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Abstract

Neural networks are often trained with empirical risk minimization; however, it
has been shown that a shift between training and testing distributions can cause
unpredictable performance degradation. On this issue, a research direction, in-
variant learning, has been proposed to extract causal features insensitive to the
distributional changes. This work proposes EDNIL, an invariant learning frame-
work containing a multi-head neural network to absorb data biases. We show that
this framework does not require prior knowledge about environments or strong as-
sumptions about the pre-trained model. We also reveal that the proposed algorithm
has theoretical connections to recent studies discussing properties of variant and
invariant features. Finally, we demonstrate that models trained with EDNIL are
empirically more robust against distributional shifts.

1 Introduction

Ensuring model performance on unseen data is a common yet challenging task in machine learning. A
widely adopted solution would be empirical risk minimization (ERM), where training and testing data
are assumed to be independent and identically distributed. However, data in real-world applications
can come with undesired biases, causing a shift between training and testing distributions. It has
been known that the distributional shifts can severely harm ERM model performance and even cause
the trained model to be worse than random predictions [10]. In this work, we focus on Invariant

Learning, which aims at learning causal features expected to be robust against distributional changes.
Invariant Risk Minimization (IRM) [1] has been proposed as a popular solution for invariant learning.
Specifically, IRM is based on an assumption that training data are collected from multiple sources or
environments having distinct data distributions. The learning objective is then designed as a standard
ERM loss function with a penalty term constraining the trained model (e.g. classifier) to be optimal
in all the environments.

IRM has shown to be effective; however, we note that IRM and many invariant learning methods rely
on strict assumptions which limit the practical impacts. The limitations are summarized as follows.

Prior Knowledge of Environments IRM assumes training data are collected from environments,
and the environment labels (i.e. which data instance belongs to which environment) are given.
However, the environment labels are often unavailable. Moreover, the definition of environments
can be implicit, making human labeling more difficult and expensive. To find environments without
supervision, Creager et al. [6] propose EIIL, a min-max optimization framework training the model of
interest and inferring the environment labels. Another work, HRM [22] (or the extension, KerHRM
[23]), parameterizes the environments and proposes clustering-based approaches to estimate the
parameters. A recent method, ZIN [20], also learns to label data. However, it relies on carefully
chosen features satisfying a series of theoretical constraints, and thus human efforts are still required.
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Delicate Initialization EIIL is able to infer environments but requires an ERM model for initializa-
tion. Crucially, the ERM model should heavily depend on spurious correlations. Creager et al. [6]
reveal that, for example, slightly underfitted ERM models may encode more spurious relationships in
some cases. However, as the distributional shifts are assumed to be unknown in the training stage,
appropriate initialization might be difficult to guarantee.

Efficiency Issue HRM and KerHRM, though do not possess the above two limitations, suffer from
the efficiency issue. Specifically, HRM is assumed to be trained with low dimensional data. As for
KerHRM, although it extends HRM to avoid the issue of dimensions by adopting kernel methods, the
computational costs of the proposed method can be very high if the data or model size is large.

This work proposes a novel framework, Environment Diversification with multi-head neural Network
for Invariant Learning (EDNIL). EDNIL is able to infer environment labels without supervision and
achieve joint optimization of environment inference and invariant learning models. The underlying
multi-head neural network explicitly diversifies the inferred environments, which is consistent with
recent studies [5, 22, 23] revealing the benefits of diverse environments. Notably, the proposed
neural network is functionally similar to a multi-class classifier and can be optimized efficiently. The
advantages of EDNIL are summarized as:

• We implement this framework using various pre-trained models such as Resnet [14] and
DistilBert [30], and evaluate it with diverse data types and varied biases. The results show that
EDNIL can constantly outperform the existing state-of-the-art methods.

• The learning algorithm of EDNIL has theoretical connections to recent studies [5, 20, 22, 23]
discussing conditions of ideal environments.

• EDNIL does not have the three limitations discussed above. The comparisons between EDNIL
and other methods are shown in Table 1.

Table 1: A summary of the advantages of invariant learning methods.

Unsupervised1 Insensitive Initialization Efficiency
IRM [1] 7 3 3
ZIN [20] 7 3 3
EIIL [6] 3 7 3

HRM [22] 3 3 7
KerHRM [23] 3 3 7

EDNIL (Ours) 3 3 3

2 Preliminaries and Related Works

The goal of EDNIL is to tackle out-of-distribution problems with invariant learning in the absence
of manual environment labels. In Section 2.1, background knowledge about out-of-distribution
generalization and invariant learning are introduced. In Section 2.2, we discuss recent studies
investigating ideal environments. In Section 2.3, we introduce the existing unsupervised methods
inferring environments.

2.1 Out-of-distribution Generalization and Invariant Learning

Following [1, 22], we consider a dataset D = {De}e2supp(Etr) with different sources D
e =

{(xe
i , y

e
i )}

ne
i=1 collected under multiple training environments e 2 supp(Etr). Random variable

Etr indicates the training environment labels. For simplicity, Xe, Y e and P
e denote data, target label

and distribution in environment e respectively.

With Eall containing all possible environments such that supp(Eall) � supp(Etr), the goal of out-
of-distribution generalization is to learn a predictor f(·) : X ! Y as Equation 1, where R

e(f) =
EXe,Y e [l(f(Xe), Y e)] = Ee[l(f(Xe), Y e)] measures the risk under environment e with any loss

1A method is unsupervised if it does not require extra human efforts to obtain environments.
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function l(·, ·). In general, for e 2 supp(Etr) and e
0 2 supp(Eall) \ supp(Etr), P e0(X,Y ) is rather

different from P
e(X,Y ).

f = argmin
f

max
e2supp(Eall)

R
e(f) (1)

Recently, several studies [1, 4, 18, 26, 28] have attempted to tackle the generalization problems by
discovering invariant relationships across all environments. A commonly proposed assumption is the
existence of invariant features Xc and variant features Xv. Specifically, raw features X are assumed
to be composed of Xc and Xv, or X = h(Xc, Xv) where h(·) is a transformation function. Invariant
features Xc are assumed to be equally informative for predicting targets Y across environments
e 2 supp(Eall). On the contrary, the distribution P

e(Y |Xv) can arbitrarily vary across e. As a
result, predictors depending on Xv can have unpredictable performance in unseen environments. In
particular, the correlations between Xv and Y are known as spurious and unreliable.

