

000 001 002 003 004 005 FLOW-GUIDED LATENT REFINER POLICIES FOR SAFE 006 OFFLINE REINFORCEMENT LEARNING 007 008 009

010 **Anonymous authors**
011 Paper under double-blind review
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027

ABSTRACT

028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053
Safe offline reinforcement learning remains challenging due to two coupled obstacles: (i) reconciling soft penalty designs with hard safety requirements, and (ii) avoiding out-of-distribution (OOD) actions when the learned policy departs from the behavior data. Existing approaches often rely on penalty tuning that under- or over-regularizes safety, solve constrained objectives that depend on accurate simulators or online rollouts, or train powerful generative policies that still explore low-density, safety-unknown regions at deployment. We introduce a constraint-free offline framework that addresses both issues by (a) learning a flow-based latent action manifold that concentrates density on empirically safe regions and admits tractable bounds on policy deviation and OOD shift, and (b) applying a lightweight refiner stage that performs small, ordered updates in latent space to decouple reward, safety, and OOD control, stabilizing multi-objective optimization. This design keeps policy search inside the modeled data manifold, while a feasibility-aware training signal steers the refiner toward in-support, low-violation solutions without requiring explicit constraints or online interaction. Across a range of safe offline benchmarks, the proposed method achieves lower violation rates while matching or outperforming baselines in return, demonstrating its potential as a practical and effective approach to safer offline policy learning.

1 INTRODUCTION

028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053
Safe offline reinforcement learning (Safe Offline RL) seeks to learn policies that maximize return while satisfying stringent safety requirements from a fixed dataset—without risky, expensive online interaction (Levine et al., 2020). Training from logs allows practitioners to leverage prior operations, simulators, or demonstrations to deploy policies in safety-critical domains (robotics (Wu et al., 2024), driving (Zhang et al., 2025), industrial control (Yu et al., 2025; Wang et al., 2025)) where exploration is untenable, offering clear practical benefits over online learning.

028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053
However, simultaneously achieving high performance and strict safety from static data remains elusive (Kushwaha et al., 2025). Most prior work (Ding & Lavaei, 2023; Le et al., 2019; Lee et al., 2022; Fujimoto et al., 2019) encodes safety as soft constraints—risk penalties or constrained Markov decision processes (CMDPs) (Altman, 2021) with Lagrangian updates, so violations are discouraged in expectation. When constraints are tight or objectives conflict, these updates often under-enforce safety, yielding policies that either ignore constraints or require brittle penalty tuning, which is undesirable in engineering settings that demand near-zero violations. Hard-constraint formulations (Wang et al., 2023; Yu et al., 2022) strengthen safety but typically induce conservatism and measurable return sacrifice, especially offline, where feasible exploration is absent.

028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053
Orthogonal to constraint design, a second challenge is out-of-distribution (OOD) shift. Offline policies must evaluate and improve without querying unseen actions; otherwise, bootstrapping on OOD actions produces extrapolation error and overestimation, which in turn elevates safety risk at deployment (Kumar et al., 2019). Recent studies further note that OOD states at test time can also degrade behavior, indicating that distribution shift is a coupled state–action phenomenon (Levine et al., 2020; Kushwaha et al., 2025). Optimizing safety and return jointly under OOD constraints is therefore difficult. A prominent line of work learns a generative manifold in the latent action or trajectory space and restricts policy updates to this manifold by using VAE-, flow-, or diffusion-based generative policies combined with latent-constraint methods (Zhou et al., 2021; Koirala et al.,

054 2024; Akimov et al., 2022). These approaches reduce extrapolation by biasing policies toward high-
 055 density regions of the learned model, but OOD control typically remains *implicit*—through decoder
 056 support, bounded bases, or density thresholds—and is rarely coupled with safety to yield explicit,
 057 tunable guarantees on distribution shift in safe offline RL.

058 To tackle these challenges, we introduce a
 059 density-first framework for safe offline RL that
 060 enforces stringent safety while simultaneously
 061 optimizing for high returns. Our approach treats
 062 safety assurance and OOD control as a repre-
 063 sentation problem within a task-conditioned
 064 latent manifold. Specifically, we equip the
 065 critics with Hamilton–Jacobi (HJ)–inspired (Bansal
 066 et al., 2017) safety signals: feasibility values
 067 are learned via a reversed expectile objective,
 068 and action-values are updated using an HJ-style
 069 backup derived from sparse safety labels, yield-
 070 ing reliable feasibility estimates directly from
 071 offline data. On top of this estimator, a struc-
 072 tured conditional flow model acts as a latent
 073 prior that shapes the density so that, for each
 074 state, the induced action distribution concen-
 075 trates around data-supported, empirically safe
 076 regions. Actions are generated by a high-
 077 capacity decoder that remains frozen during re-
 078 finement; **together with the invertible, exact-**
 079 **likelihood flow, this enables us to derive theoreti-**
 080 **cal upper bounds on distributional shift in both**
 081 **the action and policy spaces, thereby offering**
 082 **principled control over OOD actions in the offline**
 083 **setting.** Building on this property, we develop
 084 a three-expert refiner—comprising reward, safety,
 085 and shared experts—that performs small, ordered
 086 updates in the base latent space with decoupled,
 087 advantage-weighted objectives. This design pushes
 088 reward improvements within feasibility-shaped regions while pulling the policy away from unsafe,
 089 low-density areas, **stabilizing multi-objective optimization and tying safety, reward, and OOD sup-**
 090 **pression together under purely offline training.**

091 Extensive experiments across diverse safe offline benchmarks demonstrate that combining safety-
 092 shaped density with latent-space refinement yields a consistently better return–safety trade-off under
 093 hard-constraint scenarios compared to strong baselines.

094 2 PRELIMINARIES

095 **Safe offline RL** Safe RL is typically formulated as a Constrained Markov Decision Process $\mathcal{M} =$
 096 $(\mathcal{S}, \mathcal{A}, T, r, h, c, \gamma)$, where $h : \mathcal{S} \rightarrow \mathbb{R}$ encodes a state constraint and $c(s) = \max\{h(s), 0\}$ is the
 097 induced cost, with $c(s) > 0$ indicating a constraint violation. The discount factor is $\gamma \in (0, 1)$. In
 098 the offline setting, we are given a fixed dataset $\mathcal{D} = \{(s, a, r, c, s', d)\}$ collected by an unknown
 099 behavior policy π_β . We adopt the basic offline safe RL objective:

$$\max_{\pi} \mathbb{E}_s[V_r^\pi(s)] \quad \text{s.t.} \quad \mathbb{E}_s[V_c^\pi(s)] \leq \ell, \quad D_{\text{KL}}(\pi \parallel \pi_\beta) \leq \varepsilon, \quad (1)$$

100 where $V_r^\pi(s) = \mathbb{E}_\pi[\sum_{t=0}^{\infty} \gamma^t r(s_t, a_t) \mid s_0 = s]$ is the reward value function and $V_c^\pi(s) =$
 101 $\mathbb{E}_\pi[\sum_{t=0}^{\infty} \gamma^t c(s_t) \mid s_0 = s]$ is the cost value function. ℓ is the cost limit. The KL divergence
 102 $D_{\text{KL}}(\cdot \parallel \cdot)$ constrains the deviation of π from the behavior policy π_β . In this work, we target on the
 103 **zero cost budget case ($\ell = 0$); see Appendix B.2 for a discussion of non-zero budgets.**

104 **Normalizing flows.** Normalizing flows (NFs)¹. (Kobyzev et al., 2020) are powerful generative
 105 models for complex distribution modeling. Let $u \sim \mathcal{N}(0, I)$ and $z = f_\phi(u; \text{cond})$ be a bijection

106
 107 ¹In this paper, ‘flow’ always refers to normalizing flows (e.g., RealNVP/CNF-style models), and should not
 be confused with flow-matching or probability flow ODE terminology.

108 conditioned on cond (e.g., state or task context). The log-density of z is computed by the change-
 109 of-variables formula (derivation is deferred to Appendix C.1):
 110

$$111 \quad \log p_\phi(z \mid \text{cond}) = \log p(u) + \log \left| \det \frac{\partial u}{\partial z} \right|. \quad (2)$$

113 In our implementation, we adopt a RealNVP-style (Dinh et al., 2016) flow architecture based on
 114 coupling layers. Each layer splits the input z into two parts: an identity component z_{id} that remains
 115 unchanged, and a transform component z_{tr} that is updated through an affine transformation:
 116

$$117 \quad z'_{\text{tr}} = z_{\text{tr}} \odot \exp s_\phi(z_{\text{id}}, \text{cond}) + t_\phi(z_{\text{id}}, \text{cond}), \quad \log |\det J| = \sum s_\phi(\cdot), \quad (3)$$

119 where s_ϕ and t_ϕ are scale and translation networks. These layers yield tractable log-likelihoods and
 120 exact inverses by construction. Stacking multiple such layers increases the expressiveness of the
 121 model while preserving efficient computation due to the triangular structure of the Jacobian.

123 3 METHODOLOGY

125 To address the twin challenges of under-enforced soft constraints and out-of-distribution drift in of-
 126 fine settings, we first recast the objective as a *state-wise zero-violation* hard constraint. Concretely,
 127 we require $h(s_t) \leq 0$ almost surely under $a_t \sim \pi(\cdot \mid s_t)$ for all $t \in \mathbb{N}$. Consequently, the soft safety
 128 constraint in Eq. 1 is replaced by a state-wise requirement together with an offline trust region:

$$129 \quad \max_{\pi} \mathbb{E}_s[V_r^\pi(s)] \quad \text{s.t.} \quad V_c^\pi(s) \leq 0, \quad D_{\text{KL}}(\pi \parallel \pi_\beta) \leq \varepsilon. \quad (4)$$

131 Building on this formulation, we adopt a base-space refinement strategy, where optimization is per-
 132 formed entirely within a conditional latent density that is confined to a data-supported manifold,
 133 as illustrated in Figure 1. We refer to our method as **FLRP**—*Flow-guided Latent Refiner Poli-*
 134 *cies*—which enables in-distribution policy improvement with near-zero constraint violations. The
 135 core components of FLP are detailed in the following subsections.

137 3.1 FEASIBILITY-BASED VALUE FUNCTION

139 The state-wise zero-violation requirement in Eq. 4 calls for a representation that certifies safety
 140 along the entire trajectory, not only in expectation. Hamilton–Jacobi (HJ) reachability Bansal et al.
 141 (2017) from safe control provides exactly such a representation through signed safety functions and
 142 value-based certificates, and has been shown to be effective for enforcing hard constraints in recent
 143 safe RL studies (Fisac et al., 2018; Yu et al., 2022). Following this line, we cast the hard constraint
 144 into a pair of feasibility value functions based on Definition 1 that we can learn from offline data
 145 and then use as a unified signal for policy generation and refinement.

146 **Definition 1** (Optimal feasible value functions). *Let $h : \mathcal{S} \rightarrow \mathbb{R}$ be a signed safety function with
 147 $h(s) \leq 0$ denoting safety. The optimal state-wise and action-wise feasibility values are defined by*

$$148 \quad V_h^*(s) := \min_{\pi} \max_{t \in \mathbb{N}} h(s_t), \quad s_0 = s, a_t \sim \pi(\cdot \mid s_t), s_{t+1} \sim T(\cdot \mid s_t, a_t), \quad (5)$$

$$149 \quad Q_h^*(s, a) := \min_{\pi} \max_{t \in \mathbb{N}} h(s_t), \quad s_0 = s, a_0 = a, a_{t \geq 1} \sim \pi(\cdot \mid s_t). \quad (6)$$

152 By construction, $V_h^*(s) \leq 0$ implies the existence of a policy whose entire trajectory from s remains
 153 safe; likewise, $Q_h^*(s, a) \leq 0$ certifies zero violations when starting with action a . In offline settings,
 154 they can be estimated by the Feasible Bellman Operator with a discounted factor γ .

155 **Definition 2** (Feasible Bellman operator). *For $\gamma \in (0, 1)$ and any $Q : \mathcal{S} \times \mathcal{A} \rightarrow \mathbb{R}$, the feasible
 156 Bellman operator is defined by*

$$157 \quad (\mathcal{P}^* Q)(s, a) := (1 - \gamma) h(s) + \gamma \max\{h(s), V_h^*(s')\}, \quad V^*(s') := \min_{a'} Q(s', a'). \quad (7)$$

158 *This operator is a γ -contraction under the sup norm and admits a unique fixed point $Q_{h,\gamma}^*$ with
 159 $V_{h,\gamma}^*(s) = \min_a Q_{h,\gamma}^*(s, a)$; as $\gamma \uparrow 1$, it recovers the HJ-style values Q_h^* and V_h^* in Definition 1.
 160 Proof is deferred to Appendix C.3.*

We parameterize (Q_h, V_h) with neural networks. To avoid extrapolation errors that arise from querying actions outside the data support (Fujimoto et al., 2019), we approximate $Q_h(s, \cdot)$ by reversed expectile regression and train Q_h with a one-step target that uses V_h in place of $\min_{a'} Q_h(s', a')$:

$$\mathcal{L}_{V_h} = \mathbb{E}_{(s,a) \sim \mathcal{D}} [\rho_{\tau_h}^{\text{rev}}(Q_h(s, a) - V_h(s))], \quad (8)$$

$$\mathcal{L}_{Q_h} = \mathbb{E}_{(s,a,s') \sim \mathcal{D}} \left[\left((1 - \gamma)h(s) + \gamma \max\{h(s), V_h^{\text{tgt}}(s')\} - Q_h(s, a) \right)^2 \right]. \quad (9)$$

where $\rho_{\tau}^{\text{rev}}(u) = |\tau - \mathbf{1}\{u > 0\}| u^2$ and V_h^{tgt} is a slowly updated target network. The reversed expectile with $\tau_h \in (0.5, 1)$ down-weights overly optimistic Q_h values and sharpens the zero level set $V_h \approx 0$, while the target network stabilizes bootstrapping.

