy πβ .

Normalizing flows. Normalizing flows (NFs) (Kobyzev et al., 2020) are powerful generative mod-
els for complex distribution modeling. Let u ∼ N (0, I) and z = fϕ(u; cond) be a bijection
conditioned on cond (e.g., state or task context). The log-density of z is computed by the change-
of-variables formula:

log pϕ(z | cond) = log p(u) + log
∣∣∣det ∂u

∂z

∣∣∣. (2)
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In our implementation, we adopt a RealNVP-style (Dinh et al., 2016) flow architecture based on
coupling layers. Each layer splits the input z into two parts: an identity component zid that remains
unchanged, and a transform component ztr that is updated through an affine transformation:

z′tr = ztr ⊙ exp sϕ
(
zid, cond

)
+ tϕ

(
zid, cond

)
, log | det J | =

∑
sϕ(·), (3)

where sϕ and tϕ are scale and translation networks. These layers yield tractable log-likelihoods and
exact inverses by construction. Stacking multiple such layers increases the expressiveness of the
model while preserving efficient computation due to the triangular structure of the Jacobian.

3 METHODOLOGY

To address the twin challenges of under-enforced soft constraints and out-of-distribution drift in of-
fline settings, we first recast the objective as a state-wise zero-violation hard constraint. Concretely,
we require h(st) ≤ 0 almost surely under at ∼ π(· | st) for all t ∈ N. Consequently, the soft safety
constraint in Eq. 1 is replaced by a state-wise requirement together with an offline trust region:

max
π

Es[V πr (s)] s.t. V πc (s) ≤ 0, DKL(π ∥ πβ) ≤ ε. (4)

Building on this formulation, we adopt a base-space refinement strategy, where optimization is per-
formed entirely within a conditional latent density that is confined to a data-supported manifold,
as illustrated in Figure 1. We refer to our method as FLRP—Flow-guided Latent Refiner Poli-
cies—which enables in-distribution policy improvement with near-zero constraint violations. The
core components of FLRP are detailed in the following subsections.

3.1 FEASIBILITY-BASED VALUE FUNCTION

The state-wise zero-violation requirement in Eq. 4 calls for a representation that certifies safety
along the entire trajectory, not only in expectation. Hamilton–Jacobi (HJ) reachability Bansal et al.
(2017) from safe control provides exactly such a representation through signed safety functions and
value-based certificates, and has been shown to be effective for enforcing hard constraints in recent
safe RL studies (Fisac et al., 2018; Yu et al., 2022). Following this line, we cast the hard constraint
into a pair of feasibility value functions based on Definition 1 that we can learn from offline data
and then use as a unified signal for policy generation and refinement.
Definition 1 (Optimal feasible value functions). Let h : S → R be a signed safety function with
h(s) ≤ 0 denoting safety. The optimal state-wise and action-wise feasibility values are defined by

V ⋆h (s) := min
π

max
t∈N

h(st), s0 = s, at∼π(· | st), st+1∼T (· | st, at), (5)

Q⋆h(s, a) := min
π

max
t∈N

h(st), s0 = s, a0 = a, at≥1∼π(· | st). (6)

By construction, V ⋆h (s) ≤ 0 implies the existence of a policy whose entire trajectory from s remains
safe; likewise, Q⋆h(s, a) ≤ 0 certifies zero violations when starting with action a. In offline settings,
they can be estimated by the Feasible Bellman Operator with a discounted factor γ.
Definition 2 (Feasible Bellman operator). For γ ∈ (0, 1) and any Q : S × A → R, the feasible
Bellman operator is defined by

(P⋆Q)(s, a) := (1− γ)h(s) + γmax{h(s), V ⋆(s′) }, V ⋆(s′) := min
a′

Q(s′, a′) . (7)

This operator is a γ-contraction under the sup norm and admits a unique fixed point Q⋆h,γ with
V ⋆h,γ(s) = minaQ

⋆
h,γ(s, a); as γ ↑ 1, it recovers the HJ-style values Q⋆h and V ⋆h in Definition 1.

Proof is deferred to Appendix B.2.

We parameterize (Qh, Vh) with neural networks. To avoid extrapolation errors that arise from query-
ing actions outside the data support (Fujimoto et al., 2019), we approximate Qh(s, ·) by reversed
expectile regression and train Qh with a one-step target that uses Vh in place of mina′ Qh(s

′, a′):

LVh = E(s,a)∼D
[
ρrevτh

(
Qh(s, a)− Vh(s)

)]
, (8)

LQh = E(s,a,s′)∼D

[(
(1− γ)h(s) + γmax{h(s), V tgt

h (s′)} −Qh(s, a)
)2

]
. (9)
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where ρrevτ (u) =
∣∣τ − 1{u > 0}

∣∣u2 and V tgt
h is a slowly updated target network. The reversed

expectile with τh ∈ (0.5, 1) down-weights overly optimistic Qh values and sharpens the zero level
set Vh≈0, while the target network stabilizes bootstrapping.

3.2 CONDITIONAL FLOW-BASED SAFE POLICY GENERATION

Rather than learning a policy directly in action space, we model a conditional latent action distri-
bution, where high-quality samples correspond to higher density. Thus, instead of being pushed
by hard constraints, safety is pulled by density. Given the empirical feasibility signals learned in
Sec. 3.1, we instantiate a conditional flow prior/posterior with a decoder. Compared with other
generative models, normalizing flows offer exact likelihood, tractable inverse mapping, and strong
expressivity (Papamakarios et al., 2021)—making them well-suited for both density modeling and
OOD control.