To extract Xc, IRM [1] assumes there is an encoder � for obtaining representations �(X) ⇡ Xc.
The encoder is trained with a regularization term enforcing simultaneous optimality of the predictor
w �� in training environments, where dummy classifier w = 1.0 is a fixed multiplier for the encoder
outputs: X

e2supp(Etr)

R
e(�) + �||rw|w=1.0R

e(w � �)||2 (2)

As w is a dummy layer, the encoder � is also regarded as a predictor.

2.2 Ideal Environments

As Etr is unavailable or sub-optimal in most applications, learning to find appropriate environments
(denoted by Elearn) is attractive. However, the challenge is the lack of knowledge of valid environments.
Recently, Lin et al. [20] have proposed Equation 3 and 4 as the conditions of ideal environments,
where H is conditional entropy. To satisfy the conditions, Lin et al. [20] propose leveraging auxiliary
information for model training. However, the method still requires extra human efforts to collect and
verify the additional information.

H(Y |Xc) = H(Y |Xc, Elearn) (3)

H(Y |Xv)�H(Y |Xv, Elearn) > 0 (4)

Particularly, Equation 4 can be implied by empirical studies [5] where diversity of environments is
recognized as the key to obtaining effective IRM models. To be more precise, large discrepancy of
spurious correlations, or P e(Y |Xv), between environments is favored. As the environments give a
clear indication of distributional shifts, IRM can easily identify and eliminate variant features. Beyond
IRM, HRM [22] and KerHRM [23] can also be viewed as optimizing diversity via clustering-based
methods specifically.

2.3 Unsupervised Environment Inference

Here we provide a detailed introduction of the existing environment inference methods that do not
require extra human efforts. The general idea is to integrate environment inference with invariant
learning algorithms who require provided environments.

EIIL [6] proposes formulating invariant learning as a min-max optimization problem. Specifically,
EIIL is composed of two objectives, Environment Inference (EI) and Invariant Learning (IL), where
EI is optimized by maximizing the training penalty via labeling the data, and IL is optimized by
minimizing the training loss given the data labeled by EI . The two-stage framework bypasses the
difficulty of defining environments; however, the training result heavily relies on the initialization of
the EI optimization. Specifically, the initialization demands a strongly biased ERM reference model;
otherwise, EIIL can have a significantly weaker performance.

Another method, HRM [22], proposes a clustering-based method for learning plausible environments.
HRM assumes that spurious correlations in each environment can be modeled by a parameterized
function and the dataset is generated by the mixture of the functions. The parameters are then
estimated by employing EM algorithm. Additionally, HRM equips a joint learning framework which
alternatively learns invariant predictors and improves quality of clustering results. However, a known
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(a) (b)

Figure 1: Concepts of EDNIL. (a) The joint learning framework of EDNIL. The environment
inference model MEI, containing a variant encoder  and environmental functions fe, is trained with
LEI = LED + �LLI + �LIP. The invariant learning model MIL, containing an invariant predictor �, is
trained with LIL. (b) The multi-head network structure of the environment inference model MEI.

issue of HRM is an assumption that the data are represented by raw features. Data such as images
and texts requiring non-linear neural networks to obtain representations are beyond the capability.

To extend HRM to a broader class of applications and improve the model performance, Liu et al.
[23] propose KerHRM. The main idea is to adopt the Neural Tangent Kernel [15] method which
transforms non-linear neural network training into a linear regression problem on the proposed Neural
Tangent Features space. As a result, KerHRM elegantly resolves the shortcomings of HRM and is
shown to be more effective. However, the proposed method and its implementations bring additional
computational costs depending on data and model capacity. For applications favoring large datasets
and pre-trained models, such as Resnet [14] and BERT [7], KerHRM may not be an affordable option
at the present stage.

3 Methodology

In this section, we propose a general framework to learn invariant model without manual environment
labels. As shown in Figure 1a, our proposed method consists of two models, MEI and MIL. Given
the pooled data (X,Y ), MEI infers environments Elearn satisfying Condition 3 and 4, and MIL is an
invariant model trained with the inferred environments. Our framework is jointly optimized with
alternating updates. The learned MIL can provide information of invariant features to MEI, so that
Condition 3 and 4 can be fulfilled simultaneously. Note that MEI only serves at train time to provide
environments for invariant learning. At test time, only MIL is needed to perform invariant predictions.

3.1 The Environment Inference Model

Figure 2: The graphical model.

The target of environment inference is to partition data with
environment labels Elearn satisfying Condition 3 and 4. In this
regard, we propose a graphical model, which is a sufficient
condition for Condition 3 and 4 (the proof is in Appendix A),
as our foundation of inference model and learning objectives.
The graph is shown in Figure 2, where the data generation
process follows the proposed example in [1].

The inference model, MEI, is a neural network learning to realize the underlying graphical model.
Following the idea of parameterizing environments from HRM [22] and KerHRM [23], we assume
the distinct mapping relation between X and Y in environment e can be modeled by a function
f
e( (X)), where  (X) is learned representations expected to encode variant features Xv and f

e is
an environmental function responsible for predicting Y . Instead of employing clusters, we propose
building a multi-head neural network as shown in Figure 1b; particularly, a single-head network
in MEI with shared parameters corresponds to a cluster center in HRM or KerHRM. The training
procedure of MEI can be divided into inference stage and learning stage.
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3.1.1 Inference Stage of MEI

The goal is to infer an environment label for each training data. As in the graphical model, Elearn
is associated with variant relationships. Inspired by multi-class classification problem, we propose
Equation 5, where the probability P (e | X,Y ) is estimated via a softmax of negative l(fe( (X)), Y )
divided by a constant temperature ⌧ . The function l is expected to be the commonly used cross
entropy or mean squared error that measures the discrepancy between Y and f

e( (X)) for each
environment e. Intuitively, each data prefers the environment whose model has better prediction.