3.2 CONDITIONAL FLOW-BASED SAFE POLICY GENERATION

Rather than learning a policy directly in action space, we model a conditional latent action distribution, where high-quality samples correspond to higher density. Thus, instead of being pushed by hard constraints, safety is pulled by density: **we do not project actions onto an estimated safe set, but regularize the latent actions to remain in the high-density region of the flow, while unsafe behaviours are relegated to low-density regions.** Given the empirical feasibility signals learned in Sec. 3.1, we instantiate a conditional flow prior/posterior with a decoder. Compared with other generative models, normalizing flows offer exact likelihood, tractable inverse mapping, and strong expressivity (Papamakarios et al., 2021)—making them well-suited for both density modeling and OOD control.

Safety-weighted ELBO. Let $u \sim \mathcal{N}(0, I)$ be a base latent vector. The prior flow maps u to a latent variable $z = f_{\phi}(u; s)$, where the log-density is tractable:

$$\log p_{\phi}(z | s) = \log p(u) + \log \left| \det \frac{\partial u}{\partial z} \right|. \quad (10)$$

The posterior flow $q_{\psi}(z | s, a)$ serves as an amortized recognizer, while a decoder $\pi_{\theta}(a | s, z)$ maps latent codes back to actions. Training follows a safety-weighted variational objective that encourages accurate reconstruction and alignment with the prior:

$$\mathcal{L}_{\text{ELBO}} = \mathbb{E}_{(s,a) \sim \mathcal{D}} \mathbb{E}_{z \sim q_{\psi}} [-w(s, a) \log \pi_{\theta}(a | s, z)] + \beta \mathbb{E}_{(s,a) \sim \mathcal{D}} [w(s, a) \text{D}_{\text{KL}}(q_{\psi} \| p_{\phi})], \quad (11)$$

where $w(s, a) = \sigma(-Q_h(s, a)/T_q) \sigma(-V_h(s)/T_v)$ is a feasibility-weighted score derived from the critics in Sec. 3.1, T_v and T_q are temperatures, and σ is the logistic function. We formally justify that the above objective remains a consistent variational estimator by showing that it performs a KL projection of the model joint distribution onto a safety-weighted behavior distribution, as stated in the following lemma.

Lemma 1. *Let $\tilde{p}_{\mathcal{D}}(s, a) \propto w(s, a) p_{\mathcal{D}}(s, a)$ be a behavior-weighted empirical distribution. Then*

$$\mathcal{L}_{\text{ELBO}} = \text{const} + D_{\text{KL}}(\tilde{p}_{\mathcal{D}}(s, a) q_{\psi}(z | s, a) \| p_{\phi}(z | s) \pi_{\theta}(a | s, z)).$$

This result shows that $\mathcal{L}_{\text{flow}}$ amounts to a KL projection of the behavior-weighted posterior onto the generative model distribution. The proof is provided in Appendix C.3.

Prior Density Shaping. Compared to a Gaussian prior, the flow-based prior is capable of modeling more complex and multimodal latent structures, but this expressiveness also introduces challenges during training. To mitigate these difficulties, we introduce a regularization objective that encourages empirically feasible regions in the action space to be mapped back to high-density regions in the latent base space. A key advantage of normalizing flows is their ability to compute an exact inverse transformation from z to u . We leverage this to define the following prior-shaping loss:

$$\mathcal{L}_{\text{shape}} = \mathbb{E}_{(s,a) \sim \mathcal{D}} \left[\exp(Q_r(s, a) - V_r(s)/\beta_r) \cdot \mathbf{I}_{\text{feas}}(s, a) \cdot \left\| T_{\phi}^{-1}(z_q | s) \right\|^2 \right] \quad (12)$$

Here, $\mathbf{I}_{\text{feas}}(s, a) = \mathbf{1}\{Q_h(s, a) \leq 0\}$ is a binary indicator derived from the feasibility critic, and $T_{\phi}^{-1}(z_q | s)$ denotes the inverse transformation that maps a decoded action back to the latent base space. This encourages the flow prior to assign higher and smoother base-space density to actions that are both safe and high-reward, thereby shaping the latent manifold to better align with feasible and desirable behaviors.

216 **Freezing the decoder and distribution shift.** At inference time, actions are generated by sam-
 217 pling $u \sim \mathcal{N}(0, I)$, transforming it through the prior flow $z = f_\phi(u; s)$, and decoding via
 218 $a = \pi_\theta(z, s)$. In the subsequent refinement stage (Sec. 3.3), the decoder π_θ is frozen and only u is
 219 updated. This confines policy updates to the safety-shaped latent manifold and avoids reintroducing
 220 distribution shift through unconstrained decoding.

221 We show in the following that, under a fixed decoder, the divergence between the learned policy and
 222 the behavior policy can be decomposed into controllable terms.

223 **Lemma 2.** *Let $\pi_0(\cdot|s) := T_{s\#}\mathcal{N}$ be the action distribution obtained by pushing the standard Gaus-
 224 sian through the frozen prior and decoder, and $\Pi_\theta(a|s)$ denotes the learned policy distribution (af-
 225 ter refinement). Assume absolute continuity and a bounded density ratio $R_\theta(s) := \sup_a \frac{\pi_0(a|s)}{\pi_\theta(a|s)} <$
 226 ∞ on the data support. Then for any state s (proofs are in Appendix C.4),*

$$228 D_{\text{KL}}(\Pi_\theta(\cdot|s) \parallel \pi_\beta(\cdot|s)) \leq D_{\text{KL}}(\Pi_\theta(\cdot|s) \parallel \pi_0(\cdot|s)) + \log R_\theta(s). \\ 229$$

230 Moreover, by data-processing inequality (DPI) (Beaudry & Renner, 2011) and flow invariance,
 231 $D_{\text{KL}}(\Pi_\theta \parallel \pi_0) \leq D_{\text{KL}}(q_u \parallel \mathcal{N})$, hence $D_{\text{KL}}(\Pi_\theta \parallel \pi_\beta) \leq D_{\text{KL}}(q_u \parallel \mathcal{N}) + \log R_\theta(s)$.

232 This result shows that the decoder decouples policy shifts into (i) a base-space divergence term and
 233 (ii) a modeling error term, both of which can be controlled during training.

235 **Full objective.** We summarize the flow module’s objective as:

$$237 \mathcal{L}_{\text{flow}} = \mathcal{L}_{\text{ELBO}} + \mathcal{L}_{\text{shape}} + \lambda_H (H_0 - \mathbb{E}_{q_\psi}[-\log q_\psi(z|s, a)])_+, \quad (13) \\ 238$$

239 where the final term softly enforces a minimum posterior entropy to prevent mode collapse. Having
 240 shaped a structured latent manifold through feasibility-aware density modeling, we next develop a
 241 refiner module that further improves performance by optimizing within this base space.

242 3.3 BASE-SPACE OPTIMIZATION VIA EXPERT REFINER

244 While the flow module already shapes a safety-aware latent manifold, it does not directly optimize
 245 task performance, as a high reward is also desired. Inspired by recent progress on Mixture-of-
 246 Experts (MoE) (Jayawardana et al., 2025; Obando-Ceron et al., 2024) architectures, we design an
 247 expert refiner that operates on the Gaussian base latent $u \sim \mathcal{N}(0, I)$ learned in Sec. 3.2. The refiner
 248 performs small, ordered updates in the base space to improve reward while keeping search confined
 249 to the safety-shaped manifold.

250 **Architecture.** The refiner consists of three latent-space experts: a reward expert f_r , a safety expert
 251 f_h , and a shared expert f_{sh} . Each expert applies a residual update in the latent base space conditioned
 252 on the state s . At each refinement step $t = 0, \dots, T-1$, we start from $u_0 \sim \mathcal{N}(0, I)$ and apply the
 253 following sequential updates:

$$254 u_{t+1} = u_t + f_k(s, u_t), \quad \text{for } k \in \{r, h, \text{sh}\}, \\ 255$$

256 where the final update is always performed by the shared expert f_{sh} . After T steps, the refined latent
 257 u_T is mapped to $z = f_\phi(u_T; s)$ via the frozen prior flow, and then decoded to an action distribution
 258 $\pi_\theta(\cdot|s, z)$ using the decoder. We denote its decoded mean by $\bar{a}(s, u_T)$ and use it for downstream
 259 evaluation or rollouts.

260 **Expert-specific objectives.** Let $\bar{a}(s, u_T) := \arg \max_a \pi_\theta(a|s, f_\phi(u_T; s))$ denote the decoded
 261 mean action, and reuse the learned critics (Q_r, V_r) and (Q_h, V_h) from Sec. 3.1. Each expert is
 262 trained using a modular, advantage-weighted regression (AWR) (Peng et al., 2019; Hansen-Estruch
 263 et al., 2023) objective:

264 (i) *Safety expert.* Minimizes the violation gap with a push–pull form:

$$266 L_h = \mathbb{E}_{s, a \sim \mathcal{D}} [\phi(Q_h(s, \bar{a}(s, u_T)) - V_h(s)) + w_h(s, a) \cdot \|\bar{a}(s, u_T) - a\|_2], \quad (14) \\ 267$$

268 where $w_h(s) = \exp(-[Q_h(s, \bar{a}) - V_h(s)]/\beta_h) \cdot \mathbf{I}_{\text{feas}}$, and $\phi(\cdot)$ is a soft penalty (e.g.,
 269 softplus). The first term penalizes the positive safety advantage $Q_h(s, \bar{a}) - V_h(s)$ of the refined
 action, while the second term performs supervised regression on safety-weighted behaviour data.

270 (i) *Reward expert*. Maximizes return within feasible states as a supervised learning:
 271

$$\mathcal{L}_r = -\mathbb{E}_{s,a \sim \mathcal{D}} [w_r(s,a) \cdot \|\bar{a}(s, u_T) - a\|_2]. \quad (15)$$

273 where $w_r(s,a) = \exp([Q_r(s,a) - V_r(s)]/\beta_r) \cdot \mathbf{I}_{\text{feas}}$ up-weights positive reward advantage and
 274 prevents reward-only updates from steering into unsafe states.

275 (iii) *Shared expert*. Regularizes refinement in the *base space*. As stated in Lemma 2: once the
 276 decoder is frozen, the policy shift is entirely induced by the divergence of the refined base distribu-
 277 tion $D_{\text{KL}}(q_u \parallel \mathcal{N})$. Considering the base is a standard Gaussian distribution, we use its energy as an
 278 explicit regularizer, together with a small proximal term that discourages large steps:
 279

$$\mathcal{L}_{\text{sh}} = \|u_T\|^2 + \|u_T - u_0\|^2. \quad (16)$$

282 The full refiner loss is:
 283

$$\mathcal{L}_{\text{ref}} = \lambda_r \mathcal{L}_r + \lambda_h \mathcal{L}_h + \lambda_{\text{sh}} \mathcal{L}_{\text{sh}} \quad (17)$$

285 Refining in the base space with a fixed process provides distributional control for *all* downstream
 286 spaces. Because the flow and decoder are both invertible or frozen, any change in the base space
 287 deterministically propagates through the latent and action spaces. While Lemma 2 establishes a gen-
 288 eral data-processing inequality under pushforward mappings, we now apply this result specifically
 289 to our architecture. The next lemma formalizes the KL chain via pushforwards in our method.

290 **Lemma 3.** *Let q_u be the refined base distribution and \mathcal{N} the standard Gaussian. Let $f_\phi(\cdot; s)$ be the
 291 (invertible) flow and $q_z = f_\phi \# q_u$, $p_\phi = f_\phi \# \mathcal{N}$, and action distributions $\pi = T_{s \# q_u}$, $\pi_0 = T_{s \# \mathcal{N}}$
 292 with $T_s(u) := \bar{a}(s, u)$. Then (proofs are in Appendix C.5):*

$$D_{\text{KL}}(\pi(\cdot | s) \parallel \pi_0(\cdot | s)) \leq D_{\text{KL}}(q_z \parallel p_\phi) = D_{\text{KL}}(q_u \parallel \mathcal{N}). \quad (18)$$

295 The equality follows from the invariance of KL under invertible mappings (the flow), and the in-
 296 equality is the data-processing inequality through the decoder.

297 **Corollary 1** (Deviation bounds from base KL). *Let L_g be the Lipschitz constant of g_θ on the latent
 298 chart, $W_2(\cdot, \cdot)$ denotes the 2-Wasserstein distance, and $\text{TV}(\cdot, \cdot)$ stands for total variation distance
 299 between distributions. Then for any s (proofs are in Appendix C.6):*

$$\begin{aligned} W_2(\pi, \pi_0) &\leq L_g \sqrt{2 D_{\text{KL}}(q_u \parallel \mathcal{N})} \\ \text{TV}(\pi, \pi_\beta) &\leq \sqrt{\frac{1}{2} D_{\text{KL}}(\pi \parallel \pi_0)} + \text{TV}(\pi_0, \pi_\beta) \end{aligned} \quad (19)$$

304 and for any measurable OOD region \mathcal{O} :

$$\pi(\mathcal{O}) \leq \pi_\beta(\mathcal{O}) + \sqrt{\frac{1}{2} D_{\text{KL}}(q_u \parallel \mathcal{N})} + \text{TV}(\pi_0, \pi_\beta). \quad (20)$$

307 These results justify our design: keeping $D_{\text{KL}}(q_u \parallel \mathcal{N})$ small bounds downstream deviation—latent,
 308 action, and final policy—across multiple metrics, whereas direct perturbations in z or a lack such
 309 guarantees. **Building on this, Appendix C.8 derives explicit reward and cost policy-gap guarantees**
 310 **in terms of the base-space KL upper bound and the prior-behavior mismatch**. This further motivates
 311 us to optimize in the base space, where our loss concentrates mass in high-density regions so that
 312 stable base-space updates induce meaningful latent refinements.