Safety-weighted ELBO. Let u ∼ N (0, I) be a base latent vector. The prior flow maps u to a
latent variable z = fϕ(u; s), where the log-density is tractable:

log pϕ(z | s) = log p(u) + log
∣∣∣det ∂u

∂z

∣∣∣. (10)

The posterior flow qψ(z | s, a) serves as an amortized recognizer, while a decoder πθ(a | s, z)
maps latent codes back to actions. Training follows a safety-weighted variational objective that
encourages accurate reconstruction and alignment with the prior:

LELBO = E(s,a)∼DEz∼qψ [−w(s, a) log πθ(a | s, z)] + β E(s,a)∼D [w(s, a)DKL (qψ ∥ pϕ)] , (11)

where w(s, a) = σ(−Qh(s, a)/Tq) σ(−Vh(s)/Tv) is a feasibility-weighted score derived from the
critics in Sec. 3.1, Tv and Tq are temeperatures, and σ is the logistic function. We formally justify
that the above objective remains a consistent variational estimator by showing that it performs a KL
projection of the model joint distribution onto a safety-weighted behavior distribution, as stated in
the following lemma.
Lemma 1. Let p̃D(s, a) ∝ w(s, a) pD(s, a) be a behavior-weighted empirical distribution. Then

LELBO = const +DKL

(
p̃D(s, a) qψ(z | s, a)

∥∥ pϕ(z | s)πθ(a | s, z)
)
.

This result shows that Lflow amounts to a KL projection of the behavior-weighted posterior onto the
generative model distribution. The proof is provided in Appendix B.2.

Prior Density Shaping. Compared to a Gaussian prior, the flow-based prior is capable of mod-
eling more complex and multimodal latent structures, but this expressiveness also introduces chal-
lenges during training. To mitigate these difficulties, we introduce a regularization objective that
encourages empirically feasible regions in the action space to be mapped back to high-density re-
gions in the latent base space. A key advantage of normalizing flows is their ability to compute an
exact inverse transformation from z to u. We leverage this to define the following prior-shaping loss:

Lshape = E(s,a)∼D

[
exp(Qr(s, a)− Vr(s)/βr) · Ifeas(s, a) ·

∥∥∥T−1
ϕ (zq | s)

∥∥∥2] (12)

Here, Ifeas(s, a) = 1{Qh(s, a) ≤ 0} is a binary indicator derived from the feasibility critic, and
T−1
ϕ (zq | s) denotes the inverse transformation that maps a decoded action back to the latent base

space. This encourages the flow prior to assign higher and smoother base-space density to actions
that are both safe and high-reward, thereby shaping the latent manifold to better align with feasible
and desirable behaviors.

Freezing the decoder and distribution shift. At inference time, actions are generated by sam-
pling u ∼ N (0, I), transforming it through the prior flow z = fϕ(u; s), and decoding via
a = πθ(z, s). In the subsequent refinement stage (Sec. 3.3), the decoder πθ is frozen and only u is
updated. This confines policy updates to the safety-shaped latent manifold and avoids reintroducing
distribution shift through unconstrained decoding.

We show in the following that, under a fixed decoder, the divergence between the learned policy and
the behavior policy can be decomposed into controllable terms.
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Lemma 2. Let π0(·|s) := Ts#N be the action distribution obtained by pushing the standard Gaus-
sian through the frozen prior and decoder, and Πθ(a | s) denotes the learned policy distribution (af-
ter refinement). Assume absolute continuity and a bounded density ratio Rθ(s) := supa

π0(a|s)
πβ(a|s) <

∞ on the data support. Then for any state s (proofs are in Appendix B.3),

DKL

(
Πθ(·|s) ∥πβ(·|s)

)
≤ DKL

(
Πθ(·|s) ∥π0(·|s)

)
+ logRθ(s).

Moreover, by data-processing inequality (DPI) (Beaudry & Renner, 2011) and flow invariance,
DKL(Πθ∥π0) ≤ DKL(qu∥N ), hence DKL(Πθ∥πβ) ≤ DKL(qu∥N ) + logRθ(s).

This result shows that the decoder decouples policy shifts into (i) a base-space divergence term and
(ii) a modeling error term, both of which can be controlled during training.

Full objective. We summarize the flow module’s objective as:

Lflow = LELBO + Lshape + λH
(
H0 − Eqψ [− log qψ(z | s, a)]

)
+
, (13)

where the final term softly enforces a minimum posterior entropy to prevent mode collapse. Having
shaped a structured latent manifold through feasibility-aware density modeling, we next develop a
refiner module that further improves performance by optimizing within this base space.

3.3 BASE-SPACE OPTIMIZATION VIA EXPERT REFINER

While the flow module already shapes a safety-aware latent manifold, it does not directly optimize
task performance, as a high reward is also desired. Inspired by recent progress on Mixture-of-
Experts (MoE) (Jayawardana et al., 2025; Obando-Ceron et al., 2024) architectures, we design an
expert refiner that operates on the Gaussian base latent u∼N (0, I) learned in Sec. 3.2. The refiner
performs small, ordered updates in the base space to improve reward while keeping search confined
to the safety-shaped manifold.

Architecture. The refiner consists of three latent-space experts: a reward expert fr, a safety expert
fh, and a shared expert fsh. Each expert applies a residual update in the latent base space conditioned
on the state s. At each refinement step t = 0, . . . , T − 1, we start from u0∼N (0, I) and apply the
following sequential updates:

ut+1 = ut + fk(s, ut), for k ∈ {r, h, sh},
where the final update is always performed by the shared expert fsh. After T steps, the refined latent
uT is mapped to z = fϕ(uT ; s) via the frozen prior flow, and then decoded to an action distribution
πθ(· | s, z) using the decoder. We denote its decoded mean by ā(s, uT ) and use it for downstream
evaluation or rollouts.

Expert-specific objectives. Let ā(s, uT ) := argmaxa πθ(a | s, fϕ(uT ; s)) denote the decoded
mean action, and reuse the learned critics (Qr, Vr) and (Qh, Vh) from Sec. 3.1. Each expert is
trained using a modular, advantage-weighted regression (AWR) (Peng et al., 2019; Hansen-Estruch
et al., 2023) objective:

(i) Safety expert. Minimizes the violation gap with a push–pull form:

Lh = Es∼D[wh(s) · ϕ
(
Qh(s, ā(s, uT ))− Vh(s)

)
]. (14)

where wh(s) = exp
(
[Qh(s, ā)−Vh(s)]/βh

)
emphasizes samples on truly unsafe moves (positive

advantage), and ϕ(·) is a soft penalty (e.g., softplus).

(iI) Reward expert. Maximizes return within feasible states as a supervised learning:

Lr = −Es,a∼D [wr(s, a) · ||ā(s, uT )− a||2] . (15)

where wr(s, a) = exp
(
[Qr(s, a) − Vr(s) ]/βr

)
· Ifeas up-weights positive reward advantage and

prevents reward-only updates from steering into unsafe states.