P (Elearn = e | X,Y ) =
exp (�l(fe( (X)), Y )/⌧)P

e02supp(Elearn)

exp (�l(fe0( (X)), Y )/⌧)
(5)

3.1.2 Learning Stage of MEI

The goal is to update the neural network to improve the quality of inference. Based on the structure
of the graphical model, three losses are designed for minimization, i.e. Environment Diversification

Loss (LED), Label Independency Loss (LLI) and Invariance Preserving Loss (LIP). In particular, LED
and LIP correspond to the concepts of Condition 4 and 3 respectively.

Environment Diversification Loss (LED) We consider maximizing H(Y |Xv)�H(Y |Xv, Elearn) to
satisfy Condition 4 and capture more diverse variant relationships. Given the estimated P (Elearn|X,Y ),
LED selects the most probable environment and its corresponding network for optimization:

LED = �
X

i

wi max
e

[logP (e | xi, yi)] (6)

For each data (xi, yi), although only one environment ei = argmaxe P (e | xi, yi) is selected for
the minimization, the softmax simultaneously propagates gradient to maximize l(fe0( (xi)), yi)
for e0 6= ei. The network learns to maximize the dependency between Elearn and Y given variant
representations. In terms of spurious correlations, the distinction between environments is expected
to become clearer accordingly. In practice, we utilize scaling weight wi inversely proportional to the
size of ei. The importance of smaller environments will be thus enhanced within the summation.

Label Independency Loss (LLI) With d-separation [25], Elearn is independent of Y in the graphical
model. Hence, LLI constraints their dependency measured by the mutual information I(Y ; Elearn).
Empirically, LLI prevents a trivial solution that environments are determined purely by target labels Y
regardless of input features X , which is undesirable for invariant learning. To minimize I(Y ; Elearn),
it can be verified that it is equivalent to minimizing Equation 7 given P (Y ) is known.

LLI = Ee⇠P (Elearn)[
X

y

P (y|e) logP (y|e)] (7)

Invariance Preserving Loss (LIP) For Condition 3, as MIL learns some invariant relationships
after several training steps (Section 3.2), LIP can be considered to exclude invariant features from the
diversification. Specifically, designed as the contrary of LED, LIP limits the variance of expected loss
from invariant predictor � (in MIL) across environments (Equation 8). Similar idea can be found in
[17]. However, instead of training invariant model given known environments, we freeze the invariant
predictor and regularize the adjustment of Elearn (i.e. the updates of MEI) here.

LIP = Vare⇠P (Elearn)[Ee[l(�(Xe), Y e)]] (8)

In summary, the training loss of MEI can be summarized as Environment Inference Loss (LEI). The
regularization strengths of LLI and LIP can be controlled by hyper-parameters � and � respectively:

LEI = LED + �LLI + �LIP (9)

In addition, before minimizing LEI, we pre-train our  and one arbitrary f
e with ERM. In general, it

empirically facilitates better feature extraction. Unlike EIIL [6] taking ERM as a reference model
heavily relying on variant features, EDNIL performs more consistently under various choices of
ERM. Namely, the initialization of EDNIL can be more arbitrary than that of EIIL. We verify the
argument in Section 4.
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3.2 The Invariant Learning Model

To identify invariance across environments, IRM [1] is selected as our base algorithm optimizing the
invariant predictor� in our model MIL. As for the required environment partitions during training, we
assign environment label e 2 supp(Elearn) with largest P (e|xi, yi), inferred by MEI (Section 3.1.1),
to each data (xi, yi). However, it is inevitable that there exist some noises in automatically inferred
environments, especially in the beginning of joint optimization. To reduce the impact of immature
environments on invariant learning, we calculate the confidence score ce for each environment
e 2 supp(Elearn), i.e. Ee[P (e|Xe

, Y
e)]. Our training objective is modified to minimize Invariant

Learning Loss (LIL) that considers the weighted average of environmental losses:

LIL =
X

e2supp(Elearn)

we · [Re(�) + �||rw|w=1.0R
e(w � �)||2] (10)

we =
ceP

e02supp(Elearn)
ce0

(11)

4 Experiments

We empirically validate the proposed method on biased datasets, Adult-Confounded, CMNIST,
Waterbirds and SNLI. The generation of spurious correlations mainly follow the protocols proposed
by [1, 6, 9, 29]. In Section 4.1, Adult-Confounded and CMNIST are tested with Multilayer Perceptron
(MLP). In Section 4.2, two more complex datasets, Waterbirds and SNLI, are taken for evaluating the
integration of transfer learning. Deep pre-trained models will be fine-tuned to discover variant and
invariant representations.

The following four methods are selected as our competitors: Empirical Risk Minimization (ERM),
Environment Inference for Invariant Learning (EIIL [6]), Kernelized Heterogeneous Risk Minimiza-
tion (KerHRM [23]) and Invariant Risk Minimization (IRM [1], Equation 2). EIIL and KerHRM
are invariant learning methods with unsupervised environment inference, which share the same
settings as EDNIL. HRM [22] is replaced by KerHRM for non-linearity. For IRM who requires
environment partitions, we re-label Eoracle on each given biased training set, which diversifies the
spurious relationships to elicit upper-bound performance of IRM.