314 3.4 PRACTICAL IMPLEMENTATION

316 We employ expectile regression to obtain in-sample, asymmetric value estimates that are biased
 317 toward high-value actions without querying out-of-distribution actions, following the practice in
 318 IQL (Kostrikov et al., 2021), which trains V_r using asymmetric expectile regression and Q_r by TD
 319 updates toward V_r .

$$\mathcal{L}_{V_r} = \mathbb{E}_{(s,a) \sim \mathcal{D}} [\rho_{\tau_r}(Q_r(s,a) - V_r(s))], \quad \rho_\tau(u) = |\tau - \mathbf{1}\{u < 0\}| u^2, \quad (21)$$

$$\mathcal{L}_{Q_r} = \mathbb{E}_{(s,a,s') \sim \mathcal{D}} \left[(Q_r(s,a) - \hat{Q}_r(s,a))^2 \right], \quad \hat{Q}_r(s,a) := r(s,a) + \gamma V_r(s'). \quad (22)$$

324
325
326
327 Table 1: Performance Comparison on DSRL benchmark. \uparrow means the higher the better, \downarrow means the
328 lower the better.
329

Task	BCQL		CPQ		CDT		FISOR		LSPC		FLRP(Ours)	
	reward \uparrow	cost \downarrow										
Safety-Gymnasium												
CarButton1	0.16	4.20	0.13	2.44	0.21	1.60	-0.04	0.58	-0.15	0.58	0.03	0.36
CarButton2	0.07	3.47	0.17	7.05	0.13	1.58	-0.01	0.22	-0.03	0.59	0.04	0.38
CarPush1	0.09	0.56	-0.14	0.80	0.31	0.40	0.26	1.23	0.21	0.13	0.20	0.04
CarPush2	0.06	0.61	0.10	5.66	0.19	1.30	0.16	0.71	0.04	1.37	0.24	0.36
CarGoal1	0.13	0.90	0.22	0.79	0.66	1.21	0.42	0.88	0.23	0.71	0.27	0.00
CarGoal2	0.13	2.38	0.17	3.10	0.48	1.25	0.06	0.06	0.11	0.50	0.20	0.28
AntVel	0.29	2.08	-0.31	0.00	0.98	0.39	0.90	0.00	0.91	0.02	0.69	0.00
HalfCheetahVel	1.04	7.06	0.08	2.56	0.97	0.55	0.88	0.00	0.86	0.18	0.94	0.16
SwimmerVel	0.29	4.10	0.31	2.66	0.67	1.47	0.01	0.01	0.47	1.26	0.06	0.00
Safety-Gym Avg	0.25	2.82	0.08	2.78	0.51	1.08	0.29	0.40	0.29	0.59	0.33	0.18
Bullet-Safety-Gym												
AntRun	0.05	4.63	0.13	0.01	0.69	1.24	0.45	0.76	0.94	1.46	0.52	0.00
BallRun	0.35	0.20	0.85	13.67	0.88	0.86	0.14	0.00	0.08	0.00	0.16	0.00
CarRun	0.75	2.51	0.75	0.52	0.99	1.47	0.80	0.00	0.75	0.22	0.87	0.00
DroneRun	0.65	0.71	0.26	0.44	0.71	0.60	0.41	0.57	0.62	1.34	0.59	0.02
AntCircle	0.61	1.42	0.00	0.00	0.46	2.74	0.23	0.00	0.40	0.78	0.45	0.25
BallCircle	0.79	1.20	0.40	4.37	0.79	1.64	0.45	0.00	0.29	1.83	0.46	0.00
CarCircle	0.64	1.80	0.49	4.48	0.70	1.20	0.34	0.00	0.28	0.04	0.66	0.06
DroneCircle	0.68	1.19	-0.27	1.29	0.59	1.56	0.60	0.00	0.66	1.37	0.54	0.00
Bullet-SG Avg	0.57	1.71	0.33	3.10	0.73	1.41	0.43	0.17	0.50	0.88	0.54	0.04
Safe MetaDrive												
Easysparse	0.94	9.25	-0.05	0.15	0.25	0.15	0.41	0.50	0.74	1.55	0.32	0.20
Easymean	0.99	7.22	-0.06	0.00	0.42	0.25	0.43	0.67	0.70	0.68	0.25	0.10
Easydense	0.20	1.76	-0.06	0.16	0.35	1.17	0.52	1.26	0.74	1.48	0.33	0.11
Mediumsparse	0.94	2.83	-0.08	0.12	0.78	1.24	0.43	0.08	0.97	0.79	0.31	0.06
Mediummean	0.70	4.45	-0.07	0.16	0.72	2.74	0.36	0.02	0.92	0.89	0.52	0.63
Mediumdense	0.76	3.90	-0.08	0.10	0.70	2.62	0.51	0.39	0.87	0.88	0.33	0.07
Hardsparse	0.49	3.16	-0.05	0.10	0.26	0.46	0.33	0.24	0.52	1.32	0.35	0.34
Hardmean	0.29	3.80	-0.05	0.15	0.20	0.61	0.27	0.01	0.41	0.57	0.28	0.10
Harddense	0.42	2.95	-0.04	0.12	0.22	1.38	0.30	0.26	0.53	1.63	0.36	0.11
MetaDrive Avg	0.64	4.37	-0.06	0.12	0.45	1.18	0.40	0.38	0.71	1.09	0.34	0.19

356 *Note: Bold*: safe policy; *Gray*: unsafe policy; **Bold blue**: best safe policy; **Bold**: second best safe policy

357
358
359 As summarized in Appendix D.5, Alg. 1, there are two main phases for the overall training pro-
360 cedure. In Stage 1 (critic and flow pretraining), we jointly train the safety and reward critics
361 (Q_h, V_h) , (Q_r, V_r) together with the flow prior/posterior and decoder using offline transitions, and
362 the safety-weighted ELBO and density-shaping objectives in Sec. 3.2. In Stage 2 (latent refiner
363 training), we freeze this base model and optimize the three refiners in base space via AWR-style
364 updates to reward and safety, together with the base-space regularizer for OOD control. All com-
365 ponents are trained purely offline from the fixed dataset, and this two-phase, modular design lets
366 critics, flow, and refiners specialize in feasibility shaping, density modeling, and reward–safety re-
367 finement while maintaining a consistent in-distribution optimization pipeline. At inference time, we
368 sample $u \sim \mathcal{N}(0, I)$, apply the expert refiner for T steps to obtain u_T , decode through the frozen
369 flow and decoder to obtain the final action. Training details can be found in Appendix D.5.

370 371 4 EXPERIMENTS 372

373 **Experiment Setup.** We evaluate the proposed method against several strong offline safe RL base-
374 lines across two widely-used benchmark environments: **Safety-Gymnasium** (Ji et al., 2023), **Bullet-**
375 **Safety-Gym** (Gronauer, 2022) and **Safe Metadrive** (Li et al., 2022) from the DSRL suite (Liu et al.,
376 2023a). We adopt *normalized return* and *normalized cost* as evaluation metrics, which we refer to
377 as “reward” and “cost” for clarity and brevity. We set a uniform cost limit of 10 for all tasks.

Figure 2: Example visualization of the refiner principle on CarRun. Each panel shows the 2D action space (velocity on the horizontal axis, steering angle on the vertical), where background colors indicate (a) feasibility (darker is safer), (b) reward (lighter is higher), and (c) decoder log-density (lighter is higher). The black cross is the base action from the flow prior, and colored curves (H, R, SH) show the refinement trajectories in base space, with triangles marking the final refined actions toward safer, higher-return, and data-supported regions.

Baselines. We compare our approach against five representative baselines: (1) **BCQL** (Fujimoto et al., 2019): A batch-constrained Q-learning with an adaptive Lagrangian penalty on constraint violations. (2) **CPQ** (Xu et al., 2022): A Q-learning methods that penalize unsafe and out-of-distribution state-action pairs. (3) **CDT** (Liu et al., 2023b): A transformer-based offline safe RL method that learns cost-conditioned action generators for constraint enforcement. (4) **LSPC** (Koirala et al., 2024): A latent safety-constrained approach that uses a conditional variational autoencoder to model safety in the latent space. (5) **FISOR** (Zheng et al., 2024): A feasibility-guided method that uses a diffusion model to policy sampling.

Main Results Table 1 summarizes results on Safety-Gymnasium, Bullet-Safety-Gym, and Safe MetaDrive. Overall, our method learns safe policies with competitive returns. BCQL uses a Lagrangian trade-off but often fails to meet safety constraints; CPQ is more conservative and improves safety at the cost of reward; and CDT, though capable of high returns via target conditioning, tends to violate safety more frequently. FISOR and LSPC are strong baselines with distinct characteristics. FISOR produces uniformly safe but slightly conservative policies via feasibility guidance, while LSPC is more aggressive—seeking the most rewarding action in a learned safe latent space—which can become unreliable under OOD states/actions. Our FLRP trains safety and shared refiners to concentrate probability mass in high-density regions of the encoder’s latent space, naturally biasing actions toward on-support, safer choices. FLRP performs strongly on Safety-Gymnasium and Bullet-Safety-Gym, and is mildly conservative on Safe MetaDrive due to limited overlap between high-reward and low-cost regions, which complicates hard-constrained optimization. Even so, it enforces safety effectively, achieving violation rates far below the second-best method (e.g., 0.18 vs. 0.40 in Safety-Gymnasium, 0.04 vs. 0.88 in Bullet-Safety-Gym, and 0.19 vs. 0.38 in Safe MetaDrive) while maintaining strong performance.

5 ABLATION STUDY AND ANALYSIS

Justification of Each Refiner. A core challenge in safe RL is reconciling reward maximization with safety constraints, which can pull updates in opposite directions. Figure 2 illustrates this on a fixed state from the CarRun task. Each panel visualizes the 2D action space with velocity on the horizontal axis and steering angle on the vertical axis; the background color represents, respectively, (a) feasibility $Q_h(s, a)$ (darker is safer), (b) reward value $Q_r(s, a)$ (lighter is higher return), and (c) decoder log-density $\log \pi_\theta(a|s)$ (lighter is higher density). In this particular state, the regions associated with high reward and high safety are largely non-overlapping, and both can be misaligned with the high-density area of the action decoder. As a result, the refinement steps taken by the reward and safety refiners can diverge significantly, often steering the latent action representation into areas that are poorly supported by the decoder and thus prone to OOD issues. The shared

Figure 3: Effect of refiner order on normalized reward (left) and cost (right) across four tasks . Each group of bars corresponds to four refinement schedules (H→R→SH, R→H→SH, Random, No refine), with error bars showing one standard deviation.

refiner stabilizes and regularizes this process by keeping actions on support while balancing both experts, coordinating their updates when reward, safety, and data support are in tension.

HJ-feasibility Function. We first assess the benefit of incorporating HJ reachability by replacing the feasibility function with a cost value function. states/actions whose cost falls below the empirical 75th percentile of zero-violation samples are treated as feasible and used for flow training, while refiner training is unchanged; we denote this variant as *w/o HJ*. As reported in Table 2, this heuristic thresholding yields noisier feasibility estimates, which in turn leads to higher evaluation costs and lower returns than the HJ-based approach. In contrast, HJ reachability propagates safety constraints through the dynamics, which is robust to sampling noise and uneven cost distributions. The results indicate that structured HJ reachability is crucial for stable constraint satisfaction in offline settings.

The Order of Refinement. We compare four refiner schedules on four tasks (BallCircle, CarRun, AntCircle, DroneCircle) to assess how sensitive FLP is to the refiner order: two fixed orders (H→R→SH and R→H→SH), a random permutation, and a “No refine” baseline that samples directly from the flow prior. The results in Figure 3 show that all refiner variants substantially improve normalized return over No refine, confirming the benefit of latent refinement. Across all tasks, H→R→SH and R→H→SH achieve clearly higher return than no refinement baseline with low normalized cost, while the random-order variant is intermediate but with larger variability. We also observe a consistent trade-off pattern: H→R→SH generally yields lower cost with strong but slightly lower return, whereas R→H→SH attains the highest return at the price of higher cost. This supports our design choice of using a fixed schedule with the shared refiner applied last so that it can consistently regularize and coordinate the preceding safety and reward updates.

Other Ablations. We further examine the effect of the prior. As a comparison, we train a variant that replaces our flow-based prior with a conventional Gaussian prior and report results in Table 3. The flow prior consistently yields higher returns and lower costs. We also study the number of refinement steps T at inference on CarCircle. We do not vary the refinement order: the safety expert is always applied first, and the shared expert last. This design choice reflects our latent geometry—density concentrates on safety rather than reward—so an early safety refinement helps place trajectories in high-density (feasible) regions. The intermediate refiners alternate between safety and reward experts. As shown in Figure 4, increasing T reduces cost and variability: a larger T is more likely to explore the learned latent space and lowers the rate of out-of-distribution actions. The trade-off is that a very large T can induce slightly more conservative behavior. In practice, an intermediate value (e.g., $T = 3$) can yield a favorable trade-off.

Table 2: Ablations on HJ reachability.