(iii) Shared expert. Regularizes refinement in the base space. As stated in Lemma 2: once the
decoder is frozen, the policy shift is entirely induced by the divergence of the refined base distribu-
tion DKL(qu∥N ). Considering the base is a standard Gaussian distribution, we use its energy as an
explicit regularizer, together with a small proximal term that discourages large steps:
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Lsh = ∥uT ∥2 + ∥uT − u0∥2. (16)

The full refiner loss is:
Lref = λrLr + λhLh + λshLsh (17)

Refining in the base space with a fixed process provides distributional control for all downstream
spaces. Because the flow and decoder are both invertible or frozen, any change in the base space
deterministically propagates through the latent and action spaces. While Lemma 2 establishes a gen-
eral data-processing inequality under pushforward mappings, we now apply this result specifically
to our architecture. The next lemma formalizes the KL chain via pushforwards in our method.
Lemma 3. Let qu be the refined base distribution and N the standard Gaussian. Let fϕ(·; s) be the
(invertible) flow and qz = fϕ#qu, pϕ = fϕ#N , and action distributions π = Ts#qu, π0 = Ts#N
with Ts(u) := ā(s, u). Then (proofs are in Appendix B.4):

DKL

(
π(· | s) ∥π0(· | s)

)
≤ DKL

(
qz ∥ pϕ

)
= DKL

(
qu ∥N

)
. (18)

The equality follows from the invariance of KL under invertible mappings (the flow), and the in-
equality is the data-processing inequality through the decoder.
Corollary 1 (Deviation bounds from base KL). Let Lg be the Lipschitz constant of gθ on the latent
chart, W2(·, ·) denotes the 2-Wasserstein distance, and TV(·, ·) stands for total variation distance
between distributions. Then for any s (proofs are in Appendix B.5):

W2

(
π, π0

)
≤ Lg

√
2DKL(qu ∥N )

TV(π, πβ) ≤
√

1
2 DKL(π ∥π0) + TV(π0, πβ) (19)

and for any measurable OOD region O:

π(O) ≤ πβ(O) +
√

1
2 DKL(qu ∥N ) + TV(π0, πβ). (20)

These results justify our design: keeping DKL(qu ∥N ) small suffices to bound downstream devia-
tion—latent, action, and final policy-across multiple metrics, while perturbations in z or a lack such
guarantees. In practice, although flow architectures are highly expressive, they often make opti-
mization in the latent space z difficult and unstable. To address this, our loss design encourages the
mapping from latent space to base space to concentrate mass in high-density regions. This allows
us to perform optimization in the base space, where updates remain tractable while still inducing
meaningful changes in the latent space.

3.4 PRACTICAL IMPLEMENTATION

We employ expectile regression to obtain in-sample, asymmetric value estimates that are biased
toward high-value actions without querying out-of-distribution actions, following the practice in
IQL (Kostrikov et al., 2021), which trains Vr using asymmetric expectile regression and Qr by TD
updates toward Vr.

LVr = E(s,a)∼D
[
ρτr

(
Qr(s, a)− Vr(s)

)]
, ρτ (u) =

∣∣τ − 1{u < 0}
∣∣u2, (21)

LQr = E(s,a,s′)∼D

[(
Qr(s, a)− Q̂r(s, a)

)2]
, Q̂r(s, a) := r(s, a) + γVr(s

′). (22)

The overall training procedure proceeds in phases. First, we train the safety critics (Qh, Vh) using
offline data. Then we train the flow module (prior, posterior, decoder) using the safety-weighted
ELBO and density shaping objectives in Sec. 3.2. Finally, we train the expert refiner in base space
via AWR-style updates to reward and safety. All components are updated purely offline using tran-
sitions from the dataset, with no interaction with the environment. This modular design allows each
component to focus on its role—feasibility shaping, density modelling, or reward refinement—while
maintaining a consistent, in-distribution optimization flow.

At inference time, we sample u ∼ N (0, I), apply the expert refiner for T steps to obtain uT , decode
through the frozen flow and decoder to obtain the final action. Training details and pseudocode can
be found in Appendix C.5.
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Table 1: Performance Comparison on DSRL benchmark. ↑ means the higher the better, ↓ means the
lower the better.

Task BCQL CPQ CDT FISOR LSPC FLRP(Ours)

reward ↑ cost ↓ reward ↑ cost ↓ reward ↑ cost ↓ reward ↑ cost ↓ reward ↑ cost ↓ reward ↑ cost ↓

Safety-Gymnasium
CarButton1 0.16 4.20 0.13 2.44 0.21 1.60 -0.04 0.58 -0.15 0.58 0.03 0.36
CarButton2 0.07 3.47 0.17 7.05 0.13 1.58 -0.01 0.22 -0.03 0.59 0.04 0.38
CarPush1 0.09 0.56 -0.14 0.80 0.31 0.40 0.26 1.23 0.21 0.13 0.20 0.04
CarPush2 0.06 0.61 0.10 5.66 0.19 1.30 0.16 0.71 0.04 1.37 0.24 0.36
CarGoal1 0.13 0.90 0.22 0.79 0.66 1.21 0.42 0.88 0.23 0.71 0.27 0.00
CarGoal2 0.13 2.38 0.17 3.10 0.48 1.25 0.06 0.06 0.11 0.50 0.20 0.28

AntVel 0.29 2.08 -0.31 0.00 0.98 0.39 0.90 0.00 0.91 0.02 0.69 0.00
HalfCheetahVel 1.04 7.06 0.08 2.56 0.97 0.55 0.88 0.00 0.86 0.18 0.94 0.16

SwimmerVel 0.29 4.10 0.31 2.66 0.67 1.47 0.01 0.01 0.47 1.26 0.06 0.00

Average 0.25 2.82 0.08 2.78 0.51 1.08 0.29 0.40 0.29 0.59 0.33 0.18

Bullet-Safety-Gym
AntRun 0.05 4.63 0.13 0.01 0.69 1.24 0.45 0.76 0.94 1.46 0.52 0.00
BallRun 0.35 0.20 0.85 13.67 0.88 0.86 0.14 0.00 0.08 0.00 0.16 0.00
CarRun 0.75 2.51 0.75 0.52 0.99 1.47 0.80 0.00 0.75 0.22 0.87 0.00