For hyper-parameter tuning, we split 10% of training data to construct an in-distribution validation
set. In each dataset, several testing environments with different distributions are listed to evaluate the
robustness of each method, and we mainly take worst-case performance for assessment. As all tasks
in this section are classification problems, accuracy is adopted as the evaluation metric.

Besides, more experimental details are revealed in Appendix B. We also discuss additional experi-
ments in Appendix C, including solutions to regression problem and model stability given different
spurious strengths at train time.

4.1 Simple Datasets with MLP

This section includes two simple datasets, Adult-Confounded and CMNIST, where spurious corre-
lations are synthetically produced with the predefined strengths. For all competitors, MLP is taken
as the base model and full-batch training is implemented. Since KerHRM performs unstably over
random seeds, we first average the results after 10 runs as its first score, and select top 5 among them
as the second one, which will be marked with an asterisk (⇤) in each table.

4.1.1 Discussions on Adult-Confounded

We take UCI Adult [16] to predict binarized income levels (above or below $50,000 per year) 2.
Following [6], individuals are re-sampled according to sensitive features race and sex to simulate
spurious correlations. Specifically, with binarized race (Black/Non-Black) and sex (Female/Male),
four possible subgroups are constructed: Non-black Males (SG1), Non-black Females (SG2), Black
Males (SG3), and Black Females (SG4). Keeping original train/test split and subgroup sizes from

2UCI Adult dataset is widely used in algorithmic fairness papers. However, a recent study [8] discusses some
limitations of this dataset, such as the choice of income threshold.
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Table 2: P (Y = 1|SG) for Adult-
Confounded. IID shares spurious cor-
relations with the train set. IND has no
bias on race and sex. OOD defines the
worst-case performance.

Train Test Test Test
(IID) (IND) (OOD)

SG1 0.9 0.9 0.5 0.1
SG2 0.1 0.1 0.5 0.9
SG3 0.9 0.9 0.5 0.1
SG4 0.1 0.1 0.5 0.9

Table 3: Testing accuracy (%) on Adult Con-
founded. Three subsets are defined in Table 2.
� = 0 and � = 0 indicate the removal of LLI and
LIP when training MEI.

IID IND OOD
ERM 92.4 ± 0.1 66.8 ± 0.3 40.7 ± 0.5

EIIL 76.2 ± 0.4 73.5 ± 0.5 70.2 ± 1.7

KerHRM 82.4 ± 3.9 75.1 ± 4.0 67.9 ± 9.3

KerHRM⇤ 81.2 ± 1.8 78.5 ± 0.3 75.6 ± 1.9

EDNIL 80.7 ± 0.4 79.1 ± 0.4 77.5 ± 0.3
EDNIL�=0 91.8 ± 0.0 66.7 ± 0.1 41.3 ± 0.7

EDNIL�=0 78.2 ± 2.4 75.4 ± 1.6 72.5 ± 3.3

IRM 79.9 ± 0.4 79.3 ± 0.3 78.8 ± 0.4

UCI Adult, we sample data based on the given target distributions in each sensitive subgroup as shown
in Table 2. In particular, OOD contributes the worst-case performance to validate if the predictions
rely on group information. In this task, MLP with one hidden layer of 96 neurons is considered. For
IRM, four environments comprise Eoracle, where the correlations between variant features (race, sex)
and target Y are distributed without overlapping. More details are provided in Appendix B.

Results The results are shown in Table 3. With strong spurious correlations at train time, ERM
obtains high accuracy as the correlations remain aligned; however, its generalization to other testing
distributions is limited. Among all invariant learning methods without prior environment labels,
EDNIL can perfectly identify variant features and infer ideally diversified environments. Therefore,
it achieves the most invariant performance over different testing distributions. EIIL can improve
consistency to some degree, but not as strong as EDNIL. A possible reason is that empirically trained
reference model is not guaranteed to be purely variant [6]. For KerHRM, it performs inconsistently
across random seeds, which is reflected in the large standard deviation. In some cases, the performance
hardly improves over iterations, as observed by Liu et al. [23].

Ablation Study for LEI We first claim the importance of LLI, which constraints label dependency,
by setting the coefficient � to zero. As discussed in Section 3, the resulting environments are
determined purely by target labels, and thus lead to inferior performance for invariant learning as
shown in Table 3. Next, we demonstrate the effectiveness of joint optimization in Figure 3a. The
regularization LIP promotes environment inference, so that the worst-case performance improves
and remains stable over iterations. According to Table 3, if the coefficient � is turned off, feedback
generated by MIL will be ignored and the effect of invariant learning risks being undesirable.

4.1.2 Discussions on CMNIST

We report our evaluation on a noisy digit recognition dataset, CMNIST. Following [1], we first assign
Y = 1 to those whose digits are smaller than 5 and Y = 0 to the others. Next, we apply label noise
by randomly flipping Y with probability 0.2. Finally, the digits are colored with color label C, which
is generated by randomly flipping Y with probability e. For training, two equal-sized environments
with e = 0.1 and e = 0.2 are merged, which is equivalent to one with e = 0.15 on average. For
testing, three situations are considered when e is 0.1, 0.5 or 0.9, respectively. Note that when e = 0.1,
the spurious correlation is much aligned with the training set. On the other hand, e = 0.9 defines the
most challenging case since the spurious correlation shifts most dramatically from training.

For all competitors except KerHRM, we select MLP with two hidden layers of 390 neurons, and
consider the whole dataset (50,000 samples) for training. For KerHRM who requires massive
computing resources, we follow the settings recommended by [23]. Specifically, we randomly select
5,000 samples and train MLP with one hidden layer of 1024 neurons. To construct ideally diversified
Eoracle for IRM, we pack all examples with C = Y into one environments, and C 6= Y into the other.