Task	w/o HJ		FLRP	
	$r \uparrow$	$c \downarrow$	$r \uparrow$	$c \downarrow$
AntRun	0.65	0.13	0.52	0.00
BallRun	0.08	0.14	0.16	0.00
CarRun	0.83	0.13	0.87	0.00
DroneRun	0.16	5.24	0.59	0.02
AntCircle	0.23	0.01	0.45	0.25
BallCircle	0.44	0.00	0.46	0.00
CarCircle	0.63	0.49	0.66	0.06
DroneCircle	0.56	0.67	0.54	0.00

486 Table 3: Ablations on the prior used.
487

488 Task	Gaussian Prior		Flow Prior	
	489 $r \uparrow$	$c \downarrow$	$r \uparrow$	$c \downarrow$
490 CarButton1	-0.14	0.22	0.03	0.36
491 CarButton2	0.01	0.82	0.04	0.38
492 CarPush1	0.07	0.08	0.20	0.04
493 CarPush2	0.06	0.00	0.24	0.36
494 CarGoal1	0.06	0.00	0.27	0.00
495 CarGoal2	0.05	0.74	0.20	0.28

496 Figure 4: Ablation on the number of refinement steps.
497498 Table 4: Representative generative latent(-space) policy methods for offline (safe) RL.
499

500 Method	501 Backbone	502 Safety-aware?	503 Likelihood	504 OOD control
505 PLAS (Zhou et al., 2021)	506 CVAE	507 No	508 Approx.	509 Implicit (latent manifold)
510 LSPC (Koirala et al., 2024)	511 CVAE	512 Yes	513 Approx.	514 Implicit (bounded latent)
515 LDGC (Venkatraman et al., 2023)	516 Diffusion	517 No	518 Implicit	519 Implicit (batch-constrained)
520 FISOR (Zheng et al., 2024)	521 Diffusion	522 Yes	523 Implicit	524 Implicit (HJ-weighted data)
525 CNF (Akimov et al., 2022)	526 Flow	527 No	528 Exact	529 Implicit (bounded latent)
530 FLRP (ours)	531 Flow	532 Yes	533 Exact	534 Explicit (base-KL)

505

6 RELATED WORK

506 Offline safe RL aims to learn constraint-satisfying policies from fixed datasets, avoiding risky on-
507 line interaction. Early work incorporates penalty or Lagrangian terms into value learning—e.g.,
508 CPQ (Xu et al., 2022), BCQ-Lag (Fujimoto et al., 2019), and BEAR-Lag (Liu et al., 2023a)—to
509 account for safety in the Bellman objectives. Others adopt distribution-correction methods such
510 as COptiDICE (Lee et al., 2022), which model the stationary distribution under constraints. Se-
511 quence models like CDT (Liu et al., 2023b) and SaFormer (Zhang et al., 2023b) encode safety via
512 cost-aware conditioning in Decision Transformer frameworks. These methods typically enforce soft
513 constraints, allowing for occasional violations. Recent approaches (Yu et al., 2022; Ganai et al.,
514 2023) instead leverage Hamilton–Jacobi (HJ) reachability to enforce strict state-wise safety. Com-
515plementary to these formulations, another line of work learns a generative policy or latent manifold
516 to encourage safe behavior. Notably, LSPC (Koirala et al., 2024) learns a cost-sensitive latent pol-
517 icy via a CVAE prior, while FISOR (Zheng et al., 2024) couples diffusion-based behavior learning
518 with HJ-based feasibility guidance. **While these methods achieve strong empirical safety, they typi-**
519 **ally handle OOD generalization implicitly by relying on the expressivity of the generative prior or**
520 **support-based constraints, without substantial improvements over general offline RL methods (Zhou**
521 **et al., 2021; Akimov et al., 2022; Chen et al., 2022) in OOD robustness.** Table 4 summarizes rep-
522 **resentative generative approaches and compares the key distinctions along four axes, with an ex-**
523 **tended discussion on B.1. FLP unifies these two lines by combining a flow-based latent policy**
524 **with explicit base-space KL control, and by using HJ reachability not as an external filter but as a**
525 **feasibility-guided signal that shapes the latent manifold, yielding provable bounds on total variation.**

526

7 CONCLUSION

527 We present a safe offline RL framework based on latent refinement. A multi-expert policy itera-
528 tively adjusts a base latent via safety- and reward-guided residuals, while a normalizing-flow prior
529 shapes a feasible latent manifold for explicit safety control. We prove order-agnostic bounds on
the final policy distribution and show strong performance across three standard safe RL bench-
marks. The main limitations arise from the feasibility critics. The offline feasibility critics use a
Hamilton–Jacobi–style Bellman operator with sparse cost, which can over-conservatively estimate
value; genuinely safe but rare samples may be undervalued, introducing bias or sample inefficiency.
Latent-space refinement also adds hyperparameters (e.g., expert loss weights and prior shaping tem-
perature). That said, we used a single configuration across 26 tasks, suggesting reasonable robust-
ness. Future work includes adaptive refinement schedules, more principled objectives for shaping
the prior, and hierarchical expert architectures to improve flexibility and generalization.

540
541 **Ethics Statement.** This research does not involve human subjects, sensitive data, or practices that
542 pose foreseeable harm. Our methodology builds upon well-established safe offline reinforcement
543 learning benchmarks and standard datasets that are publicly available. All experiments were con-
544 ducted in simulation environments with no real-world deployment or safety risk. We have made
545 efforts to ensure transparency and reproducibility by providing code and detailed algorithmic de-
546 scriptions. We adhere to the ICLR Code of Ethics, and this work upholds responsible stewardship
547 and scientific integrity throughout.

548 **Reproducibility Statement.** We have taken several steps to ensure the reproducibility of
549 our work. All theoretical results, including key lemmas and corollaries, are presented
550 with complete assumptions and detailed proofs in the appendix. Additional implemen-
551 tation details, including dataset setup, training pipeline, and evaluation protocol, are also pro-
552 vided in the appendix. We also include an anonymous link to our core source code at:
553 <https://anonymous.4open.science/r/FLRP-9776/>

554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

594 REFERENCES
595

596 Dmitriy Akimov, Vladislav Kurenkov, Alexander Nikulin, Denis Tarasov, and Sergey Kolesnikov.
597 Let offline rl flow: Training conservative agents in the latent space of normalizing flows. *arXiv*
598 *preprint arXiv:2211.11096*, 2022.

599 Marvin Alles, Philip Becker-Ehmck, Patrick van der Smagt, and Maximilian Karl. Constrained
600 latent action policies for model-based offline reinforcement learning. *Advances in Neural Infor-*
601 *mation Processing Systems*, 37:70381–70405, 2024.

602 Eitan Altman. *Constrained Markov decision processes*. Routledge, 2021.
603

604 Somil Bansal, Mo Chen, Sylvia Herbert, and Claire J Tomlin. Hamilton-jacobi reachability: A brief
605 overview and recent advances. In *2017 IEEE 56th Annual Conference on Decision and Control*
606 (*CDC*), pp. 2242–2253. IEEE, 2017.

607 Normand J Beaudry and Renato Renner. An intuitive proof of the data processing inequality. *arXiv*
608 *preprint arXiv:1107.0740*, 2011.
609

610 Xi Chen, Ali Ghadirzadeh, Tianhe Yu, Jianhao Wang, Alex Yuan Gao, Wenzhe Li, Liang Bin,
611 Chelsea Finn, and Chongjie Zhang. Lapo: Latent-variable advantage-weighted policy optimiza-
612 tion for offline reinforcement learning. *Advances in Neural Information Processing Systems*, 35:
613 36902–36913, 2022.

614 Yinlam Chow, Ofir Nachum, Aleksandra Faust, Edgar Duenez-Guzman, and Mohammad
615 Ghavamzadeh. Lyapunov-based safe policy optimization for continuous control. *arXiv preprint*
616 *arXiv:1901.10031*, 2019.

617 Imre Csiszár and Paul C Shields. Information theory and statistics: A tutorial. *Foundations and*
618 *Trends in Communications and Information Theory*, 1(4):417–528, 2004.
619

620 Yuhao Ding and Javad Lavaei. Provably efficient primal-dual reinforcement learning for cmdps with
621 non-stationary objectives and constraints. In *Proceedings of the AAAI Conference on Artificial*
622 *Intelligence*, volume 37, pp. 7396–7404, 2023.

623 Laurent Dinh, Jascha Sohl-Dickstein, and Samy Bengio. Density estimation using real nvp. *arXiv*
624 *preprint arXiv:1605.08803*, 2016.
625

626 Jaime F Fisac, Anayo K Akametalu, Melanie N Zeilinger, Shahab Kaynama, Jeremy Gillula, and
627 Claire J Tomlin. A general safety framework for learning-based control in uncertain robotic
628 systems. *IEEE Transactions on Automatic Control*, 64(7):2737–2752, 2018.

629 Justin Fu, Aviral Kumar, Ofir Nachum, George Tucker, and Sergey Levine. D4rl: Datasets for deep
630 data-driven reinforcement learning. *arXiv preprint arXiv:2004.07219*, 2020.
631

632 Scott Fujimoto, David Meger, and Doina Precup. Off-policy deep reinforcement learning without
633 exploration. In *International conference on machine learning*, pp. 2052–2062. PMLR, 2019.

634 Milan Ganai, Zheng Gong, Chenning Yu, Sylvia Herbert, and Sicun Gao. Iterative reachability
635 estimation for safe reinforcement learning. *Advances in Neural Information Processing Systems*,
636 36:69764–69797, 2023.

637 Sven Gronauer. Bullet-safety-gym: A framework for constrained reinforcement learning. Technical
638 report, mediaTUM, 2022.
639

640 Ishaan Gulrajani, Faruk Ahmed, Martin Arjovsky, Vincent Dumoulin, and Aaron C Courville. Im-
641 proved training of wasserstein gans. *Advances in neural information processing systems*, 30,
642 2017.

643 Xinchen Han, Hossam Afifi, and Michel Marot. Elapse: Expand latent action projection space for
644 policy optimization in offline reinforcement learning. *Neurocomputing*, 631:129665, 2025.
645

646 Philippe Hansen-Estruch, Ilya Kostrikov, Michael Janner, Jakub Grudzien Kuba, and Sergey Levine.
647 Idql: Implicit q-learning as an actor-critic method with diffusion policies. *arXiv preprint*
arXiv:2304.10573, 2023.

648 Vindula Jayawardana, Sirui Li, Yashar Farid, and Cathy Wu. Multi-residual mixture of experts
 649 learning for cooperative control in multi-vehicle systems. *arXiv preprint arXiv:2507.09836*, 2025.
 650

651 Jiaming Ji, Borong Zhang, Jiayi Zhou, Xuehai Pan, Weidong Huang, Ruiyang Sun, Yiran Geng, Yi-
 652 fan Zhong, Josef Dai, and Yaodong Yang. Safety gymnasium: A unified safe reinforcement learn-
 653 ing benchmark. *Advances in Neural Information Processing Systems*, 36:18964–18993, 2023.

654 Ivan Kobyzev, Simon JD Prince, and Marcus A Brubaker. Normalizing flows: An introduction and
 655 review of current methods. *IEEE transactions on pattern analysis and machine intelligence*, 43
 656 (11):3964–3979, 2020.

657 Prajwal Koirala, Zhanhong Jiang, Soumik Sarkar, and Cody Fleming. Latent safety-constrained
 658 policy approach for safe offline reinforcement learning. *arXiv preprint arXiv:2412.08794*, 2024.
 659

660 Ilya Kostrikov, Ashvin Nair, and Sergey Levine. Offline reinforcement learning with implicit q-
 661 learning. 2021.

662 Aviral Kumar, Justin Fu, Matthew Soh, George Tucker, and Sergey Levine. Stabilizing off-policy
 663 q-learning via bootstrapping error reduction. *Advances in neural information processing systems*,
 664 32, 2019.

665 Ankita Kushwaha, Kiran Ravish, Preeti Lamba, and Pawan Kumar. A survey of safe reinforcement
 666 learning and constrained mdps: A technical survey on single-agent and multi-agent safety. *arXiv
 667 preprint arXiv:2505.17342*, 2025.

668 Hoang Le, Cameron Voloshin, and Yisong Yue. Batch policy learning under constraints. In *Inter-
 669 national Conference on Machine Learning*, pp. 3703–3712. PMLR, 2019.

671 Jongmin Lee, Cosmin Paduraru, Daniel J Mankowitz, Nicolas Heess, Doina Precup, Kee-Eung Kim,
 672 and Arthur Guez. Coptidice: Offline constrained reinforcement learning via stationary distribution
 673 correction estimation. *arXiv preprint arXiv:2204.08957*, 2022.

674 Sergey Levine, Aviral Kumar, George Tucker, and Justin Fu. Offline reinforcement learning: Tuto-
 675 rial, review, and perspectives on open problems. *arXiv preprint arXiv:2005.01643*, 2020.

676 Quanyi Li, Zhenghao Peng, Lan Feng, Qihang Zhang, Zhenghai Xue, and Bolei Zhou. Metadrive:
 677 Composing diverse driving scenarios for generalizable reinforcement learning. *IEEE Transactions
 678 on Pattern Analysis and Machine Intelligence*, 2022.

679 Qian Lin, Bo Tang, Zifan Wu, Chao Yu, Shangqin Mao, Qianlong Xie, Xingxing Wang, and Dong
 680 Wang. Safe offline reinforcement learning with real-time budget constraints. In *International
 681 Conference on Machine Learning*, pp. 21127–21152. PMLR, 2023.

682 Zuxin Liu, Zijian Guo, Haohong Lin, Yihang Yao, Jiacheng Zhu, Zhepeng Cen, Hanjiang Hu, Wen-
 683 hao Yu, Tingnan Zhang, Jie Tan, et al. Datasets and benchmarks for offline safe reinforcement
 684 learning. *arXiv preprint arXiv:2306.09303*, 2023a.

685 Zuxin Liu, Zijian Guo, Yihang Yao, Zhepeng Cen, Wenhao Yu, Tingnan Zhang, and Ding Zhao.
 686 Constrained decision transformer for offline safe reinforcement learning. In *International Con-
 687 ference on Machine Learning*, pp. 21611–21630. PMLR, 2023b.

688 Takeru Miyato, Toshiki Kataoka, Masanori Koyama, and Yuichi Yoshida. Spectral normalization
 689 for generative adversarial networks. *arXiv preprint arXiv:1802.05957*, 2018.

690 Johan Obando-Ceron, Ghada Sokar, Timon Willi, Clare Lyle, Jesse Farebrother, Jakob Foerster,
 691 Gintare Karolina Dziugaite, Doina Precup, and Pablo Samuel Castro. Mixtures of experts unlock
 692 parameter scaling for deep rl. *arXiv preprint arXiv:2402.08609*, 2024.

693 Felix Otto and Cédric Villani. Generalization of an inequality by talagrand and links with the loga-
 694 rithmic sobolev inequality. *Journal of Functional Analysis*, 173(2):361–400, 2000.
 695

696 George Papamakarios, Eric Nalisnick, Danilo Jimenez Rezende, Shakir Mohamed, and Balaji Lak-
 697 shminarayanan. Normalizing flows for probabilistic modeling and inference. *Journal of Ma-
 698 chine Learning Research*, 22(57):1–64, 2021. URL <http://jmlr.org/papers/v22/19-1028.html>.

702 Xue Bin Peng, Aviral Kumar, Grace Zhang, and Sergey Levine. Advantage-weighted regression:
 703 Simple and scalable off-policy reinforcement learning. *arXiv preprint arXiv:1910.00177*, 2019.
 704

705 Tim Salimans and Durk P Kingma. Weight normalization: A simple reparameterization to accelerate
 706 training of deep neural networks. *Advances in neural information processing systems*, 29, 2016.