DroneRun 0.65 0.71 0.26 0.44 0.71 0.60 0.41 0.57 0.62 1.34 0.59 0.02
AntCircle 0.61 1.42 0.00 0.00 0.46 2.74 0.23 0.00 0.40 0.78 0.45 0.25
BallCircle 0.79 1.20 0.40 4.37 0.79 1.64 0.45 0.00 0.29 1.83 0.46 0.00
CarCircle 0.64 1.80 0.49 4.48 0.70 1.20 0.34 0.00 0.28 0.04 0.66 0.06

DroneCircle 0.68 1.19 -0.27 1.29 0.59 1.56 0.60 0.00 0.66 1.37 0.54 0.00

Average 0.57 1.71 2.50 3.10 0.73 1.41 0.43 0.17 0.50 0.88 0.54 0.04

Safe MetaDrive
Easysparse 0.94 9.25 -0.05 0.15 0.25 0.15 0.41 0.50 0.74 1.55 0.32 0.20
Easymean 0.99 7.22 -0.06 0.00 0.42 0.25 0.43 0.67 0.70 0.68 0.25 0.10
Easydense 0.20 1.76 -0.06 0.16 0.35 1.17 0.52 1.26 0.74 1.48 0.33 0.11

Mediumsparse 0.94 2.83 -0.08 0.12 0.78 1.24 0.43 0.08 0.97 0.79 0.31 0.06
Mediummean 0.70 4.45 -0.07 0.16 0.72 2.74 0.36 0.02 0.92 0.89 0.52 0.63
Mediumdense 0.76 3.90 -0.08 0.10 0.70 2.62 0.51 0.39 0.87 0.88 0.33 0.07

Hardsparse 0.49 3.16 -0.05 0.10 0.26 0.46 0.33 0.24 0.52 1.32 0.35 0.34
Hardmean 0.29 3.80 -0.05 0.15 0.20 0.61 0.27 0.01 0.41 0.57 0.28 0.10
Harddense 0.42 2.95 -0.04 0.12 0.22 1.38 0.30 0.26 0.53 1.63 0.36 0.11

Average 0.64 4.37 -0.06 0.12 0.45 1.18 0.40 0.38 0.71 1.09 0.34 0.19

Note: Bold: safe policy; Gray: unsafe policy; Bold blue: best safe policy; Bold: second best safe policy

4 EXPERIMENTS

Experiment Setup. We evaluate the proposed method against several strong offline safe RL base-
lines across two widely-used benchmark environments: Safety-Gymnasium (Ji et al., 2023), Bullet-
Safety-Gym (Gronauer, 2022) and Safe Metadrive (Li et al., 2022) from the DSRL suite (Liu et al.,
2023a). We adopt normalized return and normalized cost as evaluation metrics, which we refer to
as “reward” and “cost” for clarity and brevity. We set a uniform cost limit of 10 for all tasks.

Baselines. We compare our approach against five representative baselines: (1) BCQL (Fujimoto
et al., 2019): A batch-constrained Q-learning with an adaptive Lagrangian penalty on constraint
violations. (2) CPQ (Xu et al., 2022): A Q-learning methods that penalize unsafe and out-of-
distribution state–action pairs. (3) CDT (Liu et al., 2023b): A transformer-based offline safe RL
method that learns cost-conditioned action generators for constraint enforcement. (4) LSPC (Koirala
et al., 2024): A latent safety-constrained approach that uses a conditional variational autoencoder to
model safety in the latent space. (5) FISOR (Zheng et al., 2024): A feasibility-guided method that
uses a diffusion model to policy sampling.

Main Results Table 1 summarizes results on Safety-Gymnasium, Bullet-Safety-Gym, and Safe
MetaDrive. Overall, our method learns safe policies with competitive returns. BCQL uses a La-
grangian trade-off but often fails to meet safety constraints; CPQ is more conservative and im-
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(a) Cost critic change (b) Value critic change (c) Decoder log probability

Figure 2: Example visualization of the refiner principle on CarRun. The refiner order is fixed to be
safety-reward-shared. Each refiner applies small residual updates to the sampled action, steering it
toward safety, high reward, and data-supported regions. These objectives are often in tension, so the
resulting optimization trajectories can be contrasting.

proves safety at the cost of reward; and CDT, though capable of high returns via target condition-
ing, tends to violate safety more frequently. FISOR and LSPC are strong baselines with distinct
characteristics. FISOR produces uniformly safe but slightly conservative policies via feasibility
guidance, while LSPC is more aggressive—seeking the most rewarding action in a learned safe
latent space—which can become unreliable under OOD states/actions. Our FLRP trains safety and
shared refiners to concentrate probability mass in high-density regions of the encoder’s latent space,
naturally biasing actions toward on-support, safer choices. FLRP performs strongly on Safety-
Gymnasium and Bullet-Safety-Gym, and is mildly conservative on Safe MetaDrive due to limited
overlap between high-reward and low-cost regions, which complicates hard-constrained optimiza-
tion. Even so, it enforces safety effectively, achieving violation rates far below the second-best
method (e.g., 0.18 vs. 0.40 in Safety-Gymnasium, 0.04 vs. 0.88 in Bullet-Safety-Gym, and 0.19 vs.
0.38 in Safe MetaDrive) while maintaining strong performance.

5 ABLATION STUDY AND ANALYSIS

Justification of Each Refiner. A core challenge in safe RL is reconciling reward maximization
with safety constraints, which can pull updates in opposite directions. We illustrate this with an
example from the CarRun task (Figure 2). In this particular state, the regions associated with high
reward and high safety are largely non-overlapping. Additionally, these regions may not align well
with the high-density area of the action decoder. As a result, the refinement steps taken by the reward
expert and safety expert can diverge significantly, often steering the latent action representation into
areas that are poorly supported by the decoder—potentially leading to OOD issues. A shared refiner
can stabilize and regularize this process by keeping actions on support while balancing both experts.