Results The results are shown in Table 4. First of all, not surprisingly ERM still adopts poorly
to distributional shifts. Among all invariant learning methods without manual environment labels,
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Figure 3: Analysis results. (a) Ablation study of joint optimization on Adult-Confounded, where � =
0 means the removal of LIP. (b) CMNIST Performance of EDNIL with different configured numbers
of environments. (c) Comparison between Elearn inferred by EDNIL and the oracle environments
Eoracle on CMNIST. (d) Testing EIIL’s and EDNIL’s sensitivity to initialization on Waterbirds.

EDNIL gets closest to IRM with Eoracle, achieving consistent and robust performance in this dataset.
As shown in Figure 3c, EDNIL provides almost ideally diversified Elearn for invariant learning.

Table 4: Testing accuracy (%) of CMNIST, where
color noise 0.9 makes the worst-case environment.

Color Noise 0.1 0.5 0.9
ERM 88.4 ± 0.3 55.0 ± 0.5 21.7 ± 0.8

EIIL 79.6 ± 0.3 71.7 ± 0.7 63.1 ± 0.5

KerHRM 74.3 ± 0.7 66.2 ± 1.7 58.0 ± 11.5

KerHRM⇤ 71.3 ± 0.7 68.5 ± 0.5 66.1 ± 0.7

EDNIL 77.7 ± 0.4 76.8 ± 0.3 75.2 ± 0.4

IRM 77.8 ± 0.4 76.8 ± 0.4 75.2 ± 0.3

Number of Environments As shown in Fig-
ure 3b, EDNIL is not sensitive to the predefined
number of environments. Specifically, when the
environment number is larger than the oracle
(i.e. 2), some environment classifiers become re-
dundant. Each of them provides a moderate con-
stant loss, taking up fixed and ignorable space
in the softmax function. The visualization of
Elearn with 5 available environments is shown in
Figure 3c. Additionally, training MEI in EDNIL
with more environments is much more efficient
than clustering-based methods, such as the one
proposed in KerHRM.

4.2 Complex Datasets with Pre-trained Deep Learning Models

This section extends MLP to deep learning models with pre-trained weights for more complex data.
With mini-batch fine-tuning, we consider all competitors but exclude KerHRM due to the efficiency
issue. In Section 4.2.1, image dataset, Waterbirds [29], with controlled spurious correlations is
selected for evaluating the generalization on more high-dimensional images. In Section 4.2.2, a
real-world NLP dataset, SNLI [3], is considered. The biases in SNLI are naturally derived from the
procedure of data collection, and we define biased subsets for evaluation following Dranker et al. [9].

4.2.1 Discussions on Waterbirds

In Waterbirds [29], each bird photograph, from CUB dataset [31], is combined with one background
image, from Places dataset [33]. Both birds and backgrounds are either from land or water, and our
target is to predict the binarized species of birds. At train time, landbirds and waterbirds frequently
present in land and water backgrounds respectively. Therefore, empirically trained models are prone
to learn context features, and fail to generalize as background varies [2, 6, 10, 21, 29].

To split a validation set whose overall distribution is i.i.d. to the training set, we merge original
training and validation data 3 and split 10% for hyper-parameter tuning. For testing, we observe
all four combinations of birds and backgrounds in the original testing set. Among them, the minor
subgroup (waterbirds on land) contributes the most challenging case. In this task, Resnet-34 [14]
is chosen for mini-batch fine-tuning. Given two binary labels (target, background), we distribute
target = background and target 6= background into two different environments and apply
balanced class weights for the oracle settings of IRM.

Results The results are shown in Table 5. As observed in [6, 29], ERM suffers in the hardest case
(i.e. waterbirds on land). EIIL also performs poorly in this case. With a more sophisticated learning

3In the original training split, backgrounds are unequally distributed in each class. However, in the original
validation split, they are equally distributed, which is not i.i.d. to the training.
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Table 5: Testing accuracy (%) of Waterbirds, where Y and BG means target and background
respectively. The subgroup (Water, Land) contributes the worst-case performance.

(Y, BG) (Land, Land) (Water, Water) (Land, Water) (Water, Land)
ERM 99.4 ± 0.0 91.4 ± 0.2 90.9 ± 0.8 72.8 ± 1.0

EIIL 99.4 ± 0.3 90.5 ± 1.8 89.3 ± 3.7 68.6 ± 5.4

EDNIL 98.5 ± 0.6 89.9 ± 1.5 90.3 ± 3.0 78.6 ± 4.3

IRM 98.0 ± 0.5 90.6 ± 1.1 89.5 ± 1.7 83.2 ± 2.2

framework, EDNIL narrows the gaps between subgroups and raises the worst-case performance. The
results show that EDNIL is more resistant to distributional shifts.

Choice of Initialization Both EIIL and EDNIL take ERM as initialization. As mentioned in Section
1, heavy dependency on initialization is risky when testing distribution is unavailable. Therefore,
we take ERM with different training steps for EIIL and EDNIL to verify the stability. The results
are shown in Figure 3d. As suggested by [6], EIIL works only with underfitted reference model in
this case. If the reference model is more well-trained, the performance of EIIL will greatly decline
since ERM might get distracted from variant features. One is prone to be misled into an undesirable
choice for EIIL when seeking hyper-parameters without prior knowledge of distributional shifts. For
instance, the validation score of EIIL with 500-step reference model (95.8%) is higher than that with
100-step (94.7%), which is not consistent with their performances on testing. In comparison, EDNIL
performs more consistent across different pre-training steps, which accentuates our strength of less
sensitive initialization.

4.2.2 Discussions on SNLI

The target of SNLI [3] is to predict the relation between two given sentences, premise and hypothesis.
Recent studies [12, 24, 27] reveal hypothesis bias in SNLI, which is characterized by patterns
in hypothesis sentences highly correlated with a specific label. One can achieve low empirical
risk without considering premises during prediction. However, as the bias no longer holds, the
performance degradation occurs [11, 24].