707 Siddarth Venkatraman, Shivesh Khaitan, Ravi Tej Akella, John Dolan, Jeff Schneider, and Glen
 708 Berseth. Reasoning with latent diffusion in offline reinforcement learning. *arXiv preprint
 709 arXiv:2309.06599*, 2023.

710 Xiangwei Wang, Peng Wang, Renke Huang, Xiuli Zhu, Javier Arroyo, and Ning Li. Safe deep
 711 reinforcement learning for building energy management. *Applied Energy*, 377:124328, 2025.

712 Yixuan Wang, Simon Sinong Zhan, Ruochen Jiao, Zhilu Wang, Wanxin Jin, Zhuoran Yang, Zhaoran
 713 Wang, Chao Huang, and Qi Zhu. Enforcing hard constraints with soft barriers: Safe reinforcement
 714 learning in unknown stochastic environments. In *International Conference on Machine Learning*,
 715 pp. 36593–36604. PMLR, 2023.

716 Jingda Wu, Chao Huang, Hailong Huang, Chen Lv, Yuntong Wang, and Fei-Yue Wang. Recent ad-
 717 vances in reinforcement learning-based autonomous driving behavior planning: A survey. *Trans-
 718 portation Research Part C: Emerging Technologies*, 164:104654, 2024.

719 Haoran Xu, Xianyuan Zhan, and Xiangyu Zhu. Constraints penalized q-learning for safe offline rein-
 720 forcement learning. In *Proceedings of the AAAI Conference on Artificial Intelligence*, volume 36,
 721 pp. 8753–8760, 2022.

722 Dongjie Yu, Haitong Ma, Shengbo Li, and Jianyu Chen. Reachability constrained reinforcement
 723 learning. In *International conference on machine learning*, pp. 25636–25655. PMLR, 2022.

724 Peipei Yu, Hongcai Zhang, Yonghua Song, Zhenyi Wang, Huiyu Dong, and Liang Ji. Safe reinfor-
 725 cements learning for power system control: A review. *Renewable and Sustainable Energy Reviews*,
 726 223:116022, 2025.

727 Jing Zhang, Chi Zhang, Wenjia Wang, and Bingyi Jing. Constrained policy optimization with ex-
 728 plicit behavior density for offline reinforcement learning. *Advances in Neural Information Pro-
 729 cessing Systems*, 36:5616–5630, 2023a.

730 Qin Zhang, Linrui Zhang, Haoran Xu, Li Shen, Bowen Wang, Yongzhe Chang, Xueqian Wang,
 731 Bo Yuan, and Dacheng Tao. Saformer: A conditional sequence modeling approach to offline safe
 732 reinforcement learning. *arXiv preprint arXiv:2301.12203*, 2023b.

733 Ziqian Zhang, Haojie Li, Tiantian Chen, NN Sze, Wenzhang Yang, Yihao Zhang, and Gang Ren.
 734 Decision-making of autonomous vehicles in interactions with jaywalkers: A risk-aware deep re-
 735 inforcement learning approach. *Accident Analysis & Prevention*, 210:107843, 2025.

736 Weiyue Zhao, Tairan He, Rui Chen, Tianhao Wei, and Changliu Liu. State-wise safe reinforcement
 737 learning: A survey. *arXiv preprint arXiv:2302.03122*, 2023.

738 Yinan Zheng, Jianxiong Li, Dongjie Yu, Yujie Yang, Shengbo Eben Li, Xianyuan Zhan, and Jingjing
 739 Liu. Safe offline reinforcement learning with feasibility-guided diffusion model. *arXiv preprint
 740 arXiv:2401.10700*, 2024.

741 Wenxuan Zhou, Sujay Bajracharya, and David Held. Plas: Latent action space for offline reinforce-
 742 ment learning. In *Conference on Robot Learning*, pp. 1719–1735. PMLR, 2021.

743

744

745

746

747

748

749

750

751

752

753

754

755

756 **A LLM USAGE**
757758 The authors used large language models (LLMs), specifically ChatGPT (GPT-4), solely as a lan-
759 guage editing assistant. The LLM was employed only for grammar correction, stylistic improve-
760 ments, and minor clarity revisions of the authors' own writing.
761762 All ideas, algorithms, experimental designs, theoretical proofs, and scientific contributions presented
763 in this paper are the sole work of the authors. The authors take full responsibility for the technical
764 content and claims made in the paper. No content was generated or suggested by the LLM regarding
765 methodology, experiments, or results.
766767 **B EXTENDED DISCUSSIONS ON RELATED WORKS**
768769 **B.1 GENERATIVE LATENT-SPACE OFFLINE RL METHODS**
770771 A growing line of offline RL methods learns policies in a low-dimensional latent action or trajectory
772 space induced by a generative model. These approaches typically fit a conditional generative model
773 on offline data and optimize a latent policy whose outputs are decoded back to actions, thereby con-
774 straining policy search to a data-supported manifold and reducing OOD actions. PLAS (Zhou et al.,
775 2021) and its CVAE-based extensions, such as LAPO (Chen et al., 2022) and ELAPSE (Han et al.,
776 2025), enhance this framework by shaping the latent distribution to emphasize high-return behav-
777 iors and mitigate collapse. In the model-based setting, C-LAP (Alles et al., 2024) learns a latent
778 action state-space model and constrains imagined rollouts to remain within the latent prior, provid-
779 ing implicit conservatism. Latent diffusion approaches (Venkatraman et al., 2023) extend this idea
780 to trajectory-level latent spaces, enabling policy optimization over semantically structured latent tra-
781 jectories. Flow-based generative policies have also been explored; CNF (Akimov et al., 2022) trains
782 a normalizing flow over actions and reduces OOD actions by bounding the base distribution under a
783 frozen decoder. CPED (Zhang et al., 2023a) explicitly estimates the behavior density using a flow-
784 GAN and constrains policy updates within high-density regions. For safe offline RL, LSPC (Koirala
785 et al., 2024) encodes latent safety constraints with a CVAE and regularizes the latent policy using a
786 safety critic, though it still relies on ELBO training and support-based constraints.
787788 Compared with these generative latent(-space) policy methods, FLRP differs along four comple-
789 mentary dimensions, summarized here and in Table 4 in the main text.
790791

1. **Task scope and safety objective.** Prior flow-based methods such as CNF (Akimov et al.,
792 2022) do not target safe offline RL. FLRP lies in the same flow-based family but is instantiated
793 for hard-constrained safe offline RL with near-zero violation, rather than for unconstrained or
794 budgeted objectives.
2. **Generative backbone and likelihood.** CVAE-, flow-, and diffusion-based policies all exploit
795 latent manifolds, but flows are invertible and admit exact likelihoods. With a Gaussian base,
796 FLRP can monitor a base-space KL divergence and propagate it into bounds on action/policy
797 deviation (TV/W₂) and OOD mass, providing a quantified, tunable notion of conservatism not
798 available to ELBO-trained CVAEs (Zhou et al., 2021; Chen et al., 2022; Han et al., 2025) or
799 multi-step latent diffusion models (Venkatraman et al., 2023).
3. **OOD-control mechanism.** CNF reduces OOD by making the flow's base uniform-bounded
800 and freezing the decoder (Akimov et al., 2022), but does not explicitly control policy deviation.
801 FLRP instead (a) retains a Gaussian base with an explicit OOD/shift bound from the base-space
802 KL and (b) performs feasibility-guided density shaping on the base (using the flow's inverse).
803 Together, this makes conservatism measurable and controllable, while keeping policy search
804 within empirically safe, high-density regions.
4. **Training and inference protocol.** Safe offline RL couples reward, safety, and OOD control.
805 Instead of relying on a single entangled loss, FLRP employs ordered small-step refiners in the
806 base space with a frozen decoder—Safety → Reward → Shared—so updates remain in-support
807 and non-expansive. This protocol tightly links safety, reward, and OOD suppression, exposes a
808 clear trade-off handle, and avoids the instability of lumping all terms into one gradient..
809

810 B.2 ADDITIONAL DISCUSSION ON HARD AND SOFT CONSTRAINT
811812 **Hard vs. soft formulations.** In safe RL, a *hard* (state-wise) safety constraint requires that the
813 policy never leaves the safe set. Let $h : \mathcal{S} \rightarrow \mathbb{R}$ encodes a state constraint and $c(s) = \max\{h(s), 0\}$
814 is the induced cost. A hard constraint enforces

815
$$h(s_t) \leq 0, \quad a_t \sim \pi(\cdot | s_t), \quad \forall t \in \mathbb{N}, \quad (23)$$

816

817 which can equivalently be written as a zero-violation cost condition
818

819
$$c(s_t) = 0, \quad a_t \sim \pi(\cdot | s_t), \quad \forall t \in \mathbb{N}. \quad (24)$$

820

821 By contrast, *soft* or *budgeted* constraints are typically expressed at the level of expected cumulative
822 cost. Given a cost limit $l > 0$, the constraint is
823

824
$$\mathbb{E}_{\tau \sim \pi} \left[\sum_{t=0}^{\infty} c(s_t) \right] \leq l \quad \text{or} \quad \mathbb{E}_{\tau \sim \pi} \left[\sum_{t=0}^{\infty} \gamma^t c(s_t) \right] \leq l, \quad (25)$$

825

826 and the policy is allowed to incur nonzero instantaneous violations as long as the long-term budget
827 is respected. Recent work further extends this perspective to *real-time* budgeted safety, where the
828 agent must adapt to dynamically specified cost budgets in the offline setting (Lin et al., 2023), as
829 well as to risk- and distributionally-robust variants (Chow et al., 2019; Kushwaha et al., 2025).
830831 **Design philosophies and use cases.** Hard and soft formulations reflect different safety philosophies
832 rather than a strict ordering of capability. Hard/near-zero-violation methods (Fisac et al.,
833 2018; Yu et al., 2022; Zheng et al., 2024; Zhao et al., 2023) target scenarios where every violation
834 corresponds to an unacceptable safety breach (e.g., collisions, irreversible damage, or regulatory
835 violations); here, the emphasis is on characterizing and staying inside the feasible region. Budgeted or
836 soft methods (Le et al., 2019; Lee et al., 2022; Liu et al., 2023b), in contrast, model cost as an allo-
837 catable resource: small, occasional violations are acceptable if they enable substantially better task
838 performance, which is appropriate for risk-sensitive but non-safety-critical domains or applications
839 with tunable risk budgets.
840841 Our framework intentionally follows the hard / near-zero-violation viewpoint: we are interested in
842 safe offline RL settings where violations correspond to genuine safety failures, and thus focus on
843 maximizing return while keeping state-wise safety rates close to 100%. We view budgeted-safety
844 approaches as complementary rather than competing; in principle, similar generative latent-space
845 and flow-based techniques could be adapted to budgeted formulations by conditioning critics and
846 refiners on a dynamic cost budget, which we leave as an interesting direction for future work.
847848 C THEORETICAL ANALYSIS
849850 In this section, we provide the missing proofs for the theoretical results to support or validate the
851 proposed method.
852853 C.1 DERIVATION OF THE FLOW DENSITY
854855 Normalizing flows model complex distributions by transporting samples from a simple base den-
856 sity through an invertible transformation. In the conditional setting, let $u \sim p_0(u)$ denote a latent
857 variable drawn from a base distribution, typically $\mathcal{N}(0, I)$, and define $z = f_{\phi}(u; \text{cond})$, where
858 $f_{\phi}(\cdot; \text{cond})$ is a bijective mapping parameterized by ϕ and conditioned on an external variable cond
859 (e.g., a state or context).
860861 Because the map is invertible for fixed cond , the inverse $u = f_{\phi}^{-1}(z; \text{cond})$ is well defined. To obtain
862 the conditional density $p_{\phi}(z | \text{cond})$, we apply the change-of-variables formula for differentiable
863 bijections:

864
$$p(z) = p_0(f^{-1}(z)) \cdot \left| \det \frac{\partial f^{-1}(z)}{\partial z} \right| = p_0(u) \cdot \left| \det \frac{\partial f(u)}{\partial u} \right|^{-1}, \quad (26)$$

864 where the second equality follows from the inverse function theorem. In our conditional setting we
 865 thus have

$$866 \quad p_\phi(z \mid \text{cond}) = p_0(u) \cdot \left| \det \frac{\partial u}{\partial z} \right|, \quad u = f_\phi^{-1}(z; \text{cond}). \quad (27)$$

869 Using $\frac{\partial u}{\partial z} = \left(\frac{\partial z}{\partial u} \right)^{-1}$, we can express the inverse Jacobian in terms of the forward transformation:
 870

$$871 \quad \left| \det \frac{\partial u}{\partial z} \right| = \left| \det \frac{\partial f_\phi(u; \text{cond})}{\partial u} \right|^{-1}. \quad (28)$$

874 Substituting this identity back into the density expression gives

$$875 \quad p_\phi(z \mid \text{cond}) = p_0(u) \cdot \left| \det \frac{\partial f_\phi(u; \text{cond})}{\partial u} \right|^{-1}, \quad u = f_\phi^{-1}(z; \text{cond}). \quad (29)$$

879 Taking logarithms yields the exact log-likelihood of the conditional flow:

$$881 \quad \log p_\phi(z \mid \text{cond}) = \log p_0(u) + \log \left| \det \frac{\partial u}{\partial z} \right|, \quad u = f_\phi^{-1}(z; \text{cond}), \quad (2)$$

883 which corresponds to Eq. 2 in the main text.

884 In practice, the Jacobian determinant is computed analytically using affine coupling layers, whose
 885 triangular structure reduces the log-determinant to a sum of layerwise log-scale outputs. This makes
 886 the likelihood term efficient to compute while preserving the exactness afforded by the invertibility
 887 of the flow.