HJ-feasibility Function. We first assess the benefit
of incorporating HJ reachability. We replace the fea-
sibility function with a cost value function and declare
states/actions feasible if their cost is below the empirical
75th percentile of the zero-violation samples; we denote
this variant as w/o HJ. As reported in Table 2, this heuristic
thresholding yields noisier feasibility estimates, which in
turn leads to higher evaluation costs and lower returns than
the HJ-based approach. In contrast, HJ reachability propa-
gates safety constraints through the dynamics, which is ro-
bust to sampling noise and uneven cost distributions. The
results indicate that structured HJ reachability is crucial
for stable constraint satisfaction in offline settings.

Table 2: Ablations on HJ reachability.
Task w/o HJ FLRP

r ↑ c ↓ r ↑ c ↓
AntRun 0.65 0.13 0.52 0.00
BallRun 0.08 0.14 0.16 0.00
CarRun 0.83 0.13 0.87 0.00
DroneRun 0.16 5.24 0.59 0.02
AntCircle 0.23 0.01 0.45 0.25
BallCircle 0.44 0.00 0.46 0.00
CarCircle 0.63 0.49 0.66 0.06
DroneCircle 0.56 0.67 0.54 0.00

Other Ablations. We further examine the effect of the prior. As a comparison, we train a variant
that replaces our flow-based prior with a conventional Gaussian prior and report results in Table 3.
The flow prior consistently yields higher returns and lower costs.
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Table 3: Ablations on the prior used.

Task Gaussian Prior Flow Prior
r ↑ c ↓ r ↑ c ↓

CarButton1 -0.14 0.22 0.03 0.36
CarButton2 0.01 0.82 0.04 0.38
CarPush1 0.07 0.08 0.20 0.04
CarPush2 0.06 0.00 0.24 0.36
CarGoal1 0.06 0.00 0.27 0.00
CarGoal2 0.05 0.74 0.20 0.28 Figure 3: Ablation on the number of refinement steps.

We also study the number of refinement steps T at inference on CarCircle. We do not vary
the refinement order: the safety expert is always applied first, and the shared expert last. This
design choice reflects our latent geometry—density concentrates on safety rather than reward—so an
early safety refinement helps place trajectories in high-density (feasible) regions. The intermediate
refiners alternate between safety and reward experts. As shown in Figure 3, increasing T reduces
cost and variability: a larger T is more likely to explore the learned latent space and lowers the rate of
out-of-distribution actions. The trade-off is that a very large T can induce slightly more conservative
behavior. In practice, an intermediate value (e.g., T = 3) can yield a favorable trade-off.

6 RELATED WORK

Offline safe RL aims to learn constraint-satisfying policies purely from fixed datasets, avoiding risky
online interaction. A first line of work imposes penalization or Lagrangian terms on value learning
to satisfy cost requirements—e.g., CPQ (Xu et al., 2022), BCQ-Lag (Fujimoto et al., 2019), and
BEAR-Lag (Liu et al., 2023a)—which explicitly penalize constraint violations in the Bellman tar-
gets or objectives. A complementary direction uses distribution correction and importance weight-
ing: COptiDICE (Lee et al., 2022) models the stationary distribution and optimizes the policy un-
der constraints directly, and is regarded as a representative approach for constrained offline RL.
Sequence-modeling-based methodslike CDT (Liu et al., 2023b) and SaFormer (Zhang et al., 2023)
incorporate safety into Decision Transformer (Chen et al., 2021) and achieve target-conditioned pol-
icy. Generative approaches further expand this thread: VOCE (Guan et al., 2023) reframes OSRL
as probabilistic inference with a conservative variational objective, while OASIS (Yao et al., 2024)
reshapes data distributions via a conditional diffusion model (Ho et al., 2020) to facilitate safe pol-
icy learning from imperfect logs. However, most of the above primarily address soft constraints. To
mitigate this, recent studies (Ganai et al., 2023; Yu et al., 2022; Wang et al., 2023) adopt concepts
from safe control, such as control barrier functions (CBF) (Ames et al., 2019) and Hamilton–Jacobi
reachability (Bansal et al., 2017), as external safety shields or supervisory signals during offline
training. Closest to our work are LSPC (Koirala et al., 2024), which jointly optimizes reward and
cost in a latent space with a CVAE-based safety prior, and FISOR (Zheng et al., 2024), which cou-
ples diffusion-policy learning and HJ-based feasibility guidance to approach zero violations.

7 CONCLUSION

We present a safe offline RL framework based on latent refinement. A multi-expert policy itera-
tively improves a base latent with structured residuals guided by separate safety and reward signals.
A normalizing-flow prior shapes a feasible latent manifold, enabling precise control of safety objec-
tives while preserving return. We prove order-agnostic bounds on the final policy distribution and
show competitive or superior results on three standard safe RL benchmarks.

The main limitations arise from the feasibility critics. The offline feasibility critics use a Hamil-
ton–Jacobi–style Bellman operator with sparse cost, which can over-conservatively estimate value;
genuinely safe but rare samples may be undervalued, introducing bias or sample inefficiency. Latent-
space refinement also adds hyperparameters (e.g., expert loss weights and prior shaping tempera-
ture). That said, we used a single configuration across 26 tasks, suggesting reasonable robustness.
Future work includes adaptive refinement schedules, more principled objectives for shaping the
prior, and hierarchical expert architectures to improve flexibility and generalization.
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Ethics Statement. This research does not involve human subjects, sensitive data, or practices that
pose foreseeable harm. Our methodology builds upon well-established safe offline reinforcement
learning benchmarks and standard datasets that are publicly available. All experiments were con-
ducted in simulation environments with no real-world deployment or safety risk. We have made
efforts to ensure transparency and reproducibility by providing code and detailed algorithmic de-
scriptions. We adhere to the ICLR Code of Ethics, and this work upholds responsible stewardship
and scientific integrity throughout.

Reproducibility Statement. We have taken several steps to ensure the reproducibility of
our work. All theoretical results, including key lemmas and corollaries, are presented
with complete assumptions and detailed proofs in the appendix. Additional implementa-
tion details, including dataset setup, training pipeline, and evaluation protocol, are also pro-
vided in the appendix. We also include an anonymous link to our core source code at:
https://anonymous.4open.science/r/FLRP-9776/
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A LLM USAGE

The authors used large language models (LLMs), specifically ChatGPT (GPT-4), solely as a lan-
guage editing assistant. The LLM was employed only for grammar correction, stylistic improve-
ments, and minor clarity revisions of the authors’ own writing.