We sample 100,000 examples and consider all classes, entailment, neutral and contradiction, for
our experiment. Following [9], we define three subsets, unbiased, bias aligned and bias misaligned,
by training a biased model with hypothesis as its only input. The specification of the subsets is as
follows:

• Unbiased: Examples whose predictions from the biased model are ambiguous
• Aligned: Examples that the biased model can predict correctly with high confidence
• Misaligned: Examples that the biased model can predict incorrectly with high confidence

The proportions of the three subsets are 17%, 67% and 16%, respectively. Due to the minority, the
bias misaligned subset is more likely to be ignored and thus defines the worst-case performance.

Table 6: Testing accuracy (%) on SNLI, where the
misaligned defines the worst-case performance.

Subset Unbiased Aligned Misaligned
ERM 74.6 ± 0.3 94.7 ± 0.2 52.6 ± 0.9

EIIL 74.2 ± 0.3 95.0 ± 0.1 51.7 ± 1.3

EDNIL 74.3 ± 0.8 94.2 ± 0.2 54.5 ± 1.0

IRM 74.0 ± 0.9 92.3 ± 0.5 56.9 ± 1.1

For all methods, DistilBERT [30] is taken as the
pre-trained model for further mini-batch fine-
tuning. For Eoracle, we assign the bias aligned
subset to the first environment, and the bias mis-
aligned subset to the second. In order to make
bias prevalence equal in the two environments,
unbiased samples are scattered proportionally to
the two environments.

Results The results are shown in Table 6. As
reported by [9], ERM receives higher score on
the bias aligned subset, but it fails in the bias misaligned case. Among all invariant learning methods
without environment labels, only EDNIL improves on the bias misaligned subset. Namely, even
though the definitions of biases are at a high level, EDNIL is still capable of encoding and diversifying
possible variant features.
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5 Limitations

Our learning algorithm for environment inference is based on the graphical model plotted in Figure 2.
As data are not necessarily generated by the presumed process, there can exist biases that cannot be
captured by the proposed neural network. In the paper, we provide empirical studies of effectiveness
on diverse datasets, while we are still aware that a stronger guarantee of performance is required.

6 Conclusions and Societal Impacts

This work proposes EDNIL for training models invariant to distributional shifts. To infer environments
without supervision, we propose a multi-head neural network structure to identify and diversify
plausible environments. With joint optimization, the resulting invariant models are shown to be more
robust than existing solutions on data having distinct characteristics and different strengths of biases.
We attribute the effectiveness to the underlying learning objectives, which are consistent with recent
studies of ideal environments. Additionally, we note that the classifier-like structure of environment
inference model makes EDNIL easy to combine with off-the-shelf pre-trained models and trained
more efficiently.

Our contributions to invariant learning have broader societal impacts on numerous domains. For
instance, it can encourage further research and real-world applications on debiasing machine learning
systems. To be more specific, the identification and elimination of potential biases can facilitate
more robust model training. It can be beneficial to many real applications where distributional shifts
commonly occur, such as autonomous driving, social media and healthcare.

Furthermore, as discussed by [6], invariant learning can promote algorithmic fairness in some ways.
In particular, our empirical achievements on Adult-Confounded can prevent discrimination against
sensitive demographic subgroups in decision-making process. It shows that EDNIL has a potential to
learn a fair predictor without prior knowledge of sensitive attributes, which is related to [13, 19, 32].
We expect that one can extend our work to more fairness benchmarks and criteria in the future.

Last but not least, it is worth mentioning some cautions, however. Since the invariant learning
algorithm claims to find invariant relationships, one might cast more attention on feature importance of
the invariant model and even incorporate the results into further research or applications. Nevertheless,
the results are reliable only when the model is trained appropriately. Insufficient data collection or
careless training process, for example, can certainly affect the identification of invariant features, and
thus mislead experimental findings. As a result, we believe that adequate and careful preparations
and analyses are essential before drawing conclusions from the inferred invariant relationships.

Acknowledgments and Disclosure of Funding

We would like to thank the anonymous reviewers for their helpful suggestions. This material is
based upon work supported by National Science and Technology Council, ROC under grant number
111-2221-E-002 -146 -MY3 and 110-2634-F-002-050 -.

10



References
[1] Martin Arjovsky, Léon Bottou, Ishaan Gulrajani, and David Lopez-Paz. Invariant risk mini-

mization, 2019. URL https://arxiv.org/abs/1907.02893.

[2] Sara Beery, Grant Van Horn, and Pietro Perona. Recognition in terra incognita. In Proceedings

of the European Conference on Computer Vision (ECCV), September 2018.

[3] Samuel R. Bowman, Gabor Angeli, Christopher Potts, and Christopher D. Manning. A large
annotated corpus for learning natural language inference. In Proceedings of the 2015 Conference

on Empirical Methods in Natural Language Processing, pages 632–642, Lisbon, Portugal,
sep 2015. Association for Computational Linguistics. doi: 10.18653/v1/D15-1075. URL
https://aclanthology.org/D15-1075.

[4] Shiyu Chang, Yang Zhang, Mo Yu, and Tommi Jaakkola. Invariant rationalization. In Proceed-

ings of the 37th International Conference on Machine Learning, pages 1448–1458, 2020. URL
https://proceedings.mlr.press/v119/chang20c.html.

[5] Yo Joong Choe, Jiyeon Ham, and Kyubyong Park. An empirical study of invariant risk
minimization. In ICML 2020 Workshop on Uncertainty and Robustness in Deep Learning,
2020.

[6] Elliot Creager, Joern-Henrik Jacobsen, and Richard Zemel. Environment inference for invariant
learning. In Proceedings of the 38th International Conference on Machine Learning, pages
2189–2200, 2021. URL https://proceedings.mlr.press/v139/creager21a.html.

[7] Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. BERT: Pre-training of
deep bidirectional transformers for language understanding. In Proceedings of the 2019 Confer-

ence of the North American Chapter of the Association for Computational Linguistics: Human

Language Technologies, Volume 1 (Long and Short Papers), pages 4171–4186, Minneapolis,
Minnesota, June 2019. Association for Computational Linguistics. doi: 10.18653/v1/N19-1423.
URL https://aclanthology.org/N19-1423.