888 When the transformation is a composition of L conditional bijections,

$$890 \quad u_0 \sim p_0, \quad u_\ell = f_\ell(u_{\ell-1}; \text{cond}), \quad \ell = 1, \dots, L, \quad z = u_L, \quad (30)$$

892 The change-of-variables formula yields

$$893 \quad \log p_\phi(z \mid \text{cond}) = \log p_0(u_0) + \sum_{\ell=1}^L \log \left| \det \frac{\partial u_{\ell-1}}{\partial u_\ell} \right|, \quad (31)$$

896 where each term uses the inverse Jacobian of layer f_ℓ . Equivalently, this can be written as the
 897 negative sum of forward log-determinants,
 898

$$899 \quad \log p_\phi(z \mid \text{cond}) = \log p_0(u_0) - \sum_{\ell=1}^L \log \left| \det \frac{\partial f_\ell(u_{\ell-1}; \text{cond})}{\partial u_{\ell-1}} \right|, \quad (32)$$

902 which is the form implemented in practice when accumulating the density term across multiple flow
 903 layers.

905 C.2 PROOF OF DEFINITION 2.

907 For a fixed $\gamma \in (0, 1)$ and we define $V_i(s) := \min_a Q_i(s, a)$ for $i \in \{1, 2\}$. Then for any (s, a) ,

$$909 \quad \begin{aligned} |(\mathcal{P}^* Q_1)(s, a) - (\mathcal{P}^* Q_2)(s, a)| &= \gamma \left| \mathbb{E}_{s'} [\max\{h(s), V_1(s')\} - \max\{h(s), V_2(s')\}] \right| \\ 910 &\leq \gamma \mathbb{E}_{s'} |V_1(s') - V_2(s')|. \end{aligned} \quad (33)$$

912 Since $V_i(s') = \min_{a'} Q_i(s', a')$ and the pointwise min is 1-Lipschitz, $|V_1(s') - V_2(s')| \leq$
 913 $\sup_{a'} |Q_1(s', a') - Q_2(s', a')| \leq \|Q_1 - Q_2\|_\infty$. Taking the supremum over (s, a) yields
 914

$$915 \quad \|\mathcal{P}^* Q_1 - \mathcal{P}^* Q_2\|_\infty \leq \gamma \|Q_1 - Q_2\|_\infty, \quad (34)$$

917 so \mathcal{P}^* is a γ -contraction under the sup norm. By Banach's fixed-point theorem, there exists a unique
 918 fixed point $Q_{h, \gamma}^*$ and we set $V_{h, \gamma}^*(s) := \min_a Q_{h, \gamma}^*(s, a)$.

918 To connect to the undiscounted HJ-style values, assume h is bounded. Let $\gamma_n \uparrow 1$ and consider the
 919 fixed points Q_{h,γ_n}^* . Because $\{Q_{h,\gamma_n}^*\}_n$ is uniformly bounded and \mathcal{P}^* is continuous in γ , any limit
 920 point Q^\dagger satisfies, for all (s, a) ,
 921

$$\begin{aligned} Q^\dagger(s, a) &= \lim_{n \rightarrow \infty} \left[(1 - \gamma_n)h(s) + \gamma_n \mathbb{E}_{s'} \left[\max \{h(s), \min_{a'} Q_{h,\gamma_n}^*(s', a')\} \right] \right] \\ &= \mathbb{E}_{s'} \left[\max \{h(s), \min_{a'} Q^\dagger(s', a')\} \right]. \end{aligned} \quad (35)$$

922 This is the dynamic programming equation for the HJ-style (statewise zero-violation) feasibility
 923 values; hence $Q^\dagger = Q_h^*$ and $V^\dagger = \min_a Q^\dagger(\cdot, a) = V_h^*$. Therefore $Q_{h,\gamma}^* \rightarrow Q_h^*$ and $V_{h,\gamma}^* \rightarrow V_h^*$ as
 924 $\gamma \uparrow 1$. \square
 925

930 C.3 PROOF OF LEMMA 1.

932 Recall the weighted objective in full form:
 933

$$\begin{aligned} \mathcal{L}_{\text{flow}} &= \mathbb{E}_{(s,a) \sim p_{\mathcal{D}}} \left[w(s, a) \mathbb{E}_{z \sim q_{\psi}(z|s,a)} \left[-\log \pi_{\theta}(a | s, z) \right] \right] \\ &\quad + \beta \mathbb{E}_{(s,a) \sim p_{\mathcal{D}}} \left[w(s, a) D_{\text{KL}}(q_{\psi}(\cdot | s, a) \| p_{\phi}(\cdot | s)) \right]. \end{aligned} \quad (36)$$

934 and we define the behavior-weighted data distribution $\tilde{p}_{\mathcal{D}}(s, a) := w(s, a) p_{\mathcal{D}}(s, a) / Z$ with normal-
 935 izer $Z = \mathbb{E}_{p_{\mathcal{D}}}[w(s, a)]$ (a constant independent of (ϕ, ψ, θ)). For clarity, first consider $\beta = 1$; we
 936 return to $\beta \neq 1$ at the end. Then, up to the positive constant factor Z ,
 937

$$\mathcal{L}_{\text{flow}} = Z \cdot \mathbb{E}_{(s,a) \sim \tilde{p}_{\mathcal{D}}} \left\{ \mathbb{E}_{z \sim q_{\psi}} \left[-\log \pi_{\theta}(a | s, z) \right] + D_{\text{KL}}(q_{\psi} \| p_{\phi}) \right\}.$$

944 Expand the KL term inside the expectation:
 945

$$\begin{aligned} \mathbb{E}_{z \sim q_{\psi}} \left[-\log \pi_{\theta}(a | s, z) \right] &+ \mathbb{E}_{z \sim q_{\psi}} \left[\log q_{\psi}(z | s, a) - \log p_{\phi}(z | s) \right] \\ &= \mathbb{E}_{z \sim q_{\psi}} \left[\log \frac{q_{\psi}(z | s, a)}{p_{\phi}(z | s) \pi_{\theta}(a | s, z)} \right]. \end{aligned} \quad (37)$$

950 Taking the expectation over $(s, a) \sim \tilde{p}_{\mathcal{D}}$ yields
 951

$$\begin{aligned} \frac{1}{Z} \mathcal{L}_{\text{flow}} &= \mathbb{E}_{(s,a) \sim \tilde{p}_{\mathcal{D}}} \mathbb{E}_{z \sim q_{\psi}} \left[\log \frac{\tilde{p}_{\mathcal{D}}(s, a) q_{\psi}(z | s, a)}{\tilde{p}_{\mathcal{D}}(s, a) p_{\phi}(z | s) \pi_{\theta}(a | s, z)} \right] \\ &= D_{\text{KL}} \left(\tilde{p}_{\mathcal{D}}(s, a) q_{\psi}(z | s, a) \| \tilde{p}_{\mathcal{D}}(s, a) p_{\phi}(z | s) \pi_{\theta}(a | s, z) \right). \end{aligned} \quad (38)$$

956 Finally, use the identity $D_{\text{KL}}(P \| C \cdot Q) = D_{\text{KL}}(P \| Q) - \mathbb{E}_P[\log C]$ for a positive constant density
 957 factor C that does not depend on the model parameters (ϕ, ψ, θ) ; here $C = \tilde{p}_{\mathcal{D}}(s, a)$. Therefore,
 958

$$\mathcal{L}_{\text{flow}} = \text{const} + D_{\text{KL}} \left(\tilde{p}_{\mathcal{D}}(s, a) q_{\psi}(z | s, a) \| p_{\phi}(z | s) \pi_{\theta}(a | s, z) \right), \quad (39)$$

959 where the constant depends only on $\tilde{p}_{\mathcal{D}}$ (hence on w and the dataset) and not on (ϕ, ψ, θ) . This
 960 proves the claim for $\beta = 1$.
 961

962 *Extension to $\beta \neq 1$.* For a general $\beta > 0$, the same algebra shows that
 963

$$\mathcal{L}_{\text{flow}} = \text{const} + D_{\text{KL}} \left(\tilde{p}_{\mathcal{D}}(s, a) q_{\psi}(z | s, a) \| p_{\phi}^{(\beta)}(z | s) \pi_{\theta}(a | s, z) \right), \quad (40)$$

964 with a *temperature-adjusted prior* $p_{\phi}^{(\beta)}(z | s) \propto p_{\phi}(z | s)^\beta$ (i.e., the energy scaled by β). Equiva-
 965 lently, if one wishes to keep p_{ϕ} unchanged, absorb β by rescaling the KL term or by introducing a
 966 decoder temperature; both formulations are strictly equivalent up to a parameter-independent
 967 constant. \square

972 C.4 PROOF OF LEMMA 2
973974 Let $p := \Pi_\theta(\cdot|s)$, $r := \pi_0(\cdot|s)$, $q := \pi_\beta(\cdot|s)$ w.r.t. a common dominating measure. By the elemen-
975 tary inequality (chain rule with a bounded density ratio)

976
$$D_{\text{KL}}(p\|q) = D_{\text{KL}}(p\|r) + \mathbb{E}_p \left[\log \frac{r}{q} \right] \leq D_{\text{KL}}(p\|r) + \log \sup_a \frac{r(a)}{q(a)} = D_{\text{KL}}(p\|r) + \log R_\theta(s). \quad (41)$$

977

978 Under a frozen decoder $T_s : \mathcal{U} \rightarrow \mathcal{A}$, we treat the transformation from base latent u to action a
979 as a measurable pushforward mapping. Let q_u be the refined base distribution and \mathcal{N} the standard
980 Gaussian. Then the induced action distributions satisfy
981

982
$$D_{\text{KL}}(T_{s\#}q_u \| T_{s\#}\mathcal{N}) \leq \text{KL}(q_u \| \mathcal{N}), \quad (42)$$

983

984 by the data-processing inequality (DPI) for Kullback–Leibler divergence under measurable maps;
985 (e.g., see Csiszár & Shields (2004)). This result states that any deterministic or stochastic channel
986 (here, the frozen decoder T_s) cannot increase KL divergence. \square
987988 C.5 PROOF OF LEMMA 3
989990 Let $f_\phi : \mathbb{R}^d \rightarrow \mathbb{R}^d$ be a smooth bijection (the prior flow). Define $q_z = f_\phi\#q_u$ and $p_\phi = f_\phi\#\mathcal{N}$. By
991 the change-of-variables formula,

992
$$q_z(z) = q_u(u) \left| \det \frac{\partial u}{\partial z} \right|, \quad p_\phi(z) = \mathcal{N}(u) \left| \det \frac{\partial u}{\partial z} \right|, \quad z = f_\phi(u). \quad (43)$$

993

994 Hence
995

996
$$D_{\text{KL}}(q_z \| p_\phi) = \int q_z(z) \log \frac{q_z(z)}{p_\phi(z)} dz = \int q_u(u) \log \frac{q_u(u)}{\mathcal{N}(u)} du = D_{\text{KL}}(q_u \| \mathcal{N}), \quad (44)$$

997

998 i.e., KL is invariant under the bijection f_ϕ .
9991000 Let $T_s : \mathbb{R}^d \rightarrow \mathcal{A}$ be the deterministic decoder mapping (e.g., decoded mean) with frozen θ . The
1001 data-processing inequality for f -divergences (including KL) under a measurable pushforward gives
1002

1003
$$D_{\text{KL}}(T_{s\#}q_z \| T_{s\#}p_\phi) \leq D_{\text{KL}}(q_z \| p_\phi). \quad (45)$$

1004

1005 With $\pi = T_{s\#}q_u = T_{s\#}q_z$ and $\pi_0 = T_{s\#}\mathcal{N} = T_{s\#}p_\phi$, we obtain $D_{\text{KL}}(\pi \| \pi_0) \leq \text{KL}(q_z \| p_\phi) =$
1006 $D_{\text{KL}}(q_u \| \mathcal{N})$, which proves Eq. 18.
10071008 C.6 PROOF OF COROLLARY 1
10091010 For the Wasserstein bound, write $\pi = T_{s\#}q_z$ and $\pi_0 = T_{s\#}p_\phi$ with $T_s = g_\theta(\cdot, s)$. If g_θ is L_g -
1011 Lipschitz on the latent chart, then the pushforward is L_g -Lipschitz in W_2 :
1012

1013
$$W_2(\pi, \pi_0) \leq L_g W_2(q_z, p_\phi). \quad (46)$$

1014

1015 By Talagrand’s T_2 inequality (Gaussian reference or log-Sobolev under mild conditions) (Otto
1016 & Villani, 2000), $W_2(q_z, p_\phi) \leq \sqrt{2 D_{\text{KL}}(q_z \| p_\phi)}$, and Lemma 3 implies $W_2(\pi, \pi_0) \leq$
1017 $L_g \sqrt{2 D_{\text{KL}}(q_u \| \mathcal{N})}$.
10181019 For total variation (TV) and OOD probability, the triangle inequality yields $\text{TV}(\pi, \pi_\beta) \leq$
1020 $\text{TV}(\pi, \pi_0) + \text{TV}(\pi_0, \pi_\beta)$. Pinsker’s inequality (Csiszár & Shields, 2004) gives $\text{TV}(\pi, \pi_0) \leq$
1021 $\sqrt{\frac{1}{2} D_{\text{KL}}(\pi \| \pi_0)} \leq \sqrt{\frac{1}{2} D_{\text{KL}}(q_u \| \mathcal{N})}$, using Lemma 3. For any measurable \mathcal{O} ,
1022

1023
$$\pi(\mathcal{O}) - \pi_\beta(\mathcal{O}) \leq \text{TV}(\pi, \pi_\beta) \leq \sqrt{\frac{1}{2} D_{\text{KL}}(q_u \| \mathcal{N})} + \text{TV}(\pi_0, \pi_\beta). \quad (47)$$

1024

1025 Rearranging completes the proof.
10261027 **Remark.** The Wasserstein bound in Corollary 1 relies on the Lipschitz continuity of the decoder
1028 g_θ with constant L_g . We note that this is a mild and practically enforceable assumption. During
1029 training, the decoder’s Lipschitz constant can be implicitly constrained through techniques such as
1030 weight normalization Salimans & Kingma (2016), spectral normalization Miyato et al. (2018), or
1031 the gradient penalty Gulrajani et al. (2017), which are commonly used in generative modelling to
1032 enhance stability and generalization. Consequently, the theoretical bounds derived herein are not
1033 only sound but also practically relevant, as the key quantity $D_{\text{KL}}(q_u \| \mathcal{N})$ remains the primary lever
1034 for controlling distributional shift.
1035

1026 C.7 ORDER-AGNOSTIC BOUNDS FOR SEQUENTIAL REFINEMENT
10271028 We formalize that the KL/Wasserstein/TV bounds in Lemma 3 and Corollary 1 are independent of
1029 the update order used by the experts.1030 **Proposition 1** (Order-agnosticity of base-space bounds). *Let R be any (possibly stochastic) mea-
1031 surable refinement operator on the base space that maps the standard Gaussian \mathcal{N} to a refined
1032 distribution $q_u = R(\mathcal{N})$, obtained by any composition/order of expert updates (e.g., Gauss–Seidel,
1033 Jacobi, interleaved mini-steps) subject to a trust region $\|u_T - u_0\| \leq \rho$. With the prior flow f_ϕ and
1034 decoder g_θ fixed (as in Sec. 3.2), define $\pi = T_{s\#}q_u$ and $\pi_0 = T_{s\#}\mathcal{N}$ where $T_s(u) = g_\theta(f_\phi(u; s), s)$.
1035 Then the conclusions of Lemma 3 and Corollary 1 hold verbatim with this q_u :*

1036
$$\begin{aligned} D_{\text{KL}}(\pi(\cdot | s) \| \pi_0(\cdot | s)) &\leq D_{\text{KL}}(q_u(\cdot | s) \| \mathcal{N}), \\ 1037 W_2(\pi(\cdot | s), \pi_0(\cdot | s)) &\leq L_g \sqrt{2 D_{\text{KL}}(q_u \| \mathcal{N})}, \end{aligned} \quad (48)$$

1038

1039 and the TV/Pinsker OOD bound remains unchanged.