All ideas, algorithms, experimental designs, theoretical proofs, and scientific contributions presented
in this paper are the sole work of the authors. The authors take full responsibility for the technical
content and claims made in the paper. No content was generated or suggested by the LLM regarding
methodology, experiments, or results.

B THEORETICAL ANALYSIS

In this section, we provide the missing proofs for the theoretical results to support or validate the
proposed method.

B.1 PROOF OF DEFINITION 2.

For a fixed γ ∈ (0, 1) and we define Vi(s) := minaQi(s, a) for i ∈ {1, 2}. Then for any (s, a),∣∣(P⋆Q1)(s, a)− (P⋆Q2)(s, a)
∣∣ = γ

∣∣∣Es′[max{h(s), V1(s′)} −max{h(s), V2(s′)}
]∣∣∣

≤ γ Es′
∣∣V1(s′)− V2(s

′)
∣∣. (23)

Since Vi(s
′) = mina′ Qi(s

′, a′) and the pointwise min is 1-Lipschitz,
∣∣V1(s′) − V2(s

′)
∣∣ ≤

supa′ |Q1(s
′, a′)−Q2(s

′, a′)| ≤ ∥Q1 −Q2∥∞. Taking the supremum over (s, a) yields
∥P⋆Q1 − P⋆Q2∥∞ ≤ γ ∥Q1 −Q2∥∞, (24)

so P⋆ is a γ-contraction under the sup norm. By Banach’s fixed-point theorem, there exists a unique
fixed point Q⋆h,γ and we set V ⋆h,γ(s) := minaQ

⋆
h,γ(s, a).

To connect to the undiscounted HJ-style values, assume h is bounded. Let γn ↑ 1 and consider the
fixed points Q⋆h,γn . Because {Q⋆h,γn}n is uniformly bounded and P⋆ is continuous in γ, any limit
point Q† satisfies, for all (s, a),

Q†(s, a) = lim
n→∞

[
(1− γn)h(s) + γn Es′

[
max{h(s),min

a′
Q⋆h,γn(s

′, a′)}
]]

= Es′
[
max{h(s),min

a′
Q†(s′, a′)}

]
.

(25)

This is the dynamic programming equation for the HJ-style (statewise zero-violation) feasibility
values; hence Q† = Q⋆h and V † = minaQ

†(·, a) = V ⋆h . Therefore Q⋆h,γ → Q⋆h and V ⋆h,γ → V ⋆h as
γ ↑ 1.

B.2 PROOF OF LEMMA 1.

Recall the weighted objective in full form:

Lflow = E(s,a)∼pD

[
w(s, a) Ez∼qψ(z|s,a)

[
− log πθ(a | s, z)

]]
+ β E(s,a)∼pD

[
w(s, a) DKL

(
qψ(· | s, a)

∥∥ pϕ(· | s))]. (26)

and we define the behavior-weighted data distribution p̃D(s, a) := w(s, a) pD(s, a)/Z with normal-
izer Z = EpD [w(s, a)] (a constant independent of (ϕ, ψ, θ)). For clarity, first consider β = 1; we
return to β ̸= 1 at the end. Then, up to the positive constant factor Z,

Lflow = Z · E(s,a)∼p̃D

{
Ez∼qψ

[
− log πθ(a | s, z)

]
+DKL

(
qψ ∥ pϕ

)}
.

Expand the KL term inside the expectation:
Ez∼qψ

[
− log πθ(a | s, z)

]
+ Ez∼qψ

[
log qψ(z | s, a)− log pϕ(z | s)

]
= Ez∼qψ

[
log

qψ(z | s, a)
pϕ(z | s)πθ(a | s, z)

]
.

(27)
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Taking the expectation over (s, a) ∼ p̃D yields

1

Z
Lflow = E(s,a)∼p̃DEz∼qψ

[
log

p̃D(s, a) qψ(z | s, a)
p̃D(s, a) pϕ(z | s)πθ(a | s, z)

]
= DKL

(
p̃D(s, a) qψ(z | s, a)

∥∥ p̃D(s, a) pϕ(z | s)πθ(a | s, z)
)
.

(28)

Finally, use the identity DKL(P∥C ·Q) = DKL(P∥Q)− EP [logC] for a positive constant density
factor C that does not depend on the model parameters (ϕ, ψ, θ); here C = p̃D(s, a). Therefore,

Lflow = const + DKL

(
p̃D(s, a) qψ(z | s, a)

∥∥ pϕ(z | s)πθ(a | s, z)
)
, (29)

where the constant depends only on p̃D (hence on w and the dataset) and not on (ϕ, ψ, θ). This
proves the claim for β = 1.

Extension to β ̸= 1. For a general β > 0, the same algebra shows that

Lflow = const + DKL

(
p̃D(s, a) qψ(z | s, a)

∥∥ p(β)ϕ (z | s)πθ(a | s, z)
)
, (30)

with a temperature-adjusted prior p(β)ϕ (z | s) ∝ pϕ(z | s)β (i.e., the energy scaled by β). Equiva-
lently, if one wishes to keep pϕ unchanged, absorb β by rescaling the KL term or by introducing a
decoder temperature; both formulations are strictly equivalent up to a parameter-independent con-
stant.

B.3 PROOF OF LEMMA 2

Let p := Πθ(·|s), r := π0(·|s), q := πβ(·|s) w.r.t. a common dominating measure. By the elemen-
tary inequality (chain rule with a bounded density ratio)

DKL(p∥q) = DKL(p∥r)+Ep
[
log r

q

]
≤ DKL(p∥r)+log sup

a

r(a)

q(a)
= DKL(p∥r)+logRθ(s). (31)

Under a frozen decoder Ts : U → A, we treat the transformation from base latent u to action a
as a measurable pushforward mapping. Let qu be the refined base distribution and N the standard
Gaussian. Then the induced action distributions satisfy

DKL(Ts#qu ∥Ts#N ) ≤ KL(qu ∥N ), (32)

by the data-processing inequality (DPI) for Kullback–Leibler divergence under measurable maps;
(e.g.,see Csiszár & Shields (2004)). This result states that any deterministic or stochastic channel
(here, the frozen decoder Ts) cannot increase KL divergence.