[8] Frances Ding, Moritz Hardt, John Miller, and Ludwig Schmidt. Retiring adult: New
datasets for fair machine learning. In Advances in Neural Information Processing Systems,
pages 6478–6490, 2021. URL https://proceedings.neurips.cc/paper/2021/file/

32e54441e6382a7fbacbbbaf3c450059-Paper.pdf.

[9] Yana Dranker, He He, and Yonatan Belinkov. IRM—when it works and when it doesn’t: A test
case of natural language inference. In Advances in Neural Information Processing Systems,
2021. URL https://openreview.net/forum?id=KtvHbjCF4v.

[10] Robert Geirhos, Jörn-Henrik Jacobsen, Claudio Michaelis, Richard Zemel, Wieland Bren-
del, Matthias Bethge, and Felix A. Wichmann. Shortcut learning in deep neural networks.
Nature Machine Intelligence, 2(11):665–673, 2020. URL https://doi.org/10.1038%

2Fs42256-020-00257-z.

[11] Max Glockner, Vered Shwartz, and Yoav Goldberg. Breaking NLI systems with sentences that
require simple lexical inferences. In Proceedings of the 56th Annual Meeting of the Association

for Computational Linguistics (Volume 2: Short Papers), pages 650–655, Melbourne, Australia,
July 2018. Association for Computational Linguistics. doi: 10.18653/v1/P18-2103. URL
https://aclanthology.org/P18-2103.

[12] Suchin Gururangan, Swabha Swayamdipta, Omer Levy, Roy Schwartz, Samuel Bowman, and
Noah A. Smith. Annotation artifacts in natural language inference data. In Proceedings of

the 2018 Conference of the North American Chapter of the Association for Computational

Linguistics: Human Language Technologies, Volume 2 (Short Papers), pages 107–112, June
2018. doi: 10.18653/v1/N18-2017. URL https://aclanthology.org/N18-2017.

[13] Tatsunori Hashimoto, Megha Srivastava, Hongseok Namkoong, and Percy Liang. Fairness
without demographics in repeated loss minimization. In Proceedings of the 35th International

Conference on Machine Learning, pages 1929–1938, 2018. URL https://proceedings.

mlr.press/v80/hashimoto18a.html.

11

https://arxiv.org/abs/1907.02893
https://aclanthology.org/D15-1075
https://proceedings.mlr.press/v119/chang20c.html
https://proceedings.mlr.press/v139/creager21a.html
https://aclanthology.org/N19-1423
https://proceedings.neurips.cc/paper/2021/file/32e54441e6382a7fbacbbbaf3c450059-Paper.pdf
https://proceedings.neurips.cc/paper/2021/file/32e54441e6382a7fbacbbbaf3c450059-Paper.pdf
https://openreview.net/forum?id=KtvHbjCF4v
https://doi.org/10.1038%2Fs42256-020-00257-z
https://doi.org/10.1038%2Fs42256-020-00257-z
https://aclanthology.org/P18-2103
https://aclanthology.org/N18-2017
https://proceedings.mlr.press/v80/hashimoto18a.html
https://proceedings.mlr.press/v80/hashimoto18a.html


[14] K. He, X. Zhang, S. Ren, and J. Sun. Deep residual learning for image recognition. In 2016

IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pages 770–778, Los
Alamitos, CA, USA, jun 2016. IEEE Computer Society. doi: 10.1109/CVPR.2016.90. URL
https://doi.ieeecomputersociety.org/10.1109/CVPR.2016.90.

[15] Arthur Jacot, Clément Hongler, and Franck Gabriel. Neural tangent kernel: Convergence and
generalization in neural networks. In Samy Bengio, Hanna M. Wallach, Hugo Larochelle,
Kristen Grauman, Nicolò Cesa-Bianchi, and Roman Garnett, editors, Advances in Neural

Information Processing Systems 31: Annual Conference on Neural Information Processing

Systems 2018, NeurIPS 2018, 3-8 December 2018, Montréal, Canada, pages 8580–8589, 2018.

[16] Ronny Kohavi and Barry Becker. Adult. UCI Machine Learning Repository, 1996. Accessed:
2021-09-06.

[17] David Krueger, Ethan Caballero, Joern-Henrik Jacobsen, Amy Zhang, Jonathan Binas, Dinghuai
Zhang, Remi Le Priol, and Aaron Courville. Out-of-distribution generalization via risk extrapo-
lation (rex). In Proceedings of the 38th International Conference on Machine Learning, pages
5815–5826, 2021. URL https://proceedings.mlr.press/v139/krueger21a.html.

[18] Kun Kuang, Ruoxuan Xiong, Peng Cui, Susan Athey, and Bo Li. Stable prediction with model
misspecification and agnostic distribution shift. In Proceedings of the AAAI Conference on

Artificial Intelligence, pages 4485–4492, 04 2020. doi: 10.1609/aaai.v34i04.5876.

[19] Preethi Lahoti, Alex Beutel, Jilin Chen, Kang Lee, Flavien Prost, Nithum Thain,
Xuezhi Wang, and Ed Chi. Fairness without demographics through adversari-
ally reweighted learning. In Advances in Neural Information Processing Systems,
pages 728–740, 2020. URL https://proceedings.neurips.cc/paper/2020/file/

07fc15c9d169ee48573edd749d25945d-Paper.pdf.

[20] Yong Lin, Shengyu Zhu, and Peng Cui. Zin: When and how to learn invariance by environment
inference?, 2022. URL https://arxiv.org/abs/2203.05818.