1040 *Proof.* The proofs of Lemma 3 and Corollary 1 use only: (i) invariance of KL under the bijection
1041 f_ϕ ; (ii) data-processing for pushforwards through the frozen decoder g_θ ; (iii) Talagrand/Pinsker
1042 inequalities. None of these depend on the *path* that produces q_u , only on the *resulting* distribution
1043 q_u . Any expert ordering defines a measurable map whose pushforward of \mathcal{N} is q_u ; substituting this
1044 q_u into the same steps yields the stated bounds. The optional trust region ensures KL finiteness and
1045 well-definedness but does not affect order independence. \square 1046 C.8 POLICY GAP AND COMPARISON WITH PRIOR PERFORMANCE BOUNDS
10471048 We first derive simple performance bounds that relate the reward and cost gaps between the refined
1049 policy and the flow prior / behavior policy to the base-space KL regularizer used in FLP.1050 **Preliminaries.** Let π denote the final refined policy, π_0 the flow prior policy, and π_β the behavior
1051 policy. Rewards and costs are bounded as $|r(s, a)| \leq R_{\max}$ and $|c(s, a)| \leq C_{\max}$. We write
1052 $J_r(\pi) := \mathbb{E}[\sum_{t \geq 0} \gamma^t r_t]$ and $J_h(\pi) := \mathbb{E}[\sum_{t \geq 0} \gamma^t c_t]$ for the reward and cost return under π , and
1053 $d_{\rho_0}^\pi$ for the discounted state-visitation distribution induced by π from initial distribution ρ_0 . For a
1054 reference policy π' , we define $A_r^{\pi'}(s, a) = Q_r^{\pi'}(s, a) - V_r^{\pi'}(s)$ and $A_h^{\pi'}(s, a) = Q_h^{\pi'}(s, a) - V_h^{\pi'}(s)$.1055 **Lemma 4** (Performance difference via TV). *For any two policies π and π' , we have*

1056
$$\begin{aligned} J_r(\pi) - J_r(\pi') &= \frac{1}{1 - \gamma} \mathbb{E}_{s \sim d_{\rho_0}^\pi, a \sim \pi(\cdot | s)} [A_r^{\pi'}(s, a)], \\ 1057 J_h(\pi) - J_h(\pi') &= \frac{1}{1 - \gamma} \mathbb{E}_{s \sim d_{\rho_0}^\pi, a \sim \pi(\cdot | s)} [A_h^{\pi'}(s, a)]. \end{aligned} \quad (49)$$

1058

1059 Moreover, if $|r(s, a)| \leq R_{\max}$ then

1060
$$|J_r(\pi) - J_r(\pi')| \leq \frac{2R_{\max}}{(1 - \gamma)^2} \sup_s \text{TV}(\pi(\cdot | s), \pi'(\cdot | s)), \quad (50)$$

1061

1062 and an analogous bound holds for J_h with R_{\max} replaced by C_{\max} .1063 *Proof.* The equalities are the standard performance-difference lemma obtained by unrolling the
1064 Bellman equations and telescoping the resulting series.1065 For the inequality, bounded rewards imply $|V_r^{\pi'}(s)| \leq R_{\max}/(1 - \gamma)$ and $|Q_r^{\pi'}(s, a)| \leq$
1066 $R_{\max}/(1 - \gamma)$ for all (s, a) , hence $|A_r^{\pi'}(s, a)| \leq 2R_{\max}/(1 - \gamma)$. Moreover, for every s we have
1067 $\mathbb{E}_{a \sim \pi'(\cdot | s)} [A_r^{\pi'}(s, a)] = 0$, so

1068
$$|\mathbb{E}_{a \sim \pi(\cdot | s)} A_r^{\pi'}(s, a)| = |\mathbb{E}_{a \sim \pi(\cdot | s)} A_r^{\pi'}(s, a) - \mathbb{E}_{a \sim \pi'(\cdot | s)} A_r^{\pi'}(s, a)| \leq 2 \frac{R_{\max}}{1 - \gamma} \text{TV}(\pi(\cdot | s), \pi'(\cdot | s)), \quad (51)$$

1069

1080 where we used the standard inequality $|\mathbb{E}_p f - \mathbb{E}_q f| \leq 2\|f\|_\infty \text{TV}(p, q)$. Plugging this bound into
 1081 the performance-difference lemma and taking the supremum over s yields
 1082

$$1083 |J_r(\pi) - J_r(\pi')| \leq \frac{1}{1-\gamma} \mathbb{E}_{s \sim d_{\rho_0}^\pi} q u \left[2 \frac{R_{\max}}{1-\gamma} \text{TV}(\pi(\cdot|s), \pi'(\cdot|s)) \right] \leq \frac{2R_{\max}}{(1-\gamma)^2} \sup_s \text{TV}(\pi(\cdot|s), \pi'(\cdot|s)). \quad (52)$$

1085 The bound for J_h follows by replacing R_{\max} with C_{\max} . \square
 1086

1088 **Proposition 2** (Policy gap under base-space KL control). *Assume that the base latent distribution*
 1089 $q_u(\cdot|s)$ *used by the refined policy satisfies a uniform KL constraint*

$$1091 D_{\text{KL}}(q_u(\cdot|s) \parallel \mathcal{N}(\cdot)) \leq \varepsilon_{\text{base}} \quad \text{for all } s, \quad (53)$$

1092 where \mathcal{N} is the standard Gaussian base of the flow prior and we refer to the upper bound $\varepsilon_{\text{base}}$ as
 1093 the base-space KL radius. Let

$$1095 \Delta_\beta := \sup_s \text{TV}(\pi_0(\cdot|s), \pi_\beta(\cdot|s)) \quad (54)$$

1097 denote the mismatch between the flow prior and the behavior policy. Then the refined policy satisfies
 1098 the following reward and cost bounds:

$$1100 |J_r(\pi) - J_r(\pi_0)| \leq \frac{2R_{\max}}{(1-\gamma)^2} \sqrt{\frac{1}{2} \varepsilon_{\text{base}}}, \quad (P1)$$

$$1102 |J_h(\pi) - J_h(\pi_0)| \leq \frac{2C_{\max}}{(1-\gamma)^2} \sqrt{\frac{1}{2} \varepsilon_{\text{base}}}, \quad (P2)$$

$$1105 |J_r(\pi) - J_r(\pi_\beta)| \leq \frac{2R_{\max}}{(1-\gamma)^2} \left(\sqrt{\frac{1}{2} \varepsilon_{\text{base}}} + \Delta_\beta \right), \quad (P3)$$

$$1107 |J_h(\pi) - J_h(\pi_\beta)| \leq \frac{2C_{\max}}{(1-\gamma)^2} \left(\sqrt{\frac{1}{2} \varepsilon_{\text{base}}} + \Delta_\beta \right). \quad (P4)$$

1111 *Proof.* We first consider the gap between π and the flow prior π_0 . By Lemma 4 with $\pi' = \pi_0$ it
 1112 suffices to control $\sup_s \text{TV}(\pi(\cdot|s), \pi_0(\cdot|s))$. By Pinsker's inequality we have
 1113

$$1114 \text{TV}(\pi(\cdot|s), \pi_0(\cdot|s)) \leq \sqrt{\frac{1}{2} D_{\text{KL}}(\pi(\cdot|s) \parallel \pi_0(\cdot|s))}. \quad (54)$$

1116 Lemma 3 shows that the policy KL is bounded by the base-space KL under the flow+decoder map-
 1117 ping:

$$1118 D_{\text{KL}}(\pi(\cdot|s) \parallel \pi_0(\cdot|s)) \leq D_{\text{KL}}(q_u(\cdot|s) \parallel \mathcal{N}(\cdot)) \leq \varepsilon_{\text{base}}, \quad (55)$$

1119 and hence

$$1121 \sup_s \text{TV}(\pi(\cdot|s), \pi_0(\cdot|s)) \leq \sqrt{\frac{1}{2} \varepsilon_{\text{base}}}. \quad (56)$$

1123 Substituting this into Lemma 4 yields (P1) and (P2).

1124 For the gap to the behavior policy, Corollary 1 in the main text implies that for each state s ,

$$1126 \text{TV}(\pi(\cdot|s), \pi_\beta(\cdot|s)) \leq \sqrt{\frac{1}{2} D_{\text{KL}}(q_u(\cdot|s) \parallel \mathcal{N}(\cdot))} + \text{TV}(\pi_0(\cdot|s), \pi_\beta(\cdot|s)). \quad (57)$$

1128 Applying the uniform bounds on the base-space KL and on $\text{TV}(\pi_0, \pi_\beta)$ gives

$$1130 \sup_s \text{TV}(\pi(\cdot|s), \pi_\beta(\cdot|s)) \leq \sqrt{\frac{1}{2} \varepsilon_{\text{base}}} + \Delta_\beta. \quad (58)$$

1132 Plugging this into Lemma 4 with $\pi' = \pi_\beta$ yields (P3) and (P4). \square
 1133

1134 **Discussion** The above results show that FLRP admits explicit reward and cost policy-gap bounds
 1135 (Proposition 2) in terms of the base-space KL radius $\varepsilon_{\text{base}}$ and the prior-behavior mismatch Δ_β .
 1136 In particular, Eqs. (P1)–(P4) make the role of $\varepsilon_{\text{base}}$ transparent: by constraining the refined base
 1137 distribution $q_u(\cdot | s)$ to stay within a KL ball around the Gaussian base of the flow prior, we directly
 1138 bound the TV/W₂ shift between the refined policy and the prior/behavior policies, and hence obtain
 1139 tunable control over out-of-distribution (OOD) extrapolation. This aligns with the central tension in
 1140 offline RL between policy improvement and staying close to the data distribution.

1141 Within offline safe RL, LSPC (Koirala et al., 2024) also derives policy-gap and violation bounds in
 1142 a CMDP setting. For example, they show that

$$1144 \quad V_r^{\pi^*}(\rho_0) - V_r^\pi(\rho_0) \leq \frac{2R_{\max}}{(1-\gamma)^2} \left(\sqrt{\frac{\varepsilon'_1}{2}} + \sqrt{\frac{\varepsilon'_2}{2}} \right), \quad (59)$$

1147 where π^* is the optimal safe policy and $\varepsilon'_1, \varepsilon'_2$ collect approximation errors from the CVAE-based
 1148 latent model and value estimators. Although similar in form, our guarantees are not a stronger version
 1149 of LSPC’s global policy-gap bounds, but a complementary type of result. LSPC focuses on how far the learned safe policy can be from the optimal safe policy in terms of return and constraint satisfaction, with bounds expressed via abstract approximation errors (e.g., $\varepsilon'_1, \varepsilon'_2$). Our analysis instead focuses on how far refinement can move the policy away from the data/prior distribution in a flow-based latent space, and how a base-space KL regularizer keeps this shift controlled and tunable. Crucially, compared with $\varepsilon'_1, \varepsilon'_2, \varepsilon_{\text{base}}$ is not a latent error term but a regularization parameter in the training objective: it has a direct geometric interpretation and can be monitored and adjusted in practice, providing an explicit and controllable mechanism for OOD risk suppression that is embedded into the shared refiner and Gaussian regularization.

1158 D IMPLEMENTATION DETAILS

1161 In this section, we describe our experimental framework and implementation of the proposed
 1162 method, including benchmark and datasets, task descriptions and evaluation metrics, and training
 1163 details.

1165 D.1 BENCHMARK DETAILS

1167 We use the Datasets for Safe Reinforcement Learning (DSRL) benchmark suite (Liu et al., 2023a)
 1168 to train and evaluate our method as well as all baselines. DSRL provides 38 offline datasets spanning
 1169 multiple safe RL environments (Safety-Gymnasium, Bullet-Safety-Gym, and Safe MetaDrive) with
 1170 varying difficulty levels. These datasets follow a D4RL-style (Fu et al., 2020) API and include
 1171 detailed cost signals in addition to reward returns.

1172 For the baselines, we adopt the authors’ official implementations and default hyperparameters when
 1173 available (especially for FISOR and LSPC). For other methods (BCQL / BCQ-Lag, CPQ, CDT), we
 1174 use the OSRL framework’s implementations and settings to ensure fair comparison.

1176 D.2 TASK DESCRIPTIONS

1178 Below are the three environment suites used in our experiments, with their main task types and
 1179 distinguishing safety vs. complexity features. Figure 5 shows three example visualizations.