B.4 PROOF OF LEMMA 3

Let fϕ : Rd→Rd be a smooth bijection (the prior flow). Define qz = fϕ#qu and pϕ = fϕ#N . By
the change-of-variables formula,

qz(z) = qu(u)
∣∣∣det ∂u

∂z

∣∣∣, pϕ(z) = N (u)
∣∣∣det ∂u

∂z

∣∣∣, z = fϕ(u). (33)

Hence

DKL(qz∥pϕ) =
∫
qz(z) log

qz(z)

pϕ(z)
dz =

∫
qu(u) log

qu(u)

N (u)
du = DKL(qu∥N ), (34)

i.e., KL is invariant under the bijection fϕ.

Let Ts : Rd →A be the deterministic decoder mapping (e.g., decoded mean) with frozen θ. The
data-processing inequality for f -divergences (including KL) under a measurable pushforward gives

DKL

(
Ts#qz

∥∥Ts#pϕ) ≤ DKL(qz∥pϕ). (35)

With π = Ts#qu = Ts#qz and π0 = Ts#N = Ts#pϕ, we obtain DKL(π∥π0) ≤ KL(qz∥pϕ) =
DKL(qu∥N ), which proves Eq. 18.
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B.5 PROOF OF COROLLARY 1

For the Wasserstein bound, write π = Ts#qz and π0 = Ts#pϕ with Ts = gθ(·, s). If gθ is Lg-
Lipschitz on the latent chart, then the pushforward is Lg-Lipschitz in W2:

W2(π, π0) ≤ LgW2(qz, pϕ). (36)

By Talagrand’s T2 inequality (Gaussian reference or log-Sobolev under mild conditions) (Otto
& Villani, 2000), W2(qz, pϕ) ≤

√
2DKL(qz∥pϕ), and Lemma 3 implies W2(π, π0) ≤

Lg
√

2DKL(qu∥N ).

For total variation (TV) and OOD probability, the triangle inequality yields TV(π, πβ) ≤
TV(π, π0) + TV(π0, πβ). Pinsker’s inequality (Csiszár & Shields, 2004) gives TV(π, π0) ≤√

1
2 DKL(π∥π0) ≤

√
1
2 DKL(qu∥N ), using Lemma 3. For any measurable O,

π(O)− πβ(O) ≤ TV(π, πβ) ≤
√

1
2 DKL(qu∥N ) + TV(π0, πβ). (37)

Rearranging completes the proof.

Remark. The Wasserstein bound in Corollary 1 relies on the Lipschitz continuity of the decoder
gθ with constant Lg . We note that this is a mild and practically enforceable assumption. During
training, the decoder’s Lipschitz constant can be implicitly constrained through techniques such as
weight normalization Salimans & Kingma (2016), spectral normalization Miyato et al. (2018), or
the gradient penalty Gulrajani et al. (2017), which are commonly used in generative modelling to
enhance stability and generalization. Consequently, the theoretical bounds derived herein are not
only sound but also practically relevant, as the key quantity DKL(qu|N ) remains the primary lever
for controlling distributional shift.

B.6 ORDER-AGNOSTIC BOUNDS FOR SEQUENTIAL REFINEMENT

We formalize that the KL/Wasserstein/TV bounds in Lemma 3 and Corollary 1 are independent of
the update order used by the experts.

Proposition 1 (Order-agnosticity of base-space bounds). Let R be any (possibly stochastic) mea-
surable refinement operator on the base space that maps the standard Gaussian N to a refined
distribution qu = R(N ), obtained by any composition/order of expert updates (e.g., Gauss–Seidel,
Jacobi, interleaved mini-steps) subject to a trust region ∥uT − u0∥≤ρ. With the prior flow fϕ and
decoder gθ fixed (as in Sec. 3.2), define π = Ts#qu and π0 = Ts#N where Ts(u) = gθ(fϕ(u; s), s).
Then the conclusions of Lemma 3 and Corollary 1 hold verbatim with this qu:

DKL

(
π(· | s)

∥∥π0(· | s)) ≤ DKL

(
qu(· | s)

∥∥N )
,

W2

(
π(· | s), π0(· | s)

)
≤ Lg

√
2DKL(qu∥N ),

(38)

and the TV/Pinsker OOD bound remains unchanged.

Proof. The proofs of Lemma 3 and Corollary 1 use only: (i) invariance of KL under the bijection
fϕ; (ii) data-processing for pushforwards through the frozen decoder gθ; (iii) Talagrand/Pinsker
inequalities. None of these depend on the path that produces qu, only on the resulting distribution
qu. Any expert ordering defines a measurable map whose pushforward of N is qu; substituting this
qu into the same steps yields the stated bounds. The optional trust region ensures KL finiteness and
well-definedness but does not affect order independence.

C IMPLEMENTATION DETAILS

In this section, we describe our experimental framework and implementation of the proposed
method, including benchmark and datasets, task descriptions and evaluation metrics, and training
details.
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C.1 BENCHMARK DETAILS

We use the Datasets for Safe Reinforcement Learning (DSRL) benchmark suite (Liu et al., 2023a)
to train and evaluate our method as well as all baselines. DSRL provides 38 offline datasets spanning
multiple safe RL environments (Safety-Gymnasium, Bullet-Safety-Gym, and Safe MetaDrive) with
varying difficulty levels. These datasets follow a D4RL-style (Fu et al., 2020) API and include
detailed cost signals in addition to reward returns.

For the baselines, we adopt the authors’ official implementations and default hyperparameters when
available (especially for FISOR and LSPC). For other methods (BCQL / BCQ-Lag, CPQ, CDT), we
use the OSRL framework’s implementations and settings to ensure fair comparison.

C.2 TASK DESCRIPTIONS

Below are the three environment suites used in our experiments, with their main task types and
distinguishing safety vs. complexity features. Figure 4 shows three example visualizations.