[21] Evan Z Liu, Behzad Haghgoo, Annie S Chen, Aditi Raghunathan, Pang Wei Koh, Shiori Sagawa,
Percy Liang, and Chelsea Finn. Just train twice: Improving group robustness without training
group information. In Proceedings of the 38th International Conference on Machine Learning,
pages 6781–6792, 2021. URL https://proceedings.mlr.press/v139/liu21f.html.

[22] Jiashuo Liu, Zheyuan Hu, Peng Cui, Bo Li, and Zheyan Shen. Heterogeneous risk minimization.
In Proceedings of the 38th International Conference on Machine Learning, pages 6804–6814,
2021. URL https://proceedings.mlr.press/v139/liu21h.html.

[23] Jiashuo Liu, Zheyuan Hu, Peng Cui, Bo Li, and Zheyan Shen. Kernelized hetero-
geneous risk minimization. In Advances in Neural Information Processing Systems,
pages 21720–21731, 2021. URL https://proceedings.neurips.cc/paper/2021/file/

b59a51a3c0bf9c5228fde841714f523a-Paper.pdf.

[24] Tom McCoy, Ellie Pavlick, and Tal Linzen. Right for the wrong reasons: Diagnosing syn-
tactic heuristics in natural language inference. In Proceedings of the 57th Annual Meet-

ing of the Association for Computational Linguistics, pages 3428–3448, Florence, Italy,
July 2019. Association for Computational Linguistics. doi: 10.18653/v1/P19-1334. URL
https://aclanthology.org/P19-1334.

[25] Judea Pearl. Probabilistic Reasoning in Intelligent Systems. Morgan Kaufmann, 1988.

[26] J. Peters, Peter Buhlmann, and Nicolai Meinshausen. Causal inference by using invariant
prediction: identification and confidence intervals. Journal of the Royal Statistical Society:

Series B (Statistical Methodology), 78, 2015.

[27] Adam Poliak, Jason Naradowsky, Aparajita Haldar, Rachel Rudinger, and Benjamin Van Durme.
Hypothesis only baselines in natural language inference. In Proceedings of the Seventh Joint

Conference on Lexical and Computational Semantics, pages 180–191, New Orleans, Louisiana,
jun 2018. Association for Computational Linguistics. doi: 10.18653/v1/S18-2023. URL
https://aclanthology.org/S18-2023.

12

https://doi.ieeecomputersociety.org/10.1109/CVPR.2016.90
https://proceedings.mlr.press/v139/krueger21a.html
https://proceedings.neurips.cc/paper/2020/file/07fc15c9d169ee48573edd749d25945d-Paper.pdf
https://proceedings.neurips.cc/paper/2020/file/07fc15c9d169ee48573edd749d25945d-Paper.pdf
https://arxiv.org/abs/2203.05818
https://proceedings.mlr.press/v139/liu21f.html
https://proceedings.mlr.press/v139/liu21h.html
https://proceedings.neurips.cc/paper/2021/file/b59a51a3c0bf9c5228fde841714f523a-Paper.pdf
https://proceedings.neurips.cc/paper/2021/file/b59a51a3c0bf9c5228fde841714f523a-Paper.pdf
https://aclanthology.org/P19-1334
https://aclanthology.org/S18-2023


[28] Mateo Rojas-Carulla, Bernhard Schölkopf, Richard E. Turner, and J. Peters. Invariant models
for causal transfer learning. J. Mach. Learn. Res., 19:36:1–36:34, 2018.

[29] Shiori Sagawa*, Pang Wei Koh*, Tatsunori B. Hashimoto, and Percy Liang. Distributionally
robust neural networks. In International Conference on Learning Representations, 2020. URL
https://openreview.net/forum?id=ryxGuJrFvS.

[30] Victor Sanh, Lysandre Debut, Julien Chaumond, and Thomas Wolf. Distilbert, a distilled version
of bert: smaller, faster, cheaper and lighter. In NeurIPS 2019 Workshop on Energy Efficient

Machine Learning and Cognitive Computing, 2019.

[31] P Welinder, S Branson, T Mita, C Wah, F Schroff, S Belongie, and P Perona. Caltech-UCSD
Birds 200. Technical Report CNS-TR-2010-001, Caltech, 2010.

[32] Shen Yan, Hsien-te Kao, and Emilio Ferrara. Fair class balancing: Enhancing model fairness
without observing sensitive attributes. In Proceedings of the 29th ACM International Conference

on Information & Knowledge Management, CIKM ’20, page 1715–1724, New York, NY, USA,
2020. Association for Computing Machinery. ISBN 9781450368599. doi: 10.1145/3340531.
3411980. URL https://doi.org/10.1145/3340531.3411980.

[33] Bolei Zhou, Agata Lapedriza, Aditya Khosla, Aude Oliva, and Antonio Torralba. Places: A
10 million image database for scene recognition. IEEE Transactions on Pattern Analysis and

Machine Intelligence, 40(6):1452–1464, 2018. doi: 10.1109/TPAMI.2017.2723009.

13

https://openreview.net/forum?id=ryxGuJrFvS
https://doi.org/10.1145/3340531.3411980

	Introduction
	Preliminaries and Related Works
	Out-of-distribution Generalization and Invariant Learning
	Ideal Environments
	Unsupervised Environment Inference

	Methodology
	The Environment Inference Model
	Inference Stage of MEI
	Learning Stage of MEI

	The Invariant Learning Model

	Experiments
	Simple Datasets with MLP
	Discussions on Adult-Confounded
	Discussions on CMNIST

	Complex Datasets with Pre-trained Deep Learning Models
	Discussions on Waterbirds
	Discussions on SNLI


	Limitations
	Conclusions and Societal Impacts
	Proof of the Underlying Graphical Model of EDNIL
	Experimental Details
	Implementation Resources
	Hyper-parameter Tuning
	Oracle Settings on Adult-Confounded
	Biased Model for SNLI

	Additional Empirical Results
	Synthetic Data for Regression Problem
	CMNIST with Different Color Noises