1181 D.2.1 SAFETY-GYMNASIUM

1183 Safety-Gymnasium (Ji et al., 2023) is a unified MuJoCo-based benchmark collection offering a variety
 1184 of continuous control tasks (e.g. Goal, Button, Push, Circle, Velocity, etc.). Agents include
 1185 Point, Car, Ant, HalfCheetah, etc. The tasks vary both in goal structure (e.g. reach a goal, push an
 1186 object, navigate through buttons) and safety constraints (velocity limits, obstacle avoidance, collision
 1187 cost). Some tasks include hazards or “sigwalls” that act as soft or hard boundaries. These tasks
 1188 test both navigation and locomotion under safety constraints.

Figure 5: Example visualization from the simulation environments used in our experiments.

D.2.2 BULLET-SAFETY-GYM

Bullet-Safety-Gym (Gronauer, 2022) is based on the PyBullet physics engine. It includes similar task types (Circle, Run, Gather, Reach) with agents such as Ball, Car, Drone, Ant. The dynamics tend to have shorter horizons and more variability in physics (collision, friction) compared to MuJoCo, which raises safety risk under state/action noise. Cost signals usually arise from collisions or from exceeding safe boundaries. This makes the tasks more challenging in terms of generalization and handling unsafe transitions.

D.2.3 SAFE METADRIVE

MetaDrives (Li et al., 2022) is a simulator for driving/traffic/autonomous vehicle tasks under safety constraint. Its “safe RL” subset includes tasks with realistic road networks, dynamic agents, procedural map generation, traffic rules, and hazards. Observations often include vehicle state, road context; actions are continuous control of speed/steering. Safety constraints include collisions, lane infractions, and staying within road limits. These tasks are more realistic in terms of environment unpredictability, driving constraints, and possibly partial observability or environmental stochasticity.

D.3 DATASET VISUALIZATION

We further present the distribution of offline trajectories in the cost–return space across three representative environments, as shown in Figure 6. In the `CarPush` task from Safety-Gymnasium, the reward distribution is narrow and low, while the cost spans a wide range. This results in a weak correlation between reward and safety: most trajectories incur significant costs even when achieving only modest returns, making strict constraint satisfaction particularly challenging. In the `MediumMean` task from Safe MetaDrive, the reward exhibits distinct discrete bands, each associated with a specific cost level. This reflects mode-switching behaviors and a strong reward–cost coupling; although feasible trajectories exist, achieving high reward under tight cost limits requires careful selection among these behavioral clusters. The `CarRun` task from Bullet Safety Gym demonstrates a smoother trade-off frontier, where reward gradually increases with cost, forming a continuous and diverse distribution. While safe, high-reward trajectories remain sparse, the presence of mid-reward, intermediate-cost episodes renders this dataset more amenable to constrained policy optimization compared to the other two.

D.4 EVALUATION METRICS

We evaluate the performance of all methods using two metrics: *normalized reward return* and *normalized cost return*, following standard evaluation practices used in offline RL benchmarks like D4RL Fu et al. (2020) and adopted by recent safe RL methods such as CDT Liu et al. (2023b), LSPC (Koirala et al., 2024) and FISOR (Zheng et al., 2024). The normalized reward is defined as:

$$R_{\text{norm}} = \frac{R_{\pi} - r_{\min}(\mathcal{T})}{r_{\max}(\mathcal{T}) - r_{\min}(\mathcal{T})} \quad (60)$$

Figure 6: Example visualization of the dataset used in our experiments.

where R_π is the total reward return of the trained policy π , and $r_{\max}(\mathcal{T})$, $r_{\min}(\mathcal{T})$ denote the maximum and minimum reward returns observed in the dataset \mathcal{T} , respectively.

The normalized cost is computed as:

$$C_{\text{norm}} = \frac{C_\pi}{\kappa + \epsilon} \quad (61)$$

where C_π is the total cost return of policy π , κ is the cost limit, which we set to 10 for all tasks, and ϵ is a small constant added to avoid numerical instability when $\kappa = 0$.

D.5 TRAINING DETAILS

For all baseline methods, we adopt their default hyperparameter configurations. To ensure a fair comparison across all methods, we set the rollout length for each task to match the maximum number of allowed interaction steps. The cost limit for the baselines is set to 10 for all tasks. The common key hyperparameters used for our method and baselines are shown in Table 5. Table 6 lists other key hyperparameters used for FLP. We apply the same configuration across all tasks and environments without per-task tuning.

Table 5: Model Configuration Parameters

Parameter	CPQ	BCQ-L	CDT	LSPC	FISOR	FLRP
<i>Common Settings:</i>						
Training steps			1×10^6			
Batch size			512			
Discount factor			0.99			
Activate function			ReLU			
<i>Algorithm-Specific Settings:</i>						
Hidden layer size	256	256	256	256	256	256
Soft update rate (τ)	0.005	0.005	0.005	0.005	0.001	0.001
Cost limit	10	10	10	–	–	–
<i>Learning Rates ($\times 10^{-3}$):</i>						
Actor learning rate	1.0	1.0	0.1	0.3	0.3	0.3
Critic learning rate	1.0	1.0	0.1	0.3	0.3	0.3

The pseudocode for FLP is provided in Algorithm 1. All experiments were conducted on eight NVIDIA RTX 6000 Ada Generation GPUs, each with 48 GB of memory. Each experiment is run with 3 random seeds, and results are averaged over 10 evaluation episodes per seed.

D.6 COMPUTATIONAL COST

Compute overhead of the flow prior. As an extension of the ablation study, to quantify the computational footprint of the flow prior, we compare it against an otherwise identical refiner equipped

1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
Table 6: Hyperparameters of FLRP.

Parameter	Value
Expectile τ	0.9
Asymmetric L2 loss coeff	0.9
Target temperature	3
Value temperature	5
Advantage weight clip (reward)	$(-\infty, 100]$
Advantage weight clip (cost)	$(-\infty, 150]$
Refine steps T	3
Refiner loss weight $\lambda_r, \lambda_h, \lambda_{sh}$	1,1,0.5

1310
1311
1312
1313
Table 7: Compute profile of the refiner with a Gaussian prior vs. a flow prior (identical architecture
and training setup). FLOPs are per training step; NF Time fraction is the proportion of wall-clock
per step spent in the prior.

Prior	Train time / step (s)	Peak mem. (GB)	Infer. latency (ms)	Refiner FLOPs (GFLOPs/step)	Prior FLOPs (GFLOPs/call)	NF time frac. (%)
Gaussian	0.052	1.06	1.21	0.29	0.00	0.05
Flow	0.086	1.07	2.13	0.48	0.18	3.33

1321 with a Gaussian prior (Table 7). The flow prior increases per-step training time from 0.052,s to
 1322 0.086,s (about $\times 1.6$) and single-step inference latency from 1.21, ms to 2.13, ms (about $\times 1.7$),
 1323 while peak memory remains essentially unchanged (1.06, GB vs. 1.07, GB). In terms of arithmetic
 1324 cost, refiner updates require 0.29, GFLOPs per step with a Gaussian prior and 0.47, GFLOPs with
 1325 a flow prior (roughly $\times 1.6$); the flow prior itself accounts for about 0.18, GFLOPs per call, corre-
 1326 sponding to approximate 38% of the refiner’s FLOPs and approximate 3.3% of the wall-clock time
 1327 per training step. In contrast, the Gaussian prior baseline incurs essentially zero prior FLOPs and a
 1328 negligible NF time fraction ($\approx 0.05\%$). Overall, the flow prior introduces a modest but measurable
 1329 overhead, while keeping both training and inference well within a practical compute budget.

1330 **Architectural simplicity of the flow prior.** Our normalizing flow prior is intentionally designed to
 1331 be lightweight. We use a coupling-based architecture with affine transformations (RealNVP-style),
 1332 so the Jacobian of each layer is triangular and the log-determinant can be computed in $O(d)$ time
 1333 without any matrix inversion. Forward and inverse mappings share the same couplings and remain
 1334 strictly first-order—there is no need to invert Hessians, solve inner optimization problems, or run
 1335 costly fixed-point iterations. Combined with a moderate latent dimension and a small number of
 1336 coupling layers, this keeps the flow prior numerically stable and computationally inexpensive while
 1337 still providing exact likelihoods and invertible latent transformations.

E ADDITIONAL EXPERIMENTS

1338
 1339
 1340
 1341 **Reversed expectile for feasibility function.** The reversed expectile parameter τ_h controls how
 1342 conservative the feasibility critic is and thus how the safe region is learned. We sweep different
 1343 τ_h values to quantify the gap between our HJ-based feasibility estimates and the true safe region
 1344 constructed from the offline dataset. Intuitively, a smaller τ_h emphasizes lower Q_h values, making
 1345 V_h more pessimistic and shrinking the induced feasible set $\{s \mid V_h(s) \leq 0\}$; this should yield
 1346 high precision but low recall w.r.t. the true safe set. A larger τ_h has the opposite effect, expanding
 1347 the feasible set and trading precision for recall. Table 8 confirms this trend on both `CarRun` and
 1348 `AntCircle`: as τ_h increases, recall consistently improves while precision decreases. The effect
 1349 is much sharper on `AntCircle`, whose safe region is more complex, indicating that harder tasks
 require a more optimistic critic (larger τ_h) to achieve comparable coverage of the true safe set.

Table 8: Sensitivity of the HJ-based feasibility classifier to the expectile parameter τ_h . Recall/precision are computed on the offline buffer on task by treating steps from zero-cost trajectories as ground-truth safe.

Task	Metric	τ_h				
		0.6	0.7	0.8	0.9	0.95
CarRun	Recall	0.32	0.39	0.54	0.76	0.85
	Precision	0.76	0.68	0.51	0.24	0.21
AntCircle	Recall	0.04	0.08	0.27	0.79	0.88
	Precision	0.78	0.42	0.06	0.05	0.05

Decoder freezing ablation. Freezing the decoder is a core modeling choice in our method: the theoretical coupling between the latent prior and the refiner—and the resulting bounds on action and policy shift—critically rely on the decoder remaining fixed. Allowing the decoder to change

Figure 7: Effect of refiner loss weights on FLP performance: varying the relative weights of the reward (R), safety (H), and shared (SH) refiners yields a robust response and enables a smooth trade-off between reward return and cost.

would break this coupling and make both the analysis and the interpretation of the refinement steps much less clear. To quantify how much performance is potentially sacrificed by this restriction, we compare our default “frozen decoder” training with an alternative scheme where the refiner and decoder are updated in alternating phases. The result is shown in Table 9a. On the simpler task `CarRun`, the two variants achieve very similar performance: with a frozen decoder, we obtain a reward of 0.87 at zero cost, while alternating updates yield a reward of 0.84, also at zero cost. On the more challenging `AntCircle` task, alternating updates increase the reward from 0.45 to 0.69, but at the price of a higher cost (from 0.25 to 0.56). Thus, while partially unfreezing the decoder can improve returns on complex tasks, it does so by relaxing safety, whereas the frozen-decoder variant preserves our theoretical guarantees and achieves tighter cost control.

Effect of refiner loss weights. Figure 7 investigates how the relative weights assigned to the three refiners (R, H, SH) affect performance. Overall, FLP is quite robust: within a broad range of loss weights, the reward and cost curves remain stable without sudden degradation. When the safety refiner H is severely under-weighted (left part of the curves), the policy becomes noticeably less safe, confirming that H is the main driver toward low-cost regions. As the weight of H increases, the policy consistently moves to safer operating points. In contrast, putting more emphasis on the reward refiner R tends to increase the reward return, but also leads to higher cost, which is consistent with its role of exploiting high-return directions near the constraint boundary. The shared refiner SH behaves like a regularizer: when its weight is too small, the policy becomes less coordinated and slightly more unstable; when its weight is too large, over-regularization harms both reward and safety. The best performance is obtained for intermediate SH weights, where it can effectively absorb residual interactions between R and H while keeping the refinement close to the flow prior. These trends show that (i) FLP’s performance is not overly sensitive to the exact choice of refiner weights, and (ii) by tuning the relative weights of R, H, and SH, practitioners can smoothly control the reward–cost trade-off without changing the underlying critics or flow model.

Ablation on refiner optimization strategy. We further investigate whether the three-refiner architecture is really necessary, or whether one can obtain similar behavior by changing only the optimization scheme while keeping the same total loss. On `AntCircle`, we fix the loss weights $(\lambda_r, \lambda_h, \lambda_{sh})$ and compare our default design—three decoupled refiners (H, R, SH) optimized sequentially—with two alternatives (Table 9b): (i) a single unified refiner, which directly optimizes

Table 9: Decoder and refiner ablations.

(a) Frozen vs. alternating decoder

Task	Reward	Cost
CarRun (frozen)	0.87	0.00
CarRun (alter.)	0.84	0.00
AntCircle (frozen)	0.45	0.25
AntCircle (alter.)	0.69	0.56

(b) Refiner optimization strategy on `AntCircle`

Refiner Design	Reward	Cost
Decoupled 3-refiners	0.45	0.25
Single unified refiner	0.07	0.00
Averaged 3-refiners	0.51	0.45

27

1458 the sum of the three refiner losses, and (ii) an averaged 3-refiner update, where we still learn three
1459 refiners but average their latent updates before applying a single step to the base code.
1460

1461 The results show that the three-refiner design is crucial for obtaining a good reward–cost trade-off.
1462 The unified refiner collapses to an overly conservative solution (reward 0.07, cost 0.00): because a
1463 single set of parameters must simultaneously satisfy safety, reward, and regularization objectives, the
1464 gradients from these components frequently conflict, and the optimizer converges to a compromise
1465 that prioritizes low cost but fails to exploit high-return directions. By contrast, the averaged-update
1466 variant achieves high reward (0.51) but with much higher cost (0.45): averaging the three latent
1467 updates at a single point mixes conflicting safety and reward gradients, partially canceling the safety
1468 correction and diluting the shared refiner’s regularization, which leads to high-return but unsafe so-
1469 lutions. Our sequential $H \rightarrow R \rightarrow SH$ updates (0.45 reward, 0.25 cost) strike a substantially better
1470 balance that cannot be mimicked by a single averaged step. Overall, these results indicate that sep-
1471 arating safety, reward, and shared refiners—each with its own parameters and update direction—is
1472 more effective than collapsing them into a single refiner or naively averaging their gradients.
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511