C.2.1 SAFETY-GYMNASIUM

Safety-Gymnasium (Ji et al., 2023) is a unified MuJoCo-based benchmark collection offering a va-
riety of continuous control tasks (e.g. Goal, Button, Push, Circle, Velocity, etc.). Agents include
Point, Car, Ant, HalfCheetah, etc. The tasks vary both in goal structure (e.g. reach a goal, push an
object, navigate through buttons) and safety constraints (velocity limits, obstacle avoidance, colli-
sion cost). Some tasks include hazards or “sigwalls” that act as soft or hard boundaries. These tasks
test both navigation and locomotion under safety constraints.

C.2.2 BULLET-SAFETY-GYM

Bullet-Safety-Gym (Gronauer, 2022) is based on the PyBullet physics engine. It includes similar
task types (Circle, Run, Gather, Reach) with agents such as Ball, Car, Drone, Ant. The dynamics
tend to have shorter horizons and more variability in physics (collision, friction) compared to Mu-
JoCo, which raises safety risk under state/action noise. Cost signals usually arise from collisions or
from exceeding safe boundaries. This makes the tasks more challenging in terms of generalization
and handling unsafe transitions.

C.2.3 SAFE METADRIVE

MetaDrives (Li et al., 2022) is a simulator for driving/traffic/autonomous vehicle tasks under safety
constraint. Its “safe RL” subset includes tasks with realistic road networks, dynamic agents, pro-
cedural map generation, traffic rules, and hazards. Observations often include vehicle state, road
context; actions are continuous control of speed/steering. Safety constraints include collisions, lane
infractions, and staying within road limits. These tasks are more realistic in terms of environment
unpredictability, driving constraints, and possibly partial observability or environmental stochastic-
ity.

C.3 DATASET VISUALIZATION

We further present the distribution of offline trajectories in the cost–return space across three repre-
sentative environments, as shown in Figure 5. In the CarPush task from Safety-Gymnasium, the
reward distribution is narrow and low, while the cost spans a wide range. This results in a weak corre-
lation between reward and safety: most trajectories incur significant costs even when achieving only
modest returns, making strict constraint satisfaction particularly challenging. In the MediumMean
task from Safe MetaDrive, the reward exhibits distinct discrete bands, each associated with a specific
cost level. This reflects mode-switching behaviors and a strong reward–cost coupling; although fea-
sible trajectories exist, achieving high reward under tight cost limits requires careful selection among
these behavioral clusters. The CarRun task from Bullet Safety Gym demonstrates a smoother trade-
off frontier, where reward gradually increases with cost, forming a continuous and diverse distribu-
tion. While safe, high-reward trajectories remain sparse, the presence of mid-reward, intermediate-
cost episodes renders this dataset more amenable to constrained policy optimization compared to
the other two.
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(a) Safety Gymnasium (b) Metadrive (c) Bullet Safety Gym

Figure 4: Example visualization from the simulation environments used in our experiments.

(a) CarPushGymnasium (b) MediumMean (c) BulletCarRun

Figure 5: Example visualization of the dataset used in our experiments.

C.4 EVALUATION METRICS

We evaluate the performance of all methods using two metrics: normalized reward return and nor-
malized cost return, following standard evaluation practices used in offline RL benchmarks like
D4RL Fu et al. (2020) and adopted by recent safe RL methods such as CDT Liu et al. (2023b),
LSPC (Koirala et al., 2024) and FISOR (Zheng et al., 2024). The normalized reward is defined as:

Rnorm =
Rπ − rmin(T )

rmax(T )− rmin(T )
(39)

where Rπ is the total reward return of the trained policy π, and rmax(T ), rmin(T ) denote the maxi-
mum and minimum reward returns observed in the dataset T , respectively.

The normalized cost is computed as:

Cnorm =
Cπ
κ+ ϵ

(40)

where Cπ is the total cost return of policy π, κ is the cost limit, which we set to 10 for all tasks, and
ϵ is a small constant added to avoid numerical instability when κ = 0.

C.5 TRAINING DETAILS

For all baseline methods, we adopt their default hyperparameter configurations. To ensure a fair
comparison across all methods, we set the rollout length for each task to match the maximum number
of allowed interaction steps. The cost limit for the baselines is set to 10 for all tasks. The common
key hyperparameters used for our method and baselines are shown in Table 4. Table 5 lists other key
hyperparameters used for FLRP. We apply the same configuration across all tasks and environments
without per-task tuning.

The pseudocode for FLRP is provided in Algorithm 1. All experiments were conducted on eight
NVIDIA RTX 6000 Ada Generation GPUs, each with 48 GB of memory. Each experiment is run
with 3 random seeds, and results are averaged over 10 evaluation episodes per seed.
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Table 4: Model Configuration Parameters

Parameter CPQ BCQ-L CDT LSPC FISOR FLRP
Common Settings:

Training steps 1× 106

Batch size 512
Discount factor 0.99
Activate function ReLu

Algorithm-Specific Settings:
Hidden layer size 256 256 256 256 256 256
Soft update rate (τ ) 0.005 0.005 0.005 0.005 0.001 0.001
Cost limit 10 10 10 – – –

Learning Rates (×10−3):
Actor learning rate 1.0 1.0 0.1 0.3 0.3 0.3
Critic learning rate 1.0 1.0 0.1 0.3 0.3 0.3

Table 5: Hyperparameters of FLRP.

Parameter Value

Expectile τ 0.9
Asymmetric L2 loss coeff 0.9
Target temperature 3
Value temperature 5
Advantage weight clip (reward) (−∞, 100]

Advantage weight clip (cost) (−∞, 150]

Refine steps T 3
Refiner loss weight λr, λh, λsh 1,1,0.5

Algorithm 1 FLRP Training

Require: Offline dataset D
1: Init critics (Qr, Vr), (Qh, Vh); flows pϕ, qψ; decoder πθ; refiners {Rs,Rr,Rsh}
2: while not converged do
3: Sample minibatch (s, a)∼D; draw z∼qψ(z | s, a)
4: Update safety critics (Qh, Vh) by the HJ-style backup Eq. 8 and Eq. 9
5: Update reward critics (Qr, Vr) by offline TD/advantage target Eq. 21 and Eq. 22
6: Update the flows using the flow objective Eq. 13
7: Training the refiners using the refiner objective Eq. 17
8: end while
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